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Abstract. We construct an explicit isomorphism between blocks of cy-
clotomic Hecke algebras and (sign-modified) cyclotomic Khovanov-Lauda
algebras in type A. These isomorphisms connect the categorification con-
jecture of Khovanov and Lauda to Ariki’s categorification theorem. The
Khovanov-Lauda algebras are naturally graded, which allows us to exhibit
a non-trivial Z-grading on blocks of cyclotomic Hecke algebras, including
symmetric groups in positive characteristic.

1. Introduction

In [KL1, KL2], Khovanov and Lauda have introduced a remarkable new
family of algebras and formulated a categorification conjecture predicting
a tight connection between the representation theory of these algebras and
Lusztig’s geometric construction of canonical bases [L2]. This paper arose
as a first attempt to understand the cyclotomic Khovanov-Lauda algebras
in type A by relating them to cyclotomic Hecke algebras and their rational
degenerations.

Let F be a fixed ground field and q ∈ F×. Let e be the smallest positive
integer such that 1+q+ · · ·+qe−1 = 0, setting e := 0 if no such integer exists.
The main result of the article gives an explicit isomorphism between blocks
of cyclotomic Hecke algebras associated to the complex reflection groups of
type G(l, 1, d) if q 6= 1, or the corresponding degenerate cyclotomic Hecke
algebras if q = 1, and a sign-modified version of cyclotomic Khovanov-Lauda
algebras of type A∞ if e = 0 or type A(1)

e−1 if e > 0.
For F of characteristic zero, this isomorphism connects the categorifica-

tion conjecture of Khovanov and Lauda [KL1, §3.4] in type A to Ariki’s
categorification theorem [A] and its degenerate analogue [BK1]. It doesn’t
immediately prove the Khovanov-Lauda conjecture in any of these cases, be-
cause the conjecture takes into account a natural Z-grading on cyclotomic
Khovanov-Lauda algebras which is hard to identify on Hecke algebras.

To formulate the main results precisely, let Γ be the quiver with vertex set
I := Z/eZ, and a directed edge from i to j if j = i+ 1. Thus Γ is the quiver
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of type A∞ if e = 0 or A(1)
e−1 if e > 0, with a specific orientation:

A∞ : · · · −→ −2 −→ −1 −→ 0 −→ 1 −→ 2 −→ · · ·

A(1)
e−1 : 0 � 1 ↗ ↘

2 ←− 1

0 → 1
↑ ↓
3 ← 2

↗ ↘
4 1
0 $
3← 2

0
0

· · ·

The corresponding (symmetric) Cartan matrix (ai,j)i,j∈I is defined by

ai,j :=


2 if i = j,
0 if i /− j,
−1 if i→ j or i← j,
−2 if i � j.

Here the symbols i→ j and j ← i both indicate that j = i+1 6= i− 1, i � j
indicates that j = i+ 1 = i− 1, and i /− j indicates that j 6= i, i± 1.

To the index set I, we associate two lattices

P :=
⊕
i∈I

ZΛi, Q :=
⊕
i∈I

Zαi, (1.1)

and let (., .) : P × Q → Z be the bilinear pairing defined by (Λi, αj) := δi,j .
Let P+ (resp. Q+) denote the subset of P (resp. Q) consisting of the elements
that have non-negative coefficients when written in terms of the given basis.
For α ∈ Q+ and Λ ∈ P+ define the height of α and the level of Λ as follows:

ht(α) :=
∑
i∈I

(Λi, α), l(Λ) :=
∑
i∈I

(Λ, αi).

Let Sd be the symmetric group with basic transpositions s1, . . . , sd−1. It acts
on the left on the set of d-tuples i = (i1, . . . , id) ∈ Id by place permutation.
The Sd-orbits on Id are the sets

Iα := {i = (i1, . . . , id) ∈ Id | αi1 + · · ·+ αid = α}
parametrized by all α ∈ Q+ of height d.

