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Abstract

A new class of near-rational sunspot equilibria is identified in economies expressed
as non-linear forward-looking models. The new equilibria are natural extensions of
the usual sunspot equilibria associated with the linearized version of the economy, and
are near-rational in that agents use the optimal linear forecasting model when forming
expectations. Generic existence results are established. Stability under learning is also
examined: the near-rational sunspot equilibria are found to be E-stable provided that
the corresponding linearized model’s minimal state variable solution is E-stable.

1 Introduction

Dynamic macroeconomic models that include forward-looking agents may exhibit equilib-
rium multiplicity: there may exist rational expectations equilibria (REE) that depend upon
extrinsic stochastic processes, that is, a sequence of shocks that influences the economy only
because agents condition expectations on these shocks. Importantly, this dependency is self-
fulfilling: it exists only because agents think it exists. Equilibria that depend upon such
extrinsic shocks are called sunspot equilibria, with the shocks themselves referred to as the
sunspots.

The possibility that competitive rational expectations models could have self-fulfilling
solutions driven by extraneous stochastic processes was demonstrated by various authors,
notably through the work of Shell (1977), Azariadis (1981), Cass and Shell (1983), Azariadis
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and Guesnerie (1986) and Guesnerie (1986).1 These existence results were originally obtained
in simple stylized models, such as the overlapping generations model of money, and the
sunspot drivers were typically taken to be a finite-state Markov process; but generic results
providing criteria for local equilibrium uniqueness have also been established. Blanchard
and Kahn (1980) present a practical technique for determining whether a linear model has
a unique equilibrium, and Woodford (1986) shows that local equilibrium uniqueness in a
non-linear model is implied by uniqueness in the linearized model.

The method of Blanchard and Kahn may also be used to establish the existence of
sunspot equilibria in linear models. Importantly, this existence result is constructive: the
equilibria present in an easily analyzed VAR form; and, the extrinsic processes — the sunspots
— characterizing the sunspot equilibria in these linear models have (or, at least, can have)
continuous support, and are thus more general than the finite-state equilibria examined in the
earlier literature. This observation has been exploited by many authors toward a number of
ends. For example, Farmer and coauthors have developed an entire research program devoted
to explaining business cycle co-movements through the incorporation of non-convexities into
competitive DSGE models and through the analysis of the sunspot equilibria associated
with the linearized versions of these models: see, for example, Farmer and Guo (1994) and
Benhabib and Farmer (1994). Separately, a large literature has emerged warning of the
dangers of sunspot equilibria resulting from poorly designed policy in DSGE models with
price frictions. This literature too relies on the examination of sunspot equilibrium existence
in the linearizations of the associated models.

Results establishing the existence of sunspot equilibria in non-linear models are available:
Woodford (1986) showed that equilibrium multiplicity in the linearized model implies local
equilibrium multiplicity in the non-linear model. Unlike their linearized counterparts, how-
ever, the sunspot equilibria associated with the non-linear models are not easily analyzed:
the existence result relies on an implicit function theorem and is not constructive in nature;
indeed, given a non-linear model, there is no general technique for establishing a closed-form
representation, or even a numerical approximation of an equilibrium associated to a sunspot
with continuous support.

The existence of sunspot equilibria raises the question of equilibrium selection. The
simple presence of exotic equilibria does not justify their importance: why, after all, would
we as modelers anticipate that agents would (choose to) coordinate their expectations and
actions on some extrinsic process that has no inherent economic immediacy? Woodford
(1990) used adaptive learning to provide an answer to this question. Woodford showed,
in a non-linear overlapping generations model, that if agents thought certain finite state
Markov sunspot processes might be relevant for forecasting, these agents would learn that
the sunspots are relevant: Woodford showed that the economy converged, in an appropriate
sense, to the associated sunspot equilibrium.

Subsequent research on the stability under learning of constructible sunspot equilibria

1See the extensive survey in Guesnerie and Woodford (1992).
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associated with linearized models has been less definitive. While certain linear(ized) models
are known to have stable sunspot equilibria, Evans and Honkapohja (2001) showed that the
sunspot equilibria associated with the model examined by Farmer and Guo (1994), at least
for the particular calibration used, were not stable under learning. Evans and McGough
(2005a) and Duffy and Xiao (2007) extended this instability result to a host of non-convex
RBC-type models.

Stability also depends upon the stochastic properties of the sunspot process associated
with the equilibrium. For example, in a model previously thought to have no stable sunspot
equilibria, Evans and McGough (2005c) found that the equilibria may be stable provided
that the associated sunspot process exhibited the appropriate serial correlation, known as
the “resonance frequency.” Using this insight, Evans and McGough (2005b) established the
existence of stable sunspot equilibria in a variety of New Keynesian specifications.

The research on sunspot equilibria and their stability under learning has raised a number
of concerns, a few of which we catalog here.

1. No non-linear equilibrium recursions. The challenge of constructing and ana-
lyzing continuous-support sunspot equilibria in non-linear models is problematic not
only for the modeler, but also (indeed, even more so) for the model’s agents. If we, as
theoretical economists, are unable to recursively represent a particular equilibrium and
thereby capture the conditional distributions of the endogenous variables, how then do
we imagine agents making optimal forecasts? And even if we wish to adopt a learning
perspective, what forecasting model do we provide our agents?

2. The knife-edge of resonance. The discovery of resonance frequency sunspots has
greatly expanded the literature’s catalog of models exhibiting stable sunspot equilib-
ria; however, some researchers have questioned reliance on the existence of extrinsic
processes meeting the knife-edge resonance frequency condition.

3. No general stability results. Woodford’s stability result has been extended to the
general univariate, forward-looking case by Evans and Honkapohja (2003), provided
that the sunspots are finite state. No stability results are available for equilibria in non-
linear models associated with sunspots that have continuous support. In particular, it
is not known whether sunspot stability in a linearized model is, in general, even related
to stability of sunspot equilibria in the non-linear model.

In this paper, we develop a new equilibrium concept designed to simultaneously address
the above questions and concerns. We take our cue from the literature on bounded rationality
and embrace the possibility that our agents have insufficient information and/or cognitive
capacity to uncover the economy’s endogenous distributions. Instead, we assume agents use
simple, linear forecasting models when forming expectations. If the linear forecasting model
used by agents is optimal among all similarly specified linear models then the economy is in
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a near-rational equilibrium. If the linear model includes a conditional dependency upon a
sunspot process then the economy is in a near-rational sunspot equilibrium (NRSE).

We establish a generic existence result: if the linearized model is indeterminate then
near-rational sunspot equilibria (NRSE) exist. Importantly, while the existence result itself
relies on a bifurcation argument and is thus not constructive in nature, NRSE are identified
as fixed points of finite dimensional functions and thus easily computed; furthermore the
associated equilibrium process has a VAR structure and so is amenable to detailed analysis.
This addresses point one.

The sunspot processes associated with NRSE are found to be natural generalizations of
the linearized model’s resonance frequency sunspots: the processes are serially correlated,
with the required correlation converging to the associated resonance frequency as the model’s
curvature (non-linearity) vanishes. However, for given curvature there is an open set of serial
correlations corresponding to NRSEs. We conclude that the knife-edge resonance frequency
condition is an artifact of the linearization, and point two is addressed.

The linear structure of an NRSE makes it amenable to stability analysis: simply provide
agents with a linear perceived law of motion that precisely includes the conditioning variables
in the NRSE. We find that if the linearized model is indeterminate and the minimal state
variable (MSV) solution is stable under learning, then the NRSE are stable under learning.
In Evans and McGough (2011) we showed that, in this linearized model, indeterminacy
together with stability of the MSV solution is equivalent to the existence of stable sunspot
equilibria. This provides a link between the linear and nonlinear models: stable sunspot
equilibria in the linear model imply stable NRSE in the non-linear model. This addresses
point three.

After applying our univariate results to a simple over-lapping generations (OLG) model,
we turn to extensions. It is not our intention to develop our results within the broadest
possible framework in part because of the tediousness of the exercise and also in part be-
cause it not clear what the most useful framework is for applied work, at least that remains
tractable analytically. Instead, we extend our results along different dimensions separately,
thus providing an architecture for future extensions should they become needed. In partic-
ular, we provide results establishing the existence of NRSE when the endogenous variable
is implicitly defined, when the model has fundamental stochasticity, and when the model
is multivariate — each of these results is demonstrated using the same proof strategy as the
non-stochastic, univariate case, but each also holds its own special nuances. The remaining
natural extension — the inclusion of a lagged endogenous variable — involves a significant
technical barrier, so we consider this case only numerically.

The paper is organized as follows. In Section 2, we develop with care our existence and
stability results within the context of a univariate, non-stochastic model, and we apply our
results to an OLG framework; Section 3 develops and concisely presents the results in a
variety of generalized modeling environments; Section 4 concludes, and all formal proofs are
in the Appendix.
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2 Stable NRSE: the univariate case

We examine the univariate case with considerable care in order to provide intuition for our
results. Throughout we take as primitive a complete probability space (Ω> �). Let I : R→ R
be Fn with I (0) = 0 and I 0(0) = � 6= 0. Unless otherwise noted, |�| A 1. The abstract
economy is taken as characterized by the following sequence of reduced-form equations:

|w = H∗w I (|w+1)= (1)

Here H∗w denotes the representative agent’s subjective expectation based on their time w
forecasting model of |w+1. Given the specification of H∗, we are interested in solutions {|w}
to (1) satisfying |w ∈ O∞(Ω), and supw k|wk∞ ?∞.

When agents satisfy the rational expectations hypothesis a rational expectations equilib-
rium (REE) of the model is any appropriately bounded stochastic process |w satisfying (1)
when H∗w = Hw, where Hw denotes the true time w conditional expectation. By assumption,
|w = 0 is an REE, often referred to as the minimal state variable (MSV) solution. Because
we have assumed |�| A 1, we know from Woodford (1984) that the model is locally inde-
terminate: given any open neighborhood Y of the origin, there is a non-MSV equilibrium
(a sunspot equilibrium) with support in Y ; however, as noted in Section 1, these sunspot
equilibria are, in general, difficult to characterize or even numerically approximate.

2.1 NRSE: existence

Our construction of near-rational sunspot processes for the nonlinear model (1) is motivated
by the corresponding sunspots in the rational linear model. The linearized model associated
to (1) is given by

|w = �Hw|w+1= (2)

We define an REE of this model to be any stationary process |w satisfying (2). Now let %w
be a zero-mean iid process, and with � = �−1, set �w = ��w−1 + %w= Then �w is stationary
provided that |�| A 1. Further, if |̂w = �w then Hw|̂w+1 = ��w, so that |̂w is a solution to (2).
The stochastic process �w is usually referred to as a “sunspot” and the solution |̂w = �w as a
sunspot equilibrium; |̂w is an REE associated with the serially correlated sunspot process �w.
We conclude with the well-known result that if |�| A 1 then sunspot equilibria exist.

We now define a new equilibrium notion couched in the language and paradigms of
bounded rationality. Similar to rational sunspot equilibria, the equilibrium processes we
identify will also depend upon extrinsic noise in a self-fulfilling manner: the dependence
exists only if agents believe it exists. Unlike sunspot equilibria, however, the new equilibria
are easily characterized, and amenable to both numerical and analytical examination.

To develop the notion of NRSE, we embrace bounded rationality: we assume agents
form expectations using linear forecasting models; and to impart discipline, we require in an
NRSE that the agent’s forecasting model is optimal among similarly specified linear models.
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Let {%w}w∈Z be an iid process in O∞(Ω) with zero mean and �2% A 0. We further assume
that, as a random variable, %w has compact support. Assume � ∈ R is such that �(�) =
�−1 + � ∈ (−1> 1). It follows that

��w =
X

n≥0

�(�)n%w−n ∈ O∞(Ω)=

The agents’ Perceived Law of Motion (PLM), that is, the linear forecasting model used to
form expectations, is given as

|w = d+ e��w (3)

��w = �(�)��w−1 + %w= (4)

Observe that since ��w ∈ O∞(Ω), we have that for any continuous i : R → R, i ◦ ��w (·) ∈
O∞(Ω); further, since ��w is stationary, it follows that for any v and w,

Z

Ω

i ◦ ��w ($)g�($) =
Z

Ω

i ◦ ��v($)g�($) =
Z

Ω

i
¡
��($)

¢
g�($)>

where
��($) =

X

p≥0

�(�)p%p($)>

which exploits the time-invariant nature of the distribution against which the integral is
taken. We will use this and similar observations repeatedly in the computations below,
without further comment.

The PLM specifies H∗, yielding the following Actual Law of Motion (ALM):

|w =

Z

Ω

I (d+ e�(�)��w + e%w+1($))g�($) ≡ Î (d> e> �> ��w )=

We need to be able to differentiate Î (and many other functions like it). For this, we require
a simple generalization of Leibniz’s rule. While surely well known, for completeness, we
present a proof of this Lemma in the Appendix.

Lemma 1 Let X ⊂ Rq be open and k : X ×Ω→ R have the following properties:

1. For all { ∈ X , k({> ·) ∈ O∞(Ω)

2. For almost all $ ∈ Ω, k(·> $) ∈ Fn(X)

3. There exists J ∈ O1(Ω) so that for all { ∈ X , |G{lk({> $)| ≤ J($) for almost all
$ ∈ Ω.
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If K : X → R is given by K({) =
R
Ω
k({> $)g�($) then K ∈ Fn(X) and

G{lK({) =

Z

Ω

G{lk({> $)g�($)=

We outline the simple argument for the application of Lemma 1 to Î here. Since I is
continuous, it follows that Î (d> e> �> ��w (·)) ∈ O∞(Ω) for all w. Further, the analysis below
will be local to the steady state (0> 0> 0)0, thus we may assume the existence of an open
neighborhood X ⊂ R3 of the steady state, with compact closure, so that Î : X × Ω → R;
and since Î (·> ��w ($)) is F4(X), the compact closure of X provides the uniform bounds on
the various partials needed to apply Lemma 1. Below, for expedience, we apply Lemma 1
without further comment.

