
Software's Little Helpers: Managing Your Lab Areas
Doug Simpson

University of Oregon
1225 Kincaid St.

Eugene, OR 97403-1212
541-346-1736

dsimpson@darkwing.uoregon.edu

ABSTRACT
There are always more labs and other things to attend to than
available bodies to watch over said pesky details. How can we
keep an eye on the ever-present large and small events in our labs
while dealing with Yet More Interruptions elsewhere?

At the University of Oregon, we have found three utilities and/or
technologies particularly useful:

• KeyServer, to monitor unauthorized and unusual
software events

• Remote web cameras

• Web pages displaying current and archived camera
output for visual backup of unadvertised hardware
events (PCs as cup-holders, suddenly-mobile monitors,
etc.)

Front-line staff and supervisors (whether technical or not) can use
these tools to manage the details and monitor for problems.

This paper discusses the tools described above, with an emphasis
on their use in a university environment where security and
privacy issues are key. Other hardware and software solutions to
these problems are also briefly contrasted and compared.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access
Controls. K.6.5 [Management Of Computing And Information
Systems]: Security and Protection – Authentication, Physical
security.

General Terms: Management, Measurement, Security,
Legal Aspects.

Keywords: KeyServer, banned or prohibited applications,
report generation, web cameras.

1. INTRODUCTION
Whenever there are more rooms to supervise than available
supervisors, we need to come up with strategies to watch over our

facilities when we’re not there. Padlocks on hardware remove
some temptations, but there are other pieces of equipment difficult
to secure in this way. We ask our student assistants to keep an eye
on things, but they too are limited in their OA (Omnipresence
Ability). We have also seen a rise in undesirable patron-installed
software in the last year. Browser ‘enhancements’ like Bargain
Buddy, casino gambling plug-ins, and cookie-laden search tools
cause aggravation for the next user and eventual slowdowns for
the machines. Yet we do wish to allow our lab users some room
for legitimate exploration of the computer’s capabilities. How can
we allow a degree of freedom without sacrificing usability?

We have used KeyServer in our labs for over ten years to control
licensed applications, but had never made time to explore all of its
options. When we upgraded to the latest version some of the
benefits touted (automated software audits, ability to track usage
and last use of any program) caught our eye. KeyServer also
offers the ability to prevent any program from running, once the
program has been identified.

To help watch over our disappearing peripherals we installed web
cameras some time ago and saw an immediate reduction in
vandalism as a result, but we didn’t have a system for storing
images from the cameras. We wanted something that would be
easy for us to quickly flip through recent saved images.

This paper details our on-going exploration of these technologies
to fine-tune the control of our labs’ software and hardware.
Alternative software and hardware that we’ve considered for these
roles will also be briefly mentioned.

2. INSTITUTION AND LAB
BACKGROUND
The University of Oregon has approximately 20,000 students. The
Library and Computing Center support the majority of the labs
available for general student use. The Computing Center controls
four labs: three combine instructional and open labs; one is open
lab only. The 300 Wintel and Macintosh computers are roughly
2/3 Windows XP, 1/3 OS X. Total staff for all labs is 30+ student
lab assistants, 2 student technical workers, 2 managers, and a lab
coordinator.

3. KEYSERVER
KeyServer is a software licensing application sold by Sassafras
Software [1] that ‘keys’ applications so they will only run after a
license has been checked out to a workstation; if all available
licenses are already in use, the application will not run. It is highly
configurable, but it does this basic job so well that we were able
to set it up quickly and move on to more pressing tasks. Since it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGUCCS ’04, October 10–13, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-869-5/04/0010…$5.00.

worked quietly in the background we were rarely forced to consult
the manual and left its more advanced features to be discovered
later.

3.1 Identifying Applications to be Banned
Any version of KeyServer can be used to select applications that
we want to ban (that is, to refuse permission to run).
To control a program the only thing we need to know is the
program’s name. If we know the name of the program’s installer
we can control that as well and prevent the application from being
installed in the first place. KeyServer can discriminate between
minor version and name differences.
The latest version (K2) supports remote audits from KeyConfig,
the administrative component of KeyServer. It can scan any client
computer currently connected to the network and produce a list of
every application program on that machine’s hard drive. Earlier
versions use KeyAudit, which runs on the client computer.

