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Abstract

Under rational expectations and risk neutrality the linear projec-
tion of exchange rate change on the forward premium has a unit
coefficient. However, empirical estimates of this coefficient are sig-
nificantly less than one and often negative. We investigate whether
replacing rational expectations by discounted least squares (or “per-
petual”) learning can explain the result. We calculate the asymptotic
bias under perpetual learning and show that there is a negative bias
that becomes strongest when the fundamentals are strongly persis-
tent, i.e. close to a random walk. Simulations confirm that perpetual
learning is potentially able to explain the forward premium puzzle.

JEL classifications: D83, D84, F31, G12, G15
Keywords: Learning, exchange rates, forward premium.

1 Introduction

The ‘Forward Premium Puzzle’ is a long-standing empirical paradox in inter-
national finance. The puzzle refers to the finding that the forward exchange
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cussions and comments, and for comments received at the July 2006 “Learning Week”
workshop, Federal Reserve Bank of St. Louis, the November 2006 ECB Conference on
Monetary Policy, Asset Markets and Learning, Frankfurt, and in numerous seminars.
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rate consistently predicts the expected depreciation in the spot exchange
rate but with a smaller magnitude and often the opposite sign than specified
by rational expectations. A large literature documents and attempts to ex-
plain the puzzle, but mostly with very mixed success. This paper proposes
a resolution from a new perspective.
According to theory, if the future rate of depreciation in the exchange rate

is regressed on the forward premium (the forward rate less the current spot
rate in logarithms), then the slope coefficient on the forward premium should
be unity provided the agents are risk-neutral and do not make systematic
errors in their forecast. More formally, if st is the natural log of the current
spot exchange rate (defined as the domestic price of foreign exchange), ∆st+1
is the depreciation of the natural log of the spot exchange rate from period
t to t+ 1, i.e., ∆st+1 = st+1 − st, and Ft is the natural log of the one-period
forward rate at period t, then in the true regression equation

∆st+1 = α+ β(Ft − st) + ut+1, (1)

β is unity and ut+1 is uncorrelated with the forward premium Ft − st. It
follows that Eβ̂ = 1, where β̂ is the least squares estimate of the slope
coefficient on the forward premium.
This theoretical result is based on assumptions of risk-neutrality and

rational expectations. If agents are risk neutral then they must set to-
day’s forward rate equal to their expectation about the future spot rate, i.e.
Ft = Êtst+1, where Êtst+1 denotes their expectation of st+1 formed at time
t. If, moreover, their expectations are rational then Êtst+1 = Etst+1, where
Etst+1 denotes the true mathematical expectation of st+1 conditioned on in-
formation available at time t, assumed to include Ft and st. With rational
expectations, agents’ forecast errors ut+1 = st+1 −Etst+1 satisfy Etut+1 = 0,
i.e. agents do not make systematic forecasting errors. Combining risk neu-
trality and rational expectations we obtain

st+1 = Ft + ut+1,

and thus the depreciation of exchange rate from t to t+ 1 is given by

∆st+1 = (Ft − st) + ut+1

where Etut+1 = 0, which gives the theoretical prediction Eβ̂ = 1.
A large volume of research has empirically tested the hypothesis β = 1,

and concluded that the least squares estimate β̂ is often significantly less
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than 1. In fact, in the majority of cases, β̂ is less than zero.1 We reproduce
part of Table 1 from Mark and Wu (1998) documenting the existence of
the puzzle. In the table they used quarterly data ranging from 1976.I to
1994.I on USD (dollar) rates of GBP (pound), DEM (deutsche-mark) and
JAY (yen) as well as three cross rates2.The evidence thus strongly refutes
the theoretical prediction that β = 1, and hence apparently contradicts the
efficient market hypothesis. This is the much renowned “forward premium
puzzle” (or “forward premium anomaly”).

Table 1
Regressions of Quarterly Depreciation on 3-Month Forward Premium

∆st+1 = α+ β(Ft − st) + εt+1
USD/GBP USD/DEM USD/JAY GBP/DEM GBP/JAY DEM/JAY

1976:I-1994:I
α̂OLS -1.340 0.638 3.294 1.622 7.702 1.041

(0.895) (0.886) (0.964) (1.116) (1.687) (0.648)
β̂OLS -1.552 -0.136 -2.526 -0.602 -4.261 -0.755

(0.863) (0.839) (0.903) (0.782) (1.133) (1.042)

The key to the resolution of the puzzle seems to be hidden in the ordinary
least squares formula for β̂. Assuming β = 1 we have

β̂ =
ccov(∆st+1, Ft − st)cvar(Ft − st)

= 1 +
ccov[(Ft − st), ut+1]cvar(Ft − st)

,

where ccov and cvar denote sample covariance and sample variance. Therefore,ccov[(Ft − st), ut+1] < 0 is needed to explain the downward bias in β̂.
Existing research follows two major approaches. One of them assumes

that investors in the foreign exchange market are risk-averse. Consequently,
the forward rate not only incorporates their expectation about the future
depreciation but also includes a risk-premium as a hedge against the risk from
investing in a more volatile asset characterized by a higher rate of return.
As a result, expected depreciation is not a conditionally unbiased forecast
of actual depreciation. Despite its intuitive appeal, empirical studies have

1Froot and Thaler (1990) and Engel (1996) provide comprehensive reviews of this puz-
zling observation.

2For more details about the data see Mark and Wu (1998). In Table 1, standard errors
of estimates are in parentheses.
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shown the difficulty of the risk premium approach in providing a satisfactory
explanation of the puzzle.3 This has led to a general skepticism of the risk-
premium explanation.
The other approach centers around the potential ability of non-rational

expectations to explain the results. This potential is apparent from some of
the other findings related to exchange rate behavior.4 Our paper is motivated
by this research, which suggests the importance of deviations from rational
expectations in foreign exchange markets. If traders do not have perfectly
rational expectations, their forecast errors may be correlated with previous
period’s information and this would introduce an observed bias in the forward
premium regression results.5 The question we want to examine is whether a
natural form of bounded rationality would yield cov[(Ft − st), ut+1] < 0 and
hence explain the systematic under-prediction of future depreciation.6

In fact, we require only a small and quite natural deviation from rational
expectations, based on the econometric learning approach increasingly uti-
lized in macroeconomics. Recent applications include the design of monetary
policy (Bullard and Mitra (2002), Evans and Honkapohja (2003), and Or-
phanides and Williams (2005a)), recurrent hyperinflations in Latin America
(Marcet and Nicolini (2003)), US inflation and disinflation (Sargent (1999),
Orphanides and Williams (2005b), Bullard and Eusepi (2005)), asset prices
(Timmermann (1993), Brock and Hommes (1998), Bullard and Duffy (2001),

3Fama (1984) demonstrates that, for this to happen, the variance of the risk premium
must be greater than the variance of expected depreciation, and their covariance must be
negative.These requirements do not appear to be supported empirically.

4De Long et. al. (1990) demonstrated that the presence of both rational and non-
rational traders in the market tends to distort asset prices significantly away from the
fundamental values and therefore has the potential to explain many financial market anom-
alies. Mark and Wu (1998) demonstrated that the behavior of the variance and covariance
of the risk premium as required by Fama (1984) does not have empirical support, while
the existence of noise traders in the market under certain numerical assumptions yields
results compatible with the data.

5Chakraborty and Haynes (2005) demonstrate, in the context of deviations from ra-
tionality, that nonstationarity in the relevant variables can explain the related puzzle of
little or no bias in “level” specification between the future spot and current forward rate,
yet significant negative bias with frequent sign reversals in the standard forward premium
specification.

