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Distance

If µ and ν are two probability distributions on a set Ω, then the total
variation distance between µ and ν is

dTV(µ, ν) := max
A⊂Ω
|µ(A) − ν(A)|

=
1
2

∑
x∈Ω

|µ(x) − ν(x)| .

Example. Let Ω = {0, 1}, and set

µp(0) = 1 − p, µp(1) = p .

Then

dTV(µp, µq) =
1
2

[
|(1 − p) − (1 − q)| + |p − q|

]
= |p − q| .
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Coupling

A coupling between two probability distributions µ and ν is a pair of
random variables (X,Y) such that

X and Y are defined on a common probability space,

X has distribution µ, and

Y has distribution ν.
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Example. Let Xp be a random bit with

P(Xp = 1) = p, P(Xp = 0) = 1 − p . (1)

We can couple Xp and Xq as follows: Let U be a uniform random
variable on [0, 1], i.e., for 0 ≤ a < b ≤ 1,

P(a < U ≤ b) = b − a .

Define

Xp =

1 if 0 < U ≤ p
0 if p < U ≤ 1

, Xq =

1 if 0 < U ≤ q
0 if q < U ≤ 1

.

The random variable U serves as a common source of randomness for
both Xp and Xq.
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Example. Another coupling of µp with µq: Take X′p and X′q to be
independent of each other.

Note that in this coupling,

P(X′p , X′q) = p(1 − q) + (1 − p)q = p + q − 2pq .

In the coupling using the common uniform random variable,

P(Xp , Xq) = |p − q| .

Assuming (without loss of generality) that p < q,

P(X′p , X′q) − P(Xp , Xq) = 2p(1 − q) ≥ 0

that is,
P(X′p , X′q) ≥ P(Xp , Xq) .
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Proposition
If µ and ν are two probability distributions, then

dTV(µ, ν) = min
(X,Y) couplings

P(X , Y) .

Example. For coin-tossing distributions µq and µp,

dTV(µp, µq) =
1
2

[
|(1 − p) − (1 − q)| + |p − q|

]
= |p − q|,

so the coupling using the uniform variable is optimal.
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Couplings of Markov Chains

Let P be a transition matrix for a Markov chain. A coupling of a
P-Markov-chain started at x and a P-Markov-chain started at y is a
sequence {(Xn,Yn)}∞n=0 such that

all variables Xn and Yn are defined on the same probability space,

{Xn} is a P-Markov-chain started at x, and

{Yn} is a P-Markov-chain started at y.

David A. Levin, U. Oregon Coupling AMS Short Course



Example: The lazy random walk on the n-cycle.

This chain remains at its current position with probability 1/2,
and moves to each of the two adjacent site with probability 1/4.
Can couple the chains started from x and y as follows:

Flip a fair coin to decide if the X-chain moves or the Y-chain
moves,
Move the selected chain to one of its two neighboring sites,
chosen with equal probability.

Both the x-particle and the y-particle are performing lazy simple
random walks on the n-cycle.
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Mixing and Coupling

Let (Xt,Yt)∞t=0 be a coupling of a P-chain started from x and a
P-chain started at y.

Let
τ := min{t ≥ 0 : Xt = Yt} .

The coupling can always be redefined so that

Xt = Yt for t ≥ τ,

So, let us assume this.
4

t

Yt
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X

The pair (Xt,Yt) (for given t) is a coupling of Pt(x, ·) and Pt(y, ·).
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Mixing and Coupling

Since Xt has distribution Pt(x, ·) and Yt has distribution Pt(y, ·),
using the coupling characterization of total variation distance,

P(τ > t) = P(Xt , Yt) ≥ dTV(Pt(x, ·),Pt(y, ·)) .

Combined with the inequality

dTV(Pt(x, ·), π) ≤ max
y∈Ω

dTV(Pt(x, ·),Pt(y, ·)) ,

if there is a coupling (Xt,Yt) for every pair of initial states (x, y),
then this shows that

d(t) = max
x∈Ω

dTV(Pt(x, ·), π) ≤ max
x,y

dTV(Pt(x, ·),Pt(y, ·))

≤ max
x,y
Px,y(τ > t) .
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Mixing for lazy random walk on the n-cycle

Use the coupling which selects at each move one of the
“particles” at random; the chosen particle is equally likely to
move clockwise as counter-clockwise.