3.2 Controlling Banned Applications
Using KeyConfig, find the program you wish to control within the
‘Programs’ windows and select the ‘action’ icon – it will probably
currently be a green circle (for ‘ignore’). Change it to ‘controlled.’
A ‘Create License’ dialog box will appear. Un-check the selection
named ‘Allow launch when KeyServer not available’ so this
program cannot run without our permission (which we will not
give). When the ‘License Details’ dialog box appears, select
‘Concurrent Use Limit (Floating License)’ and set the User Limit
to zero. Save the record. The program will now be banned on any
client computer connected to this KeyServer.

3.3 Reporting Banned Activities
Using KeyConfig, select ‘Denials (PROG x comp)’ or ‘Denials
(PROG x user)’ from the ‘Reports’ menu for a list of all programs
that were unable to run. Any date range may be selected.
All applications controlled as described above will appear here if
a user tried to run them. The report also shows the number of
times the program attempted to run.

3.3.1 Other Reports
KeyServer can report on many other activities, too. Summaries of
how often a program is used (or when it was last used) are useful
in determining whether to continue supporting that program.
Reports of weekly software use can show how busy a lab is if
there is no other tracking of users.
KeyServer responds to SQL queries and report data can be
exported to an external SQL server or Microsoft Access.

3.4 Alternative Ways to Control Applications
If you don’t have KeyServer now or are looking for other ways to
control programs, here are some other ways this can be achieved:

• Group Policy settings (Microsoft Active Directory)

• LANDesk, ZENworks (Novell), or SMS (Microsoft) to
alert staff to new installs

• For some programs, installation can be defeated by
placing hidden, read-only dummy files where that
program expects to install itself

• DeepFreeze/DriveShield (and others) – these programs
don’t prevent installation of new programs or control
applications, but do reset all user files back to a known
default state between user logins

Note that none of these alternatives works transparently across the
PC and Macintosh platforms as KeyServer does.

4. WEB CAMERAS
Before we installed our web cameras in our labs we experienced a
steady trickle of small peripherals leaving the lab (mice, mouse
pads, an occasional keyboard) and a few more pricey items (a
computer and two overhead projectors). In rooms where the
cameras were placed there has been almost no theft since that
time.
Before we can peruse the archived logs of our cameras’ output we
need to generate some raw footage (or JPEG-age, in our case).
Here are detailed some basics of selecting a camera, setting it up,
and producing images for us to view.

4.1 PC-Dependent Cameras vs. Web Cameras
The terminology may be confusing when looking at all the
cameras available for use with computers. By ‘PC-dependent
camera’ I mean a digital camera that is connected to a computer
by a USB or serial cable. These are the most inexpensive cameras
(starting at less than $100), but contain no built-in programming
or control capability. They require a directly-connected PC of
some kind to produce an image.
A ‘web camera’ (as I call it here) combines in one case a digital
camera and an embedded operating system – often a version of
Linux. Acting as its own web server, it has an IP address and
attaches directly to the network via an Ethernet port. The camera
can also be used with a modem and a phone line, if you need to
use it where there is no network connection handy. Their cost
begins somewhere around $250 for a basic unit.
Surveillance programs that use PC-dependent cameras exist but
the low cost of the camera was offset for us by the extra cost of
the dedicated PC that would be required for each camera. We also
needed the flexibility the web camera allowed. To complete the
installation we needed a visit from our Network Services folks for
an Ethernet port high in one strategically-chosen corner, another
visit from the Physical Plant to add an electrical outlet, and we
were ready to plug in the web camera.

4.2 Axis 2100 Web Camera
We chose the Axis 2100 [2] because it had the desired embedded
OS, built-in shell scripting, a serviceable lens, and an affordable
price. JPEG images of 320 x 240 or 640 x 480 can be transmitted
at up to 10 frames per second. It was helpful to know many other
institutions had made the same camera choice.
More full-featured models allowed camera pan and tilt, built-in
motion detection, PHP programming, and more varied lenses but
the cost was significantly higher. We were told motion detection
(a feature we wanted) could be implemented in the Axis 2100
through software.