Let Hd denote the affine Hecke algebra associated to Sd if q 6= 1, or its
rational degeneration if q = 1. Thus, Hd is the F -algebra defined by gen-
erators T1, . . . , Td−1, X

±1
1 , . . . , X±1

d and relations (4.2)–(4.5) if q 6= 1, or by
generators s1, . . . , sd−1, x1, . . . , xd and relations (3.2)–(3.5) if q = 1. From
now on, fix Λ ∈ P+ of level l and let HΛ

d be the corresponding cyclotomic
quotient of Hd. Thus,

HΛ
d :=

 Hd

/〈 ∏
i∈I(X1 − qi)(Λ,αi)

〉
if q 6= 1,

Hd

/〈 ∏
i∈I(x1 − i)(Λ,αi)

〉
if q = 1.

(1.2)

We refer to this algebra simply as the cyclotomic Hecke algebra if q 6= 1 and
the degenerate cyclotomic Hecke algebra if q = 1.

There is a natural system {e(i)|i ∈ Id} of mutually orthogonal idempotents
in HΛ

d , some of which could be zero; see §4.1 or §3.1 for more details in the
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two cases. In addition to Λ ∈ P+, fix also α ∈ Q+ of height d. Let

eα :=
∑
i∈Iα

e(i) ∈ HΛ
d . (1.3)

As a consequence of [LM] or [B, Theorem 1], eα is either zero or it is a
primitive central idempotent in HΛ

d . Hence the algebra

HΛ
α := eαH

Λ
d (1.4)

is either zero or it is a single block of the algebra HΛ
d . For h ∈ HΛ

d , we
still write h for the projection eαh ∈ HΛ

α . So HΛ
α again has generators

T1, . . . , Td−1, X±1
1 , . . . , X±1

d if q 6= 1, or s1, . . . , sd−1, x1, . . . , xd if q = 1. How-
ever, these generators are not well-suited for defining interesting gradings. So,
inspired by [KL1, KL2], we introduce an explicit new set of generators

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (1.5)

of HΛ
α , which we call the Khovanov-Lauda generators; see (4.21) and (4.38)

or (3.21) and (3.32) in the two cases.

Main Theorem. The algebra HΛ
α is generated by the elements (1.5) subject

only to the following relations for i, j ∈ Iα and all admissible r, s:

y
(Λ,αi1

)
1 e(i) = 0; (1.6)

e(i)e(j) = δi,je(i);
∑

i∈Iαe(i) = 1; (1.7)

yre(i) = e(i)yr; ψre(i) = e(sr·i)ψr; (1.8)

yrys = ysyr; (1.9)

ψrys = ysψr if s 6= r, r + 1; (1.10)

ψrψs = ψsψr if |r − s| > 1; (1.11)

ψryr+1e(i) =
{

(yrψr + 1)e(i) if ir = ir+1,
yrψre(i) if ir 6= ir+1;

(1.12)

yr+1ψre(i) =
{

(ψryr + 1)e(i) if ir = ir+1,
ψryre(i) if ir 6= ir+1;

(1.13)

ψ2
re(i) =


0 if ir = ir+1,
e(i) if ir /− ir+1,
(yr+1 − yr)e(i) if ir → ir+1,
(yr − yr+1)e(i) if ir ← ir+1,
(yr+1 − yr)(yr − yr+1)e(i) if ir � ir+1;

(1.14)

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir → ir+1,
(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir ← ir+1,(
ψr+1ψrψr+1 − 2yr+1

+yr + yr+2

)
e(i) if ir+2 = ir � ir+1,

ψr+1ψrψr+1e(i) otherwise.

(1.15)

A striking feature of the above theorem is that the relations depend only
on the quiver Γ (hence e) but do not involve the parameter q.
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Corollary 1. There is a unique Z-grading on HΛ
α such that e(i) is of degree

0, yr is of degree 2, and ψre(i) is of degree −air,ir+1 for each r and i ∈ Iα.

Corollary 2. Suppose that F is of characteristic zero. Then the algebra
HΛ

d for q not a root of unity is isomorphic to the algebra HΛ
d for q = 1. In

other words, the cyclotomic Hecke algebra for generic q is isomorphic to its
rational degeneration.

The presentation for the algebra HΛ
α in our Main Theorem is a sign-

modified version of the presentation for the cyclotomic Khovanov-Lauda al-
gebra associated to the quiver Γ and the weight Λ as defined in [KL1, §3.4];
this sign-modified version was introduced already in [KL2] (except in the case
e = 2). Thus the theorem shows that blocks of cyclotomic Hecke algebras
are cyclotomic Khovanov-Lauda algebras.

