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Introduction

• In microfounded models we assume agents are rational in two ways:
— they form forecasts optimally (they are endowed with RE)
— they make choices by maximizing their objective function

• RE may be implausibly demanding. The adaptive (e.g. least-squares)
learning approach is a natural bounded-rationality response to this critique.
See, e.g., Marcet & Sargent (1989), Evans & Honkapohja (2001).

• Under least-squares learning, agents can learn over time to coordinate on
an REE in “self-referential models” if it is “E-stable.” Interesting learning
dynamics can emerge.



• That agents are endowed with the solution to dynamic optimization prob-
lems is equally implausible: it may take time to learn to optimize.

• Boundedly optimal decision-making is a natural complement to boundedly
rational forecasting. It obeys the “cognitive consistency principle.”

• Our implementation, which we call shadow-price learning, complements
and extends least-squares learning in expectation formation.

• Using shadow-price learning agents can learn over time to solve their dy-
namic stochastic optimization problem.

• Again, interesting learning dynamics can emerge.



Literature on agent-level learning and decision-making

— Cogley and Sargent (IER, 2008). Bayesian decision-making with learning.

— Adam and Marcet (JET, 2011). “Internal rationality.”

— Preston (IJCB, 2005). Eusepi & Preston (AEJmacro 2010), ‘Anticipated
utility’ and infinite-horizon decisions. Evans, Honkapohja & Mitra (JME, 2009).

— Evans and Honkapohja (ScandJE, 2006) and Honkapohja, Mitra and Evans
(2013). “Euler-equation learning.” Howitt and Özak (2014).

— Watkins (1989). Q-learning. ‘Quality value’ of state-action pairs. Typical
applications are to models with finite states and actions.

— Marimon, McGrattan and Sargent (JEDC, 1990). Classifier systems. Lettau
and Uhlig (AER, 1999).



Shadow-price learning

We now introduce our approach — Shadow-price (SP) learning. Consider a
standard dynamic programming problem

 ∗(0) = max0
X
≥0

( )

subject to +1 = (  +1)

and ̄0 given, with  ∈ Γ() ⊆ R and  ∈ R.

Linear-Quadratic (LQ) special case:

( ) = 0 + 0 + 2
0


(  +1) =  + + +1



Examples:
1. Lucas-Prescott-Sargent model of investment. Market demand is

 = 0 − 1 + 

where  is AR(1) stationary and observable. Firm ’s problem is

max
()

̂()
X
≥0


µ
()− ( + ())()−



2
()

2
¶

() = (1− )−1() + () + (1− )−1() with 0   ≤ 1
() = ()

 where 0   ≤ 1
 = 0 + 1−1 + 2−1 + 


 

where () = () + 

 (). Firm’s problem is LQ for  = 1

Two cases: (i) Single agent problem for given price process.

(ii) Market equilibrium with  given by demand and  =
R
Ω ().



2. Robinson Crusoe & Ramsey models of capital accumulation.

(i) Robinson Crusoe LQ problem:

max−
X
≥0


³
( − ∗)2 + 2−1

´
s.t. +1 = 1 +2−1 −  + +1

(ii) General equilibrium Ramsey problem:

max 
X

(())

+1() = (1 + )() + − ()

Competitive firms use technology  =  where log  is AR(1) stationary.
  given by marginal products. Representative agent with  =  = ().

3. New Keynesian model with heterogeneous agents.



Shadow-price learning

Return to consideration of the standard dynamic programming problem

 ∗(0) = max0
X
≥0

( )

subject to +1 = (  +1)

and ̄0 given, with  ∈ Γ() ⊆ R and  ∈ R. The state  includes an
intercept. Our approach is based on the corresponding Lagrangian

L = 0
X
≥0


³
( ) + ∗0 ((−1 −1 )− )

´


Our starting point is the FOC and envelope condition

∗ = ( )
0 + (  +1)

0∗+1
0 = ( )

0 + (  +1)
0∗+1



In SP learning we replace ∗ with , the perceived shadow price of the state
, and we treat these equations as behavioral.