6In connection with the closely related issue of uncovered interest parity, McCallum
(1994) argues that monetary policy response to exchange rate changes may account for
the econometric findings. As he notes, this and the view that expectations are less than
fully rational are potentially complementary explanations.
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Adam et. al. (2006)), and currency crises and exchange rates (Kasa (2004),
Kim (2006)).
In the present paper we show that when the fundamentals driving the

exchange rate are strongly persistent, a downward bias in β̂ necessarily arises
for arbitrarily small deviations from rational expectations due to learning.
In particular our theoretical results imply the large sample limiting value of
plim(β̂) = 0 in the empirically realistic case in which the fundamentals follow
(or approximate) a random walk. In addition, we show numerically that this
downward bias is magnified in small sample sizes, yielding mean negative β̂
in line with those observed empirically.
Our key assumption is that while agents do know the true form of the

relationship between the fundamentals and the exchange rate that would
hold under rational expectations, they do not know the parameter values
and must estimate them from observed data.7 In the model we analyze, the
exchange rate st, under rational expectations, satisfies

st+1 = bvt + ut+1,

where vt is the observed value of the fundamentals, assumed exogenous, and
ut+1 is unforecastable white noise. Under rational expectations b takes a par-
ticular value b̄ that depends on the model parameters and on the parameters
of the stochastic process vt. The rational one-step ahead forecast is then
given by Etst+1 = b̄vt. However, we instead make the assumption that the
agents do not know the true value of b and must estimate it from the data
by running a regression of st+1 on vt.
More specifically, agents estimate b by “constant gain” or “discounted”

least-squares learning of the type studied by Sargent (1999), Bischi and Ma-
rimon (2001), Cho et. al. (2002), Kasa (2004), Williams (2004) and Or-
phanides and Williams (2005a).8 Orphanides and Williams refer to this as
“perpetual” learning, since agents remain perpetually alert to possible struc-
tural change. We show that under this form of learning the agents’ estimates
bt are centered at the RE value b̄, but gradually and randomly move around
this value as the estimates respond to recent data. Because bt is not exactly
equal to b̄ in every period, we have a deviation from full rational expectations.

7Lewis (1989) used Bayesian learning to provide an explanation for the forward pre-
mium puzzle. However, the model could not explain the persistence of prediction errors,
since the magnitude of the error shrinks, over time, to zero.

8For a general discussion of constant gain learning, see Chapter 14 of Evans and
Honkapohja (2001).
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However, agents are in many ways very rational and quite sophisticated in
their learning: they know the form of the relationship and estimate the true
parameter value, adjusting their estimates, in response to recent forecast er-
rors, in accordance with the least squares principle. Furthermore, for small
gains, the value of bt and the agents’ forecasts will be quite close to rational
expectations.
Is this form of least-squares learning sufficient to explain the forward

premium puzzle? We argue that indeed it may. Using theoretical results
from the macroeconomics learning literature, we can derive the stochastic
process followed by bt under learning and derive an approximation for the
asymptotic bias of the least-squares estimate β̂t of the forward premium slope
coefficient. This bias turns out to depend on all the structural parameters
in the model, including the autoregressive coefficient ρ of the fundamentals
process, which we model as a simple AR(1) process. We are interested in
results for the case of large 0 < ρ < 1, and especially for ρ→ 1, since in this
limiting case the exchange rate under rational expectations would follow a
random walk, in accordance with the well-known empirical results of Meese
and Rogoff (1983). The large econometric literature, initiated by the findings
of Nelson and Plosser (1982), has established that most macroeconomic time-
series either contain a unit root or a near-unit root. Empirically the case
of interest is thus fundamentals processes with ρ close to or equal to one.
Under learning this will lead to exchange rates that are close to a random
walk. Our principal finding is that precisely in this case the downward bias in
the forward-premium regression is substantial. Perpetual learning therefore
appears capable of entirely explaining the forward premium puzzle.

2 Framework

2.1 A simple exchange rate model

To illustrate our central point we use a very simple monetary exchange rate
model based on purchasing power parity, risk-neutrality and covered interest
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parity.9 The equations are as follows:

Ft = Êtst+1 (2)

it = i∗t + Ft − st (3)

mt − pt = d0 + d1yt − d2it (4)

pt = p∗t + st. (5)

Here st is the log of the price of foreign currency, Ft is the log of the for-
ward rate at t for foreign currency at t + 1, and Êtst+1 denotes the market
expectation of st+1 held at time t. Equation (2) assumes risk neutrality and
equation (3) is the closed parity condition, with it and i∗t the domestic and
foreign interest rate, respectively. Equation (4) represents money market
equilibrium, where mt is the log money supply, pt is the log price level and
yt is log real GDP. Finally the purchasing power parity condition is given by
(5), where p∗t is the log foreign price level. The parameters d1, d2 are assumed
to be positive.
These equations can be solved to yield the reduced form

st = θÊtst+1 + vt, (6)

where θ = d2/(1 + d2), so that 0 < θ < 1.

vt = (1 + d2)
−1(mt − p∗t − d0 − d1yt + d2i

∗
t )

represents the “fundamentals.” We will treat vt as an exogenous stochastic
process, which implicitly assumes the “small country” case with exogenous
output.10 We will focus on the case in which vt is an observable stationary
AR(1) process11

vt = δ + ρvt−1 + εt

with 0 < ρ < 1. For application of the theoretical learning results we need to
make the technical assumption that vt has compact support.12 Our results

9See, for example, Frenkel (1976), Mussa (1976) and Engel and West (2005). This
model is the simplest vesrion of the “asset market approach” to exchange rates. Engel
and West (2005) describe the various ways in which the model can be generalized.
10For the large country case see Chakraborty (2005, 2007).
11It would be straightforward to allow for an additional unobserved white noise shock.
12This rules out the normal distribution, but is compatible with a truncated normal

distribution in which the distribution is restricted to an (arbitrarily large) closed interval.
Our assumption of compact support ensures that vt has finite moments of all orders.
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would also apply to the case in which vt is trend-stationary, with compact
support around a known deterministic trend (and could be extended to the
case in which the trend is unknown). As discussed above, we are particularly
interested in the case ρ close to one, but the theory we develop will be valid
for any 0 < ρ < 1.
In modeling expectation formation by the agents we make the assumption

that their forecasts Êtst+1 are based on a reduced form econometric model
of the exchange rate, specifically st = a + bvt−1 + ηt, where ηt is treated as
exogenous white noise, using coefficients that are estimated from the data
using discounted least-squares. Specifically, we assume that at the beginning
of time t, agents have estimates at−1, bt−1 of the coefficients a, b, based on data
through time t − 1. These, together with the observed current value of the
fundamentals vt, are used to forecast the next period’s exchange rate Êtst+1 =
at−1 + bt−1vt. The fundamentals, together with the forecasts, determine the
exchange rate according to (6), and then at the end of period t the parameter
estimates are updated to at, bt, for use in the following period. We now turn
to a detailed discussion of the learning rule and the theoretical results for the
system under learning.

3 Formal Results under Learning

3.1 Stochastic approximation results

For theoretical convenience we examine the system

st = θÊtst+1 + vt

vt = ρvt−1 + εt,

where εt ∼ iid(0, σ2ε) and 0 ≤ ρ < 1. Here we have normalized the intercept
to zero, which is equivalent to assuming that agents know its true value and
that we are looking at the system in deviation from the mean form. In the
RE (rational expectations) solution

st = b̄vt−1 + c̄εt, where b̄ = (1− ρθ)−1ρ and c̄ = (1− ρθ)−1,
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and market participants forecast using the known coefficient b̄. Under learn-
ing, they instead estimate this coefficient by constant gain least squares.13, 14

This is most conveniently expressed in recursive form.15 The estimate based
on data through time t is given by the algorithm

bt = bt−1 + γR−1t−1vt−1(st − bt−1vt−1)) (7)

Rt = Rt−1 + γ(v2t −Rt−1),

where γ > 0 is a small positive constant. Rt can be viewed as an estimate of
the second moment of the fundamentals. Since forecasts are formed as

Êtst+1 = bt−1vt, (8)

the exchange rate under learning is given by

st = (θbt−1 + 1)vt. (9)

Using stochastic approximation results it can be shown that the mean
path of bt and Rt can be approximated by the differential equations16

db/dτ = R−1σ2v ((θρ− 1)b+ ρ) (10)

dR/dτ = σ2v −R,

where τ = γt. This differential equation system has a unique equilibrium
(b̄, R̄) = ((1−ρθ)−1ρ, σ2v) that is globally stable, so that, whatever the initial
values for the learning algorithm, we have Ebt → b̄ as t→∞.
Under ordinary (“decreasing gain”) least-squares learning γ is replaced by

1/t and it can be shown that in the limit we obtain fully rational expectations,
i.e. bt → b̄ with probability one as t→∞. We instead focus on the natural
modification in which ordinary least-squares is replaced by constant gain
least squares, as above, so that γ is a small fixed positive number, e.g. γ =
0.02 or γ = 0.05. This assumption — that agents weight recent data more

13If δ 6= 0 then the REE is st = ā + b̄vt−1 + c̄εt, where b̄, c̄ are unchanged and ā =
(1 − θ)−1(1 − ρθ)−1δ. Under learning agents would estimate (a, b) using constant gain
recursive least squares. The numerical results of Section 5 allow for δ 6= 0.
14Under rational expectations the regression obeys standard assumptions for 0 < ρ < 1.