We may define the T-map W (·> ·> �) : R2 → R2 as the Least Squares projection of the
ALM onto the span of {1> ��w}:

Ã
d

e

!
W=W (d>e>�)

−−−−−−−−→

⎛

⎝
R
Ω
Î (d> e> �> ��($))g�($)

1
�2
��

R
Ω
��($)Î (d> e> �> ��($))g�($)

⎞

⎠ ≡
µ
W d(d> e> �)
W e(d> e> �)

¶
> (5)

where

�2�� =

Z

Ω

¡
��($)

¢2
g�($)=

Observe that W (0> 0> �) = (0> 0)0.

Definition. A non-trivial fixed point of the T-map is a near-rational sunspot equilibrium.

2.1.1 The simple cubic

To establish existence of NRSE, we must study the fixed points of W , which requires a some-
what tedious two-dimensional bifurcation analysis. Before tackling the general specification
of I , we first restrict attention to the case that I is cubic and symmetric about the origin:

I (|) = �| + !3|
3=

We also assume here that �%3 = ��
�

3 = 0. All of these assumptions will be relaxed in the
general case. The assumed symmetry implies (abusing notation) that W (0> e) = (0> W (e)).
This reduces the dimension of the problem to one, greatly simplifying the analysis.

Recall �(�) = �−1 + �. Then, emphasizing the dependence on �, we easily compute

Î (e> �> ��) = �e�(�)�� + !3e
3
¡
�(�)3(��)3 + 3�(�)���2%

¢
>

W (e> �) = �e�(�) + !3�(�)e
3> (6)
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where

�(�) =
�(�)3��

�

4

�2
��

+ 3�(�)�2%>

and here and in the sequel, the qth-moment of a random variable { is given by �{q. Given �,
the function W is a cubic in e and so has either one or three fixed points, and in case there
are three fixed points, it follows that NRSE exist.

The solutions to W (e> �) = e are given by e = 0 and e = ±
³
−��
!3�(�)

´ 1
2
= Since, for � near

zero, �(�) is always positive it follows that NRSE exist when !3 ? 0 and � A 0, or when
!3 A 0 and � ? 0. Importantly, there is an open set of “resonance frequencies” near �−1 for
which NRSE exist: the “knife-edge of resonance” is indeed an artifact of the linearization.
Of course our work allows us to conclude much more. We know exactly what the associated
sunspots look like, and given the map I , we know how to compute the NRSE.

To prepare ourselves for the work of the next section, it is helpful to revisit the existence
question using bifurcation theory: for standard results and a reference on nonlinear dynamics,
see Wiggins (1990). To this end, we interpret the T-map as identifying a dynamic system
with rest points corresponding to NRSE. While we could envision this interpretation quite
naturally as a discrete time system, for reasons that will become apparent later it will be
helpful to work in continuous time. Thus we consider the dynamic differential equation
system

ė = K(e> �) ≡ W (e> �)− e> (7)

and note that e 6= 0 corresponds to an NRSE provided that K(e> �) = 0.

Observe that K(0> �) = 0 and that Ke(0> 0) = 0, indicating that there is a steady state
at e = 0 and that the system bifurcates at � = 0. Also, K�(0> 0) = Kee(0> 0) = 0, and

Ke�(0> 0) = � 6= 0> and Keee(0> 0) = 6!3�(0) 6= 0> (8)

which identifies the occurrence of a pitchfork bifurcation.

Figure 1: Supercritical pitchfork bifurcation, Ke� ? 0, Keee ? 0.
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As we have noted, e = 0 is always a rest point of (7). A pitchfork bifurcation is char-
acterized by the emergence of two additional rest points as � crosses the origin from the
appropriate direction. Geometrically, as � crosses zero, the graph of the cubic K morphs
to intersect the horizontal axis at two additional points. This phenomenon is witnessed in
Figure 1. Here, we have chosen Keee ? 0 and Ke� ? 0. The left panel shows the graph of
K(e> �) for � greater than, equal to, and less than zero, and the right panel identifies the
fixed points of (7) for given �. Notice that for � ≥ 0 there is a unique fixed point, and for
� ? 0 there are three fixed points, indicating the existence of NRSE.

Stability information, which will be useful in the sequel, can also be gleaned from Figure
1. A rest point of the ordinary differential equation (ode) (7) is Lyapunov stable if Ke is
negative. By observing the left panel, we see that as � crosses the origin from above, the
zero steady state destabilizes and the two emergent steady states — the NRSE — are stable.
This example illustrates a more general phenomenon: at a pitchfork bifurcation the stability
of the origin flips and the stability of the non-trivial fixed points are opposite to the stability
of the origin. The exact pattern of emergence and stability depend on the relative signs of
Ke� and Keee, as indicated in Figure 2. For the cubic case, using (8), these signs are easily
translated into conditions on � and !3; however, and importantly, we note that Figure 2 is
general: it holds for any univariate system ė = K(e> �) that undergoes a pitchfork bifurcation
at the origin. We will use this fact in Section 2.2 when studying the stability of NRSE under
learning.

Figure 2: Pitchfork bifurcations. Dashed curves indicate unstable fixed points.
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2.1.2 The general case

In this section, we allow I to be general and the odd moments of the sunspot to be non-
zero. The essential difference is that we can no longer rely on the existence of NRSE with
d = 0: the T-map is generically two dimensional. Establishing existence of NRSE proceeds
as above, but the bifurcation analysis is more tedious because a center manifold reduction
must first be performed. We have the following result, which is stated to emphasize the open
set of resonance frequencies consistent with NRSE.

Theorem 1 (existence) Assume that |�| A 1 and that either of the following two regularity
conditions is met:

1. I 00(0) 6= 0 and �%3 6= 0;

2. I 000(0)

µ
3�2%
�
+

��
�

4

�3�2
��

¶
+
³
3(I 00(0))2

(1−�)�

´
�2�� 6= 0.

Then NRSE exist. Specifically, there exists a neighborhood Y of �−1 so that given any
open set Z ⊂ Y containing �−1 there is a �(�) ∈ Z and a point (d> e) ∈ R2 \ {(0> 0)}with
W (d> e> �) = (d> e)0.

It may appear surprising that the generic existence conditions turn on the third moment of
the sunspot’s conditional shock, but brief reflection provides the intuition: if �%3 6= 0 and
I 00(0) 6= 0 then Ke is O (k(d> e)k2) so that the associated bifurcation is transcritical; in the
case �%3 = 0 or I

00(0) = 0, and condition 2 is met, it follows that Ke is O (k(d> e)k3) so that
the associated bifurcation is pitchfork. The nature of the bifurcation does not impinge on
existence; however, there is an interesting implication for stability: see discussion following
Theorem 2.

The proofs of all theorems are in the Appendix. While the details of the proof of Theorem
1 are somewhat tedious, a discussion of the argument is useful. Letting � = (d> e)0, write
K(�> �) = W (�> �)− �. Direct computation allows for the following decomposition:

K(�> �) =

µ
� − 1 0
0 ��

¶µ
d
e

¶
+

Ã
i(d> e> �)

j(d> e> �)

!
> (9)

where i and j are O (k(d> e> �)k2).

It is evident that a bifurcation of the system �̇ = K(�> �) occurs at � = 0. To assess
the nature of this bifurcation, we appeal to the center manifold theorem. This theorem
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guarantees the existence of a sufficiently smooth function k : R2 → R characterizing an
invariant, parameter-dependent manifold, that is, a differentiable subsetZf(�) of R2, tangent
to the e-axis, so that

• For � and e near zero, Zf(�) is the graph of d = k(e> �).

• Zf(�) is invariant under the action of K, that is, the trajectory of � implied by �̇ =
K(�> �) remains in Zf(�) if it is initialized in Zf(�).

The invariance of the center manifold may be used to specify a functional equation
characterizing k. Specifically, by definition, ḋ = (� − 1)d + i(d> e> �); and, on Zf(�), d =
k(e> �), so that

ḋ = ke(e> �)ė = ke(e> �) (��e+ j(d> e> �)) =

We conclude that k must satisfy the functional equation

(� − 1)d+ i(d> e> �) = ke(e> �) (��e+ j(d> e> �)) =

Using this equation together with the implicit function theorem allows for the computation
of the Taylor expansion of k to arbitrary order.

The importance of the manifold Zf(�) follows from a corollary to the center manifold
theorem which states that the dynamic behavior of the two-dimensional system �̇ = K(�) is
locally equivalent in a natural sense to its behavior on Zf(�); and, using k, this behavior is
captured by the univariate system

ė = ��e+ j(k(e> �)> e> �)=

Finally, because this system is univariate, bifurcation analysis proceeds just as in the cubic
case. The proof in the Appendix simply involves fleshing out the details of this analysis.

Theorem 1 generically addresses the first two concerns raised in the introduction and
identified as motivating this effort. We now know when NRSE exist and what they look like.
Further, we know that the resonance frequency restriction is an artifact of the linearization
procedure: in fact, the sunspot’s serial correlation acts a bifurcation parameter in the general
case. Finally, and perhaps most interestingly, existence of NRSE obtains if and only if
rational sunspot equilibria exist. This observation is particularly important from a practical
perspective: assessing whether a given model may exhibit NRSE requires no new analytic
tools.

2.2 NRSE: stability

Having established the generic existence of NRSE in the case |�| A 1, we now turn to
the question of stability under learning. As is standard in the literature and natural given
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our assumptions regarding the forecasting behavior of agents, we have agents update their
beliefs over time using recursive least squares: see Marcet and Sargent (1989) and Evans and
Honkapohja (2001). Let �w = (dw> ew)

0 represent agents’ beliefs conditional on information
dated w and earlier. These beliefs evolve according to the following recursions:

�w = �w−1 +
1

w
U−1w

µ
1

��w

¶µ
Î
³
dw−1> ew−1> �> �

�
w

´
− �0w−1

µ
1

��w

¶¶
(10)

Uw = Uw−1 +
1

w

µµ
1

��w

¶¡
1 ��w

¢
−Uw−1

¶
>

where Uw captures the sample second-moments matrix. The asymptotic behavior of this
system may be analyzed by considering the differential equation system

�̇ = U−1
Z

Ω

µµ
1

��($)

¶
Î
¡
d> e> �> ��($

¢¶
g�($)−U−1P�

U̇ = P −U>

where

P =

Z

Ω

µµ
1

��($)

¶¡
1 ��($)

¢¶
g�($)

is the a.e. limit of Uw by the law of large numbers. The stability of this system at a given
rest point (�∗>P) is determined by the stability of

�̇ = W (�)− � (11)

at �∗. Since �∗ corresponds to a fixed point of the T-map, it identifies an NRSE. The
theory of stochastic recursive algorithms tells us that if this fixed point is a Lyapunov stable
rest point of (11), then an appropriately modified version of (10) will converge to it:2 the
associated NRSE is stable under learning. We note that the ordinary differential equation
(ode) given by (11) corresponds to the usual E-stability differential equation, and thus in
the sequel, we will rely on E-stability when assessing the stability NRSE under learning.

If the model is linear then, as noted above, NRSE correspond to resonance frequency
sunspot equilibria: � = �−1. Assuming agents know �, it follows that Hw|w+1 = d+ e��w, so
that the actual law of motion is given by

|w = �d+ e�w=

We find that W (d> e) = (�d> e)0, so that the eigenvalues of GW are � and 1. We conclude that
for the linear model sunspot stability obtains provided that � ? −1.3

2To guarantee almost sure convergence, learning algorithms may require a projection facility: see Evans
and Honkapohja (2001) for details.

3It is standard, in the stability analysis of sunspot equilibria associated to linear models, for the T-map
to have at least one unit eigenvalue. This neutral stability reflects the (artificial) fact that, in a linear
environment, any scalar multiple of a sunspot is again a sunspot. For a discussion, see Evans and McGough
(2005a).
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2.2.1 The simple cubic

It is again revealing to begin by obtaining the stability condition for the case of the simple
cubic, and we again restrict attention to PLM’s of the form |w = e�w, which is consistent
with NRSE in the cubic case. The T-map is given by (6), so the E-stability ode may thus
be written

ė = ��e+ !3�(�)e
3= (12)

We learned above that as � crosses zero from the appropriate side, a pitchfork bifurcation
indicates the emergence of three fixed points. Importantly, the bifurcation also switches the
stability of the original fixed point, and the new fixed points inherit the stability previously
afforded the original fixed point. Thus if before the bifurcation the origin was stable then
after the bifurcation the origin is unstable and the two new fixed points are stable. These
stability transfers are evident in Figure 1, where we remember that a sufficient condition for
Lyapunov stability in the univariate case is that the derivative be negative.

Applying these observations to the system (12), we conclude that if sign(�) 6= sign(!3)
then the the cubic NRSE is stable under learning mechanisms consistent with (12). We note
that the cubic assumption is not innocuous: as we will see in the next section, requiring that
agents include a constant in their regression imparts additional restrictions.

2.2.2 The general case

Returning to the general case the relevant ode is given by (11). The analysis here again
proceeds as it did with the cubic, and again, the principal distinction and difficulty is the
center manifold analysis. Fortunately, we can rely on all of the hard work already done in
the existence proof. We have the following result:

Theorem 2 (stability) Assume that � ? −1 and that either of the following two regularity
conditions is met:

1. I 00(0) 6= 0 and �%3 6= 0;

2. I 000(0)

µ
3�2%
�
+

��
�

4

�3�2
��

¶
+
³
3(I 00(0))2

(1−�)�

´
�2�� ? 0=

Then there exist NRSE that are stable under adaptive learning.

When � ? −1, the coefficients of �2�� and I 000(0), in the regularity inequality identified
in item 2 of Theorem 2, are negative. This observation leads to the following corollary:

Corollary 1 If � ? −1 and either I 00(0) 6= 0 or I 000(0) A 0 then stable NRSE exist.
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This result should be understood to mean that if the conditions of the corollary are met then
stable NRSE exist for suitable choices of sunspot processes. More specifically, if I 000(0) A 0
then Condition 2 is met for any sunspot process with � near and on the appropriate side of
�−1, while if I 00(0) 6= 0 then Condition 1 will be met for sunspots with � near and on the
appropriate side of �−1 and �%3 6= 0.