To implement this we need forecasts. In line with the adaptive learning literature
+1 = (  +1) is often assumed unknown and is approximated by

+1 =  + + +1

where unknown parameter estimates are updated over time using RLS, i.e.
recursive LS. Agents must also forecast +1. We assume that they believe the
dependence of  on  can be approximated by

 =  + ,

where estimates of  are updated over time using RLS.



To implement SP learning, given  and estimates  the agent sets 
to satisfy

( )
0 = −0̂+1, since  = +1 and

̂+1 =  ( +)

for  and ̂+1. The FOC  equation may in general be nonlinear.

The  FOC (envelope condition) gives a value for 

 = ( )
0 + 0̂+1 since  = +1,

which is used next period to update the estimate of . This equation has an
asset price interpretation.

At + 1 RLS is used to update estimates of  and/or  and  in

+1 =  + + +1 and  =  + ,

This fully defines SP learning as a recursive system.



Advantages of SP learning as a model of boundedly optimal decision-making:

• The pivotal role of shadow prices , central to economic decisions.

• ̂+1 and transition dynamics  = +1 measure the intertem-
poral trade-off which determines actions 

• Simplicity. Agents each period solve a two-period problem — an attrac-
tive level of sophistication.

• Incorporates recursive LS updating of, the hallmark of adaptive
learning, but extended to include forecasts of shadow prices.



• As we will see, although our agents are boundedly optimal, in a LQ
setting they become fully optimal asymptotically.

• SP learning can be incorporated into standard DSGE models.

We also outline two alternative implementations of SP learning:

— Value function learning: value function estimated instead of shadow prices.

— Euler equation learning: closely related to SP-learning in special cases.



SP learning is related to the other approaches in the literature:

— Like Q-learning and classifier systems, it builds off of Bellman’s equation.

— Like Internal Rationality we do not impose RE.

— As with anticipated utility/IH agents neglect parameter uncertainty.

— Like Euler-equation learning, it is sufficient to forecast one step ahead.

— Like anticipated utility/IH & Internal Rationality, an agent-level approach

SP-learning has simplicity, generality and economic intuition, and can be em-
bedded in general equilibrium models with heterogeneous agents..



Learning to Optimize in an LQ set-up

• We now specialize the dynamic programming set-up to be the standard
linear-quadratic set-up, which has been extensively studied and widely ap-
plied. In this set-up we can obtain our asymptotic convergence result.

• Consider the single-agent problem: determine a sequence of controls 
that solve, given the initial state 0,

 ∗(0) = max −0
X


³
0 + 0 + 2

0


´
 +1 =  + + +1

We make standard assumptions on: LQ.1 (concavity), LQ.2
(stabilizability) and LQ.3 (detectability).



• Under LQ1 — LQ3 the optimal controls are given by

 = − ∗ where  ∗ =
³
+ 0 ∗

´−1
(0 ∗+ 0)

where  ∗ is obtained by analyzing Bellman’s equation and satisfies

 ∗ = +0 ∗−(0 ∗+ )
³
+ 0 ∗

´−1
(0 ∗+ 0)

Also  ∗() = −0 ∗− (1− )−1 tr(2 ∗0)

• Solving the “Riccati equation” for  ∗ generally only possible numerically.
This requires a sophisticated agent with a lot of knowledge and computa-
tional skills. Our agents follow a simpler boundedly optimal procedure.

• Our approach replaces RE and full optimality with adaptive learning and
bounded optimality, based on shadow prices.



• For LQ models the true transition equation is linear and the optimal shadow
price equation is linear

• The SP-learning system can be written recursively as:

 = −1 +−1 + 

R = R−1 + 
³


0
 −R−1

´
0
 = 0

−1 + R−1−1−1 (−1 −−1−1)
0

0 = 0−1 + R−1−1−1 ( −−1 −−1−1)
0

 =  ()

 =  ()

 = −1 or  = (+)−1

In this formulation  is estimated but  is assumed known, which would
be typical.