When ρ = 1 agents would be estimating a cointegrating relationship.
15See, e.g., Marcet and Sargent (1989), Sargent (1999) or Evans and Honkapohja (2001).
16See the Appendix for technical details.
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heavily than past data — is being increasingly studied in the macroeconomic
literature, as noted in the introduction.
Why would constant gain learning be natural to employ? As emphasized

by Sargent (1999), applied econometricians and forecasters recognize that
their model is subject to misspecification and structural change. Constant
gain least-squares is a natural way to allow for potential structural change
taking an unknown form, because it weights recent data more heavily than
older data. This procedure is well known in the statistics and engineering
literature, see for example, Chapters 1 and 4, Part I, of Benvensite et. al.
(1990). As noted by Orphanides and Williams (2005a), an additional theo-
retical advantage is that it converts the model under learning to a stationary
environment, so that results can be stated in a way that does not depend
on the stage of the learning transition. In effect, under constant gain least
squares, agents are engaged in perpetual learning, always alert for possible
changes in structure.
Of course the appropriate choice the of gain parameter γ will be an issue

of some importance. In principle this parameter might be chosen by agents in
an optimal way, reflecting the trade-off between tracking and filtering. This is
discussed in Benvensite et. al. (1990) and analyzed in a simple economic set-
up in Evans and Ramey (2006). In the current paper, in line with most of the
literature, we do not directly confront this issue, but instead investigate how
our results depend on the value of the gain. Empirical macroeconomic evi-
dence on forecaster expectations and forecast performance for GDP growth
and inflation,17 suggest values of the gain for quarterly data in the range
γ = 0.02 to γ = 0.05. Reasonable values for γ in our setting will depend on
the amount of perceived structural change in the link between the exchange
rate and fundamentals and may, therefore, be different.
Under constant gain learning, a natural result is obtained that goes be-

yond the decreasing gain asymptotic convergence result. Rational expecta-
tions can still be viewed as a limiting case, but constant gain learning turns
out to yield surprising results for small deviations from this limit. Our cen-
tral starting point is the unsurprising result that with a small constant gain
γ > 0, the parameter bt remains random as t → ∞, with a mean equal to
the RE value b̄, and with a small variance around b̄. We have the following:

Proposition 1 Consider the model under constant gain learning. For γ > 0
sufficiently small, and γt sufficiently large, bt is approximately normal with
17See Orphanides and Williams (2005b) and Branch and Evans (2006b).
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mean b̄ and variance γC, where

C =
1− ρ2

2(1− ρθ)3
,

and the autocorrelation function between bt and bt−k is approximately e−(1−θρ)γk.

The proof is given in the Appendix. Thus, provided the process has been
running for sufficiently long so that the influence of initial conditions is small,
the distribution of bt at each time t can be approximated by

bt ∼ N(b̄, γC),

for γ > 0 small. Note that rational expectations arises as the limit in which
γ → 0, since in this case at each time t the parameter estimate bt has mean
b̄ and zero variance. Thus for small γ > 0 we are indeed making small
deviations from rationality.
Up to this point the results may appear straightforward and fairly un-

controversial: under perpetual gain learning with small constant gain γ > 0,
the agents’ estimate of the key parameter used to forecast exchange rates
has a mean value equal to its RE value, but is stochastic with a standard
deviation depending on the structural parameters and proportional to

√
γ.

However, the implications for the forward premium puzzle are dramatic, as
we will now see.
Using Proposition 1 we can obtain the implications for the bias of the

least squares estimate β̂, in the forward premium regression (1), under the
null hypothesis H0 : α = 0, β = 1, when private agents forecast exchange
rates using constant gain least squares updating with a small gain γ. For
convenience we assume that α = 0 is imposed so that the econometrician
estimates a simple regression without intercept.18

The Appendix establishes the following result:

Proposition 2 Under the null hypothesis H0 the asymptotic bias plim β̂−1,
for γ > 0 sufficiently small, is approximately equal to

B(γ, θ, ρ) = − γ(1− θ)(1 + ρ)(1− θρ)

γ(1− θ)2(1 + ρ) + 2(1− ρ)(1− θρ)
.

18This makes no difference asymptotically. Below we numerically investigate how inclu-
sion of the intercept in the test regression affects the small sample results.
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Thus for all parameter values 0 ≤ θ < 1 and 0 ≤ ρ < 1, we have a negative
bias, which is particularly strong for ρ near 1. More specifically we have:

Corollary 3 B(γ, θ, ρ) < 0 for all 0 ≤ θ < 1, 0 ≤ ρ < 1 and 0 < γ < 1,
and the size of the approximate bias |B(γ, θ, ρ)| is increasing in γ and in
ρ and decreasing in θ. For γ > 0 sufficiently small, we obtain the limiting
approximations

lim
ρ→1
(plim β̂ − 1) = −1 and plim β̂ − 1 = − γ(1− θ)

γ(1− θ)2 + 2
if ρ = 0.

Corollary 3 implies that, for small γ, the value of plim β̂ approaches 0 as
ρ → 1. Below, in Section 3.2, we investigate the situation numerically and
find that small samples can further magnify the bias: for typical sample sizes
and plausible values of γ, median values of β̂ are negative as ρ→ 1.
Finally we can also examine the t-statistic for the test of H0 : β = 1,

given by tβ̂ = (β̂− 1)/RE(β̂). Since for all 0 ≤ ρ < 1 we have plim β̂− 1 < 0
it follows that:

Corollary 4 For γ > 0 sufficiently small, tβ̂ → −∞ as the sample size
T →∞.

Our results are stated for sufficiently small γ because this is needed to
invoke the stochastic approximation results. Below we look at the quality of
the approximation for plausible values of γ > 0. The theoretical results are
illustrated in Figure 1, which shows the approximation plim β̂ = 1+B(γ, θ, ρ),
as a function of ρ over 0 ≤ ρ ≤ 1, for fixed θ = 0.6, and for three values
γ = 0.01, 0.05 and γ = 0.10.
As expected, the asymptotic bias depends upon γ, and for sufficiently

small γ > 0 the size of the bias, given ρ, is proportional to γ. For any given
0 ≤ ρ < 1, as γ → 0 we approach the rational expectations limit and in this
limit the bias of β̂ is zero. However, a striking and surprising feature of our
results is the behavior of plim β̂ as ρ→ 1 for fixed γ: given γ, the asymptotic
bias of β̂ approaches −1 as ρ→ 1, regardless of the size of γ. The intuition
for this result is given below, in Section 4. Here we emphasize the powerful
implications for the forward premium test, which we state as follows:

Corollary 5 For any ε > 0 there exists γ > 0 and ρ̂ < 1 such that for all
ρ̂ ≤ ρ < 1 we have both E(bt − b̄)2 < ε for all t and plim β̂ < ε.
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Figure 1: Theoretical plim(β̂) for θ = 0.6 and γ = 0.01, 0.05 and 0.10.

Thus, for learning gain parameters sufficiently small, provided the auto-
correlation parameter of the fundamentals process is sufficiently high, the
deviation from rational expectations will be arbitrarily small, at every point
in time, as measured by mean square error, and yet the downward bias in
the forward premium regression can be made arbitrarily close to −1.

3.2 Numerical and Small Sample Results

Our theoretical results are based on the asymptotic limit for large samples
and small gains. Using equations (7) and (9) we now simulate paths for
bt and st and investigate numerically, for realistic sample sizes and plausible
gain parameters, the bias that arises in the forward premium regression (1).19

Table 2 reports the simulation results for a large sample T = 20, 000 and a
range of gains γ > 0. Tables 3a and 3b give the small sample results, for
T = 120 and T = 360, realistic samples sizes with quarterly and monthly
data, respectively, both for β̂ and for the t-statistic of the test of H0 : β = 1.
Table 4 studies the impact of sample size in more detail. We focus on the
empirically plausible cases of ρ < 1 close to one and the limit case ρ = 1, i.e.
a pure random walk.