4.3 Camera Setup and Operation
The serial number for the camera is also the MAC address (the
network card identification number) and we used this to register

each camera with Network Services so each could be assigned a
static IP. This allows us to refer to the camera by name from a
network browser or in other scripts.
Once this is done, to see the camera’s output it is only necessary
to enter a URL like the following to see live output from the
camera:

http://klamath-cam3.uoregon.edu
As shipped, the camera will allow anyone to view images without
a password.
The default web page presented includes an ‘Admin’ button
which allows you to change the size of the image, color, headings,
etc. in addition to other settings.
Other setup tasks:

• Be sure to change the default ‘root’ password so no one
else can alter the camera’s settings.

• You may decide to password-protect the camera’s
output so only your staff or other people you pick can
view the images.

• Make sure the latest firmware is installed. Firmware
updates and instructions for this are available for
download from the Axis website. It’s not difficult to do
and ensures your camera has the latest operating system
patches.

• The cameras have a built-in clock (very useful for time-
stamping images) but the time can wander, to the point
where it may show a time and date hours or days
removed from the actual time. Setting the time source to
“Synchronize with NTP server” will ensure the time is
accurate.

If the unthinkable happens and you make a choice that leaves the
camera in a strange place, there’s a small reset button that returns
it to the factory defaults. You’ll have to re-enter any
customizations you made earlier, but the camera is difficult to
damage in a permanent way. Your very own server – experiment!

4.4 Viewing Multiple Cameras on One Page
If you have four cameras and wish to view each of them in turn,
you’ll need to save four bookmarks and switch between them
continually with the out-of-the-box setup. To view more than one
camera on a single web page you need to resort to some web page
scripting or a viewing program that will display the images on one
page for you.
Commercial, shareware, and freeware programs at all levels of
complexity and cost exist for viewing images from web cameras.
The majority of these programs are written for the Wintel
platform, but several good ones exist for Macintosh [3] and Linux
[4] users as well.
Advantages of pre-written programs include the fact that they are
ready for use and may come with support and printed manuals (at
least, if you pay for this privilege). They may include handy
buttons to capture a particular image you want to save, or include
motion-detection software to alert you to changes in a certain part
of the screen you wish to focus on. They may incorporate archives
of the camera images for later viewing (see next section for more
about this).

If all you need is a simple viewer of up to three cameras at one
time the free versions are adequate for this. We are currently using
one of these while we work on our own customized viewer.

5. WEB PAGES WITH ARCHIVED
OUTPUT
After we had our cameras set up and in use in our labs, we left
them at that stage for more than a year. We derived many benefits
from them as they were (Are the labs open at 8am? How busy is it
in a lab right now?) but wanted to be able to look back in time to
answer other questions (Are our patrons making adjustments to
the printers we’d prefer they did not? Did a lab close early last
night?).
There is another advantage to sending a camera’s output to a
remote storage point – a camera can only support a maximum of
10 direct connections at one time. As more people connect to the
camera, the refresh rate (the number of frames per second it can
display) will drop. Sending the output to a more robust file server
allows the camera to capture images at its highest rate of speed.

5.1 Commercial Programs
As with their simple viewer program brethren, commercial and
shareware programs exist that can archive old images, string them
into movie files, alert you when motion is detected during certain
hours, and more. The cost for these programs ranges from just $30
to over $2000. As we are building our own system from scratch,
we have (so far) only viewed product information for these
programs for their inspirational value.

5.2 Our Homegrown Solution
5.2.1 Archived Output
We have implemented basic capture of images, via ftp, to a
convenient file server. The capability to do this is built into the
cameras and requires only these steps (select the Admin button on
the camera’s web page):

• Network – TCP/IP: enter your network’s domain and
DNS server information (necessary for the camera to
find the ftp server it will send images to)

• Operation – Selection: select Sequential Mode

• Operation – Scheduler: select how often you wish to
save a picture and (optional) hours or days to suspend
picture taking

• Operation – Upload: enter the remote server, name and
password, and directory to save the images in. You also
choose the size of the image here and whether or not to
save a fixed number of images (one way to limit the
total images saved)

• Operation – Enable: click ‘Enable’ to begin image
capture

5.2.2 Storage Requirements
You will have to calculate how much space you need to reserve
for your archived images. An image can be as small as 3Kb (320 x
240, high compression) or as large as 250Kb (640 x 480, lowest
compression). A camera sending a 320 x 240 image at lowest
compression (about 80K) once a minute would consume about 5

megabytes of storage each hour. Using the camera feature that
suspends image capture at certain hours will allow more time
before recycling the archive becomes necessary.