• For real-time learning results we need an additional assumption, LQ.RTL:
the state dynamics are well-behaved under optimal decision-making, i.e.
are stationary and have a non-singular second-moment matrix.

Theorem 4 (Asymptotic optimality of SP learning in LQ model)If LQ.1
- LQ.3 and LQ.RTL are satisfied then, locally, () converges to (∗ )
almost surely when the recursive algorithm is augmented with a suitable pro-
jection facility, and  () converges to − ∗.

The proof of Theorem 4 combines known properties of LQ problems with the
stochastic approximation tools from the adaptive learning literature.

Extension: We show it is unnecessary for agents to estimate and forecast shadow
prices for exogenous states. This is convenient for applications.



Theorem 4 is a striking result:

• SP learning converges asymptotically to fully rational forecasts and fully
optimal decisions.

• By including perceived shadow prices, we have converted an infinite-horizon
problem into a two-period optimization problem.

• The agent is learning over its lifetime based on a single ‘realization’ of its
decisions and the resulting states.

Remark 1: The “projection facility” in many applications is rarely needed.

Remark 2: like adaptive learning of expectations, the system is self-referential.
Here this comes from the impact of perceived shadow prices on actual decisions.



Alternative implementation: value-function learning

• In SP learning agents estimate the SP vector  for state . An alternative
implementation is to estimate  ()

 () = −0
and make decisions on this basis.

• They use  and the rhs of Bellman’s equation to obtain revised ̂.

• Estimates of  are updated over time using a regression of ̂ on linear
and quadratic terms in the state .

• Theorem 5 provides a corresponding result for value-function learning.



Alternative implementation: Euler-equation learning

• Another alternative implementation of bounded optimality is EE learning.

• One-step-ahead Euler equations exist in special cases (Appendix B), e.g. if
+1 does not depend on endogenous states  Then  can be eliminated
from the FOC to give the Euler equation

 + 0 + 0(+1 ++1) = 0

• Under EE-learning the agent forecasts its own future decision +1 using

 = −.

Theorem 6 provides a corresponding result for EE learning.



Example: SP Learning in the Investment Model

We give results here for the single agent problem in which the firms treats 
as an exogenous process. We rewrite the problem in terms of installed capital

() = (1− )−1() + (1− )−1()

where () = () + (). The firm problem is then

max
()

̂()
X
≥0


µ
(() + ())− ( + ())()−



2
()

2
¶

+1() = (1− )() + (1− )()

+1 =  + 

+1 +1 = ̄ + 


+1

+1 = 0 + 1 + 2 + 

+1

Exogenous and endogenous states are: 1 = (1  () ), 2 = (),
and the control is  = ()



The FOC for  gives the key behavioral equation

 + () + () = 
0(() + ()) + (1− )̂


+1()

Decision-making requires also ̂

+1(), using forecasts of the state at +1,

including ̂+1 based on estimates of 0 1 2, and estimates of

 () = 0 +1 +2 +3 +4()

The FOC for 

 () = 
0(() + ()) + (1− )̂


+1()

gives a new data point for  () for updating estimates .

We give the numerical results for the LQ case () =  with  = 1, and for
a non-LQ case with  = 03.



For the price process we use the REE price process from market demand  =
0−1+  with 0 = 10 1 = −11 The learning gain parameter is 02
and the other parameters were set at

 = 95  = 95  = 1  = 2 ̄ = 0  = 2,  = 7

The price processes are given by

LQ case:  = 043 + 070−1 − 012−1 + 



Non-LQ case:  = 131 + 085−1 − 015−1 + ̂



Optimal beliefs ∗ are given by

LQ case : ∗ = (637−065 0 251 0)
Non-LQ case : ∗ = (566−0097 005 034−055)

The following figures show real-time plots of estimated SP parameters .
These indicate convergence to optimal decision-making.



