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Abstract

Grimmett, Kesten and Zhang (1993) showed that for d ≥ 3, simple random walk

on the infinite cluster C∞(Zd, p) of supercritical percolation on Zd is a.s. transient.

Their result is equivalent to the existence of a nonzero flow f on the infinite cluster

such that the 2–energy
∑
e f(e)2 is finite. Here we sharpen this result, and show

that if d ≥ 3 and p > pc(Zd), then C∞(Zd, p) supports a nonzero flow f such that

the q–energy
∑
e |f(e)|q is finite for all q > d/(d − 1). As a corollary, we obtain

that any sequence {Πn} of disjoint cutsets in C∞(Zd, p) that separate a fixed vertex

from infinity, must satisfy
∑
n |Πn|−β < ∞ for all β > 1/(d − 1). Our proofs are

based on the method of “unpredictable paths”, developed by Benjamini, Pemantle

and Peres (1998) and refined by Häggström and Mossel (1998).
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1 Introduction

Bernoulli (bond) percolation with parameter p on an infinite graph G = (VG, EG)

is the probability measure Pp on {0, 1}EG where each edge in e ∈ EG satisfies

Pp[ω(e) = 1] = p and Pp[ω(e) = 0] = 1 − p, and the coordinate random variables

{ω(e)}e∈EG are independent. The edge e is called open in ω if ω(e) = 1 and closed

if ω(e) = 0. The connected components of open edges are called clusters. The

infimum over p such that Bernoulli percolation with parameter p has an infinite

cluster a.s. is called the critical probability, and denoted by pc(G). For d ≥ 2, the

cubical lattice Zd satisfies 0 < pc(Zd) < 1, and for all p > pc(Zd) there is a.s.

a unique infinite cluster, denoted C∞(Zd, p). For background on percolation, see

Grimmett [5].

Grimmett, Kesten and Zhang [6] proved that if d ≥ 3 and p > pc(Zd), then

simple random walk on the infinite cluster C∞(Zd, p) is a.s. transient. As shown,

for instance, in Doyle and Snell [4], transience of (simple random walk on) a graph

G is equivalent to the existence of a nonzero flow f of finite 2–energy
∑
e∈EG f(e)2.

(See Section 2 for formal definitions.) Thus the main result of [6] is equivalent to

the existence of nonzero flows on C∞(Zd, p) with finite 2–energy a.s.

Benjamini, Pemantle and Peres [2] gave an alternative proof of this result,

and extended it to high-density oriented percolation, using certain “unpredictable”

random paths that have exponential intersection tails to construct random flows

of finite 2–energy on C∞(Zd, p). Here we adapt this approach to show that these

flows have finite q–energy a.s. for q > d/(d− 1).

Definition. The q–energy of a flow f on a graph G = (VG, EG) is

Eq(f) :=
∑
e∈EG

|f(e)|q.

Theorem 1.1 Let C∞(Zd, p) be the infinite cluster of independent (bond) percola-

tion with parameter p on Zd. Then for d ≥ 3 and p > pc(Zd), a.s.,

inf{q : ∃ a flow f 6= 0 on C∞(Zd, p) with Eq(f) <∞} =
d

d− 1
.

Remarks.

1. Contained in Maeda [12] is the same result for Zd itself: for all d ≥ 2, the

infimum of q for which there is a nonzero flow of finite q–energy on Zd, is
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d/(d− 1). Our arguments do not determine whether Theorem 1.1 extends to

d = 2. Firstly, the assumption (1) is not satisfied for any p < 1 in dimension

d = 2. Also, the assumption d ≥ 3 implies that it suffices to find flows of

finite q–energy when d/(d − 1) < q < 2, whence the function x 7→ xq−1 is

concave; this concavity is used to pass from (4) to (5) in the proof of theorem

2.3.

2. Theorem 1.1 also holds for site percolation, with the appropriate (site) pc

and with an identical proof. The proof of Theorem 1.1 also yields the same

result for oriented percolation provided p < 1 is sufficiently large; the renor-

malization arguments of Hiemer [9] allow one to extend this to all p greater

than the critical probability for oriented percolation.

3. The proof of transience in [6] actually yields a flow on C∞(p, Z3) with finite

q–energy if q > 1 + log4 3. It might be possible to modify the construction

in [6] to give an alternative proof of Theorem 1.1; however, the refinements

described in Section 4 seem much harder to obtain in this manner.