19See Chakraborty and Evans (2006), for additional numerical results.
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Table 2 presents the comparison between β̂ values predicted by Propo-
sition 2 and the mean values generated by simulations under learning with
different combinations of parameter values.20 The key qualitative predictions
of Proposition 2, and Corollary 3, hold in the numerical results of Table 2.
In particular, an increase in γ or ρ (and the smaller value of θ) leads to a
smaller value of plim β̂. For γ = 0.05 or γ = 0.10 (and in most cases for
γ = 0.03) the simulation results in Table 2 show an even stronger downward
bias in β̂ than is predicted by our theoretical results for small γ > 0.
We next consider the small sample results given in Table 3. The sample

size employed in Table 3a of T = 120 corresponds to thirty years of non-
overlapping quarterly data and in Table 3b T = 360 corresponds to thirty
years of non-overlapping monthly data. Although the results again show a
substantial downward bias in β̂ for an important range of parameter values,
there are significant differences in the small sample results and the pattern
is more erratic. On the one hand, there are cases of positive bias that arise
with small γ, lower ρ and higher θ. On the other hand, especially for ρ close
to or equal to one, the downward bias is even more extreme. Inspection of
the detailed results show a substantial number of extreme values for β̂ and
the t-statistic (which is why we report their median values).
One of the reasons for the complex small sample results for can be seen

from the following argument. If we have both a small gain γ and a small
sample size T the value of bt will vary little within the sample. Useful insights
can thus be obtained by considering the limiting case of bt = b fixed over the
sample period at some value possibly different from b̄. If agents believe that
st = bvt−1 + cεt, we have Ft = Êtst+1 = bvt and st = (1 + θb)vt so that the
forward premium is

Ft − st = ((1− θ)b− 1)vt. (11)

and the forecast error ut+1 = st+1 − bvt is given by

ut+1 = (1 + θb)(ρvt + εt+1)− bvt.

Although we cannot calculate E(β̂) for a finite T it is revealing to compute

a(b) =
cov[(Ft − st), ut+1]

var(Ft − st)
= − (1− θρ)(b− b̄)

(1− θ) (b− (1− θ)−1)
, (12)

which is the asymptotic bias that would result as T →∞ if b were kept fixed.
20In all of our numerical results we have chosen εt to be iid with a standard normal

distribution. We have also set δ = 0 unless otherwise specified.
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The asymptotic bias is negative for b < b̄ and less than −1 for b >
1/(1− θ). However for b̄ < b < 1/(1− θ) the asymptotic bias is positive and
there is a singularity at b = 1/(1 − θ), with both arbitrarily large negative
and positive values in a neighborhood of the singularity.21 Calculating a(b)
is artificial since it holds bt = b fixed as T → ∞, whereas under perpetual
learning bt is a stochastic process centered at b̄. However, it clearly indicates
the complexities that can be expected in small sample simulations.
In Table 4 we show, for selected parameter values of interest, how the

differences between the asymptotic results of Table 2 and the small sample
results of Table 3a and 3b depend on the sample size. In Table 4 we also
investigate the small sample effect of including an intercept in the test re-
gression. It can be seen that in small samples the inclusion of an intercept
in the test regression further magnifies the deviation from the asymptotic
results. For ρ = 1 we obtain negative values of β̂ for all sample sizes, and if
an intercept is included in the test regression the effect can be pronounced.22

Whether or not an intercept is included, as the sample size T becomes large
there is convergence to the theoretical and large sample results given earlier.
The theoretical prediction plim(β̂) = 0 for ρ = 1 is in principle testable in
data sets with large sample sizes.
One other small sample result, not shown in the tables, is nonethe-

less worth emphasizing: the variation in β̂ across simulations is substan-
tial for small samples. Consider, for example, θ = 0.6, γ = 0.05 and a
sample size of T = 120. For ρ = 1 the first and third quartiles for β̂
are approximately (Q1, Q3) = (−1.26, 0.26) if no intercept is included and
(Q1, Q3) = (−3.13,−0.77) with an intercept in the test regression. Simi-
larly for ρ = 0.99 the quartiles are approximately (Q1, Q3) = (−0.96, 0.29)
without intercept and (Q1, Q3) = (−1.42, 0.55) with intercept. For larger
samples this range shrinks and it becomes small in very large samples. How-
ever for typical sample sizes like T = 120 or T = 360 one would expect to
see considerable variation in β̂ across data sets. A substantial cross-country
variation is indeed evident in Table 1.
On balance our numerical findings reinforce the theoretical results of Sec-

tion 3.1 and the central thrust of this paper. For ρ near or equal to 1, and
for empirically plausible values of γ, the median value of β̂ is not only biased

21This phenomenon disappears in the limiting case ρ = 1 since then b̄ = 1/(1− θ).
22Chakraborty (2005) shows that similar qualitative results are obtained for

ARIMA(p,1,q) estimates of the fundamental processes.
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downwards from 1, but negative values for β̂ would be entirely unsurprising.
Thus for fundamentals processes that are close to a random walk, perpetual
learning clearly has the potential to explain the forward premium puzzle.

4 Discussion

What is the source of the downward bias to β̂ that we have established
theoretically and numerically? We now provide the intuition for the limiting
case in which the fundamentals follow a random walk. Our starting point is
the result that bt ∼ N(b̄, γC). Since, for small γ > 0, the parameter bt is near
b̄ and moves very gradually over time, it is useful again to consider the impact
on β̂ of an arbitrary value for b held fixed at a value close to but not equal
to b̄. As ρ→ 1 the fixed b asymptotic bias function (12) satisfies a(b)→ −1
at every point other than the singularity, which for ρ = 1 coincides with the
RE solution b̄. This is fully consistent with the theoretical findings of Section
3.1. What is the underlying reason for this result?
When ρ = 1, the fundamentals vt follow a pure random walk, the RE

solution is st = (1− θ)−1vt, or equivalently st = (1− θ)−1vt−1 + (1− θ)−1εt,
and Ft = Etst+1 = (1− θ)−1vt. Thus under RE

st = b̄vt = Ft where b̄ = (1− θ)−1, and
Ft − st ≡ 0 and ut+1 = st+1 − Ft = b̄εt+1.

Consider now the situation for b 6= b̄. As discussed in the Introduction,
β̂ is biased downward from one if covt(Ft − st, ut+1) < 0.23 If agents believe
that st = bvt−1 + cεt, we have from (11) that

Ft − st = (1− θ)(b− b̄)vt

when ρ = 1. The intuition is clearest if we split ut+1 into

ut+1 = ∆st+1 − (Ft − st),

i.e. the difference between ∆st+1 and the forward premium. Then

covt(Ft − st, ut+1) = covt(∆st+1, Ft − st)− vart(Ft − st)

= − vart(Ft − st) < 0 if b 6= b̄,
23Here we use conditional covariances and variances because for b 6= b̄ the unconditional

moments are not well-defined when ρ = 1. However, as seen below, the conditional
moments are independent of t. Furthermore, the unconditional moments are well-defined
for all 0 < ρ < 1 and limρ→1(covt(ut+1, Ft − st)/ vart(Ft − st)) = −1.
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since in the random walk case ∆st+1 = (1+ θb)εt+1, whatever the value of b,
and since covt(εt+1, Ft − st) = 0.
To summarize, under the true regression model H0 : α = 0, β = 1, but

with (arbitrarily) small deviations from RE, the error term ut+1 in the for-
ward premium regression is negatively correlated with the forward premium
because ut+1 is simply the difference between the (unforecastable) exchange
rate change and the forward premium itself. This negative correlation is
present unless b = b̄ i.e. RE holds exactly, in which case vart(Ft − st) = 0.
Furthermore, for b 6= b̄ we have covt(Ft − st, ut+1)/ vart(Ft − st) = −1, for
all t. Since this holds for all b 6= b̄, since under learning bt will be close to
but (with probability one) not equal to b̄, and since with a small gain γ > 0
the agents’ estimates bt will be almost constant over time, it is not surprising
that Proposition 2 was able to establish a downward bias of plim(β̂−1) = −1
for the limiting case ρ→ 1.
What is, perhaps, unexpected and surprising is that arbitrarily small

deviations from RE yield a downward bias approaching −1 as ρ approaches
1. The reason for this is that the asymptotic bias depends on the ratio
cov(Ft − st, ut+1)/ var(Ft − st). Under RE cov(Ft − st, ut+1) = 0 for all 0 ≤
ρ ≤ 1 but var(Ft−st)→ 0 as ρ→ 1. Thus under RE the ratio is always zero
except at ρ = 1, when the ratio is undefined since Ft−st ≡ 0. Under learning
we also have plim (ccov((Ft − st), ut+1)) → 0 and plim (cvar(Ft − st)) → 0 as
γ → 0 but the ratio is close to −1 for ρ < 1 near 1. Furthermore, as
our numerical computations have shown, for ρ = 1 itself, the system under
learning is well-behaved, with an asymptotic bias for β̂ of −1 and an even
stronger downward bias for β̂ in small samples.
Figures 2 and 3 give the results of a typical simulation of our model over