If Λ is of level one, HΛ
d is isomorphic to the group algebra FSd of the sym-

metric group if q = 1 or the associated Iwahori-Hecke algebra for arbitrary q.
In these cases, our Main Theorem for e = 0 is essentially Young’s semi-normal
form (see §5), while for e > 0 Corollary 1 yields interesting Z-gradings on
blocks of symmetric groups and the associated Iwahori-Hecke algebras. The
existence of such gradings was predicted already by Rouquier [R1, Remark
3.11] and Turner [T]. This means that it is now possible to study graded rep-
resentation theory of these algebras; see [BKW, BK2] for some more recent
developments in this direction related to graded Specht modules.

Corollary 2 can be viewed as an extension of Lusztig’s results from [L1]
in type A. As an application, it is easy to see that Ariki’s categorification
theorem from [A] when q is not a root of unity is simply equivalent to the
degenerate analogue proved (in a quite different way) in [BK1]. Our Main
Theorem also makes possible the comparison of blocks of cyclotomic Hecke
algebras at a primitive complex pth root of unity with corresponding blocks
of degenerate cyclotomic Hecke algebras over fields of characteristic p; see §6
for further discussion.

Before we started work on this article (and before [KL1] became available),
the first author jointly with Stroppel made calculations as part of [BS] that
are equivalent to the Main Theorem for Λ of level two, q = 1 and e = 0. In
that case, the results of [BS] show that the algebra HΛ

α is Morita equivalent to
(a slightly generalised version of) Khovanov’s diagram algebra, and moreover
the grading on HΛ

α is induced by the Koszul grading of its quasi-hereditary
cover (which is a certain parabolic category O). The latter statement should
be true more generally.

Since completing this work, we have learnt from Rouquier that he has
independently discovered essentially the same family of algebras as Khovanov
and Lauda at the affine level; he refers to them as quiver Hecke algebras. In
particular, in [R2, §3.2.6], Rouquier has proved an analogue of our Main
Theorem for the affine algebras (suitably localized).

The rest of the article is taken up with the proof of the Main Theorem.
The strategy is clear: let RΛ

α be the algebra defined by generators and rela-
tions as in the Main Theorem. Then we need to construct mutually inverse
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homomorphisms ρ : RΛ
α → HΛ

α and σ : HΛ
α → RΛ

α by explicitly checking re-
lations in both directions. However, there are many subtle differences in the
two cases q 6= 1 and q = 1, so we carry out the two sets of calculations inde-
pendently, treating the easier degenerate case in §3 then the non-degenerate
case in §4. In §2 we make a few definitions that are common to both cases.
Finally in §5 and §6 we discuss briefly the relation to Young’s semi-normal
form and make some observations about base change.

Acknowledgements. We thank Anton Cox for pointing out a gap in an earlier
version, and Meinolf Geck for drawing our attention to the fact that our
results could be used to prove a conjecture of Mathas.

2. Preliminaries

2.1. Divided difference operators. The symmetric group Sd acts on the
left on the polynomial ring F [y1, . . . , yd] and on the ring of power series
F [[y1, . . . , yd]] by permuting variables; we often denote w·f by wf for w ∈ Sd

and f ∈ F [[y1, . . . , yd]]. For any f ∈ F [y1, . . . , yd] and 1 ≤ r < d, the divided
difference operator ∂r is defined by

∂r(f) :=
srf − f
yr − yr+1

(2.1)

It extends to F [[y1, . . . , yd]] by continuity. We will need the product rule for
divided difference operators: for f, g ∈ F [[y1, . . . , yd]] we have that

∂r(fg) = ∂r(f)g + srf∂r(g) = ∂r(f)srg + f∂r(g). (2.2)

Note as a matter of notation here that srfg means (srf)g not sr(fg).
We will often be given an F -algebra A and commuting nilpotent elements

y1, . . . , yd ∈ A. There is then an algebra homomorphism

F [[y1, . . . , yd]]→ A (2.3)

mapping each yr to the element of A with the same name. Given also power
series f, g ∈ F [[y1, . . . , yd]], this homomorphism allows us to interpret ex-
pressions like srf , ∂r(g) and f/g as elements of A; we mean the element
of A obtained by first evaluating the given expression as a power series in
F [[y1, . . . , yd]] and only then taking the image of the result under the homo-
morphism (2.3). We stress that f and g must be given specifically as power
series (not merely as elements of A) for such expressions to make sense.