A collection of edges Π is a cutset separating v0 from ∞, if any infinite path

emanating from v0 must intersect Π. Nash-Williams [13] proved that if {Πn}∞n=1 is

a sequence of disjoint cutsets separating v0 from infinity in a connected transient

graph, then
∑
n |Πn|−1 < ∞. Theorem 1.1 provides finer information about the

permissible growth rates of cutsets on supercritical infinite percolation clusters.

Corollary 1.2 Let d ≥ 3 and p > pc(Zd). With probability one, if {Πn} is a

sequence of disjoint cutsets in the infinite cluster C∞(Zd, p) that separate a fixed

vertex v0 from ∞, then
∑
n |Πn|−β <∞ for all β > 1

d−1 .

This follows from Theorem 1.1 and Lemma 2.1.

This corollary captures in an interesting way the similarity of the infinite cluster

to all of Zd; a delicate issue, that we do not address, is how the “optimal” flows

and cutsets in C∞(Zd, p) behave as p ↓ pc.

The rest of the paper is organized as follows. In Section 2, after recalling some

terminology, we state and prove a general sufficient condition for percolation clus-

ters to support flows of finite q–energy (Theorem 2.3). The condition involves the

moment generation function for the number of common edges in a certain random
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path and a fixed path, that share a given edge. The proof is based on a combi-

nation of ideas from [2] and [14]. The latter paper proves that certain self-similar

measures have densities in Lq for almost all parameters; although the setting is

quite different, the method of passing from L2 to Lq bounds is similar. In Section

3 we prove Theorem 1.1, by verifying that the “unpredictable” random paths con-

structed in [2] satisfy the condition in Theorem 2.3. Finally, Section 4 contains

refinements of Theorem 1.1 involving energy gauges more general than powers;

these refinements are based on the paths with optimal predictability profiles, con-

structed by Häggström and Mossel [8]. At this level, a difference appears (in the

power of the logarithm) between the energies that can presently be bounded on

supercritical percolation clusters and on all of Zd; it is an interesting open problem

(stated precisely at the end of the paper), to determine whether this difference is

an artifact of the proofs, or a real property of percolation clusters.

2 Paths With Exponential Intersection Tails

Definitions.

1. Let G = (VG, EG) be an infinite graph with all vertices of finite degree and

let v0 ∈ VG. Denote by Υ = Υ(G, v0) the collection of infinite oriented paths

in G which emanate from v0. Let Υ1 = Υ1(G, v0) ⊂ Υ be the set of paths

with unit speed, those paths for which the nth vertex is at distance n from

v0. A Υ-valued random element Φ may be identified with a G-valued process

{Φn}∞n=0, where Φn is the nth vertex in Φ.

2. Let 0 < θ < 1. A Borel probability measure µ on Υ(G, v0) has Exponential

intersection tails with parameter θ (in short, EIT(θ)) if there exists C such

that

µ× µ
{
(ϕ, ψ) : |ϕ ∩ ψ| ≥ n

}
≤ Cθn

for all n, where |ϕ∩ψ| is the number of edges in the intersection of ϕ and ψ.

3. If such a measure µ exists for some basepoint v0 and some θ < 1, then we

say that G admits random paths with EIT(θ).

4. The percolation cluster containing a vertex v will be denoted C(v).
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5. To define a flow on an undirected graph G, it is convenient to consider each

undirected edge as two directed edges, one in each direction. Let vw be the

directed edge from v to w. A flow f on G with source v0 is an antisymmetric

edge function (f(vw) = −f(wv)) such that the net flow out of any vertex

v 6= v0 is zero:
∑
w f(vw) = 0. The strength of a flow f with source v0 is

the amount flowing from v0:
∑
v0w

f(v0w).

Lemma 2.1 Let G be a graph, and f a unit flow on G with source v0. Then for

all sequences of disjoint cutsets {Πn} separating v0 from infinity,∑
n

|Πn|−β ≤ E1+β(f).

Proof. Observe first that

E1+β(f) =
∑
e∈EG

|f(e)|1+β ≥
∑
n

∑
e∈Πn

|f(e)|1+β,

since the {Πn} are disjoint. By Jensen’s inequality,

∀n 1
|Πn|

∑
e∈Πn

|f(e)|1+β ≥
( 1
|Πn|

∑
e∈Πn

|f(e)|
)1+β

≥ |Πn|−1−β .