The clockwise difference between the particles, {Dt}, is a simple
random walk on {0, 1, . . . , n}.

When Dt ∈ {0, n}, the two particles have collided.

If τ is the time until a simple random walk on {0, 1, . . . , n} hits an
endpoint when started at k, then

Ekτ = k(n − k) ≤
n2

4
.
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RW on n-cycle, continued

By Markov’s inequality,

P(τ > t) ≤
Eτ

t
≤

n2

4t
.

Using the coupling inequality,

d(t) ≤ max
x,y
P(τ > t) ≤

n2

4t
.

Taking t ≥ n2 yields d(t) ≤ 1/4, whence

tmix ≤ n2 .
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Random Walk on d-dimensional Torus

Ω = (Z/nZ)d. The walk remains at current position with
probability 1/2.
Couple two particles as follows:

Select among the d coordinates at random.
If the particles agree in the selected coordinate, move the walks
together in this coordinate. Thus both walks together either make
a clockwise move, a counterclockwise move, or remain put.
If the particles disagree in the chosen coordinate, flip a coin to
decide which walker will move. Move the selected walk either
clockwise or counterclockwise, each with probability 1/2.
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Consider the clockwise difference between the i-th coordinate of
the two particles. It moves at rate 1/d, and when it does move, it
performs simple random walk on {0, 1, . . . , n}, with absorption at
0 and n. Thus the expected time to couple the i-th coordinate is
bounded above by dn2/4.

Since there are d coordinates, the expected time for all of them to
couple is not more than

d × d
n2

4
=

d2n2

4
.

By the coupling theorem,

tmix ≤ d2n2 .
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RW on hypercube
coin tossed to decide replacement bit

0011010011

same coordinate selected for updating

0110001010 0110011010
0011010011

1

Consider the lazy random walk on the hypercube {0, 1}n. Sites
are neighbors if they differ in exactly one coordinate.
To update the two walks, first pick a coordinate at random. The
same coordinate is used for both walks.
Toss a coin to determine if the bit at the chosen coordinate is
replaced by a 1 or a 0. The same bit is used for both walks.
No matter the initial positions of the two walks, when every
coordinate has been selected, the two walks agree.
Reduces to a "coupon collector’s" problem: how many times
must a coordinate be drawn at random before every coordinate is
chosen?
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Coupon collector

Let Ak(t) be the event that the k-th coupon has not been collected
by time t.

Observe

P(Ak(t)) =

(
1 −

1
n

)t

≤ e−t/n .

Consequently,

P
( n⋃

k=1

Ak(t)
)
≤

n∑
k=1

e−t/n = ne−t/n .

In other words, if τ is the time until all coupons have been
collected,

P(τ > n log n + cn) = P

 n⋃
k=1

Ak(n log n + cn)

 ≤ e−c .
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Returning to the hypercube,

d(n log n + cn) ≤ P(τ > n log n + cn) ≤ e−c,

whence
tmix(ε) ≤ n log n + n log(1/ε) .
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Contractions

Suppose

there is a metric ρ on Ω with

ρ(x, y) ≥ 1{x , y}

and for any two states x, y, there is a coupling (X,Y) of one step
on the chain started from x with one step started from y satisfying

Ex,y(ρ(X,Y)) ≤ (1 − α)ρ(x, y) .

Then we obtain a coupling (Xt,Yt)∞t=0 such that

Ex,y(ρ(Xt,Yt)) ≤ (1 − α)tdiam(Ω) .

David A. Levin, U. Oregon Coupling AMS Short Course



We have Ex,yρ(Xt,Yt) ≤ diam(Ω)e−αt

Thus,

d(t) ≤ max
x,y
Px,y(τ > t) = max

x,y
Px,y(ρ(Xt,Yt) ≥ 1)

≤ max
x,y
Ex,yρ(Xt,Yt) ≤ diam(Ω)e−αt .

If
t ≥

log(diam(Ω))
α

+
c
α

then
d(t) ≤ e−c .