T = 200 periods, with parameters set at θ = 0.6 and ρ = 1.24 Figure 2
gives the time paths for the log of the exchange rate under rational expec-
tations, and under least-squares learning with constant gain γ = 0.04. The
two time paths, which are generated by the same sequence of exogenous
random shocks, are almost indistinguishable. Some mild “overshooting” un-
der learning can be seen under close inspection, which is another immediate
implication of learning for ρ → 1.25 Figure 3 gives the corresponding simu-

24The standard deviation of the innovation to the fundamentals has been chosen so that
the scale for depreciation is similar to that seen in the Canadian-US data.
25The somewhat greater variation of st under learning is consistent with the excess

volatility results of Kim (2006). The extent of overshooting and excess volatility seen in
our simulations depends on the parameters θ, ρ and γ.
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Figure 2: Model generated time paths of log exchange rate, for θ = 0.6,
ρ = 1, under rational expectations and under learning with γ = 0.04.
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Figure 3: Model generated data with learning, for θ = 0.6, ρ = 1 and
γ = 0.04. Test statistic β̂ = −0.66.
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Figure 4: Time path of USD/CAD (Canadian Dollar) log exchange rate
(monthly data December 1988 - September 2005). Test statistic β̂ = −0.60.

lation results for depreciation and the forward premium under learning. The
estimated value from the forward premium regression in this simulation is
β̂ = −0.66, with a test statistic of t = −2.23, a typical illustration of the
forward premium puzzle.26 Similar results are obtained for values of ρ that
are close to but less than one.27

For comparison Figure 4 presents the monthly depreciation and forward
premium data (from Bloomberg) for the log Canadian dollar price of the US
dollar, Dec. 1988 - Sept. 2005. The data and the regression estimate β̂ =
−0.60, with a test statistic of t = −2.04, are quite similar to the simulated
results under learning given in Figure 3.28 Note that the explanatory power
of the forward premium regressions is low in each, which is another standard
finding in the data. This phenomenon was stressed by McCallum (1994).29

26The results shown are typical, but we remark that there is a wide variation across
simulations. For example, for this parameter setting, 80% of the values of β̂ lie in the
interval (−3.67, 0.13).
27See Chakraborty and Evans (2006) for simulated data with ρ < 1.
28For a comprehensive empirical analysis see Chakraborty (2007).
29See also Engel and West (2005).
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5 Extensions and Further Discussion

In this section we briefly take up several alternative formulations and exten-
sions in order to illustrate the robustness of our results.

5.1 Present value formulation

Applying the law of iterated expectations to the reduced form model (6)
implies that Êtst+j = θÊtst+j+1 + Êtvt+j. By recursive substitution and

assuming that limj→∞
¯̄̄
θjÊtst+j

¯̄̄
= 0 we obtain

st =
∞X
j=0

θjÊtvt+j, (13)

providing the sum converges. Equation (13) is sometimes called the “for-
ward” or “present value” solution to (6), and it is the unique nonexplo-
sive rational expectations solution for |θ| < 1. When vt follows an AR(1)
process vt = δ + ρvt−1 + εt, it is easily shown that under RE (13) yields
st = δθ(1− θ)−1(1 − θρ)−1 + (1− θρ)−1vt, for −1 < ρ ≤ 1, which of course
agrees with the solution given in Section 2.1.
In the model (6) with learning there are two natural approaches, depend-

ing on whether we treat st as determined directly from (6) by vt and Êtst+1,
or whether we think of st as determined by the “discounted” sum of ex-
pected fundamentals (13). Both approaches have been used in the literature
on learning and asset prices, e.g. both are used in Timmermann (1996). In
this paper we have used the “self-referential approach,” based directly on
(6), both because it squarely rests on the open-parity condition stressed in
the exchange rate literature and because it emphasizes that exchange rates
are determined by short-run expected exchange rate movements as well as
by fundamentals.
However, it is of interest to know if our results are also obtained if the

present value formulation (13) is used, where the role of learning is confined
to estimation of the fundamentals process. This is the approach originally
emphasized by Kim (2006) concerning the potential for learning to explain
exchange rate volatility and the observed links between exchange rates and
fundamentals. We again examine the results under constant gain learning.
Thus we assume that agents estimate vt = δ + ρvt−1 + εt by constant gain
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RLS,30 using data through time t−1. This yields estimates (δt−1, ρt−1), which
agents use to compute Êtvt+j = δt−1

Pj−1
i=0 ρ

i
t−1+ρjt−1vt at time t. Computing

(13) the exchange rate st is given by31

st = δt−1θ(1− θ)−1(1− θρt−1)
−1 + (1− θρt−1)

−1vt,

with the forward rate given Ft = Êtst+1 = θ−1(st − vt).
Table 5 gives the finite sample results. It can be seen that the results

are consistent with the key results of main part of the paper. For ρ < 1
close to one and ρ = 1, and for gain parameters consistent with the learning
literature, we find β̂ strongly biased downward and often negative. Thus
perpetual learning also leads to results in line with the forward premium
puzzles in this alternative formulation.

5.2 Random structural change and endogenous gain

The motivation for constant gain least squares is that it allows agents to bet-
ter track any structural change that occurs. Throughout the paper we have
analyzed the impact of the use of constant gain learning in a model in which,
in fact, there is no structural change. In effect, we have studied the impli-
cations solely of the use by agents of a learning rule with greater robustness
to structural change than ordinary (decreasing gain) least-squares learning.
This is in keeping with most of the now substantial literature on constant-
gain or perpetual learning, reviewed earlier. However, a natural extension
would examine the results for a model incorporating unknown structural
change and agents using constant gain least squares learning.32

We now briefly consider such an extension, adapting the structural change
model used in Evans and Ramey (2006). The fundamentals process is now
assumed to be

vt = δ + μt + ρvt−1 + εt,

where μt is a regime switching process taking the form

μt =

½
μt−1 with probability 1− q

ζt with probability q,

30The estimates are given by φt = φt−1 + γR−1t−1Xt−1(vt − φt−1Xt−1)), Rt = Rt−1 +
γ(XtX

0
t −Rt−1), where φ0t = (δt, ρt) and X 0

t = (1, vt).
31To ensure that the sum converges we impose a “projection facility” that maintains

estimates φt at their previous value if ρt would otherwise exceed 1.05. For discussions of
projection facilities see Marcet and Sargent (1989) and Evans and Honkapohja (2001).
32The evidence for structural change is considered in Chakraborty (2007).
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where 0 ≤ q ≤ 1 and ζt is an iid process. In our numerical results we assume
that ζt is has the uniform distribution over the closed interval [−L,L], where
L > 0. The form of the process μt is assumed to be unknown to the agents,
who continue to forecast using Êtst+1 = at−1 + bt−1vt, with the parameters
(at−1, bt−1) estimated using constant gain least-squares.
Following Evans and Honkapohja (1993), Marcet and Nicolini (2003) and

Evans and Ramey (2006), we now also impose that the gain parameter γ is
set at a (Nash equilibrium) value that minimizes the one-step ahead mean-
square forecast error for individual agents, given that other agents use this
value. Thus agents are choosing the gain parameter γ optimally in the MSE
sense, trading off the benefits of lower γ, which increases filtering and thus
reduces random fluctuations in estimated parameters, against the benefits of
larger γ, which improves tracking of structural change.
Table 6 presents results for an illustrative numerical exercise with δ = 1,

L = 0.4 and θ = 0.6. The probability of structural shift q is set at 2%,
5% or 10% per period. Equilibrium γ are approximate values computed
numerically. The results confirm that with perpetual learning the results
of the standard test regressions are entirely in accordance with the forward
premium puzzle when the fundamentals follow an AR(1) process with ρ close
to one. Estimated β̂ are negative or close to zero, again reinforcing the
central finding of this paper. The magnitudes of the t-statistics for the test
of H0 : β = 1 are now larger than in Tables 5a,b, as a result of the random
structural shifts. These magnitudes, of course, would depend on the average
size of the shifts, which is governed by L.