Multiplying by |Πn| and summing over n establishes the lemma. 2

Cox and Durrett [3] obtained upper bounds for the critical probability of ori-

ented percolation using the fact that, for d ≥ 4, oriented paths chosen uniformly in

Zd have EIT. In [2] the EIT property is exploited to prove transience of oriented

supercritical clusters.

Proposition 2.2 ([2]) Consider percolation with parameter p on G and let v0 be

a vertex in G. Suppose that µ is a probability measure on Υ1 = Υ1(G, v0) that

satisfies ∫
Υ1

∫
Υ1

p−|ϕ∩ψ| dµ(ϕ) dµ(ψ) <∞ . (1)

Denote by ϕN the first N edges of a path ϕ. Then the random variables

ZN := µ{ϕ ∈ Υ1 : ϕN is open }p−N

form a nonnegative Martingale bounded in L2, and therefore

Pp[C(v0) is infinite ] ≥ Pp[lim
N

ZN > 0] > 0 .

Moreover, if µ satisfies EIT(θ) for some θ < p, then there is a.s. a vertex v in G

such that the cluster C(v) is transient.
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The following general theorem is used to establish Theorem 1.1 in Section 3.

Theorem 2.3 Let µ be a probability measure on the set Υ1(G, v0) of paths with

unit speed from v0. Suppose that there exists p ∈ (0, 1), γ > 1 and C <∞, so that

for any fixed path ψ containing edge el at distance l from v0,∫
Υ1

p−|ϕ∩ψ|1{ϕ3el}dµ(ϕ) ≤ Cl−γ . (2)

Then the event |C(v0)| = ∞ has positive probability, and on this event C(v0) sup-

ports a nonzero flow f with E1+β(f) <∞ for all β > γ−1.

Proof of Theorem 2.3: It suffices to consider β ∈ (γ−1, 1). If Γ ⊂ EG, let I(Γ)

be the indicator of the event that all the edges in Γ are open in the percolation

and let Je(Γ) be the indicator of the event {e ∈ Γ}. For each N ≥ 1 we define an

edge function fN on the ball B(v0, N ) as follows. For every directed edge e = vw

where w is farther from v0 than v, let

fN(e) =
∫

Υ1

p−N I(ϕN)Je(ϕN) dµ(ϕ) ,

and define f(wv) = −f(vw). If v and w are at the same distance from v0, set

f(vw) = f(wv) = 0. Then fN is a flow on C(v0) ∩ B(v0, N ) from v0 to the

complement of B(v0, N − 1), i.e., for any vertex v ∈ B(v0, N − 1) except v0, the

incoming flow to v equals the outgoing flow from v.

The expected (1 + β)–energy of fN is

Ep

∑
e∈EG

∫
Υ1

p−N I(ψN)Je(ψN) dµ(ψN)
{∫

Υ1

p−N I(ϕN)Je(ϕN)dµ(ϕ)
}β

.

By Fubini’s Theorem, this equals

∑
e∈EG

∫
Υ1

Je(ψN)p−NEp

[
I(ψN)

{∫
Υ1

p−N I(ϕN \ ψN)Je(ϕN)dµ(ϕ)
}β]

dµ(ψ) . (3)

The two factors appearing in the expectation above depend on disjoint edges, hence

they are independent and the expectation of the product can be replaced by a

product of expectations. Consequently (3) is equal to

∑
e∈EG

∫
Υ1

Je(ψN)p−NpNEp

[{∫
Υ1

p−N I(ϕN \ ψN)Je(ϕN)dµ(ϕ)
}β]

dµ(ψ) . (4)
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An application of Jensen’s inequality to the (concave) function x 7→ xβ, β < 1 then

yields that (4) is bounded by

∑
e∈EG

∫
Υ1

Je(ψN)
{
Ep

[∫
Υ1

p−N I(ϕN \ ψN )Je(ϕN)dµ(ϕ)
]}β

(5)

=
∞∑
l=1

∫
Υ1

∑
|e|=l

Je(ψN)
{∫

Υ1

p−|ϕN∩ψN |Je(ϕN)dµ(ϕ)
}β

dµ(ψ),

where, for directed e = vw, |e| is the distance from v to v0. The above is not larger

than ∞∑
l=1

∫
Υ1

{∫
Υ1

paϕ∩ψ|Je(l)(ϕ)dµ(ϕ)
}β

dµ(ψ) ≤ C
∞∑
l=1

l−βγ , (6)

where e(l) = e(l, ψ) is the unique edge in ψ at distance l from v0, and we have used

the hypothesis (2).