Returning now to the case of the simple cubic in Section 2.2.1, recall the associated
stability condition sign(�) = −sign(!3), where I 000(0) = 6!3. Note that no specific restriction
on � was required: the PLM did not include an intercept because we assumed the agents
understood the symmetry in I . If instead agents’ PLM included a constant term, as in (3),
then stability would require that � ? −1 and !3 A 0, in accordance with Corollary 1.

Theorems 1 and 2 provide vindication for resonance frequency sunspot equilibria: the
knife-edge requirement needed in linear models is an artifact of the linearization and the
tendency of resonance frequency sunspot equilibria to inherit the stability of the MSV solu-
tions prevails in the non-linear world. Put differently, by Theorem 2, E-stability of resonance
frequency sunspot equilibria in the linear model guarantees the existence of stable NRSE in
the non-linear model (provided I 00(0) 6= 0), which is a striking demonstration of the deep
and broad reach of the E-stability principle.

2.3 NRSE and REE

While near-rational sunspot equilibria comprise a stand-alone equilibrium concept, it is nat-
ural to wonder about their connection to rational expectations equilibria. Establishing a
formal connection requires taking a stand on the metric used for comparison, and is fur-
ther complicated by the concepts’ inherent multiplicities: even with a selected metric, which
NRSE should be compared to which REE?

To make progress, we first characterize, to the extent possible, the REE local to the
(indeterminate) steady state |∗ = 0 of our model (1). Fix a martingale difference sequence
(mds) %̂w with small support, and interpret it as the following rational forecast error: %̂w =
I (|w) − Hw−1I (|w)= It follows that the associated REE |w must satisfy I (|w) = |w−1 + %̂w=
Since %̂w has small support and I 0(0) 6= 0, provided that ||w−1| is small, there is an open
neighborhood X of the origin in R2, and a function k : X → R so that |w = k (|w−1> %̂w).
Furthermore, expanding k, we have that

|w = �−1|w−1 + �−1%̂w +O
¡
k (|w−1> %̂w) k2

¢
>

which, by indeterminacy (i.e. |�| A 1) guarantees that ||w−1| will remain small if initialized
near the origin. We conclude that the function k characterizes the REE associated to the mds
%̂w.4 Conversely, all REE local to the steady state can be represented in this fashion: simply

4Note that, provided I is sufficiently smooth, k can be approximated to arbitrarily high order by ex-
panding each side of I (k (|w−1> %̂w)) = |w−1 + %̂w around (0> 0) and equating coefficients.
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note that if |w is an REE local to the steady state then, by setting %̂w = I (|w)− Hw−1I (|w)=
we may construct a function k so that |w = k (|w−1> %̂w).

The characterization of REE by the function k provides the connection between REE
and NRSE. In particular, note that, to first order, any mds %̂w induces an REE with serial
correlation given by �−1, and the serial correlation of any NRSE is a perturbation of this
same value �−1. Thus, to-first-order/up-to-perturbation, the correlograms of all REE and
all NRSE are the same.

2.4 An overlapping generations model

Here we develop a simple economy that fits the hypotheses of Theorems 1 and 2. Consider
an OLG environment in which there is a continuum of agents born at each time w indexed
by $w ∈ Ω. Each agent lives two periods, works when young and consumes when old. The
population is constant at unit mass. Each agent owns a production technology that is linear
in labor and produces a common, perishable consumption good. The agent can sell his
produced good in a competitive market for a quantity of fiat currency, anticipating that he
will be able to use this currency when old to purchase goods for consumption.

Let $w ∈ Ω be the index of a representative agent born in time w. This agent’s problem
is given by

max

fw+1($w)> qw($w)> Pw($w)

H∗($w) (x(fw+1($w))− �(qw($w)) (13)

subject to qw($w) = twPw($w) and fw+1($w) = tw+1Pw($w)=

Here, qw($w) is the agent’s labor supply when young and qw($w) is his output. Also, tw is
the time w goods price of money and fw+1($w) is the agent’s planned consumption when old.
The expectations operator H∗($w) (·) denotes the expectation of agent $w at time w, taken
with respect to his subjective beliefs conditional on the information available to him. This
information includes qw($w), Pw($w) and current and lagged values of tw=

The first order condition is given by

� 0(qw($w)) = H∗ ($w)

µ
tw+1
tw

x0 (fw+1($w))

¶
> (14)

and to make our model particularly tractable, we assume that � 0 = 1 and x(f) = 1
1−� (f

1−� − 1) =
With simplification, we obtain agent $w’s decision rules:

qw($w) =
¡
t�−1w H∗($w)

¡
t1−�w+1

¢¢ 1
�

Pw($w) =

µ
1

tw
H∗($w)

¡
t1−�w+1

¢¶ 1
�

;
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and we note that, as is natural, the quantity of money demanded by agent $w at time w,
depends on, among other things, the price at time w.

Assuming a constant (unit) supply of money, we obtain the market-clearing condition
Z

Ω

Pw($w)g$w = 1>

which yields

tw =

µZ

Ω

¡
H∗($w)

¡
t1−�w+1

¢¢ 1
� g$w

¶�

= (15)

Equation (15) characterizes the equilibrium price path.

Figure 3: Learning dynamics

If agents are homogeneous, the model reduces to tw = H∗w t
1−�
w+1 , which is consistent with

the framework considered in Section 2. If all agents have rational expectations then t = 1
is the unique, non-autarky, perfect-foresight steady state. The system may be log-linearized
around this steady state to yield log tw = (1−�)Hw log tw+1= The steady state is indeterminate
if � A 2: in this case the expectational feedback parameter is negative and sunspot equilibria
exist in both the linearized and non-linear models.

To apply our theorems, let I (|) = (| + 1)1−� − 1, so that the model becomes |w =
HwI (|w+1), with | = t− 1. We compute I 0(0) = 1− � and I 00(0) = �(�− 1), so that stable
NRSE exist provided � A 2.

To assess this claim numerically, we calibrate the model by setting � = 2=5, and, since
I 00(0) A 0, we select a negative perturbation (� ? 0), so that the NRSE is stable. Then,
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choosing an asymmetric iid martingale difference sequence %w, we simulate the real-time
learning dynamics corresponding to a variety of initial conditions: see Figure 3, which plots
the dynamics of ew, the time w-value of the sunspot coefficient in the agent’s forecasting
model.5 We observe convergence to the estimated NRSE value of e∗ = =195=6

3 Stable NRSE: extensions

The reduced form model (1) served as a platform to discuss and provide intuition for our
main existence and stability results; however, most applied macro models do not present so
simply. Ideally, the theory of NRSE should be developed against a sequence of reduced-form
equations of the form

H∗w I (|w> |w+1> |w−1> yw) = 0> (16)

where |w ∈ Rq is endogenous, yw ∈ Rp is a stationary exogenous process, and I : R3q⊕Rp →
Rq is Fn; however, results for models at this level of generality are not yet available. To make
some progress, and to show how modifications of our underlying framework and arguments
apply in our general settings, in this Section we consider, separately, a variety of extensions
suggested by the model (16). Because the development and argument structure are similar
to the work done in Section 2, our discussions here will be considerably more brief.

3.1 Stable NRSE: the implicit case

In many modeling environments, the time w endogenous variable is defined only implicitly
in terms of expectations of future variables. To consider this case, let I : R2 → R be Fn

(n ≥ 4), with I (0> 0) = 0, I1(0> 0) 6= 0, and � = −I2(0> 0)@I1(0> 0), where, in this section,
Il is the partial of I with respect to the l-th variable.

The sequence of reduced-form equations is given by

H∗w I (|w> |w+1) = 0= (17)

Given the specification of H∗, we are interested in solutions {|w} to (17) satisfying |w ∈
O∞(Ω), and supw k|wk∞ ?∞.

As in the previous section, let {%w} ⊂ O∞(Ω) be a zero-mean iid process with compact
support, and assume � ∈ R is such that �(�) = �−1+ � ∈ (−1> 1). The agents’ PLM is given
as

|w = d+ e��w
��w = �(�)��w−1 + %w>

5For this Figure we use the following specification for the sunspot process: %w ∈ {−=475> =025} is iid with
Pr (%w = =025) = =95, and � = −=0175. Since � = −1=5 this gives �(�) = −=684.

6It can be shown that if 2 ? � ? 1
4

¡
5 +
√
17
¢
≈ 2=28 then the sunspot’s stochastic driver %w can be taken

as symmetric.
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which, by specifying H∗, gives the following implicitly defined ALM:

Ĩ
³
|w> d> e> �> �

�
w

´
≡
Z

Ω

I
³
|w> d+ e�(�)��w + e%($)

´
g�($) = 0=

Noting that Ĩ (0> 0> 0> �> ��w ) = 0 and that, evaluated at |w = d = e = 0, we have Ĩ| =
I1(0> 0) 6= 0, the implicit function theorem implies that locally the ALM may be written

|w = Î
³
d> e> �> ��w

´
> where we are now assuming that the support of %w is such that �� remains

in the domain of Î for small �.

With Î so defined, we may proceed just as in the previous case by defining the T-map
W (·> ·> �) : R2 → R2 as the projection of the ALM onto the span of {1> ��w}. This again yields
the formula in equation (5). Again observe that W (0> 0> �) = (0> 0)0. An NRSE of this model
is a non-trivial fixed point of this T-map.

The following result provides conditions for existence and stability. The complicated
expression corresponding to IC is given by equation (17f) in the Appendix. All derivatives
are evaluated at zero.

Theorem 3 Assume that |�| A 1.

• Existence. Assume that any one of the following two regularity conditions is met:

1. (2�I12 + I22)�
%
3 6= �I112�

��

4 ;

2. IC 6= 0.

Then NRSE exist. Specifically, there exists a neighborhood Y of �−1 such that given
any open set Z ⊂ Y containing �−1 there is a �(�) ∈ Z and a point (d> e) ∈ R2 \
{(0> 0)}with W (d> e> �) = (d> e)0.

• Stability. Assume that � ? −1 and that any of the following two regularity conditions
is met:

1. (2�I12 + I22)�
%
3 6= �I112�

��

4 ;

2. IC ? 0.

Then the NRSE are stable under adaptive learning.

We observe that existence, and stability in case � ? −1, are generic in the sense that
they obtain for appropriate %w if I112 6= 0. We note also that setting I1 = −1 and I1∗ = 0
corresponds to the previous case in which |w = H∗w Ĭ (|w+1) (for appropriate Ĭ ); and, the
conditions we obtain here reduce to the conditions found in Theorems 1 and 2.
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3.2 Stable NRSE: the stochastic case

In this section we allow for the presence of a stationary stochastic driver. Let I : R2 → R
be Fn (n ≥ 4), with I (0> 0) = 0 and � = GI|(0> 0). Let �w ∈ O∞(Ω) be an iid process, let
0 ? � ? 1, and let

y�w = �y�w−1 + ��w = �
X

n≥0

�n�w−n ∈ O∞(Ω)>

for � ∈ R. The model is given by |w = H∗w I (|w+1> y
�
w+1). Given the specification of H

∗, we
are interested in solutions {|w} satisfying |w ∈ O∞(Ω), and supw k|wk∞ ?∞.

We first consider the concept and existence of near rational equilibria that depend only on
y�w and not also on a sunspot process. Henceforth, for notational simplicity, we will suppress
the dependence of yw on �. Following the literature, we refer to equilibria of this type as
restricted perceptions equilibria (RPE).

We assume agents use a PLM of the form |w = d+ eyw, which yields the following ALM:

|w =

Z

Ω

I (d+ e�yw + e��w+1($)> �yw + ��w+1($))g�($) ≡ Ĩ (d> e> �> yw)= (18)

The corresponding T-map is given by
Ã
d

e

!
W=W (d>e>�)

−−−−−−−−→

Ã R
Ω
Ĩ (d> e> �> y($))g�($)

(�2y(�))
−1 R

Ω
y($)Ĩ (d> e> �> y($))g�($)

!
≡
µ
W d(d> e> �)
W e(d> e> �)

¶
>

where

�2y(�) =

Z

Ω

(y($))2 g�($)=

A fixed point of the T-map provides an RPE of this non-linear model. The next lemma
provides the existence result.

Lemma 2 If GIy(0> 0) 6= 0 and � 6= 1 or �−1 then, for |�| sufficiently small, an RPE
exists, that is, there exists (d∗(�)> e∗(�))0 ∈ R2, with e∗(�) 6= 0, such that W (d∗(�)> e∗(�)> �) =
(d∗(�)> e∗(�))0=

We now turn to existence and stability of NRSE associated to this RPE, taking the form
|w = d+ eyw + f��w . In what follows, unless otherwise specified, derivatives are evaluated at

(d> e> f> �) = (d∗> e∗> 0> 0)=

As argued in the proof of Theorem 4, by choosing |�| small we may assume that GIB (|> y) ≈
GIB(0> 0) for B = |> y> ||> etc. Thus, we may assume, for the remainder of this section, that
|�| A 1, whence we may choose � small enough that |GI|| A 1.
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Turning first to expectations, the PLM is given by

|w = d+ eyw + f��w
yw = �yw−1 + ��w
��w = �(�)��w−1 + %w>

where �(�) = �−1 + � ∈ (−1> 1). We further assume that �w ⊥ %v for all w> v. For fixed small

�, the ALM is given by |w = Î
³
d> e> f> �> yw> �

�
w

´
where

Î =

Z

Ω

I (d+ e�yw + e��w+1($) + f�(�)��w + f%w+1($)> �yw + ��w+1($))g�($)=

We note that the function Î here is different from the function used in the previous proof.
Exploiting independence, the T-map is given by

d
Wd(d>e>f>�)

−−−−−−−−→
Z

Ω

Î
¡
d> e> f> �> y($)> ��($)

¢
g�($)

e
W e(d>e>f>�)

−−−−−−−−→
1

�2y

Z

Ω

y($)Î
¡
d> e> f> �> y($)> ��($)

¢
g�($)

f
W f(d>e>f>�)

−−−−−−−−→
1

�2
��

Z

Ω

��($)Î
¡
d> e> f> �> y($)> ��($)

¢
g�($)

Finally, let (d∗(�)> e∗(�)) = (d∗> e∗) be an RPE corresponding to �, and note, using (18),
that

W (d∗> e∗> 0> �) = (d∗> e∗> 0)0=

A non-trivial (i.e. f 6= 0) fixed point of the T-map is an NRSE.