5.3 Infrequent structural breaks

In the previous subsection we considered a model in which there are continu-
ing occasional structural shifts, often small, where the dates of any structural
changes are unknown to the agents. This is one plausible view of how struc-
tural change affects the economy. An alternative, e.g. Timmermann (1993),
is that structural shifts are infrequent events and that the time of the shifts,
though not the size of their impact, may be known to agents as soon as the
shift occurs. In this set-up, agents can be expected to use a decreasing gain
least-squares estimator as long as the structure is unchanged. However, when
a known structural break occurs, the gain is increased to a larger value, with
decreasing gain then employed until the next structural break.
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The updating recursive algorithm for φ0t = (at, bt) is

φt = φt−1 +m−1
t R−1t−1Xt−1(st − φt−1Xt−1)),

Rt = Rt−1 +m−1
t (XtX

0
t −Rt−1), where X 0

t = (1, vt),

mt =

½
γ̄−1 if structural change in t− 1

mt−1 + 1 otherwise
.

For a structural break at t = 1 the gain sequence of mt = 1/t starting
at t = 2 corresponds to ordinary least squares (with starting value t = 2
because there are two parameters to estimate). This is implemented with
γ̄ = 0.5. Choosing a smaller value of γ̄ would smooth initial estimates by
placing additional weight on the prior estimate.
Again, we perform a small numerical experiment to study the robustness

of our results. We suppose that vt = δ + ρvt−1 + εt and start the system in
the RE equilibrium. We then consider a 25% increase in δ with γ̄ = 0.5 or
γ̄ = 0.2. The structural change occurs at t = 1, and that it has occurred
becomes known to agents at the end of the period. Table 7 gives the results,33

which are broadly in line with our main findings. For the values of ρ tabled,
there is a strong downward bias in β̂ in every case except with θ = 0.9 and
the smaller gain increase to γ̄ = 0.2. In fact the downward bias emerges also
in this case for ρ even closer to one. For example, with θ = 0.9, γ̄ = 0.2 and
T = 360 we get median β̂ = 0.71 for ρ = 0.998 and β̂ = −2.53 for ρ = 0.999.
Of course, as T → ∞ we will find β̂ → 1 since decreasing gain least-

squares learning converges asymptotically to the RE. However, recurrent
infrequent structural breaks can be expected to lead to a substantial down-
ward bias in β̂ for fundamentals processes that are close to a random walk.34

Our main conclusions thus appear robust also to this alternative formulation
with infrequent structural breaks. Provided ρ is near to or equal to one, least-
squares learning by market agents is consistent with the forward-premium
puzzles results found in the literature.

33We here use values ρ very close to 1 in place of ρ = 1 so that the mean of vt is
well-defined. Qualitatively similar results showing a downward bias to β̂ are obtained for
a 25% decrease in the mean of the fundamentals.
34In work in progress we examine the exchange-rate results under learning in greater

detail for both frequent and infrequent structural change.
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5.4 Further issues

We have developed our argument in a very simple framework, the canoni-
cal monetary exchange-rate model based on purchasing power parity, risk-
neutrality and covered interest parity. We adopted this model, not, of course,
because it is the most realistic framework, but because it provides a widely
used and well-understood context in which to make our central points.35 Sim-
ilarly, although we have dropped rational expectations, we have replaced this
assumption by a plausible and now widely-used model of bounded rational-
ity. Specifically, we have modeled agents as forecasting using an appropriate
econometric model, which agents estimate and update by discounted least-
squares. Furthermore we have emphasized the “small gain” limit in which
the deviation from rational expectations is small.
The framework we have used does not mean that we deny the impor-

tance of other factors determining exchange-rate expectations, any more
than we deny the potential importance of risk-aversion or incomplete price-
adjustment. We take other aspects of bounded rationality very seriously,
whether these involve optimization costs, incomplete information process-
ing, or the use of alternative misspecified models.36 We also believe that
heterogeneous expectations are important in practice, whether they arise be-
cause of differences, across agents, in learning algorithms, information sets
or the forecasting models employed.37 We view these factors as providing
potentially complementary explanations of the forward-premium puzzle, and
extensions of our approach to incorporate these elements would be of consid-
erable interest.38 We do, however, believe that we have isolated a simple and

35As discussed in Engel and West (2005), if the PPP condition (3) is replaced by it =
i∗t +Ft− st− rt and the interest-parity condition (5) is replaced by pt = p∗t + st− qt, then
one can obtain versions of (6) that nest a number of models incorporating risk premia and
price stickiness. They also show how to obtain versions of (6) if money supply rules are
replaced by interest-rate rules.
36Infrequent portfolio decisions and partial information processing is stressed in Bac-

chetta and van Wincoop (2006). Misspecification is the focus of Branch and Evans
(2007a,c).
37Least-squares learning can be extended to incorporate heterogeniety, e.g. Evans,

Honkapohja and Marimon (2001) and Honkapohja and Mitra (2006). Heterogeneity in
forecasting models is the focus, for example, of Brock and Hommes (1998), Frankel and
Froot (1986), De Grauwe and Grimaldi (2006) and Branch and Evans (2006a,c).
38There are some systematic differences across countries with respect to the presense of

the anomaly, as well as statistical asymmetries. See Bansal and Dahlquist (2000) and Wu
and Zhang (1996). Extending our approach to incorporate the additional factors discussed
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powerful mechanism for explaining the forward-premium anomaly, based on
the combination of econometric learning by private agents and random walk
or near random-walk behavior of the fundamentals driving the exchange rate.
We anticipate that this mechanism will remain important in more elaborate
exchange-rate models in which expectations continue to play a central role.

6 Conclusions

The forward premium anomaly is a long outstanding puzzle that has proved
difficult to explain based on risk premia and other orthodox approaches.
While it has long been recognized that the anomalous empirical results might
be due to irrationality in the exchange markets, the present paper shows that
an adaptive learning approach increasingly employed in the macroeconomics
literature appears able to reproduce the key empirical results. Modeling
expectations by constant gain least-squares learning ensures that deviations
from rational expectations are both small and persistent in realistic ways.
Agents continue to update their parameter estimates because of concern for
structural change, in a way similar to the use of rolling data windows. The
result is perpetual learning by agents that keeps expectations close to RE,
but with small random deviations due to revisions to the forecast rule driven
by recent forecast errors.
We have shown theoretically that as the fundamentals process approaches

a random walk, an empirically realistic case, even arbitrarily small deviations
from RE, in accordance with perpetual learning, induce a large downward
asymptotic bias in the estimated forward premium regression coefficient.
Specifically, we obtain for this case the limiting value of plim(β̂) = 0 in sharp
contrast to the RE coefficient value of β = 1. Simulations for small sample
results reinforce this result, and indicate that the large negative values of this
coefficient observed empirically are fully consistent with our theory. We also
show that alternative formulations of learning and explicit incorporation of
different types of structural shifts lead to qualitatively similar findings. The
results of this paper thus suggest that the learning theory approach to ex-
pectation formation in the foreign exchange markets should be considered a
serious contender in future empirical work on the forward premium puzzle.

in this section may be a fruitful way to address these issues.
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Appendix: Technical Details and Proofs
Proof of Proposition 1: We are considering the system (7). Combining

these equations with (9) we obtain

bt = bt−1 + γR−1t−1vt−1 ((θbt−1 + 1)vt − bt−1vt−1)

Rt = Rt−1 + γ(v2t −Rt−1).

This takes the form
Λt = Λt−1 + γH(Λt−1,Xt), (A.1)

where Λ0t = (bt, Rt) and X 0
t = (vt, vt−1) and where the components of H are

Hb(Λt−1, Xt) = R−1t−1vt−1 ((θbt−1 + 1)vt − bt−1vt−1)
HR(Λt−1, Xt) = v2t −Rt−1.

Systems of the form (A.1) are known as stochastic recursive algorithms
(SRAs), and have been widely studied in the learning literature.
The algorithm is initialized with some starting point Λ0 = a = (b0, R0)

0.
We apply Proposition 7.8 and Theorem 7.9 of Evans and Honkapohja (2001),
which are based on the stochastic approximation results of Benveniste, Metivier
and Priouret (1990). That the required assumptions hold for the system at
hand can be established using arguments analogous to those given on pp.
334-335 of Evans and Honkapohja (2001) for the cobweb model.
The stochastic approximation results for constant gain algorithms of this

form are stated in terms of a continuous time process Λγ(τ). Let τγt = γt
and define

Λγ(τ) = Λt if τ
γ
t ≤ τ < τ γt+1.

Thus Λγ(τ) is the continuous time interpolation of the discrete time process
Λt under study. Here we make explicit the dependence on γ in Λγ(τ), which
is implicit in Λt. Next, consider the differential equation

dΛ/dτ = h(Λ(τ)), where h(Λ) ≡ EH(Λ, Xt).