For each directed edge e, the sequence {fN (e)}N>|e| is a nonnegative martingale,

so it converges a.s. to a limit denoted f(e). Clearly, f is a flow from v0 to infinity.

The strength of fN is precisely the random variable ZN that appears in Proposition

2.2. The assumption (2) implies the condition (1) of Proposition 2.2, and hence

C(v0) is infinite and the strength of f , limN ZN , is positive with positive probability.

Finally, Ep[E1+β(f)] ≤ supN Ep[E1+β(fN )] <∞, since the right-hand side of (6) is

finite for any β > 1/γ.

2

3 Unpredictable paths and percolation in Zd

Definition. For a sequence of random variables S = {Sn}n≥0 taking values in a

countable set V , we define its predictability profile {PRES(k)}k≥1 by

PRES(k) = supP[Sn+k = x | S0, . . . , Sn] , (7)

where the supremum is over all x ∈ V , all n ≥ 0 and all histories S0, . . . , Sn.

The following was used in [2] along with Proposition 2.2 to prove the theorem

of Grimmett, Kesten and Zhang. We use it in the proof of Theorem 1.1 below.

Lemma 3.1 ([2]) Let {Γn} be a sequence of random variables taking values in a

countable set V . If the predictability profile of Γ satisfies
∑∞
k=1 PREΓ(k) <∞, then
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there exist C <∞ and 0 < θ < 1, such that for any sequence {vn}n≥0 in V and all

m ≥ 1,

P[#{n ≥ 0 : Γn = vn} ≥ m] ≤ Cθm .

We now specialize to the case where G = Zd for d ≥ 3. We shall need paths

whose predictability profiles are controlled. The basic building block for such paths

in Zd is an integer–valued nearest neighbor process:

Theorem 3.2 (Benjamini, Pemantle, Peres [2]) For any α < 1 there exists

an integer-valued stochastic process {Sn}n≥0 such that |Sn− Sn−1| = 1 a.s. for all

n ≥ 1 and

PRES(k) ≤ Cαk−α for some Cα <∞, for all k ≥ 1 .

Remark: Let Tb(M) be the tree of depth M where each vertex not at the deepest

level has b children. The construction of S in Theorem 3.2 uses a random element

σ with values in {−1, 1}Tb(M ), which can be obtained from a variant of the Ising

model at low temperature. Order the vertices on the boundary from left to right as

w1, . . . , wbM . Processes SM , M > 1, are defined for n ≤ bM by SMn =
∑n
k=1 σ(wk),

and S is then defined for all n ≥ 0 using the consistency of the laws of the SM .

Given a Zd-valued process Y up to time T , we define the time-reversal ←−Y of Y

up to time T , started at z ∈ Zd, by

←−
Y k := z + YT−k − YT for k ∈ [0, T ] .

Since the processes SM used in Theorem 3.2 to construct S are defined by summing

the spins σ(v) over v in the deepest level of Tb, the process S has the property

that

PRE←−
S

(k) ≤ Cαk−α. (8)

Corollary 3.3 For each 1
2 < α < 1, there is a Zd–valued process Φ = Φα,d so that

PREΦ(k) ≤ C(α, d)k−(d−1)α, (9)

and so the random edge sequence {Φn−1Φn}n≥1 is supported on Υ1. Moreover, its

time-reversal ←−Φ , started at z ∈ Zd and defined for times k ≤ M , also satisfies for

k ≤M

PRE←−Φ (k) ≤ C(α, d)k−(d−1)α. (10)
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Proof. Let W r
k = (S(r)

k + k)/2 for r = 1, . . . , d − 1, where S(r) are independent

copies of the process described in Theorem 3.2. For r = 1, . . . , d− 1, define clocks

tr(n) := bn + d− 1− r

d− 1
c ,

and let D(n) := n−∑d−1
r=1 W r

tr(n) .