Theorem 4 Assume GIy(0> 0) 6= 0 , |�| A 1, �� 6= 1, and that |�| is sufficiently small.

• Existence. Assume that either of the following two regularity conditions is met:

1. GI|| 6= 0 and �%3 6= 0;

2. GI|||

µ
3�2�
�
+

��
�

4

�3�2
��

¶
+

3(GI||)
2
�
�2
��
+�2�2�

�

(1−�)�3 6= 0.

Then NRSE exist. Specifically, there exists a neighborhood Y of �−1 so that given
any open set Z ⊂ Y containing �−1 there is a �(�) ∈ Z and a point (d> e> f) ∈
R3 \ {(0> 0> 0)}with W (d> e> f> �) = (d> e> f)0.

• Stability. Assume further that � ? −1 and that either of the following two regularity
conditions is met:
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1. GI|| 6= 0 and �%3 6= 0;

2. GI|||

µ
3�2�
�
+

��
�

4

�3�2
��

¶
+

3(GI||)
2
�
�2
��
+�2�2�

�

(1−�)�3 ? 0=

Then the NRSE are stable under adaptive learning.

3.3 Stable NRSE: the multivariate case

In principle, there is no difficulty conducting the above analysis in higher dimensions, though
in practice the work is somewhat more tedious; and, two distinct cases arise, depending
on the nature of the model’s roots. Let I : Rq → Rq be Fn with I (0) = 0 and assume
GI (0) ∈ Rq×q is diagonalizable. WriteGI (0) = V ·⊕q

l=1�l ·V−1, with �l ∈ C the eigenvalues
of GI (0)= The economic model is given by

|w = H∗w I (|w+1)= (19)

Given the specification of H∗, we are interested in solutions {|w} to (19) satisfying |lw ∈
O∞(Ω), and supw k|lwk∞ ?∞.

So that the model is indeterminate, we assume at least one root, which we label as �q, lies
outside the unit circle. We make the further assumption that �q ∈ R. This is for simplicity,
as the analysis is considerably more involved if all roots that lie outside V1 are complex: the
sunspot is necessarily a two-dimensional VAR(1) process, and co-dimension-2 bifurcation
analysis is required.7

Working as before, assume � ∈ R is such that �(�) = �−1q + � ∈ (−1> 1). The agents’
PLM is given as

|w = d+ e��w
��w = �(�)��w−1 + %w>

with d> e ∈ Rq. Writing I = (I 1> = = = > I q)0, the ALM is given by

|lw =

Z

Ω

I l
³
d+ e�(�)��w + e%w+1($)

´
g�($) ≡ Î l

³
d> e> �> ��w

´
=

The T-map is given by

dl →
Z

Ω

Î l
¡
d> e> �> ��($)

¢
g�($)

el →
1

�2
��

Z

Ω

��($)Î l
¡
d> e> �> ��($)

¢
g�($)=

7Preliminary results indicate that, in the complex case, appropriate perturbation of the sunspot process’s
covariance matrix results in a Bogdanov-Takens bifurcation, from which a stable NRSE emerges. We also
note that ifGI (0) has n ≤ q eigenvalues lying outside the unit circle, then sunspot processes up to dimension
n may exist. We are developing these results in current work.
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It is immediate that (d> e) = (0> 0) ∈ Rq ⊕ Rq is a fixed point of the T-map. A fixed point
with non-zero e is an NRSE. The next theorem establishes existence and stability of NRSE
in the simpler, transcritical case, which occurs when �%3 6= 0. As notation, let Vq be the
qth-column of V (i.e. an eigenvector associated to �q), V

−1 = (Vlm) and G2I l the Hessian of
I l evaluated at zero.

Theorem 5 Let GI (0) = V ·⊕q
l=1�l · V−1 with �q ∈ R and |�q| A 1.

• Existence. Assume the following regularity conditions hold:

1. �%3 6= 0

2.
Pq

l=1 V
ql (V0q ·G2I l · Vq) 6= 0=

Then NRSE exist. Specifically, there exists a neighborhood Y of �−1q so that given any
open set Z ⊂ Y containing �−1q there is a �(�) ∈ Z and a point (d> e) ∈ Rq ⊕ Rq \
{(0> 0)}with W (d> e> �) = (d> e)0.

• Stability. Assume further that Re (�l) ? 1 for all l = 1> = = = > q and
Re(�l)
�q

? 1 for all
l = 1> = = = > q− 1. Then the NRSE are E-stable.

We remark that the second regularity condition for existence (above) can be viewed as
generic in the following sense: V is invertible (and thus the Vlm and Vlm are not all zero) and
V is a first-order term whereas the G2I l are second-order.

3.4 Stable NRSE: the case with lags

As a final extension, we consider a univariate reduced-form model with an endogenous lag.
Let I : R2 → R be Fn (n ≥ 4), with I (0> 0) = 0, I1(0> 0) = � 6= 0, and I2(0> 0) = � 6= 0,
where, in this section, Il is the partial of I with respect to the l-th variable.

The sequence of reduced-form equations is given by

|w = H∗w I (|w+1> |w−1)= (20)

Given the specification of H∗, we are interested in solutions {|w} to (20) satisfying |w ∈
O∞(Ω), and supw k|wk∞ ?∞.

The linearized, RE version of this model is given by

|w = �Hw|w+1 + �|w−1= (21)

This model is indeterminate and has real roots provided |� + �| A 1, |�| ? |�| and �� ? 1
4
,

and we assume these conditions hold throughout this section.
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As in previous sections, let {%w} ⊂ O∞(Ω) be a zero-mean iid process with compact
support. Evans and McGough (2005c) showed that the process given by

|w = *l|w−1 + � (m)w
�(m)w = *m�(m)w−1 + %w

where l> m ∈ {1> 2} with l 6= m, is a sunspot REE of (21), and

*1 =
1−
√
1− 4��
2�

and *2 =
1 +
√
1− 4��
2�

are the roots of the model; and further, if � ? 0 then this REE is stable under adaptive
learning.

As we did in Section 2, we use perturbations of sunspots in the linear model to generate
NRSE in the non-linear model. Let � ∈ R be such that �l(�) = *l+� ∈ (−1> 1). The agents’
PLM is given as

|w = d+ e|w−1 + f�(l)�w
�(l)�w = �l(�)�(l)

�
w−1 + %w>

which, by specifying H∗, gives the following implicitly defined ALM:

|w =

Z

Ω

I
³
(1 + e)d+ e2|w−1 + f (�l(�) + e) �(l)�w + f%($)> |w−1

´
g�($)=

Here we are assuming, as in common in the literature, that when agents form expectations
their information set includes |w−1 and �w, but not |w. The next step in the analysis would
normally be to define the T-map, but this requires knowledge of the asymptotic distribution
of the regressors for fixed beliefs (d> e> f). Unfortunately, given the presence of |w−1, this
distribution is endogenous to beliefs, which appears to be a formidable technical impediment.
Based on our work thus far, the following conjecture seems reasonable:

Conjecture 1 Assume that |� + �| A 1, |�| ? |�| and �� ? 1
4
.

• Existence. NRSE generically exist.

• Stability. If, in addition, � ? 0, then E-stable NRSE generically exist.

To provide support for this conjecture, we present numerical results. First, observe that
a “sample-version” of a T-map may be defined. Specifically, for fixed beliefs (d> e> f), we may

draw a sequence of Q shocks
n
�(l)�w

oQ
w=0
, and using quadrature to evaluate Î l, compute the

associated endogenous realizations {|w}Qw=0, where |0 and �(l)
�
0 are taken as given. The sam-

ple T-map is given by simply using these data to regress |w on |w−1, �(l)
�
w and a constant. If
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the sample size Q is large enough (and if the associated asymptotic distributions exist, etc.)
then the sample T-map should well-approximate the true T-map, which means a fixed point
of the sample T-map should well-approximate an NRSE. Finally, if the NRSE is E-stable,
it is expected that iteration of the sample T-map, possibly modified to include a damping
factor, should converge to a fixed point.

Figure 4: NRSE with lags, T-map

Precisely this experiment is carried out in Figure 4. The map I used to construct this
figure has linear terms � = −1=5 and � = =2 and an ad-hoc quadratic form to capture the
non-linearity. Thus the linear model is indeterminate, and, according to the conjecture, we
expect stable NRSE to exist. Sample size is set at 3> 000, and the shock %w is uniformly
distributed on [−=1> =1]. The initial conditions for beliefs, as indicated by the red, dashed
lines, correspond to the linear REE values, with f set arbitrarily at 6. The sample T-map is
then iterated, and the “time-plot” is provided in the Figure. We see convincing evidence of
rapid convergence to non-REE values, suggesting the presence of a stable NRSE.8

Figure 5: NRSE with lags, RTL

We may also conduct the analogous real-time learning simulation — See Figure 5. In
this case, as new data become available, beliefs are updated over time using recursive least
squares. As above, the dynamics are initialized at the linear REE values, and a decreasing
gain algorithm is used. The red, dashed lines in the first two panels identify the fixed point
of the sample T-map, and in the last panel, the red, dashed line corresponds to the initial

8That the sample T-map never settles down to a fixed point is a reflection of the finite sample properties
of the map.
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condition for beliefs f. We note that convergence appears to obtain to the fixed point of the
sample T-map identified in Figure 4, thus supporting our conjecture.

4 Conclusion

According to Blanchard, “ . . . the world economy is pregnant with multiple equilibria — self-
fulfilling outcomes of pessimism or optimism, with major macroeconomic implications.”9

This conclusion, and others like it, makes imperative understanding when and how sunspot
equilibria, which represent and characterize the class of stationary multiple equilibria, are
consistent with the dynamic stochastic general equilibrium modeling paradigm of the macro-
economic literature.

Investigations of sunspot equilibria in mainstream models have met with a variety of
obstacles. Most notably, and as indicated in the Introduction, sunspot equilibria in non-
linear models have complicated stochastic structure, making them difficult for researchers
and economic agents to model, and thus rendering stability analysis impossible.

Our embrace of a linear-forecasting framework allows us to circumvent this obstacle
while preserving natural, agent-level behavior. We establish the existence of (near-rational)
sunspot equilibria that have simple recursive stochastic structure. By providing agents an
understanding of this structure, we are then able to assess stability under adaptive learning,
and indeed establish generic stability results.

It is important to emphasize the link between the existence and stability of NRSE, and
the existence and stability of sunspot equilibria in the corresponding rational model. We
find that if sunspot equilibria exist in the rational (linearized, and thus the non-linear)
model then NRSE exist; and if sunspot equilibria are stable in the linearized model then the
NRSE are stable. In fact, an even deeper connection prevails: the extension of an observed
phenomenon, which we call The MSV Principle, to a non-linear environment. The MSV
Principle states that in a linear(ized) model, if the steady state is indeterminate and the
MSV solution is stable under learning then there exist stable sunspot equilibria. While we
have not formally established this in a completely general setting, in all of our work we know
of no counterexample. The power of this principle lies in its computational simplicity: it is
often quite easy to identify and analyze the stability of the MSV solution to a linear model.
Our work here generalizes the principle as follows: If the steady state is indeterminate and
the MSV solution to the linearized model is stable under learning then there exist stable
NRSE in the associated non-linear model.

9IMF blog, http://blog-imfdirect.imf.org/2011/12/21/2011-in-review-four-hard-truths/
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Appendix

Proof of Lemma 1. Fix x 2 U , i 2 {1, . . . ,n}, and let Dm be a real sequence converging to zero
such that

x(Dm) = (x1, . . . ,xi�1,xi +Dm,xi+1, . . . ,xn) 2U.

Define hn(x,w) = D�1
m
(h(x(Dm)�h(x)). Since L

•(W)⇢ L
1(W) it follows that hn(x, ·) 2 L

1(W) and
hn(x, ·)! Dxi

h(x, ·) almost everywhere. By the mean-value theorem, for almost all w 2 W, there
is a dm with |dm|< |Dm| such that

|hn(x,w)|= |Dxi
h(x(dm),w)| G(w).

We may compute

Dxi
H(x) = lim

m!•
D�1

m
(H(x(Dm))�H(x)) = lim

m!•

Z

W
hm(x,w)dµ(w)

=
Z

W
lim

m!•
hm(x,w)dµ(w) =

Z

W
Dxi

h(x,w)dµ(w),

where the third equality follows from the dominated convergence theorem. The proof is completed
by induction, recognizing that Dxi

h(·,w) 2C
k�1(U).

In the work below we will repeatedly be required to differentiate functions of the form H, con-
structed from functions of the form h, as defined in the lemma above. Our analysis will be local to
a steady state, so that our sets U will have compact closure, thus giving the needed uniform bounds
on Dxh, which themselves are assumed continuous.