LQ case  = 1



Non-LQ case  = 03



Example: SP Learning in a Crusoe economy
max−

X
≥0


³
( − ∗)2 + 2−1

´
s.t. +1 = 1 +2−1 −  + +1

Output is fruit/sprouting trees. Young trees need weeding. Under SP learning
Bob estimates the SPs of young and old trees:

 =  +  + −1 for  = 1 2 and thus

̂+1 =  + (1 +2−1 − ) +  for  = 1 2

These plus the FOC for the control

 = ∗ − 

2
̂1+1

determine  1+1 2+1, given  −1.



The FOCs for the states give updated estimates of SPs

1 = −2 + 1̂1+1 + ̂2+1

2 = 2̂1+1

which allows Bob to use RLS update the SP equation coefficients.

Proposition: Provided LQ.RTL holds, Robinson Crusoe learns to optimally
consume fruit.

Note: LQ.RTL necessarily holds if 2 ≥ 0 is not too large and shocks have
small support.

EE learning is also possible using a second-order Euler equation. See paper.



Example: SP Learning in a Ramsey Model

The stochastic Ramsey model illustrates a general equilibrium model in a non-
LQ setting.

Representative household  has one unit of labor and maximizes

max 
X

(())

+1() = (1 + )() + − ()

Competitive firms use CRTS technology and  = () where   are output,
capital per unit of labor and log  is AR(1) stationary with  = 1. In
equilibrium factors are paid their marginal products and  =  = ().



Households will choose

 0(()) = ̂+1()

where () = (1+) 0(()) is the shadow value of an extra unit of ().
The full state is 0 = (1 ()   ), but only () is endogenous to
the agent.

To avoid multicollinearity issues we assume agents estimate

() = () +()() +()

and use this and their flow budget constraint to forecast ̂+1(), and thus
to solve for

() = (()   ())



Assume homogeneity of beliefs. Then () =  =  and under SP learning
the recursive system is

R = R−1 + (̃−1̃
0
−1 −R−1) for ̃

0
 = (1  )

 = −1 + R−1 ̃−1(−1 −0
−1̃−1)

 = 

−1

 = (()−  0())

 = 
0()− 

 =  (   )

+1 = (1 + ) + − 

 = (1 + )
0()



Illustration

For log utility, Cobb-Douglas production, and  = 1, we can obtain the explicit
RE solution and analytical REE shadow price ∗ function.

The red line is initial beliefs. Under learning there is convergence to the black
dashed line. The dashed blue line is the ∗() in the REE.

Long-run beliefs appear to coincide to first order with ∗() of the REE.
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Figure 3: Red: initial beliefs. Black: final beliefs. Blue: true () in REE.



Example: SP Learning in a NK Model

• A final example: a NK model (without capital) with a Rotemberg price-
adjustment friction. The utility flow for household-firm  is

1

1− 

³
()

1− − 1
´
+ log

Ã
−1()
()

!
−  ()

1+

1 + 

−
2

Ã
()

−1()
− 1

!2
+ L(−1())

We consider both homogeneous and heterogeneous expectations cases.

•  treats  = (1 −1    T  ) as exogenous.  is an AR(1)
govt. spending shock and  is an AR(1) interest-rate shock.



• The endogenous states and the controls of  are

() = (−1() −1() −1())
0

() = (()() ())
0

• Agent  requires shadow prices for () = (() 

 ())

0.
We assume PLM  = Ψ()(), for regressors ().

• We set () = (1   −1) in the homogeneous case and
() = (1   −1 −1()) in the heterogeneous case.



With homogeneous expectations and small constant gain learning (̂ = 0015)
we find (Figure 4) convergence of beliefs to a distribution centered on the SP
learning restricted perceptions equilibrium (RPE).
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Figure 4: ,  in NK model, homogeneous agents.



• Now consider case of heterogeneous agents. Agents can borrow from or
lend to each other. We introduce a disutility of debt above a certain level.
Suppose two agents types.