Write Φn = (W 1
t1(n), . . . , W

d−1
td−1(n), D(n)). It is then easy to see that

PREΦ(k) ≤
[

PRES(b k

d− 1
c)
]d−1

≤
(

Cαk

d− 1

)−α(d−1)

≤ C(α, d)k−α(d−1) .

The same bound for PRE←−Φ (k) is obtained similarly, using (8). 2

Proof of Theorem 1.1. Since a flow on C∞(Zd, p) is also a flow on Zd, there can

be no flows of finite q–energy on C∞(Zd, p) for q ≤ d/(d− 1).

For the remainder of the proof let q > d/(d − 1) and denote β = q − 1. We

want to show that for p > pc, a.s. a flow f on C∞(Zd, p) with finite (1 + β)–energy

exists. Since β > 1/(d− 1), we may choose α ∈ (1/2, 1) so that βα > 1/(d− 1).

We first verify the hypotheses of Theorem 2.3 for γ = α(d − 1). Fix a path

ψ ∈ Υ1, and let (e0, e1, e2, . . .) be its constituent edges. If e = vw, write e for v

and e for w.

For any path ϕ, thought of as a sequence of edges, denote by ϕl the first l edges

of ϕ and write U(ϕ, ψ, l) := |ϕ ∩ ψ| − |ϕl ∩ ψ|. Let Φ be the process constructed

in Corollary 3.3 and let µ denote the distribution of the random edge sequence

{Φn−1Φn}n≥1. By Lemma 3.1, the process Φ constructed in Corollary 3.3 has

the property that, given the history of the first l steps, the number of subsequent

intersections with a fixed trajectory has an exponential tail:

µ[ϕ : U(ϕ, ψ, l) > n | Fl] ≤ C1θ
n , (11)

where Fl is the σ-field generated by the random variables {1{e∈ϕ} : |e| ≤ l}.

Our next goal is to verify∫
Υ1

p−|ϕ∩ψ|1{ϕ∈el}dµ(ϕ) ≤ Cl−γ , (12)

for p sufficiently close to 1. The left hand side of (12) equals

Eµ
[
p−|ϕl∩ψ|1{ϕ3el}E

µ[p−U (ϕ,ψ,l) | Fl]
]

. (13)
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By (11), this is bounded by

C1

1− p−1θ

∞∑
m=1

p−mµ[ϕ 3 el and |ϕl ∩ ψ| = m]. (14)

Let A := {|ϕl/2 ∩ ψ| ≥ m/2} and B := {|(ϕl \ ϕl/2) ∩ ψ| ≥ m/2}. We have

µ[|ϕl ∩ ψ| = m and ϕ 3 el] ≤ µ [A ∩ {ϕ 3 el}] + µ [B ∩ {ϕ 3 el}] . (15)

By (9), µ[ϕ 3 el | A] ≤ C2l
−γ , and by Lemma 3.1, µ[A] ≤ C1θ

m/2. Thus

µ [A ∩ {ϕ 3 el}] = µ[ϕ 3 el | A] · µ[A] ≤ C3θ
m/2l−γ . (16)

Let ←−Φ be the time–reversal of Φ started at el, and let ←−B be the event that

{←−Φn}n≤l/2 intersects the vertices determined by ψ at least m/2 times. Then

µ[B ∩ {ϕ 3 el}] ≤ P[←−B ∩ {←−Φ 3 0}],

because the number of edge intersections of two paths is bounded by the number

of vertex intersections. By Lemma 3.1, P[←−B ] ≤ C1θ
m/2, and (9) implies that

P[←−Φ 3 0 | ←−B ] < C2l
−γ . Thus

µ[B ∩ {ϕ 3 el}] ≤ P[←−B ∩ {←−Φ 3 0}] = P[←−B ] ·P[←−Φ 3 0 | ←−B ] ≤ C3θ
m/2l−γ .

We conclude that the right-hand side of (15) is bounded by 2C3θ
m/2l−γ . Thus

for p >
√

θ, the sum (14) is bounded by Cl−γ , and (12) follows. Since β >

[α(d − 1)]−1, by Theorem 2.3, P[I(0)] > 0, where I(0) is the event that C(0) is

infinite and supports a flow of finite (1+β)–energy. The event
⋃
v∈Zd I(v) does not

depend on the status of any finite collection of edges, and hence by Kolmogorov’s

zero–one law, has probability one.