Proof of Theorems 1 and 2. This analysis requires the computation of a host of derivatives, and
we proceed with these computations now. Importantly, all derivatives of F are evaluated at zero
and all partials (first and higher orders) of F̂ and T are evaluated at a = b = x = 0. For notational
ease, we will often omit the arguments. Note that when computing derivatives of F̂ , the variable
hx is taken as fixed.
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Derivatives of F̂(a,b,x ,hx ) =
R

W F(a+bl (x )hx +be(w))dµ(w)

F̂a =
Z

W
F
0
dµ(w) = b (1a)

F̂b =
Z

W
F
0(b�1hx + e(w))dµ(w) = hx (1b)

F̂x =
Z

W
F
0
bhx

dµ(w) = 0, since b = 0. (1c)

F̂aa =
Z

W
F
00
dµ(w) = F

00(0) (1d)

F̂ab =
Z

W
l (x )hx

F
00
dµ(w) = b�1hx

F
00(0) (1e)

F̂bb =
Z

W
F
00(l (x )hx + e(w))2

dµ(w) = (b�2
⇣

hx
⌘2

+s2
e )F

00(0) (1f)

F̂x x =
Z

W
F
00(bhx )2

dµ(w) = 0 (1g)

F̂ax =
Z

W
F
00
bhx

dµ(w) = 0 (1h)

F̂bx =
Z

W
(hx

F
0+bhx

F
00)dµ(w) = bhx (1i)

F̂bbb =
Z

W
F
000(l (x )hx + e(w))3

dµ(w) = F
000(0)((b�1hx )3 +3b�1hx s2

e ) (1j)

Derivatives of T
a(a,b,x ) =

R
W F̂(a,b,x ,hx (w))dµ(w)

T
a

a
=
Z

W
F̂adµ(w) = b (2a)

T
a

b
=
Z

W
F̂bdµ(w) =

Z

W
hx (w)dµ(w) = 0 (2b)

T
a

x =
Z

W
F̂x dµ(w) = 0 (2c)

T
a

aa
=
Z

W
F̂aadµ(w) = F

00(0) (2d)

T
a

ab
=
Z

W
F̂abdµ(w) =

Z

W
l (x )F 00hx (w)dµ(w) = 0 (2e)

T
a

bb
=
Z

W
F̂bbdµ(w) =

Z

W
(b�2(hx (w))2 +s2

e )F
00(0)dµ(w) = s2

h F
00(0) (2f)

T
a

x x =
Z

W
F̂x x dµ(w) = 0 (2g)

T
a

x a
=
Z

W
F̂x adµ(w) = 0 (2h)

T
a

x b
=
Z

W
F̂x bdµ(w) =

Z

W
bhx (w)dµ(w) = 0 (2i)
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Derivatives of T
b(a,b,x ) = 1

s2
hx

R
W F̂(a,b,x ,hx (w))dµ(w)

T
b

a
= 1

s2
hx

Z

W
hx (w)F̂adµ(w) = 0 (3a)

T
b

b
= 1

s2
hx

Z

W
hx (w)F̂bdµ(w) = 1

s2
hx

Z

W
(hx (w))2

dµ(w) = 1 (3b)

T
b

x =
⇣

s2
hx

⌘�2


s2
hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
dµ(w)� ∂

∂x
s2

h (x )
Z

W
hx (w)F̂dµ(w)

�
= 0 (3c)

T
b

bb
= 1

s2
hx

Z

W
hx (w)F̂bbdµ(w) =

Z

W
hx (w)(b�2(hx (w))2 +s2

e )F
00(0)dµ(w) =

F
00(0)µhx

3
b 2s2

h
(3d)

T
b

ab
= 1

s2
hx

Z

W
hx (w)F̂abdµ(w) = 1

s2
hx

Z

W
b�1

F
00(hx (w))2 = b�1

F
00(0) (3e)

T
b

aa
= 1

s2
hx

Z

W
hx (w)F̂aadµ(w) = 0 (3f)

T
b

x x =
⇣

s2
hx

⌘�4
⇢�

s2
h
�2


s2
hx

Z

W

✓
2F̂x

∂
∂x

hx (w)+ F̂
∂ 2

(∂x )2 hx (w)+ F̂x x hx (w)

◆
dµ(w)

+
∂

∂x
s2

hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
dµ �

Z

W

∂
∂x

hx (w)F̂
∂

∂x
s2

hx dµ(w)

�
Z

W
hx (w)F̂x

∂
∂x

s2
h (x )dµ(w)�

Z

W
hx (w)F̂

∂ 2

(∂x )2 s2
h (x )dµ(w)

�

�s2
hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
∂

∂x
(s2

h (x ))2
dµ(w)+

∂
∂x

s2
hx

Z

W
hx (w)F̂

∂
∂x

(s2
hx )

2
dµ(w)

�
= 0 (3g)

T
b

bx =
⇣

s2
hx

⌘�2


s2
hx

Z

W

✓
∂

∂x
hx (w)F̂b +hx (w)F̂bx

◆
dµ(w)� ∂

∂x
s2

hx

Z

W
hx (w)F̂bdµ(w)

�
= b

✓
b 2 �2
b 2 �1

◆
(3h)

T
b

bbb
= 1

s2
hx

Z

W
F̂bbbhx (w)dµ(w) =

F
000(0)
s2

h

�
b�3s4

h +3b�1s2
h s2

e
�
. (3i)

Equation (3h) requires elaboration. Since

∂
∂x

hx (w) = l (x )�1 Â
m�0

ml (x )mem(w), and (4)

F̂b(w) ⌘ F̂b(a,b,x ,hx (w)) = bl (x )hx (w) = bl (x ) Â
k�0

l (x )kek(w),
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it follows that
Z

W
F̂b(w)

∂
∂x

hx (w)dµ(w) = b
Z

W

 

Â
k�0

l (x )kek(w)

! 

Â
m�0

ml (x )mem(w)

!
dµ(w)

= b
Z

W
Â
k�0

k
�
l (x )2�k ek(w)2

dµ(w) = bl (x )2 Â
k�0

k
�
l (x )2�k�1 s2

e

= bl (x )2s2
e

∂
∂l (x )2 Â

k�0

�
l (x )2�k

=

= bl (x )2s2
e

∂
∂l (x )2

�
1�l (x )2��1

= b
✓

l (x )2

1�l (x )2

◆
s2

hx .

Next,
Z

W
hx (w)F̂bx dµ(w) = b

Z

W

⇣
hx (w)

⌘2
dµ(w) = bs2

hx .

Finally,

∂
∂x

s2
h(x ) =

∂
∂x

✓
s2

e
1�l (x )2

◆
=

2l (x )s2
e

(1�l (x )2)2 = 2
✓

l (x )
1�l (x )2

◆
s2

hx ,

so that

∂
∂x

s2
h(x )

Z

W
hx (w)F̂bdµ(w) = 2

✓
l (x )

1�l (x )2

◆⇣
s2

hx

⌘2
.

Thus

T
b

bx =
⇣

s2
hx

⌘�2


s2
hx

✓
b
✓

l (x )2

1�l (x )2

◆
s2

hx +bs2
hx

◆
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✓

l (x )
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�

=
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◆
.

This completes our computation of the needed derivatives.

We now turn to the body of the argument, which requires bifurcation analysis of the following
dynamic system: 0

@
ȧ

ḃ

ẋ

1

A=

0

@
T

a(a,b,x )
T

b(a,b,x )
0

1

A�

0

@
a

b

0

1

A⌘ H(a,b,x ). (5)

We may write decompose this system in to first, and higher-order terms:

H(a,b,x ) =

0

@
b �1 0 0

0 0 0
0 0 0

1

A

0

@
a

b

x

1

A+

0

B@
f (a,b,x )
g(a,b,x )

0

1

CA ,
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where f and g are O
�
k(a,b,x )k2� , and given by f = T

a � ba and g = T
b � b. By the center

manifold theorem, the orbit structure of the dynamic system determined by (5) is topologically
equivalent to the projection of the system on to the parameter-dependent center manifold, which
may be expressed by a C

4(V ) function: a = h(b,x ), where V ⇢ R2 is an open region containing
the rest point. The remainder of the proof involves two steps: computing the center manifold; and
conducting bifurcation analysis of the projected system.

Computing the center

A closed form representation of h is not available, but we may use the invariance of the center
manifold together with a Taylor expansion of h to establish a sufficient approximation. By (5), we
have that

ȧ = (b �1)h(b,x )+ f (h(b,x ),b,x ).
Differentiating a = h(b,x ) with respect to time, we get ȧ = hbḃ+hx ẋ . Using (5) and that ẋ = 0,
we also have

ȧ = hb(b,x )g(h(b,x ),b,x ).
Thus h is characterized by the functional equation

L(b,x )⌘ (b �1)h(b,x )+ f (h(b,x ),b,x ) = hb(b,x )g(h(b,x ),b,x )⌘ R(b,x )

This functional equation, together with the implicit function theorem, may be used to approximate
h: simply compute the Taylor expansions of L and R, equate like terms, and solve the coefficients
in the Taylor expansion of h.

Since the center manifold is tangent to the eigenspaces of the linear component of H, it follows
that hb(0,0) = hx (0,0) = 0. Also, the origin is a steady state: h(0,0) = 0. Thus, we may write

h(b,x ) = 1
2 · (hbb ·b2 +hx x ·x 2)+hbx ·x ·b+O

�
k(b,x )k3� .

Here, all derivatives are evaluated at (0,0). As notation, we also write

L(b,x ) = Lb ·b+Lx ·x + 1
2 · (Lbb ·b2 +Lx x ·x 2)+Lbx ·b ·x +O

�
k(b,x )k3� ,

R(b,x ) = Rb ·b+Rx ·x + 1
2 · (Rbb ·b2 +Rx x ·x 2)+Rbx ·b ·x +O

�
k(b,x )k3� .

Noting that, for example, ∂
∂b

f = fa ·hb + fb, we compute

Lb = (b �1)hb + fa ·hb + fb (6a)
Lbb = (b �1)hbb +hbb · fa +hb · fab +hb · fab + fbb (6b)
Rb = hbb ·g+hb · (ga ·hb +gb) (6c)

Rbb = hbbb ·g+2hbb · (ga ·hb +gb)+hb · ∂
∂b
(ga ·hb +gb). (6d)

Since f ,g, and h are zero at the origin and have no first order terms, we see hbb =
fbb

1�b . Further,
since fbb = T

a

bb
, it follows from (2f) that

hbb =

✓
F
00(0)

1�b

◆
s2

hx .
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As we will determine below, other second-order terms of h are not needed for the bifurcation
analysis, and so our computation of the center manifold approximation is complete.

Bifurcation analysis

The local dynamics of (5) are topologically equivalent to the suspension of the projected system
by the associated saddle. Intuitively this means that the dynamic system (5) may be decomposed
into hyperbolic and center components; and, locally, the orbits of the decomposed systems, ap-
propriately joined, are appropriately isomorphic to the orbits of the original system. In particular,
if the projected system undergoes a particular bifurcation then so too does the system (5). The
projected system is given by

ḃ = g(h(b,x ),b,x )⌘ G(b,x ). (7)

To conduct bifurcation analysis, the higher-order derivatives of G are needed. That G(0,0) = 0 is
immediate. Since g = T

b �b we have that

gaa = T
b

aa
= 0 (8a)

gab = T
b

ab
= b�1

F
00(0) (8b)

gbb = T
b

bb
=

F
00(0)µhx

3
b 2s2

hx
(8c)

gbx = T
b

bx = b
✓

b 2 �2
b 2 �1

◆
(8d)

gbbb = T
b

bbb
=

F
000(0)
s2

hx

⇣
b�3µx

4 +3b�1s2
hx s2

e

⌘
. (8e)

Using our information about h, we compute

Gb = ga ·hb +gb = 0 (9a)
Gx = ga ·hx +gx = 0 (9b)

Gbb = ga ·hbb +hb · (gaa ·hb +gab)+gab ·hb +gbb = gbb (9c)
Gbx = hb · ∂

∂x ga +ga ·hbx +gba ·hx +gbx = gbx (9d)

Gbbb = gahbbb +2hbb · (gaa ·hb +gab)+hb · ∂
∂b
(gaa ·hb +gab)

+ gab ·hbb +hb · ∂
∂b

gab +hb ·gbba +gbbb = 3hbb ·gab +gbbb, (9e)

where, in each computation, the second equality follows from the work just above and that h and
g have no first order terms.

Since G = Gb = Gx = 0, and Gbx is generically non-zero, we can assess the type of bifurcation
by looking at the higher order terms in b. In particular, the type of bifurcation experienced by
the system (7) depends on whether Gbb = 0. Noting gbb is proportional to µhx

3 F
00(0), assuming
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non-trivial second-order curvature in F , we see whether gbb = 0 depends, generically, on whether
E(e3

t
) = 0.

Case 1: E(e3
t
) = 0.

Since Gb, Gx and Gbb = 0, and Gbx 6= 0 the system undergoes a pitchfork bifurcation as x crosses
zero provided that Gbbb 6= 0. Simplifying Gbbb, we get the following regularity condition:

Gbbb = F
000
(0)

0

@3s2
e

b
+

µhx

4
b 3s2

hx

1

A+

 
3(F 00(0))2

(1�b )b

!
s2

hx , (10)

where we note that under the assumptions of the proposition, Gbbb is generically non-zero in that
the set of all such parameters for which the condition (10) is not satisfied has Lebesgue measure
zero in parameter space. We conclude that if E(e3

t
) = 0 then the projected system undergoes a

pitchfork bifurcation as x crosses zero, indicating the emergence of two additional fixed points:
see chapter 3 of Wiggins (1990) for the relevant results in bifurcation theory used here and below.

Case 2: E(e3
t
) 6= 0.

In this case we have Gb = 0, Gx = 0, and Gbx 6= 0. Since

Gbb =
F
00(0)µhx

3
b 2s2

hx

is generically non-zero, we conclude that if E(e3
t
) 6= 0 then the projected system undergoes a

transcritical bifurcation as x crosses zero, indicating the emergence of two additional fixed points.

The proof of existence is completed by noting that in both cases, non-trivial fixed points of
the projected system emerge as a result of a bifurcation, and further that the local dynamics of the
projected system are topologically equivalent to the dynamics of the original system.

Turning now to stability, we recall from the body that stability under adaptive learning is gov-
erned by the E-stability ode (5); thus we are interesting in knowing when the bifurcation results
in two new fixed points of (5), at least one of which is Lyapunov stable. Again, because, locally,
the dynamics of (5) are topologically equivalent to suspension of the projected system by the as-
sociated saddle, stability of the post-bifurcation fixed points entails two requirements: first, the
associated saddle must be stable, that is, b � 1 < 0; and second, the emergent fixed points of the
projected system (7) must be Lyapunov stable. In case E(x 3

t
) 6= 0, the bifurcation is transcritical in

nature, so that we may simply choose an appropriate perturbation µ to obtain a stable fixed point.
In case E(x 3

t
) = 0, additional restrictions are required: the new fixed points inherit the stability of

the origin. Thus stability of the new fixed points – the NRSE – requires in this case that Gbbb < 0,
which yields the additional non-generic condition identified in the theorem. Note that we may still
conclude that if b <�1 and F

00(0) 6= 0 then stable NSRE exist.

In the remaining sections of this Appendix, we general the model and conduct the associated
bifurcation analysis. While the details of the arguments are model-specific, the proof strategy
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remains the same throughout. The arguments given below will be considerably more brief than
provided in the proof of Theorem 1, and we will reference this proof when steps are skipped.

