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Distance

If 1 and v are two probability distributions on a set €, then the total
variation distance between u and v is

drv(p,v) = max |u(A) — v(A)l

1
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Example. Let Q = {0, 1}, and set

w©0)=1-p, w(1)=p.

Then

1
drv(pp.pig) = 511 =p) = (1 =)l +Ip = gl|= Ip ~ g
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Coupling

A coupling between two probability distributions u and v is a pair of
random variables (X, Y) such that

@ X and Y are defined on a common probability space,
@ X has distribution u, and

@ Y has distribution v.
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Example. Let X, be a random bit with
PXp=D=p, PX,=0)=1-p. (D

We can couple X, and X, as follows: Let U be a uniform random
variable on [0, 1],1.e., forO0 <a < b <1,

Pa<U<b)=b-a.

Define

P = q =

L ifo<Us<p _[1 if0<U<gq
0 ifp<U<1’ 0 ifg<U<1’

The random variable U serves as a common source of randomness for
both X, and X,,.
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Example. Another coupling of 1, with p,: Take X, and X, to be
independent of each other.

Note that in this coupling,
PX, # X)) =p(l-q)+(1-p)g=p+q-2pq.
In the coupling using the common uniform random variable,
PX, # Xy) =Ip —ql.
Assuming (without loss of generality) that p < g,
P(X, # X;) = P(X,, # X;) = 2p(1 —q) > 0

that is,
P(Xl’, * Xé) > P(X, #X,).

David A. Levin, U. Oregon Coupling AMS Short Course



Proposition

If u and v are two probability distributions, then

d ,V) = min PX#7Y).
TV(IJ V) X,Y) coluplings ( * )

Example. For coin-tossing distributions y, and up,

1
drv(ups o) = 5 ((L-p)-A=ql+Ip—gqll =Ip—4ql

so the coupling using the uniform variable is optimal.
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Couplings of Markov Chains

Let P be a transition matrix for a Markov chain. A coupling of a
P-Markov-chain started at x and a P-Markov-chain started at y is a
sequence {(X;, Y)}” , such that

o all variables X,, and Y,, are defined on the same probability space,

@ {X,}is a P-Markov-chain started at x, and

o {Y,}is a P-Markov-chain started at y.
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Example: The lazy random walk on the n-cycle.

o This chain remains at its current position with probability 1/2,
and moves to each of the two adjacent site with probability 1/4.
@ Can couple the chains started from x and y as follows:

o Flip a fair coin to decide if the X-chain moves or the Y-chain
moves,

e Move the selected chain to one of its two neighboring sites,
chosen with equal probability.

@ Both the x-particle and the y-particle are performing lazy simple
random walks on the n-cycle.
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Mixing and Coupling

o Let (X;, Y1);2, be a coupling of a P-chain started from x and a
P-chain started at y.

o Let
T:=min{r>0 : X; =Y;}.

The coupling can always be redefined so that

Xt:thOrZZT,

So, let us assume this.

@ The pair (X;, Y;) (for given 7) is a coupling of P'(x, -) and P'(y, -).
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Mixing and Coupling

@ Since X, has distribution P'(x, -) and Y, has distribution P'(y, -),
using the coupling characterization of total variation distance,

P(r > 1) =P(X; # Y1) 2 drv(P'(x, ), P'(y, ) -
@ Combined with the inequality

drv(P'(x, ), m) < max drv(P'(x,), P'(y,")),

if there is a coupling (X}, ¥;) for every pair of initial states (x, y),
then this shows that

d(f) = max drv(P'(x, ), m) < max drv(P'(x, "), P'(y,"))

<maxPy,(r>1).
X,y
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Mixing for lazy random walk on the n-cycle

@ Use the coupling which selects at each move one of the
“particles” at random; the chosen particle is equally likely to
move clockwise as counter-clockwise.

o The clockwise difference between the particles, {D;}, is a simple
random walk on {0, 1, ..., n}.

@ When D, € {0, n}, the two particles have collided.

o If 7 is the time until a simple random walk on {0, 1, ..., n} hits an
endpoint when started at k, then

n2

EkT=k(n—k)SZ.
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RW on n-cycle, continued

o By Markov’s inequality,

(3]

Er n
P HH—< —.
(T>)_ t 4t

@ Using the coupling inequality,

2
d(f) < maxP(r > 1) < = .
X,y 4t

o Taking ¢ > n? yields d(r) < 1/4, whence

Imix < n*.
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Random Walk on d-dimensional Torus

e Q = (Z/nZ)%. The walk remains at current position with
probability 1/2.
@ Couple two particles as follows:
e Select among the d coordinates at random.
o If the particles agree in the selected coordinate, move the walks
together in this coordinate. Thus both walks together either make
a clockwise move, a counterclockwise move, or remain put.
o If the particles disagree in the chosen coordinate, flip a coin to
decide which walker will move. Move the selected walk either
clockwise or counterclockwise, each with probability 1/2.
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v v’

(1,5,4,7,5,9)  (2,5,8,74,2)

Ay

(1,4,4,7,5,9) (2,4,8,7,4,2)

Y

(1,4,4,7,5,8)  (2,4,8,74.2)
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@ Consider the clockwise difference between the i-th coordinate of
the two particles. It moves at rate 1/d, and when it does move, it
performs simple random walk on {0, 1, ..., n}, with absorption at
0 and n. Thus the expected time to couple the i-th coordinate is
bounded above by dn®/4.