This concludes the proof for p near 1; The general case p > pc is reduced to

this by the renormalization argument used in Corollary 2.1 of [2], which relies on

techniques of [7],[1] and [15]; a result of Soardi and Yamasaki [17], that the existence

of a flow of finite q–energy is invariant under rough isometries, is also needed. 2

4 A Refinement

The concept of energy can be further generalized by defining the H–energy of a

flow f as EH(f) :=
∑
e H(|f(e)|), where H : [0,∞)→ [0,∞) is nondecreasing. For
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the rest of this section, we fix d ≥ 3 and compare H–energy of flows on Zd and

on C∞(Zd, p). As we shall see, in both cases the “critical” gauges are obtained by

logarithmic corrections to the power law u 7→ ud/(d−1).

Notation. For any positive decreasing function h, let Hh(u) := ud/(d−1)/h(u) for

u > 0 and Hh(0) = 0. If h(u) = [log(1 + u−1)]α, then we abbreviate Hh by Hα.

We let C, Ci denote positive finite constants whose value is unimportant.

First we consider the case of Zd itself. Let D(l) be the collection of edges at

distance l from the origin. T. Lyons [11] constructed a nonzero flow f∗ on Zd that

satisfies |f∗(e)| ≤ Cl1−d for any edge e ∈ D(l). Thus

∑
e

Hh(|f∗(e)|) ≤ C1

∞∑
l=1

ld−1 (Cl1−d)d/(d−1)

h(Cl1−d)
≤ C2

∑
l

1
lh(l1−d)

�
∫ ∞

1

dx

xh(x−1)
,

where y � z means that the ratio y/z is bounded above and below by positive

constants.

Let f be a unit flow from 0. If Hh is convex, then

|D(l)|−1
∑

e∈D(l)

Hh(|f(e)|) ≥ Hh

 |D(l)|−1
∑

e∈D(l)

|f(e)|

 ,

by Jensen’s inequality. Since f is a unit flow,
∑
e∈D(l) |f(e)| ≥ 1, so∑

e∈D(l)

Hh(|f(e)|) ≥ |D(l)| Hh(|D(l)|−1) ≥ C3

lh(C4l1−d)
.

Thus the Hh–energy of any unit flow f is at least∑
l

∑
e∈D(l)

Hh(|f(e)|)≥
∑
l

C3

lh(C4l1−d)
�
∫ ∞

1

dx

xh(x−1)
.

In particular, Zd supports a flow of finite Hα–energy iff α > 1.

Proposition 4.1 Let h be a decreasing function satisfying
∞∑
j

1
jh(j−1)

<∞ (17)

and h(x2) ≤ κh(x) for all x > 0. Define Gh(u) := Hh2(u)/u, and assume that Gh

is concave. Then for p > pc, there is a.s. a flow f 6= 0 on C∞(Zd, p) with finite

Hh2–energy,i.e., ∑
e∈E(Zd)

|f(e)|d/(d−1)

h(|f(e)|)2
<∞.

In particular, C∞(Zd, p) supports a flow of finite Hα–energy for α > 2.
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We proceed as in the proof of Theorems 1.1 and 2.3, which may be consulted

for notation. Let g(y) = h(y1−d). Convergence of the sum in (17) implies that∑
j(jg(j))−1 <∞, and hence by Theorem 1.4 in Häggström and Mossel [8], there

is an integer–valued process S with PRES(k) ≤ Cg(k)/k; their constructions also

yield the same bound for the time-reversal of S. As in Corollary 3.3, we can

define a process Φ supported on Υ1(0, Zd) such that PREΦ(k) ≤ C(g(k)/k)d−1

and PRE←−Φ (k) ≤ C(g(k)/k)d−1. Let µ be the distribution of the edge sequence ϕ

determined by Φ, and write

fN(e) =
∫

Υ1

p−N I(ϕN)Je(ϕN)dµ(ϕ)

for edges directed away from 0. As before it is enough to show that

Ep

∑
e∈E(Zd)

Hh2(|fN(e)|) = Ep

∑
e∈E(Zd)

Gh(|fN(e)|)|fN(e)| (18)

is bounded uniformly in N . By Fubini’s Theorem, (18) equals∑
e

∫
Υ1

Ep

[
p−N I(ψN)Je(ψN)Gh

(∫
Υ1

p−N I(ϕn \ ψN)Je(ϕN)dµ(ϕ)
)]

dµ(ψ).