Proof Theorem 3. Again, we begin with derivatives.

Derivatives of F̃

⇣
yt ,a,b,x ,hx

t

⌘
⌘
R

W F

⇣
yt ,a+bl (x )hx

t +be(w)
⌘

dµ(w

F̃y =
Z

W
F1dµ(w) = F1 (11a)

F̃a =
Z

W
F2dµ(w) = F2 (11b)

F̃b =
Z

W
F2(l (x )hx + e(w))dµ(w) = l (x )hx

F2 (11c)

F̃x =
Z

W
F2bhx

dµ(w) = 0 (11d)

F̃yy =
Z

W
F11dµ(w) = F11 (11e)

F̃ya =
Z

W
F12dµ(w) = F12 (11f)

F̃yb =
Z

W
l (x )hx

F12dµ(w) = b�1hx
F12 (11g)

F̃yx =
Z

W
F11bhx

dµ(w) = 0 (11h)

F̃aa =
Z

W
F22dµ(w) = F22 (11i)

F̃ab =
Z

W
l (x )hx

F22dµ(w) = b�1hx
F22 (11j)

F̃ax =
Z

W
F22bhx

dµ(w) = 0 (11k)

F̃bb =
Z

W
F22

⇣
l (x )hx + e(w)

⌘2
dµ(w) =

✓
b�2

⇣
hx
⌘2

+s2
e

◆
F22 (11l)

F̃x x =
Z

W
F22(bhx )2

dµ(w) = 0 (11m)

F̃bx =
Z

W
(hx

F2 +bhx
F22)dµ(w) = bhx (11n)

F̃bbb =
Z

W
F222(l (x )hx + e(w))3

dµ(w) = F222((b�1hx )3 +3b�1hx s2
e ) (11o)

F̃ybb =
Z

W
F122

⇣
l (x )hx + e(w)

⌘2
dµ(w) =

✓
b�2

⇣
hx
⌘2

+s2
e

◆
F122 (11p)
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Derivatives of F̃

⇣
F̂

⇣
a,b,x ,hx

⌘
,a,b,x ,hx

⌘
= 0

F̂a =� F̃a

F̃y

= b (12a)

F̂b =� F̃b

F̃y

= hx (12b)

F̂x =�
F̃x
F̃y

= 0 (12c)

F̂aa =�
�
F̃y

��1 �
F̃aa +2F̂aF̃ya + F̂

2
a

F̃yy

�
=�

✓
bF112

F1

◆
hx � 2bF12 +F22

F1
⌘ F1

aa
·hx +F0

aa
(12d)

F̂ab =�
�
F̃y

��1 �
F̃ab + F̂bF̃ya + F̂aF̃yb + F̂aF̂bF̃yy

�
=�

✓
F112

F1

◆⇣
hx
⌘2

�
✓

2bF12 +F22

bF1

◆
hx ⌘ F2

ab
·
⇣

hx
⌘2

+F1
ab
·hx (12e)

F̂bb =�
�
F̃y

��1 �
F̃bb +2F̂bF̃yb + F̂

2
b

F̃yy

�
=�

✓
F112

bF1

◆⇣
hx
⌘3

�
✓

2bF12 +F22

b 2F1

◆⇣
hx
⌘2

� F22s2
e

F1
(12f)

⌘ F3
bb
·
⇣

hx
⌘3

+F2
bb
·
⇣

hx
⌘2

+F0
bb

(12g)

F̂bx =�
�
F̃y

��1 �
F̃bx + F̂x F̃yb + F̂bF̃yx + F̂bF̂x F̃yy

�
= bhx (12h)

F̂x x = 0 (12i)

F̂bbb =�
�
F̃y

��1 �
F̃bbb +3F̂bbF̃yb +3F̂bbF̂bF̃yy +3F̂bF̃ybb +3F̂

2
b

F̃yyb + F̂
3
b

F̃yyy

�
(12j)

=

✓
3F

2
112

b 2F
2
1

◆⇣
hx
⌘5

+

✓
9bF12F112 +3F22F112

b 3F
2
1

◆⇣
hx
⌘4

+

✓
b 36bF

2
12 �F1F111 �3bF1F122 +3F12F22 �F1F222

b 3F
2
1

◆⇣
hx
⌘3

+

✓
3b 2

F22F112s2
e �3b 3

F1F11

b 3F
2
1

◆⇣
hx
⌘2

+

✓
3b 2

F12F22s2
e �3b 3

F1F122s2
e �3b 2

F1F222s2
e

b 3F
2
1

◆
hx (12k)

⌘ F5
bbb

·
⇣

hx
⌘5

+F4
bbb

·
⇣

hx
⌘4

+F3
bbb

·
⇣

hx
⌘3

+F2
bbb

·
⇣

hx
⌘2

+F1
bbb

·hx +F0
bbb

Derivatives of T
a(a,b,x ) =

R
W F̂(a,b,x ,hx (w))dµ(w)

T
a

a
=
Z

W
F̂adµ(w) = b (13a)

T
a

b
=
Z

W
F̂bdµ(w) =

Z

W
hx (w)dµ(w) = 0 (13b)

T
a

x =
Z

W
F̂x dµ(w) = 0 (13c)

T
a

aa
=
Z

W
F̂aadµ(w) =

Z

W

⇣
F1

aa
·hx (w)+F0

aa

⌘
dµ(w) = F0

aa
(13d)

T
a

ab
=
Z

W
F̂abdµ(w) =

Z

W

✓
F2

ab
·
⇣

hx (w)
⌘2

+F1
ab
·hx w)

◆
dµ(w) = F2

ab
·s2

hx (13e)

T
a

bb
=
Z

W
F̂bbdµ(w) =

Z

W

✓
F3

bb
·
⇣

hx (w)
⌘3

+F2
bb
·
⇣

hx (w)
⌘2

+F0
bb

◆
dµ(w) = F3

bb
·µhx

3 +F2
bb
·s2

hx +F0
bb

(13f)

T
a

x b
=
Z

W
F̂x bdµ(w) = 0 (13g)
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Derivatives of T
b(a,b,x ) = 1

s2
hx

R
W F̂(a,b,x ,hx (w))dµ(w)

T
b

a
= 1

s2
hx

Z

W
hx (w)F̂adµ(w) = 0 (14a)

T
b

b
= 1

s2
hx

Z

W
hx (w)F̂bdµ(w) = 1

s2
hx

Z

W
(hx (w))2

dµ(w) = 1 (14b)

T
b

x =
⇣

s2
hx

⌘�2


s2
hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
dµ(w)� ∂

∂x
s2

h (x )
Z

W
hx (w)F̂dµ(w)

�
= 0 (14c)

T
b

bb
= 1

s2
hx

Z

W
hx (w)F̂bbdµ(w) = 1

s2
hx

Z

W
hx (w)

✓
F3

bb
·
⇣

hx (w)
⌘3

+F2
bb
·
⇣

hx (w)
⌘2

+F0
bb

◆
dµ(w) = 1

s2
hx

⇣
F3

bb
s4

hx +F2
bb

µhx

3

⌘
(14d)

T
b

ab
= 1

s2
hx

Z

W
hx (w)F̂abdµ(w) = 1

s2
hx

Z

W
hx (w)

✓
F2

ab
·
⇣

hx (w)
⌘2

+F1
ab
·hx (w)

◆
dµ(w) = 1

s2
hx

⇣
F2

ab
µhx

3 +F1
ab

s2
hx

⌘
(14e)

T
b

aa
= 1

s2
hx

Z

W
hx (w)F̂aadµ(w) = 1

s2
hx

Z

W
hx (w)

⇣
F1

aa
·hx (w)+F0

aa

⌘
dµ(w) = F1

aa
(14f)

T
b

x x =
⇣

s2
hx

⌘�4
⇢�

s2
h
�2


s2
hx

Z

W

✓
2F̂x

∂
∂x

hx (w)+ F̂
∂ 2

(∂x )2 hx (w)+ F̂x x hx (w)

◆
dµ(w)

+
∂

∂x
s2

hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
dµ �

Z

W

∂
∂x

hx (w)F̂
∂

∂x
s2

hx dµ(w)

�
Z

W
hx (w)F̂x

∂
∂x

s2
h (x )dµ(w)�

Z

W
hx (w)F̂

∂ 2

(∂x )2 s2
h (x )dµ(w)

�

�s2
hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
∂

∂x
(s2

h (x ))2
dµ(w)+

∂
∂x

s2
hx

Z

W
hx (w)F̂

∂
∂x

(s2
hx )

2
dµ(w)

�
= 0 (14g)

T
b

bx =
⇣

s2
hx

⌘�2


s2
hx

Z

W

✓
∂

∂x
hx (w)F̂b +hx (w)F̂bx

◆
dµ(w)� ∂

∂x
s2

hx

Z

W
hx (w)F̂bdµ(w)

�
= b

✓
b 2 �2
b 2 �1

◆
(14h)

T
b

bbb
= 1

s2
hx

Z

W
F̂bbbhx (w)dµ(w) (14i)

= 1
s2

hx

Z

W

✓
F5

bbb
·
⇣

hx (w)
⌘5

+F4
bbb

·
⇣

hx (w)
⌘4

+F3
bbb

·
⇣

hx (w)
⌘3

+F2
bbb

·
⇣

hx (w)
⌘2

+F1
bbb

·hx (w)+F0
bbb

◆
hx (w)dµ(w) (14j)

= 1
s2

hx

⇣
F5

bbb
·s6

hx +F4
bbb

·s5
hx +F3

bbb
·µx

4 +F2
bbb

·µhx

3 +F1
bbb

·s2
hx

⌘
(14k)

We now turn to the body of the argument, which, as before, requires bifurcation analysis of the
system (5). The center manifold may be characterized locally as a C

4 function: a = h(b,x ), which
satisfies the following functional equation:

(b �1)h(b,x )+ f (h(b,x ),b,x ) = hb(b,x )g(h(b,x ),b,x ).

Working as before, we find that

hbb = 1
1�b fbb = 1

1�b T
a

bb
= 1

1�b

⇣
F3

bb
·µhx

3 +F2
bb
·s2

hx +F0
bb

⌘
.

The projected system is given by

ḃ = g(h(b,x ),b,x )⌘ G(b,x ). (15)
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To conduct bifurcation analysis, the higher-order derivatives of G are needed. That G(0,0) = 0 is
immediate. Since g = T

b �b we have that

gaa = T
b

aa
= F1

aa
(16a)

gab = T
b

ab
= 1

s2
hx

⇣
F2

ab
µhx

3 +F1
ab

s2
hx

⌘
(16b)

gbb = T
b

bb
= 1

s2
hx

⇣
F3

bb
s4

hx +F2
bb

µhx

3

⌘
(16c)

gbx = T
b

bx = b
⇣

b 2�2
b 2�1

⌘
(16d)

gbbb = T
b

bbb
= 1

s2
hx

⇣
F5

bbb
·s6

hx +F4
bbb

·s5
hx +F3

bbb
·µx

4 +F2
bbb

·µhx

3 +F1
bbb

·s2
hx

⌘
. (16e)

Using our information about h, we compute

Gb = ga ·hb +gb = 0 (17a)
Gx = ga ·hx +gx = 0 (17b)

Gbb = ga ·hbb +hb · (gaa ·hb +gab)+gab ·hb +gbb = gbb = 1
s2

hx

⇣
F3

bb
s4

hx +F2
bb

µhx

3

⌘
(17c)

Gbx = hb · ∂
∂x ga +ga ·hbx +gba ·hx +gbx = b

⇣
b 2�2
b 2�1

⌘
(17d)

Gbbb = gahbbb +2hbb · (gaa ·hb +gab)+hb · ∂
∂b
(gaa ·hb +gab)

+ gab ·hbb +hb · ∂
∂b

gab +hb ·gbba +gbbb = 3hbb ·gab +gbbb (17e)

= 1
(1�b )s2

hx

⇣
F3

bb
·µhx

3 +F2
bb
·s2

hx +F0
bb

⌘⇣
F2

ab
µhx

3 +F1
ab

s2
hx

⌘

+ 1
s2

hx

⇣
F5

bbb
·µhx

6 +F4
bbb

·µhx

5 +F3
bbb

·µhx

4 +F2
bbb

·µhx

3 +F1
bbb

·s2
hx

⌘
⌘ I C (17f)

where, in each computation, the second equality follows from the work just above and that h and
g have no first order terms.

Since G = Gb = Gx = 0, and Gbx is generically non-zero, the type of bifurcation experienced
by the projected system depends on whether Gbb = 0. Noting that Gbb = 1

s2
hx

⇣
F3

bb
µhx

4 +F2
bb

µhx

3

⌘
and

that F3
bb

=�F112
bF1

and F2
bb

= 2bF12+F22
b 2F1

, we have two cases:

Case 1: 2bF12 +F22 6= 0 and µe
3 6= 0, or F112 6= 0;

In this case we have Gb = 0, Gx = 0, Gbx 6= 0, and Gbb 6= 0; thus the projected system undergoes a
transcritical bifurcation as x crosses zero, indicating the emergence of two additional fixed points.

Case 2: 2bF12 +F22 = 0 or µe
3 = 0, and F112 = 0 and I C 6= 0.

Since Gb, Gx and Gbb = 0, and Gbx 6= 0 the system undergoes a pitchfork bifurcation as x crosses
zero provided that Gbbb 6= 0, thus I C must be non-zero.
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The remainder of the proof is completed as before, with stability in Case 1 requiring that I C

be negative.

Proof of Lemma 2. The natural approach is to consider a perturbation of s near zero; the technical
challenge is that the T-map is not defined for s = 0. To side-step the complication that s2

v
! 0

as s ! 0, define v̂t = s�1
vt , and notice that v̂t = r v̂t�1 + zt . Now consider the new function F̂ ,

defined as

yt =
Z

W
F(a+br v̂t +bzt+1(w),rs v̂t +szt+1(w))dµ(w)⌘ F̂(a,b,s , v̂t).

Projecting this process onto the span of (1, v̂t) yields the following map, which we label T̂ :
 

a

b

!
T̂=T̂ (a,b,s)

��������!
 R

W F̂(a,b,s , v̂(w))dµ(w)
�
s2

v̂

��1 R
W v̂(w)F̂(a,b,s , v̂(w))dµ(w)

!
⌘
✓

T̂
a(a,b,s)

T̂
b(a,b,s)

◆
.