For Λ(τ)0 = (b(τ), R(τ)) we compute h(b, R)0 = (hb(b, R), hR(b,R)) where

hb(b,R) = R−1σ2v ((θρ− 1)b+ ρ)

hR(b,R) = (σ2v −R).

This is the differential equation system (10) introduced in Section 3.1.
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The differential equation dΛ/dτ = h(Λ(τ)) is well defined everywhere
except at R = 0 and the RE solution b̄ = ρ/(1 − θρ), R̄ = σ2v is globally
stable. Let Λ̃(τ , a) denote the solution to this differential equation with
initial condition Λ(0) = a. Finally, define

Uγ(τ) = γ−1/2(Λγ(τ)− Λ(τ , a)).

Uγ(τ) is the continuous time stochastic process which is used to approximate
Λt for small γ. Proposition 7.8 of Evans and Honkapohja (2001) yields the
following. For any fixed time T > 0, as γ → 0, the stochastic process Uγ(τ),
0 ≤ t ≤ T converges weakly to the solution of the stochastic differential
equation

dU(τ) = DΛh(Λ̃(τ , a))U(t)dt+R1/2(Λ̃(τ , a))dW (τ),

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener
process. Here R is the 2× 2 matrix with (i, j) element

Rij(Λ) =
∞X

k=−∞
cov [Hi(Λ,Xk),Hj(Λ, X0)] , for i, j = 1, 2.

Since Λ̃(τ , a) remains close to Λ̄ = (b̄, R̄)0 for all τ ≥ 0 (and converges
asymptotically to Λ̄ as τ →∞), for starting points near Λ̄ (or for τ sufficiently
large) Uγ(τ) can be approximated, for small γ by

dU(τ) = DΛh(Λ̄)U(t)dt+ R̄1/2dW (τ),

where R̄ ≡ R(Λ̄). The stationary solution to this equation (e.g. see pp. 114-
5 of Evans and Honkapohja (2001)) is a Gaussian process with mean zero
and autocovariance function

EU(τ)U(τ − τ̂)0 = ρ(τ̂) = esBC for τ̂ ≥ 0, where

B = DΛh(Λ̄) and C =
Z ∞

0

euBR̄euB0du.
From Theorem 7.9 of Evans and Honkapohja (2001) we also have the

asymptotic result that for any sequences γk → 0 and τk →∞ the sequence
Uγk(τk) converges in distribution to a normal random variable with mean 0
and variance C. Computing the relevant quantities we have

B = DΛh(Λ̄) =

µ
θρ− 1 0
0 −1

¶
, so that euB =

µ
eu(θρ−1) 0
0 e−u

¶
.
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Our focus is on the behavior of bt, the first component of Λt. We have

R̄11 = R̄−2
∞X

k=−∞
Γ(k), where

Γ(k) = cov(Yt, Yt−k) and Yt = (1 + θb̄)vtvt−1 − b̄v2t−1.

The (1, 1) element of euBR̄euB0 is R̄11e2(θρ−1)u so that

C ≡ C11 = R̄11

Z ∞

0

e2(θρ−1)udu =
R̄11

2(1− θρ)
.

Next, note that

Yt = (1 + θb̄)(ρvt−1 + εt)vt−1 − b̄v2t−1
=

¡
ρ+ b̄(θρ− 1)¢ v2t−1 + (1 + θb̄)vt−1εt

= (1− ρθ)−1vt−1εt.

Thus

Γ(0) =
σ2vσ

2
ε

(1− ρθ)2
and Γ(k) = 0 for k 6= 0,

so that

R̄11 = R−2Γ(0) =
σ2ε

σ2v(1− ρθ)2
=

1− ρ2

(1− ρθ)2
,

and

C =
1− ρ2

2(1− ρθ)3
.

The above implies that for small γ > 0 and large τ the stochastic process
Uγ
b (τ) = γ−1/2(bγ(τ)− b̄) is approximately Gaussian with mean zero, variance

C and autocovariance ρ(τ̂) = e(θρ−1)τ̂ . Since for γ > 0 small τ ≈ γt it
follows that for small γ and large t the distribution of bt is approximately
normal with mean b̄ and variance γC and that the autocorrelation function
E((bt − b̄)(bt−k − b̄))/E(bt − b̄)2 is approximately equal to e(θρ−1)γk. This
establishes Proposition 1.

Proof of Proposition 2: The asymptotic bias is given by

plim
T→∞

β̂T − 1 =
plimT→∞ T−1

PT
t=1(Ft − st)ut+1

plimT→∞ T−1
PT

t=1(Ft − st)2
.
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From st = (θbt−1 + 1)vt and Ft = Êtst+1 = bt−1vt we have Ft − st =
vt(bt−1(1− θ)− 1) and

T−1
XT

t=1
(Ft − st)

2 = T−1
XT

t=1
(bt−1(1− θ)− 1)2 v2t

= (NP )−1
XP

k=1

XN

j=1

¡
bN(k−1)+j−1(1− θ)− 1¢2 v2N(k−1)+j,

where for convenience we look at T such that T = PN . Provided N and P
are large and γ > 0 is sufficiently small relative to N we have b2N(k−1)+j−1 ≈
b2N(k−1) for j = 1, . . . , N and

T−1
XT

t=1
(Ft − st)

2 ≈ P−1
XP

k=1

¡
bN(k−1)(1− θ)− 1¢2N−1XN

j=1
v2N(k−1)+j

≈ σ2vP
−1XP

k=1

¡
bN(k−1)(1− θ)− 1¢2

≈ σ2v(1− θ)2E
¡
bt − (1− θ)−1

¢2
= σ2v(1− θ)2

Ã
γC +

µ
ρ

1− θρ
− 1

1− θ

¶2!
.

where we have used the weak law of law numbers first forN−1PN
j=1 v

2
N(k−1)+j

p→
Ev2t = σ2v and then for P

−1PP
k=1

¡
bN(k−1)(1− θ)− 1¢2 p→ E (bt − (1− θ)−1)2.

From ut+1 = st+1 − Ft = ((θbt + 1)ρ− bt−1) vt + (θbt + 1)εt+1 we have

(Ft − st)ut+1 = −(1− θ)(1− θρ)
¡
bt−1 − (1− θ)−1)

¢
× ¡bt−1 − b̄− θρ(1− θρ)−1(bt − bt−1)

¢
v2t

+(bt−1(1− θ)− 1)(θbt + 1)vtεt+1.

But plimT−1
PT

t=1(bt−1(1− θ)− 1)(θbt + 1)vtεt+1 = 0 from the law of large
numbers since Et(bt−1(1−θ)−1)(θbt+1)vtεt+1 = 0. Thus for N and P large
and γ > 0 sufficiently small relative to N we have

T−1
XT

t=1
(Ft − st)ut+1

≈ −(1− θ)(1− θρ)×
(NP )−1

XP

k=1

XN

j=1

¡
bN(k−1)+j−1 − (1− θ)−1)

¢×¡
bN(k−1)+j−1 − b̄− θρ(1− θρ)−1(bN(k−1)+j − bN(k−1)+j−1)

¢
v2N(k−1)+j
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≈ −(1− θ)(1− θρ)P−1 ×XP

k=1

¡
bN(k−1) − (1− θ)−1)

¢ ¡
bN(k−1) − b̄

¢
N−1XN

j=1
v2N(k−1)+j

≈ −σ2v(1− θ)(1− θρ)−1E(bt − (1− θ)−1)(bt − b̄)

= −σ2v(1− θ)(1− θρ)γC.

Taking the ratio T−1
PT

t=1(Ft − st)ut+1/(T
−1PT

t=1(Ft − st)
2) we obtain

plim β̂ − 1 = − (1− θρ)γC

(1− θ)γC + [(1− ρ)2/ ((1− θ)(1− θρ)2)]
.

Substituting for C the expression obtained in Proposition 1, and simplifying,
we get the result claimed.

Proof of Corollary 3: B(γ, θ, ρ) < 0 follows immediately from 1, as do
the limiting values at ρ = 0 and as ρ → 1. The remaining properties follow
by differentiation of B(γ, θ, ρ) with respect to each argument and using the
inequalities 0 < γ ≤ 1, 0 < θ < 1 and 0 ≤ ρ < 1.