By independence of the status of different edges, this can be rewritten as∫
Υ1

∑
e

Ep

[
p−N I(ψN)Je(ψN)

]
Ep

[
Gh

(∫
Υ1

p−N I(ϕn \ ψN )Je(ϕN)dµ(ϕ)
)]

dµ(ψ).

Applying Jensen’s inequality to the second expectation bounds the preceding for-

mula by ∫
Υ1

∑
e

Je(ψ)Gh

(
Ep

[∫
Υ1

p−N I(ϕN \ ψN)Je(ϕN)
])

dµ(ψ). (19)

Since ψ contains one edge e(l) in D(l), (19) equals∫
Υ1

∑
l

Gh

(∫
Υ1

p−|ϕN∩ψN |Je(l)(ϕN)dµ(ϕ)
)

dµ(ψ). (20)

Arguing as in Theorem 1.1, we obtain that∫
Υ1

p−|ϕN∩ψN |Je(l)(ϕN)dµ(ϕ) ≤
(

C1
g(l)
l

)d−1

.

Thus (20) is bounded by

∑
l

Gh

(
C1

{
g(l)
l

}d−1
)

=
∑
l

(C2g(l)/l)

h ((C2g(l)/l)d−1)2 . (21)

12



Since h((l/C2g(l))1−d) = g(C3l/g(l)), (21) is bounded by

∑
l

C2
g(l)
l

1
g(C3l/g(l))2

. (22)

The assumption that h(x2) ≤ κh(x) implies that

∀ y > 0, g(y2) ≤ κg(y). (23)

Therefore g(y)2 ≤ C4y for all y. Consequently,

1
g(C3l/g(l))

≤ κ

g(C5l2/g(l)2)
≤ κ

g(C6l)
,

where the last inequality follows since g is increasing. Thus (22) is bounded by

C7

∑
l

g(l)
lg(C6l)2

�
∑
l

1
lg(l)

,

because (23) implies that g(C6l) � g(l). Hence convergence of (22) follows from

convergence of
∑
l(g(l)l)−1. 2

The preceding proposition has implications for the permissible growth rate of

cutsets on C∞(Zd, p). Let {Πn} be a sequence of disjoint cutsets in the percolation

cluster. Assume that h satisfies the hypothesis of that proposition, and also that

Hh2 is convex. Let f be a unit flow of finite Hh2–energy on C∞(Zd, p). Then

∞ >
∑
e

Hh2(|f(e)|)≥
∑
n

∑
e∈Πn

Hh2(|f(e)|)≥
∑
n

|Πn|−1/(d−1)

h2(|Πn|−1)
.

In particular, taking h(u) = (log(1 + u−1))2+ε shows that∑
n

|Πn|−1/(d−1)(log(|Πn|))−2−ε <∞.

While we know that Zd itself will support flows of finite Hh energy iff h satis-

fies the summability condition (17), Proposition 4.1 only gives a sufficient condi-

tion for finiteness of energy on C∞(Zd, p). The proof above used Theorem 1.4 of

Häggström and Mossel [8], which states that for any increasing function g satisfying∑
j(jg(j))−1 <∞, there is a Z–valued nearest–neighbor process with predictability

profile at k bounded by Cg(k)/k. Hoffman [10] proved that if g does not satisfy

this summability condition, then such a predictability profile cannot be attained

for any nearest–neighbor process on Z. In a previous version of this paper, the

following conjecture was made:
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For d ≥ 3 and p > pc(Zd), any nonzero flow f on the infinite cluster C∞(Zd, p)

must satisfy

EH2(f) =
∑

e:f(e) 6=0

|f(e)|d/(d−1)

log2(1 + |f(e)|−1)
=∞ . (24)

This conjecture motivated E. Mossel and C. Hoffman to find a different construction

of low energy flows on percolation clusters. By combining their new ideas with the

methods of the present paper, they showed in a recent preprint (entitled “Energy

of flows on percolation clusters”) that C∞(Zd, p) can support flows that do not

satisfy (24). Moreover, under a mild regularity hypothesis on h, they proved the

remarkable result that for all d ≥ 3 and p > pc(Zd), the infinite cluster C∞(Zd, p)

a.s. supports a nonzero flow of finite Hh energy iff Zd supports such a flow.
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