@ Since there are d coordinates, the expected time for all of them to
couple is not more than

2 2,2
n dn
dxd— = ——.
4 4
@ By the coupling theorem,
tmi)( < d n2 .
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RW on hypercube

coin tossed to decide replacement bit

'

0011010011 0011010011
0110001010 01100;1010

T

same coordinate selected for updating

o Consider the lazy random walk on the hypercube {0, 1}". Sites
are neighbors if they differ in exactly one coordinate.

@ To update the two walks, first pick a coordinate at random. The
same coordinate is used for both walks.

@ Toss a coin to determine if the bit at the chosen coordinate is
replaced by a 1 or a 0. The same bit is used for both walks.

@ No matter the initial positions of the two walks, when every
coordinate has been selected, the two walks agree.

@ Reduces to a "coupon collector’s" problem: how many times
must a coordinate be drawn at random before every coordinate is
chosen?
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Coupon collector

o Let Ax(¢) be the event that the k-th coupon has not been collected
by time ¢.

@ Observe

1 t
P(Ax(2)) = (1 - —) <e ',
n
o Consequently,
n n
P(U Ak(t)) < Z e = et
k=1 k=1

@ In other words, if 7 is the time until all coupons have been
collected,

n
P(r > nlogn + cn) = P[UAk(n logn + cn)) <e‘.
k=1
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Returning to the hypercube,

d(nlogn+cn) <P(t > nlogn+cn) < e ‘,

whence
Imix(€) < nlogn + nlog(l/e).
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Contractions

Suppose
o there is a metric p on Q with

px,y) = I{x # y}

e and for any two states x, y, there is a coupling (X, Y) of one step
on the chain started from x with one step started from y satisfying

Evy(oX, Y)) < (1 — a)p(x,y).
Then we obtain a coupling (X, Y,);’ZO such that

Exy(0(X;, Yp) < (1 — @)/ diam(Q) .
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e We have E, ,p(X;, Y;) < diam(Q)e™
@ Thus,

d(t) < max P, (t > 1) = max Py, (p(X;, ¥;) > 1)
X,y X,y

< max Ey ,p(X;, ;) < diam(Q)e™ .
x’y

o If .
‘> log(diam(€2)) N c
a a
then
dit) < e ‘.

@ In other words,

log(diam(£2)) N log(1/e)
S .

a

tmix(e) <
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Path coupling

Suppose that Q has a path-metric: Q is the vertex-set of a graph, and
p(x,y) is the graph distance between x and y.

Theorem (Bubley-Dyer)

If, for all x,y such that p(x,y) = 1 there exists coupling (X1, Y1) of one
step of the chain started from x with one step started from y satisfying

Evyo(X1, Y1) < (1 = a)p(x, y) = (1 - a),

then
log(diam(£2)) N log(1/e)

(04 a

Imix(€) <
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Coloring a graph

Fix a graph on n vertices.

@ A proper g-coloring of a graph is an assignment of the integers
{1,2,...,q} to vertices such that adjacent vertices are assigned
different values.

@ Metropolis: pick a vertex v uniformly at random, and replace the
color at vertex v by a random color, if the color does not create a

conflict.
A A A

Colors: §4, 2,8, 4,8, 6}
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@ Suppose x and y are colorings of a graph differing only at vertex
V0.

@ Update both x and y by selecting the same vertex w, and
choosing the same color proposal, K € {1,2,..., g} to recolor w.

@ Sometimes w will be rejected in x and accepted in y, or vice
versa.

5 permitted 5 not permitted
1
1

@ Situation occurs only if w is a neighbor of v and for 2 out of the ¢
possible color proposals.
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5 permitted

@ Increase the number of differing vertices with probability

2 2A
P(select a neighbor of vp) X — < —,
q

ng

where A is the maximal degree of the graph.
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Colors: §4, 278, 4,8, 6}
@ Decrease the number of differing vertices with probability
qg-A
P

1
P(select vg) x P(pick a non-conflicting color) > — X
n

where A is the maximal degree of the graph.
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The expected distance after one step is:

-A 2A 1-3A/q
E.p(X, ¥ =1-1"24=2- 220
nq nq n

If g > 3A, then we have
c(g,A)
Bup(Xi, Y1) < 1- =22
Applying the path-coupling theorem,

1 1
Imix(€) < Enlogn + anog(l/e).
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Hardcore model

Fix a graph on n vertices.

@ A hardcore configuration is a placement of particles on vertices
of the graph so that no two particles are adjacent.
Encode this by o : vertices — {0, 1},

1 if v is occupied,
o(v) = )
0 otherwise.

@
-
®
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o For every hardcore configuration o, let

Q2w ov)

ma(o) = W

@ Want to construct a Markov chain with stationary distribution 7:
Glauber dynamics.
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The rule for updating a configuration o is as follows:
@ Draw a vertex w uniformly at random.
o Flip a coin which land heads with probability ﬁ
o If tails, erase any particle at w.
e If heads, place a particle at w if possible.

This produces a Markov chain with stationary distribution 7.
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Suppose x and y are two hardcore configurations differing at a single
site, say vo. Thus, y has a particle at vg, while x does not have a
particle at vg.

Can place aparticle Cannot place particle
@ Pick the same vertex to update in x and y, and use the same coin.

@ A new disagreement is introduced in the case when

e aneighbor w of vy is selected,
e vy is the only neighbor of w which is occupied, and
o the coin is heads.

@ Thus

A A
P(introduce another disagreement) < —
nl+Aa
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If vy is selected, the disagreement is reduced. We have

B, o(X1. Y1) < 1 1+A A _1 1[1-AA-1)
P AL 1) = n nl+a n 1+A4 '

If 2> (A—-1)"!, then

c(4
Eeyo(X1, Y1) <1 - %

By the path-coupling theorem,
n

D [logn +log(1/€)] .

Imix(€) <
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