6. PLANS FOR IMPROVEMENT
6.1.1 Customized Camera Viewer
We are developing a better viewing program for quick and easy
monitoring current conditions in our labs. We want to be able to
choose which of our cameras to have on-screen and to have the
ability to capture an image to a named file. We’d like the viewer
located on a central fileserver and controlled by Java (or some
other cross-platform technology) so we can use it from any of our
workstations.

6.1.2 Better Archived Output
We would like to implement some of these options for archived
output:

• Automated archiving and deletion of images (perhaps
rotated to CD-RW disks if we think long-term storage
would be useful)

• More convenient image viewing on server

• Converting a string of images to an MPEG or AVI
movie stream [5]

6.1.3 Intruder Alert!
Not just for intruders, but anytime we’re looking for the unusual:

• Triggered e-mail of images when certain events occur
(movement in the lab when there should be none, etc.)

• Software motion detection

6.1.4 Exploration of Scripting Commands
The camera’s built-in scripting commands make some of the
desired actions above easier to achieve. Axis provides a guide on
their website that details the built-in scriptable commands and
offers some hints to how they can be used [6].
Once the image has been moved to a remote location, further
processing of the output would take place on that host. The shell
scripting commands on our Unix-based file servers and the Axis
cameras are quite similar, which we hope will make joint
development easier.
We would be glad to share any of our solutions which might be
useful for other institutions. Please feel free to contact us, or refer
to a web page [7] we’ll keep current with our experiments.

7. SOME LEGAL ISSUES
(Disclaimer: I’m not a lawyer, nor do I play one on campus.) I’ve
been watching the SIGUCCS [8] and LABMGR [9] listservs for
the past year or so to see how other campuses deal with the
privacy issues web cameras raise. It appears some institutions
have a clear, top-down policy that everyone abides by; others (by
design or not) have policy made on a departmental or lab-by-lab
basis. On our campus we have no explicit policy yet; there are
departments that forbid the use of cameras in their labs and others
that allow them.

8. CONCLUSIONS
We found that exploring capabilities of products we already
owned resulted in new functionality without extra cost to us. Also,
technologies sometimes complemented each other in ways we
hadn’t anticipated. With KeyServer and cameras in operation in
the same room it might now be possible to observe repeated
attempts to install a notorious application on a particular
workstation (recorded in KeyServer’s reports) and use the
archived camera images to see who was responsible for the
attempted installation.

9. ACKNOWLEDGMENTS
I wish to extend my sincere appreciation and thanks to our public
labs coordinator, Mary Bradley, who supports explorations of new
technology like this even when our daily ‘To-Do’ card is already
full – and we’ve turned it over and are using the back of it.

10. REFERENCES
[1] Sassafras Software, http://www.sassafras.com
[2] Axis Communications,

http://www.axis.com/products/cam_2100/index.htm
[3] SecuritySpy, http://www.bensoftware.com/ss/index.html
[4] Linux Video Surveillance AKA eLViS,

http://www.silicontao.com/software/lvs/doc/information.html
[5] “Making MPEG Movies with Axis Network Cameras,”

http://www.linuxjournal.com/article.php?sid=4535
[6] Axis Scripting Guide,

http://www.axis.com/techsup/cam_servers/dev/files/script_gu
ide.pdf

[7] http://darkwing.uoregon.edu/~dsimpson/cameras/
[8] SIGUCCS listserv info,

http://www.acm.org/sigs/siguccs/lists.htm
[9] LABMGR listserv info,

http://www.lsoft.com/scripts/wl.exe?SL1=LABMGR&H=LI
STSERV.UARK.EDU