• Different beliefs leads to different savings rates, bond and money holdings
and prices −1().

• Note: simulations under SP learning are not greatly more difficult than for
the homogeneous case.

• Figure 5 shows simulations with zero initial debts but initial heterogeneous
beliefs.
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Figure 5: Paths under SP learning with heterogeneous initial beliefs for the
two types of agents. Dislike of debt above a specified threshold.



Conclusions

• SP learning can be applied in general dynamic stochastic optimization
problems and within general equilibrium models.

• The approach is formulated at the agent level and allows for heterogeneity
in general equilibrium settings.

• It is tractable because agents need only solve 2-period optimization prob-
lems using one-step ahead forecasts of states and shadow prices.

• SP learning is boundedly optimal but converges to optimal decisions.



• Current work — Applications:

— SP learning in general equilibrium models with heterogeneous agents.

— Develop a general procedure for implementing SP-learning in this setting.

Current work — Extensions:

— SP learning with inequality constraints (e.g. borrowing constraints).

— Value function learning in qualitative choice models.

— Study implications of persistent deviations from full optimization due to
misspecified shadow price models or “escape paths” under constant gain
learning.



ADDENDA

Illustration of need for Projection Facility (PF): Without PF an unusual
sequence of shocks can lead to perceptions  that impart explosive dynamics.
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Optimal decision-making in Investment model

The key SP learning behavioral equation is

 + () + () = 
0(() + ()) + (1− )̂


+1()

This requires a shadow price forecast made based on:

 () = 0 +1 +2() +3 +4()

̂

+1() is obtained based on estimated  and forecasts ̂+1 = 

̂+1() = ̄ ̂+1 from the estimated  equation and ̂+1() from
the known transition equation

̂+1() = (1− )() + (1− )()

Given (() () ) the control () and forecasts ̂

+1() can be

solved simultaneously.



The “envelope” equation

 () = 
0(() + ()) + (1− )̂


+1()

is then used to obtain a new data point for  (). This is used for updating
estimates .



Investment model, control choices: The first figure shows control choice against
the indicated state (other states at steady state values), with blue = control
choice for initial beliefs, gray = control choice after 350 periods and red =
optimal control choice. For LQ case:



Control choices in non-LQ case



Euler-equation learning in Crusoe model

EE learning is also possible using a second-order Euler equation:

 − ̂+1 = Ψ + 1̂+1 + 22̂+2

where Ψ = ∗(1− 1 − 22)

To implement use forecasts of ̂+ from estimates of

 = 3 + 3 + 3−1

SP learning and EE-learning are not identical, but both are asymptotically opti-
mal. This can be seen from a numerical calculation of their largest eigenvalue,
shown in Figure 1.



Euler Equation Learning

Shadow Price Learning
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Figure 2: Largest eigenvalue of  and  under SP and EE learning.

Why are EE-learning and SP learning different?



Here dim() = 1 and dim() = 2. The PLMs are

SP PLM:  =  vs EE PLM:  = 

so SP learning estimates 4 parameters whereas EE learning estimates 2 para-
meters.

The SP PLM requires less structural information than the EE PLM. For the
SP PLM to be equivalent to the EE PLM, agents would need to understand
the structural relation between 1 and 2 and to impose this restriction in
estimation.



NK decision rules

()
− = ̂


+1()

( − 1)
Ã
()



!1− Ã




!
̂


+1()

= −(()− 1)
−1()

− ()
()() + ̂


+1()

() = ( − 1)−1()



NK aggregation

() =
µZ

()
−1
 

¶ 
1−

() =
Z
() + ()

 =
Z
() + 


 =

Z
()

0 =
Z
()



NK model disutility of debt
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Figure 4: Marginal disutility of debt in NK model.



In Figure 6 we start with homogeneous beliefs but different debt levels. We
also assume a stronger dslike of debt, i.e. ̂ = 0. In this case lending between
agents goes to zero asymptotically.
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Figure 6: Heterogeneous initial bonds but homogeneous beliefs.