By construction, T̂ is defined, k-times differentiable, and has a fixed point at (0,0)0 when s = 0.

Let H = T̂ � (a,b)0. We need some more derivatives.

Derivatives of F̂ and H

F̂a = DFy ⌘ b (18a)

F̂b = rb v̂ (18b)

F̂s = DFv ·r v̂ (18c)

H
a

a
=
Z

W
F̂adµ(w)�1 = b �1 (18d)

H
a

b
=
Z

W
F̂bdµ(w) = br

Z

W
v̂(w)µ(w) = 0 (18e)

H
b

a
=
�
s2

v̂

��1
Z

W
v̂(w)F̂adµ(w) =

�
s2

v̂

��1 b
Z

W
v̂(w)dµ(w) = 0 (18f)

H
b

b
=
�
s2

v̂

��1
Z

W
v̂(w)F̂bdµ(w)�1 =

�
s2

v̂

��1 rDFy

Z

W
v̂(w)2

dµ(w) = br �1 (18g)

H
a

s =
Z

W
F̂s dµ(w) = rDFv

Z

W
v̂(w)dµ(w) = 0 (18h)

H
b

s =
�
s2

v̂

��1
Z

W
v̂(w)F̂s dµ(w) =

�
s2

v̂

��1 rDFv

Z

W
v̂(w)2

dµ(w) = DFv ·r v̂ (18i)

From these computations, we find that

DH(a,b)0(0,0,0) =
✓

b �1 0
0 br �1

◆
, and DHs (0,0,0) =

✓
0

rDFv

◆
.

We conclude that the implicit function theorem applies to the system of equations H = 0, and that
∂b

⇤

∂s = (1�br)�1rDFv 6= 0.1

1We observe that given a linear model yt = bEtyt+1 + rDFvvt , the REE is given by yt = b
⇤
vt with b

⇤ = (1�
br)�1rDFv.
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We have demonstrated that for small s , there exist (â(s), b̂(s))0, with b̂(s) 6= 0, such that
T̂ (â(s), b̂(s),s)= (â(s), b̂(s))0. The proof is completed by demonstrating that T (â(s),s�1

b̂(s),s)=
(â(s),s�1

b̂(s))0. To this end, first notice

F̃(a,s�1
b,s ,vt) =

Z

W
F(a+s�1

brvt +bzt+1(w),rvt +szt+1(w))dµ(w)

=
Z

W
F(a+br v̂t +bzt+1(w),rs v̂t +szt+1(w))dµ(w)

= F̂(a,b,s , v̂t).

Using this, we compute

T
a(a,s�1

b,s) =
Z

W
F̃(a,s�1

b,s ,v(w))dµ(w)

=
Z

W
F̂(a,b,s , v̂(w))dµ(w) = T̂

a(a,b,s).

Finally,

T
b(a,s�1

b,s) =
�
s2

v
(s)
��1

Z

W
v

s (w)F̃(a,s�1
b,s ,vs (w))dµ(w)

=
�
s2s2

v̂
(s)
��1

Z

W
s v̂(w)F̂(a,b,s ,vs (w))dµ(w)

= s�1
T̂

b(a,b,s),

and the result follows.

Proof Theorem 4 In what follows, unless otherwise specified, derivatives are evaluated at

(a,b,c,x ) = (a⇤,b⇤,0,0).

Recall that in the body we stated that by choosing |s | small we may assume that DF? ⇡ DF?(0,0)
for ?= y,v,yy, etc. To see this, first observe that if (â(s), b̂(s))0 is the fixed point of the map T̂ (see
proof of Lemma 2) then lims!0(â(s), b̂(s)) = (0,0), and since a

⇤(s) = â(s), we may assume
|a⇤(s)| is small. Also, since b

⇤(s) = 1
s b̂(s), we may assume |sb

⇤(s)| is small. Since vt = s v̂t

follows that for small |s |,

DF? ⌘ DF?(a
⇤(s)+b

⇤(s)rvt +b
⇤(s)szt+1(w),rvt +szt+1(w))⇡ DF?(0,0) (19)

for ?= y,v,yy, etc.

Turning now the the main argument, the proof follows the same structure as the proof of The-
orem 1, and because of this, we will be considerably more brief. Again, we require a host of
derivatives.
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Derivatives of F̂ =
R

W F(a+brvt +bszt+1(w)+ cl (x )hx
t + cet+1(w),rvt +szt+1(w))dµ(w)

F̂a =
Z

W
DFy ·dµ(w) = DFy (20a)

F̂b =
Z

W
DFy · (rvt +szt+1(w))dµ(w) = DFy ·rvt (20b)

F̂c =
Z

W
DFy · (l (x )hx

t + et+1(w))dµ(w) = DFy ·l (x )hx
t (20c)

F̂x =
Z

W
DFy · chx

t dµ(w) = 0 (20d)

F̂aa =
Z

W
DFyy ·dµ(w) = DFyy (20e)

F̂ab =
Z

W
DFyy · (rvt +szt+1(w))dµ(w) = DFyy ·rvt (20f)

F̂ac =
Z

W
DFyy · (l (x )hx

t + et+1(w))dµ(w) = DFyy ·l (x )hx
t (20g)

F̂ax =
Z

W
DFyy · chx

t dµ(w) = 0 (20h)

F̂bb =
Z

W
DFyy · (rvt +szt+1(w))2

dµ(w) = DFyy · (r2
v

2
t
+s2s2

z ) (20i)

F̂bc =
Z

W
DFyy · (rvt +szt+1(w))(l (x )hx

t + et+1(w))µ(w) = DFyy ·l (x )rhx
t vt (20j)

F̂bx =
Z

W
DFyy · (rvt +szt+1(w))chx

t dµ(w) = 0 (20k)

F̂cc =
Z

W
DFyy · (l (x )hx

t + et+1(w))2
dµ(w) = DFyy ·

✓
l (x )2

⇣
hx

t

⌘2
+s2

e

◆
(20l)

F̂cx =
Z

W

⇣
DFyy · chx

t

⇣
l (x )hx

t + et+1(w)
⌘
+DFy ·hx

t

⌘
dµ(w) = DFy ·hx

t (20m)

F̂x x =
Z

W

✓
DFyy ·

⇣
chx

t

⌘2
+DFy · c · ∂

∂x hx
t

◆
dµ(w) = 0 (20n)

F̂ccc =
Z

W
DFyyy · (l (x )hx

t + et+1(w))3
dµ(w) = DFyyy ·

✓
l (x )3

⇣
hx

t

⌘3
+3l (x )s2

e hx
t +µe

4

◆
(20o)
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Derivatives of T
a =

R
W F̂(a,b,c,x ,v(w),hx (w))dµ(w)

T
a

a
=
Z

W
F̂a ·dµ(w) = DFy (21a)

T
a

b
=
Z

W
F̂b ·dµ(w) = DFy ·r

Z

W
v(w)dµ(w) = 0 (21b)

T
a

c
=
Z

W
F̂c ·dµ(w) = DFy ·l (x )

Z

W
hx (w)dµ(w) = 0 (21c)

T
a

x =
Z

W
F̂x ·dµ(w) = 0 (21d)

T
a

aa
=
Z

W
F̂aa ·dµ(w) = DFyy (21e)

T
a

ab
=
Z

W
F̂ab ·dµ(w) = DFyy ·r

Z

W
v(w)dµ(w) = 0 (21f)

T
a

ac
=
Z

W
F̂ac ·dµ(w) = DFyy ·l (x )

Z

W
hx (w)dµ(w) = 0 (21g)

T
a

ax =
Z

W
F̂ax ·dµ(w) = 0 (21h)

T
a

bb
=
Z

W
F̂bb ·dµ(w) = DFyy

Z

W

⇣
r2

v(w)2 +s2
z

⌘
dµ(w) = DFyy ·s2

v
(21i)

T
a

bc
=
Z

W
F̂bc ·dµ(w) = DFyy ·r ·l (x )

Z

W
v(w)hx (w)dµ(w) = 0 (21j)

T
a

bx =
Z

W
F̂bx dµ(w) = 0 (21k)

T
a

cc
=
Z

W
F̂cc ·dµ(w) = DFyy

Z

W

⇣
l (x )2hx (w)2 +s2

e

⌘
dµ(w) = DFyy ·s2

hx (21l)

T
a

cx =
Z

W
F̂cx ·dµ(w) = DFy

Z

W
hx (w)dµ(w) = 0 (21m)
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Derivatives of T
b = 1

s2
v

R
W v(w)F̂(a,b,c,x ,v(w),hx (w))dµ(w)

T
b

a
= 1

s2
v

Z

W
v(w)F̂adµ(w) = 0 (22a)

T
b

b
= 1

s2
v

Z

W
v(w)F̂bdµ(w) = 1

s2
v

·DFy ·r
Z

W
v(w)2

dµ(w) = DFy ·r (22b)

T
b

c
= 1

s2
v

Z

W
v(w)F̂cdµ(w) = 1

s2
v

·DFy ·l (x )
Z

W
v(w)hx (w)dµ(w) = 0 (22c)

T
b

x = 1
s2

v

Z

W
v(w)F̂x dµ(w) = 0 (22d)

T
b

aa
= 1

s2
v

Z

W
v(w)F̂aadµ(w) = 1

s2
v

·DFyy

Z

W
v(w)dµ(w) = 0 (22e)

T
b

ab
= 1

s2
v

Z

W
v(w)F̂abdµ(w) = 1

s2
v

·DFyy ·r
Z

W
v(w)2

dµ(w) = r ·DFyy (22f)

T
b

ac
= 1

s2
v

Z

W
v(w)F̂acdµ(w) = 1

s2
v

·DFyy ·l (x )
Z

W
v(w)hx (w)dµ(w) = 0 (22g)

T
b

ax = 1
s2

v

Z

W
v(w)F̂ax dµ(w) = 0 (22h)

T
b

bb
= 1

s2
v

Z

W
v(w)F̂bbdµ(w) = 1

s2
v

·DFyy

Z

W
v(w)

⇣
r2

v(w)+s2s2
z

⌘
dµ(w) = DFyy ·r2 ·

✓
µv

3
s2

v

◆
(22i)

T
b

bc
= 1

s2
v

Z

W
v(w)F̂bcdµ(w) = 1

s2
v

·DFyy ·l (x ) ·r
Z

W
v(w)2hx (w)dµ(w) = 0 (22j)

T
b

bx = 1
s2

v

Z

W
v(w)F̂bx dµ(w) = 0 (22k)

T
b

cc
= 1

s2
v

Z

W
v(w)F̂ccdµ(w) = 1

s2
v

·DFyy

Z

W
v(w)

⇣
l (x )2hx (w)2 +s2

e

⌘
dµ(w) = 0 (22l)

T
b

cx = 1
s2

v

Z

W
v(w)F̂cx dµ(w) = 1

s2
v

·DFy

Z

W
v(w) ·hx (w)dµ(w) = 0 (22m)

T
b

x x = 1
s2

v

Z

W
v(w)F̂x x dµ(w) = 0 (22n)
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Derivatives of T
c =

⇣
s2

hx

⌘�1 R
W hx (w)F̂(a,b,c,x ,v(w),hx (w))dµ(w)

T
c

a
= 1

s2
hx

Z

W
hx (w)F̂adµ(w) = 0 (23a)

T
c

b
= 1

s2
hx

Z

W
hx (w)F̂bdµ(w) = 1

s2
hx

·DFy

Z

W
hx (w)v(w)dµ(w) = 0 (23b)

T
c

c
= 1

s2
hx

Z

W
hx (w)F̂cdµ(w) = 1

s2
hx

·DFy ·l (x )
Z

W
hx (w)2

dµ(w) = 1 (23c)

T
c

x =
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
F̂

∂
∂x hx (w)+hx (w)F̂x

⌘
dµ(w)� ∂

∂x s2
hx

Z

W
hx (w)F̂dµ(w)

◆
= 0 (23d)

T
c

aa
= 1

s2
hx

Z

W
hx (w)F̂aadµ(w) = 1

s2
hx

DFyy ·
Z

W
hx (w)dµ(w) = 0 (23e)

T
c

ab
= 1

s2
hx

Z

W
hx (w)F̂abdµ(w) = 1

s2
hx

·DFyy ·r
Z

W
hx (w)v(w)dµ(w) = 0 (23f)

T
c

ac
= 1

s2
hx

Z

W
hx (w)F̂acdµ(w) = 1

s2
hx

·DFyy ·l (x )
Z

W
hx (w)2

dµ(w) = DFyy ·l (x ) (23g)

T
c

ax =
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
F̂a

∂
∂x hx (w)+hx (w)F̂ax

⌘
dµ(w)+ ∂

∂x s2
hx

Z

W
hx (w)F̂adµ(w)

◆
= 0 (23h)

T
c

bb
= 1

s2
hx

Z

W
hx (w)F̂bbdµ(w) = 1

s2
hx

·DFyy

Z

W
hx (w)

⇣
r2

v(w)+s2s2
z

⌘
dµ(w) = 0 (23i)

T
c

bc
= 1

s2
hx

Z

W
hx (w)F̂bcdµ(w) = 1

s2
hx

·DFyy ·l (x ) ·r
Z

W
hx (w)2

v(w)dµ(w) = 0 (23j)

T
c

bx =
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
F̂b

∂
∂x hx (w)+hx (w)F̂bx

⌘
dµ(w)+ ∂

∂x s2
hx

Z

W
hx (w)F̂bdµ(w)

◆
= 0 (23k)

T
c

cc
= 1

s2
hx

Z

W
hx (w)F̂ccdµ(w) = 1

s2
hx

DFyy

Z

W
hx (w)

⇣
l (x )2hx (w)2 +s2

e

⌘
dµ(w) = DFyy ·l (x )2

0

@ µhx

3
s2

hx

1

A (23l)

T
c

cx =
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
F̂c

∂
∂x hx (w)+hx (w)F̂cx

⌘
dµ(w)� ∂

∂x s2
hx

Z

W
hx (w)F̂cdµ(w)

◆
= DFy

 
DF

2
y
�2

DF2
y
�1

!
(23m)

T
c

x x =
⇣

s2
hx

⌘�4
⇢⇣

s2
hx

⌘2


s2
hx

Z

W

✓
2F̂x

∂
∂x

hx (w)+ F̂
∂ 2

(∂x )2 hx (w)+ F̂x x hx (w)

◆
dµ(w)

+
∂

∂x
s2

hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
dµ �

Z

W

∂
∂x

hx (w)F̂
∂

∂x
s2

hx dµ(w)

�
Z

W
hx (w)F̂x

∂
∂x

s2
hx dµ(w)�

Z

W
hx (w)F̂

∂ 2

(∂x )2 s2
h (x )dµ(w)

�

�s2
hx

Z

W

✓
F̂

∂
∂x

hx (w)+hx (w)F̂x

◆
∂

∂x
(s2

hx )
2
dµ(w)+

∂
∂x

s2
hx

Z

W
hx (w)F̂

∂
∂x

(s2
hx )

2
dµ(w)

�
= 0 (23n)

T
c

ccc
= 1

s2
hx

Z

W
hx (w)F̂cccdµ(w) = 1

s2
hx

·DFyyy

Z

W

⇣
l (x )3hx (w)4 +3l (x )s2

e hx (w)2
⌘

dµ(w) (23o)

= 1
s2

hx
·DFyyy

⇣
l (x )3µx

4 +l (x )s2
hx s2

e

⌘
(23p)

The computations (23d), (23h), (23k) require that at c = 0, F̂ and its first partials are independent
of h , and that

R
W

∂
∂x h(w)dµ(w) = 0, which follows from equation (4). Also, (23m) follows from

the same argument as (3h).