In other words,

tmix(ε) ≤
log(diam(Ω))

α
+

log(1/ε)
α

.
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Path coupling

Suppose that Ω has a path-metric: Ω is the vertex-set of a graph, and
ρ(x, y) is the graph distance between x and y.

Theorem (Bubley-Dyer)
If, for all x, y such that ρ(x, y) = 1 there exists coupling (X1,Y1) of one
step of the chain started from x with one step started from y satisfying

Ex,yρ(X1,Y1) ≤ (1 − α)ρ(x, y) = (1 − α),

then
tmix(ε) ≤

log(diam(Ω))
α

+
log(1/ε)

α
.
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Coloring a graph

Fix a graph on n vertices.

A proper q-coloring of a graph is an assignment of the integers
{1, 2, . . . , q} to vertices such that adjacent vertices are assigned
different values.

Metropolis: pick a vertex v uniformly at random, and replace the
color at vertex v by a random color, if the color does not create a
conflict.

Colors: {1, 2, 3, 4, 5, 6}

w

2

1

1

6

5

5

5

3
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Suppose x and y are colorings of a graph differing only at vertex
v0.

Update both x and y by selecting the same vertex w, and
choosing the same color proposal, K ∈ {1, 2, . . . , q} to recolor w.

Sometimes w will be rejected in x and accepted in y, or vice
versa.

6

0
w v

1

4

0
w v

1

4

2 533

5 permitted 5 not permitted

6

Situation occurs only if w is a neighbor of v and for 2 out of the q
possible color proposals.
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6
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5 permitted 5 not permitted

6

Increase the number of differing vertices with probability

P(select a neighbor of v0) ×
2
q
≤

2∆

nq
,

where ∆ is the maximal degree of the graph.
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Colors: {1, 2, 3, 4, 5, 6}

w

2

1

1

6

5

5

5

3

Decrease the number of differing vertices with probability

P(select v0) × P(pick a non-conflicting color) ≥
1
n
×

q − ∆

q
.

where ∆ is the maximal degree of the graph.
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The expected distance after one step is:

Ex,yρ(X1,Y1) = 1 −
q − ∆

nq
+

2∆

nq
= 1 −

1 − 3∆/q
n

.

If q > 3∆, then we have

Ex,yρ(X1,Y1) ≤ 1 −
c(q,∆)

n
.

Applying the path-coupling theorem,

tmix(ε) ≤
1
c

n log n +
1
c

n log(1/ε) .
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Hardcore model

Fix a graph on n vertices.
A hardcore configuration is a placement of particles on vertices
of the graph so that no two particles are adjacent.
Encode this by σ : vertices→ {0, 1},

σ(v) =

1 if v is occupied,
0 otherwise .
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For every hardcore configuration σ, let

πλ(σ) =
λ
∑

v σ(v)

Z(λ)

Want to construct a Markov chain with stationary distribution π:
Glauber dynamics.
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The rule for updating a configuration σ is as follows:

Draw a vertex w uniformly at random.

Flip a coin which land heads with probability λ
1+λ .

If tails, erase any particle at w.

If heads, place a particle at w if possible.

This produces a Markov chain with stationary distribution πλ.
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Suppose x and y are two hardcore configurations differing at a single
site, say v0. Thus, y has a particle at v0, while x does not have a
particle at v0.

Cannot place particle

0w v0w

Can place a particle

v

Pick the same vertex to update in x and y, and use the same coin.
A new disagreement is introduced in the case when

a neighbor w of v0 is selected,
v0 is the only neighbor of w which is occupied, and
the coin is heads.

Thus

P(introduce another disagreement) ≤
∆

n
λ

1 + λ
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If v0 is selected, the disagreement is reduced. We have

Ex,yρ(X1,Y1) ≤ 1 −
1
n

+
∆

n
λ

1 + λ
= 1 −

1
n

[
1 − λ(∆ − 1)

1 + λ

]
.

If λ > (∆ − 1)−1, then

Ex,yρ(X1,Y1) ≤ 1 −
c(λ)

n

By the path-coupling theorem,

tmix(ε) ≤
n

c(λ)
[
log n + log(1/ε)

]
.
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