Proof of Corollary 4: The t-statistic is tβ̂ = (β̂ − 1)/SE(β̂) where
SE(β̂) = T−1/2σ̂/(T−1

PT
t=1(Ft − st)

2) and σ̂2 = T−1
PT

t=1 û
2
t . Here ût =

st+1−st− β̂(Ft−st) = (θbt+1)vt+1− (θbt−1+1)vt− β̂(bt−1(1−θ)−1). Since
ût converges in distribution, as t→∞, to a stationary random variable with
finite second moments, it follows that σ̂2 converges in probability to a finite
number. Similarly, at least for small γ, (Ft−st)2 is asymptotically stationary
with finite moments, and so T−1

PT
t=1(Ft− st)

2 converges in probability to a
finite positive number. Thus SE(β̂)→ 0 as T →∞. Since for all 0 ≤ ρ < 1
we have that plim β̂ − 1 < 0 and the result follows.
Proof of Corollary 5: By Proposition 1, for γ > 0 sufficiently small,

E(bt−b̄)2 ≈ γC(ρ) where C(ρ) = (1−ρ2)/2(1−ρθ)3. For any given 0 < θ < 1,
C is continuous in ρ for all 0 ≤ ρ ≤ 1. Therefore C(ρ) is bounded uniformly
over 0 ≤ ρ ≤ 1 and thus over 0 ≤ ρ < 1. Thus, for any ε > 0 we can choose
γ > 0 sufficiently small such that E(bt − b̄)2 < ε. Given this γ, Proposition
2 and Corollary 3 imply that by choosing ρ < 1 sufficiently large we can
simultaneously ensure that plim β̂ < ε.
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Table 2: Theoretical and simulated β̂ for large samples.

ρ
0.98 0.99 0.995 1.0

θ γ β̂theory β̂sim β̂theory β̂sim β̂theory β̂sim β̂theory β̂sim
0.6 0.01 0.83 0.94 0.71 0.78 0.55 0.39 0 -0.01

0.02 0.71 0.75 0.55 0.35 0.38 -0.09 0 -0.02
0.03 0.62 0.48 0.45 0.01 0.29 -0.22 0 -0.02
0.05 0.50 0.09 0.33 -0.22 0.20 -0.24 0 -0.04
0.1 0.32 -0.31 0.19 -0.31 0.11 -0.23 0 -0.06

0.9 0.01 0.95 1.00 0.91 1.00 0.83 0.94 0 -0.01
0.02 0.91 0.96 0.83 0.87 0.71 0.53 0 -0.01
0.03 0.87 0.90 0.77 0.67 0.62 0.09 0 -0.03
0.05 0.80 0.69 0.66 0.21 0.49 -0.31 0 -0.08
0.1 0.65 0.03 0.48 -0.50 0.31 -0.55 0 -0.11

Note: Results from 100 simulations with sample size of T = 20, 000 after
discarding first 20,000 data points. β̂sim is the mean value across simulations.
No intercept in test regression.

Table 3a: Simulated β̂ and tβ̂ for sample size T = 120.

ρ
0.98 0.99 0.995 1.0

θ γ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂
0.6 0.01 1.10 0.10 0.96 −0.02 0.74 −0.15 −0.82 −0.77

0.02 0.87 −0.11 0.29 −0.51 −0.30 −0.76 −0.50 −0.96
0.03 0.54 −0.47 −0.18 −0.90 −0.44 −1.11 −0.55 −1.15
0.05 −0.04 −1.03 −0.46 −1.39 −0.45 −1.47 −0.36 −1.35
0.1 −0.44 −2.10 −0.44 −2.14 −0.40 −2.12 −0.28 −1.85

0.9 0.01 1.22 0.20 1.39 0.25 1.70 0.26 −1.33 −0.52
0.02 1.22 0.21 1.26 0.15 0.76 −0.10 −1.21 −0.66
0.03 1.15 0.12 0.83 −0.10 0.08 −0.37 −1.01 −0.78
0.05 0.86 −0.11 0.24 −0.47 −0.73 −0.95 −1.03 −0.96
0.1 −0.07 −0.98 −0.82 −1.36 −1.23 −1.55 −0.76 −1.23

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of tβ̂
for testing H0 : β = 1, without intercept in the test regression.
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Table 3b: Simulated β̂ and tβ̂ for sample size T = 360.

ρ
0.98 0.99 0.995 1.0

θ γ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂
0.6 0.01 0.96 −0.06 0.77 −0.26 0.39 −0.51 −0.47 −1.14

0.02 0.74 −0.47 0.19 −0.89 −0.31 −1.31 −0.29 −1.47
0.03 0.48 −0.88 −0.14 −1.46 −0.43 −1.79 −0.20 −1.70
0.05 0.02 −1.77 −0.33 −2.31 −0.37 −2.48 −0.15 −2.15
0.1 −0.36 −3.51 −0.38 −3.63 −0.35 −3.65 −0.12 −2.99

0.9 0.01 1.09 0.15 1.24 0.25 1.19 0.14 −1.11 −0.85
0.02 1.04 0.07 1.07 0.06 0.57 −0.34 −0.72 −1.01
0.03 0.97 −0.06 0.69 −0.32 −0.14 −0.87 −0.53 −1.13
0.05 0.74 −0.42 0.12 −1.02 −0.78 −1.55 −0.50 −1.35
0.1 0.06 −1.61 −0.68 −2.29 −0.77 −2.50 −0.40 −1.80

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of tβ̂
for testing H0 : β = 1, without intercept in test regression.

Table 4: Effect of sample size on estimated β̂.

θ = 0.6 and γ = 0.02
ρ = 0.99 ρ = 1.0

Sample Intercept: Intercept:
size without with without with
100 0.57 1.08 -1.04 -4.02
200 0.39 0.66 -0.35 -2.37
500 0.28 0.35 -0.26 -0.95
1000 0.32 0.33 -0.11 -0.46
2000 0.35 0.36 -0.09 -0.20
5000 0.30 0.30 -0.06 -0.11
10000 0.33 0.34 -0.05 -0.07
20000 0.31 0.31 -0.02 -0.03

Note: Results from 100 simulations after discarding the first 20000 data
points. Table gives medians of β̂sim for test regression without and with
intercept.
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Table 5: Constant-gain learning of fundamentals process for T = 120.

θ = 0.6 θ = 0.9
γ γ

0.01 0.05 0.1 0.01 0.05 0.1
ρ

0.98 β̂ 0.74 −0.78 −0.61 −0.11 −3.78 −3.09
tβ̂ −0.23 −2.76 −3.60 −1.00 −6.21 −5.99

0.99 β̂ −0.10 −0.79 −0.63 −1.00 −3.66 −3.15
tβ̂ −0.71 −2.82 −3.66 −1.32 −6.17 −6.02

1.0 β̂ −1.07 −0.75 −0.62 −2.11 −3.39 −3.15
tβ̂ −1.22 −2.92 −3.63 −1.95 −5.95 −6.07

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of
the t-statistics tβ̂ for testing H0 : β = 1. Test regression includes intercept.

Table 6: Constant-gain learning with random structural shifts.

Equilibrium T = 120 T = 360

gain γ β̂ tβ̂ β̂ tβ̂
ρ = 0.985 q = 0.02 0.060 −0.58 −2.49 −0.06 −4.06
ρ = 0.99 q = 0.05 0.087 −0.23 −3.17 −0.11 −5.32

q = 0.10 0.041 −0.81 −2.39 −0.24 −3.60
ρ = 0.995 q = 0.05 0.095 −0.36 −3.69 0.01 −5.43

q = 0.10 0.061 −0.63 −2.71 −0.12 −4.47

Note: q = probability of structural shift. θ = 0.6 and δ = 1. Regime
switching process with L = 0.4. γ is approximate Nash equilibrium gain.
Results from 100 simulations after discarding first 20000 data points. Test
regression include intercept. Table gives medians of β̂ and tβ̂.
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Table 7: β̂ for decreasing-gain learning with single structural break.

θ = 0.6 θ = 0.9
γ̄ = 0.5 γ̄ = 0.2 γ̄ = 0.5 γ̄ = 0.2

T = 120 ρ = 0.98 -0.16 0.43 0.49 1.65
ρ = 0.99 -0.30 0.00 0.38 1.65
ρ = 0.995 -0.66 -0.97 -0.67 0.97
ρ = 0.997 -1.17 -2.02 -1.73 -0.03

T = 360 ρ = 0.98 0.07 0.61 0.37 1.14
ρ = 0.99 0.01 0.43 0.26 1.19
ρ = 0.995 -0.01 0.27 0.22 1.08
ρ = 0.997 -0.17 -0.11 0.11 0.84

Note: Results from 2000 simulations. Table gives medians of β̂. Test
regressions include intercept. 25% increase in mean of fundamentals.
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