We turn now to the bifurcation analysis. Change coordinates: a = a� a
⇤,g = b� b

⇤, and
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consider the dynamic system
0

BB@

ȧ
ġ
ċ

ẋ

1

CCA=

0

BB@

T
a(a +a

⇤,g +b
⇤,c,x )

T
b(a +a

⇤,g +b
⇤,c,x )

T
c(a +a

⇤,g +b
⇤,c,x )

0

1

CCA�

0

BB@

a +a
⇤

g +b
⇤

c

0

1

CCA⌘ H(a,g,c,x ),

noting that the origin is a rest point. Following the usual proof strategy, write

H(a,g,c,x ) =

0

BBB@

T
a

a
T

a

b
, T

a
c

T
a

x
T

b
a

T
b

b
, T

b
c

T
b

x
T

c
a

T
c

b
, T

c
c

T
c

x
0 0 0 0

1

CCCA

0

BB@

a
g
c

0

1

CCA+

0

BB@

f
1(a,g,c,x )

f
2(a,g,c,x )

g(a,g,c,x )
0

1

CCA ,

where f
i and g are O

�
k(a,b,c,x )k2� . By appealing to our previous computations, we find that
0

BBB@

T
a

a
T

a

b
, T

a
c

T
a

x
T

b
a

T
b

b
, T

b
c

T
b

x
T

c
a

T
c

b
, T

c
c

T
c

x
0 0 0 0

1

CCCA
=

0

BB@

DFy �1 0 0 0
0 rDFy 0 0
0 0 0 0
0 0 0 0

1

CCA

and

f
1(a,g,c,x ) = T

a(a +a
⇤,g +b

⇤,c,x )�DFy ·a �a
⇤

f
2(a,g,c,x ) = T

b(a +a
⇤,g +b

⇤,c,x )�rDFy · g �b
⇤

g(a,g,c,x ) = T
c(a +a

⇤,g +b
⇤,c,x )� c.

The center manifold is parameterized by a = h
a(c,x ) and g = h

g(c,x ); and, using invariance,
these parameterizations satisfy the following functional equations:

L
a(c,x )⌘ (DFy �1)ha + f

1(ha ,hg ,c,x ) = h
a
c
·g(ha ,hg ,c,x )⌘ R

a(c,x ) (24)

L
g(c,x )⌘ (rDFy �1)hg + f

2(ha ,hg ,c,x ) = h
g
c
·g(ha ,hg ,c,x )⌘ R

g(c,x ). (25)

Computing as in (6), we find that

h
a
cc

=
f

1
cc

1�DFy

=
T

a
cc

1�DFy

=

✓
DFyy

1�DFy

◆
s2

hx

h
g
cc

=
f

2
cc

1�rDFy

=
T

b
cc

1�rDFy

= 0,

and, as before, these are the only partials we require.

Projected onto the center, the dynamics take the form

ċ = g(ha(c,x ),hg(c,x ),c,x )⌘ G(c,x ).
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Computing as in (17), we find G? = 0 and

Gcc = gcc = T
c

cc
= DFyy ·DF

�2
y

✓
µhx

3
s2

hx

◆
(26a)

Gcx = gcx = T
c

cx = DFy

✓
DF

2
y �2

DF2
y �1

◆
(26b)

Gccc = 3(ha
cc
·gac +h

g
cc
·gbc)+gccc = 3h

a
cc
·T c

ac
+T

c

ccc
= 3DFyy

DFy

⇣
DFyy

1�DFy

⌘
s2

hx +T
c

ccc
(26c)

= 3DFyy

DFy

⇣
DFyy

1�DFy

⌘
s2

hx + 1
s2

hx
·DFyyy

⇣
DF

�3
y

µe
3 +DF

�1
y

s2
hx s2

e

⌘
. (26d)

The proofs of existence and stability are complete arguing as in the proof of Theorem 1.

Proof of Theorem 5. First, we require some derivatives. As notation, write

T =

✓
T

a

T
b

◆
and DF =

⇣
DF

i

y j

⌘
.

We compute as follows:

Derivatives of F̂(a,b,x ,hx
t ) =

R
W(F

i(a1 +b1l (x )hx
t +b1et+1(w),a2 +b2l (x )hx

t +b2et+1(w))dµ(w)

F̂
i

a j
=
Z

W
DF

i

y j
·dµ(w) = DF

i

y j
(27a)

F̂
i

b j
=
Z

W
DF

i

y j
·
⇣

l (x ) ·hx
t + et+1(w)

⌘
dµ(w) = DF

i

y j
·l (x ) ·hx

t (27b)

F̂
i

x =
Z

W

 
n

Â
j=1

DF
i

y j
·b j

!
hx

t dµ(w) = 0 (27c)

F̂
i

a jak
=
Z

W
DF

i

y jyk
·dµ(w) = DF

i

y jyk
(27d)

F̂
i

a jbk
=
Z

W
DF

i

y jyk
·l (x ) ·hx

t dµ(w) = DF
i

y jyk
·l (x ) ·hx

t (27e)

F̂
i

a jx =
Z

W

 
n

Â
k=1

DF
i

y jyk
·bk

!
hx

t dµ(w) = 0 (27f)

F̂
i

b jbk
=
Z

W
DF

i

y jyk
·
⇣

l (x ) ·hx
t + et+1(w)

⌘2
dµ(w) = DF

i

y jyk

✓⇣
l (x ) ·hx

t

⌘2
+s2

e

◆
(27g)

F̂
i

b jx =
Z

W

  
n

Â
k=1

DF
i

y jyk
·bk

!
hx

t +DF
i

y j
·hx

t

!
dµ(w) = DF

i

y j
·hx

t (27h)
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Derivatives of T
ai =

R
W F̂

i(a,b,x ,hx (w))dµ(w)

T
ai

a j
=
Z

W
F̂

i

a j
dµ(w) = DF

i

y j
(28a)

T
ai

b j
=
Z

W
F̂

i

b j
dµ(w) =

Z

W
DF

i

y j
·l (x ) ·hx (w)dµ(w) = 0 (28b)

T
ai

x =
Z

W
F̂

i

x dµ(w) = 0 (28c)

T
ai

a jak
=
Z

W
F̂

i

a jak
dµ(w) = DF

i

y jyk
(28d)

T
ai

a jbk
=
Z

W
F̂

i

a jbk
dµ(w) =

Z

W
DF

i

y jyk
·l (x ) ·hx (w)dµ(w) = 0 (28e)

T
ai

a jx
=
Z

W
F̂

i

a jx dµ(w) = 0 (28f)

T
ai

b jbk
=
Z

W
F̂

i

b jbk
dµ(w) =

Z

W
DF

i

y jyk

⇣
l (x )2 ·hx (w)2 +s2

e

⌘
dµ(w) = DF

i

y jyk
·s2

hx (28g)

T
ai

b jx
=
Z

W
F̂

i

b jx dµ(w) =
Z

W
DF

i

y j
·hx (w)dµ(w) = 0 (28h)

Derivatives of T
bi = 1

s2
hx

R
W hx (w)F̂ i(a,b,x ,hx (w))dµ(w)

T
bi

a j
= 1

s2
hx

Z

W
hx (w)F̂ i

a j
dµ(w) = 0 (29a)

T
bi

b j
= 1

s2
hx

Z

W
hx (w)F̂ i

b j
dµ(w) = 1

s2
hx

·DF
i

y j
·l (x ) ·

Z

W
hx (w)2

dµ(w) = DF
i

y j
·l (x ) (29b)

T
bi

x =
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
hx (w)F̂ i

x + F̂
i ∂

∂x hx (w)
⌘

dµ(w)� ∂
∂x s2

hx

Z

W
hx (w)F̂ i

dµ(w)

◆
= 0 (29c)

T
bi

a jak
= 1

s2
hx

Z

W
hx (w)F̂ i

a jak
dµ(w) = 0 (29d)

T
bi

a jbk
= 1

s2
hx

Z

W
hx (w)F̂ i

a jbk
dµ(w) = 1

s2
hx

·DF
i

y jyk
·l (x ) ·

Z

W
hx (w)2

dµ(w) = DF
i

y jyk
·l (x ) (29e)

T
bi

b jbk
= 1

s2
hx

Z

W
hx (w)F̂ i

b jbk
dµ(w) = 1

s2
hx

Z

W
hx (w)DF

i

y jyk

✓⇣
l (x ) ·hx (w)

⌘2
+s2

e

◆
dµ(w) = DF

i

y jyk
·l (x )2

✓
µhx

3
s2

hx

◆
(29f)

T
bi

b jx
=
⇣

s2
hx

⌘�2
✓

s2
hx

Z

W

⇣
hx (w)F̂ i

b jx + F̂
i

b j

∂
∂x hx (w)

⌘
dµ(w)� ∂

∂x s2
hx

Z

W
hx (w)F̂ i

b j
dµ(w)

◆
= DF

i

y j

✓
1�2l (x )2

1�l (x )2

◆
(29g)

The above computations show that DT = DF � l (x )DF . Next, let Ŝ = S� S, q = (a0,b0)0 and
f = Ŝ

�1q , and consider the dynamic system

ḟ = Ŝ
�1

T (Ŝf ,x )�f = Ĥ(f ,x ), (30)

which is topologically equivalent to the E-stability differential equation of our economic model,
except now, to first order, the dynamics are decoupled. In particular, after adjoining x as usual, we
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may write the dynamic system (30) as

0

BBBBBBBBBBBB@

ḟ1
...

ḟn

ḟn+1
...

ḟ2n�1
ḟ2n

ẋ

1

CCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b1 �1 · · · 0 0 · · · 0 0 0
... . . . ...

...
...

...
...

...
0 · · · bn �1 0 · · · 0 0 0
0 · · · 0 b1

bn

�1 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 · · · 0 0 · · · bn�1

bn

�1 0 0
0 · · · 0 0 · · · 0 0 0
0 · · · 0 0 · · · 0 0 0

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBB@

f1
...

fn

fn+1
...

f2n�1
f2n

x

1

CCCCCCCCCCCA

+

0

BBBBBBBBBBB@

f
1(f ,x )

...
f

n(f ,x )
f

n+1(f ,x )
...

f
2n�1(f ,x )
g(f ,x )

0

1

CCCCCCCCCCCA

,

(31)
where f

i and g comprise higher-order terms.

The center manifold is parameterized by fi = h
i(f2n,x ) for i= 1, . . .2n�1. Invariance provides

the following functional equations in f2n and x :

h
i

f2n
·g = f

i �DĤii ·hi. (32)

These may be used to compute a second-order approximation to the h
i. Finally, the projected

dynamics are given by

ḟ2n = g
�
h

1 (f2n,x ) , . . . ,h2n�1 (f2n,x ) ,f2n,x
�
⌘ G(f2n,x ) .

We now turn to bifurcation analysis of ḟ2n = G(f2n,x ).
Note that G is second order: G = G? = 0. Thus, to show that a transcritical bifurcation occurs

it suffices to show that Gf2nf2n
and Gf2nx are non-zero. Using h

i = h
i
? = 0 we find that

Gf2nf2n
= gf2nf2n

and Gf2nx = gf2nx ,

just as in previous arguments.

Recalling that S
�1 = (Si j) we find

g(⇤,f2n,x ) =
n

Â
i=1

S
ni ·T bi (⇤,b1(f2n), . . . ,bn(f2n),x ) ,

where bi(f2n) = ⇤+Sin ·f2n, and here and below an “⇤” captures terms that are not relevant to the
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local argument. We compute

gf2n
=

n

Â
i=1

S
ni ·

n

Â
j=1

S jn ·T bi

b j

gf2nf2n
=

n

Â
i=1

S
ni ·

n

Â
j=1

S jn ·
n

Â
k=1

Skn ·T bi

b jbk

= l (x )2
✓

µe
3

s2
hx

◆
n

Â
i=1

S
ni
�
S
0
n
·D2

F
i ·Sn

�

gf2nx =
n

Â
i=1

S
ni ·

n

Â
j=1

S jn ·T bi

b jx =

✓
1�2l (x )2

1�l (x )2

◆
n

Â
i=1

S
ni ·

n

Â
j=1

S jn ·DF
i

j

=

✓
1�2l (x )2

1�l (x )2

◆
n

Â
i=1

S
ni ·DF

i ·Sn =

✓
1�2l (x )2

1�l (x )2

◆
bn.

Existence is now established as in case 1 of the proof of Theorem 1, and stability follows from
the topological equivalence of (30) with the E-stability ode, together with the fact that, under the
assumptions, the non-zero eigenvalues of DĤ are negative.
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