2.2. Cyclotomic Khovanov-Lauda algebras. For the remainder of the
article, we fix notation exactly as in the statement of the Main Theorem. In
particular, Γ is the quiver with vertex set I = Z/eZ defined at the beginning
of the introduction and P,Q are as in (1.1). The (sign-modified) cyclotomic
Khovanov-Lauda algebra of type Γ associated to Λ ∈ P+ of level l and α ∈ Q+

of height d is the F -algebra RΛ
α defined by the generators

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (2.4)

subject to the relations (1.6)–(1.15) above.
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In view of the first lemma below, we are in the situation of (2.3), so have
a homomorphism

F [[y1, . . . , yd]]→ RΛ
α (2.5)

mapping y1, . . . , yd to the elements of RΛ
α with the same name. By (1.10),

(1.12) and (1.13), the following useful identity holds in RΛ
α :

fψre(i) =
{
ψr

srfe(i) + ∂r(f)e(i) if ir = ir+1,
ψr

srfe(i) otherwise, (2.6)

for any 1 ≤ r < d, i ∈ Iα and f ∈ F [[y1, . . . , yd]].

Lemma 2.1. The elements yr ∈ RΛ
α are nilpotent for all 1 ≤ r ≤ d.

Proof. It suffices to prove that each yre(i) is nilpotent. Apply induction
on r. The base case r = 1 follows as (y1e(i))(Λ,αi1

) = 0 in RΛ
α . For the

induction step, we assume that yr is nilpotent for some 1 ≤ r < d and prove
that yr+1e(i) is too. We consider two cases.

If ir = ir+1, set τr := ψr(yr − yr+1) + 1. Using the relations (1.12)–(1.13)
to commute y’s to the right and noting ψ2

re(i) = 0 by (1.14), one checks that
τ2
r e(i) = e(i) and τryrτre(i) = yr+1e(i). Hence yn

r+1e(i) = τry
n
r τre(i), and

the nilpotency of yr+1e(i) follows from that of yr.
If ir 6= ir+1, then multiplying the equation yrψre(i) = ψryr+1e(i) on the

left by ψr and using (1.14) gives that ψryrψre(i) = ±(yr−yr+1)kyr+1e(i) for
some k ∈ {0, 1, 2} and some choice of sign. Hence

yk+1
r+1e(i) = yrfe(i)± ψryrψre(i)

for some (possibly zero) f ∈ F [yr, yr+1] and some sign. As yr is nilpotent,
we deduce using (1.14) that ψryrψre(i) is nilpotent too, and of course yrf is
nilpotent as well. Observing finally that yrfe(i) and ψryrψre(i) commute,
this implies the nilpotency of yk+1

r+1e(i). Hence yr+1e(i) is nilpotent too.

Corollary 2.2. RΛ
α is a finite dimensional algebra.

Proof. For each w ∈ Sd, fix a reduced expression w = si1 · · · sin and then
define ψw := ψi1 · · ·ψin . By an easy application of the relations (1.7)–(1.15)
one checks as in [KL1, §2.3] that RΛ

α is spanned by the elements

{ψwy
n1
1 · · · y

nd
d e(i) | w ∈ Sd, i ∈ Iα, n1, . . . , nd ≥ 0}. (2.7)

It remains to observe by Lemma 2.1 that all but finitely many of these ele-
ments are zero.

We record the following conjecture related to Lemma 2.1; this has recently
been proved by Lauda [L].

Conjecture 2.3. If e = 0 and Λ is of level l then yl
r = 0 in RΛ

α for any
1 ≤ r ≤ d.
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3. The degenerate case

3.1. Blocks of degenerate cyclotomic Hecke algebras. For d ≥ 0, let
Hd be the degenerate affine Hecke algebra, working always over the fixed field
F of characteristic e ≥ 0. So Hd has generators

{x1, . . . , xd} ∪ {s1, . . . , sd−1} (3.1)

subject to the following relations for all admissible indices:

xrxs = xsxr; (3.2)

srxr+1 = xrsr + 1, srxs = xssr if s 6= r, r + 1; (3.3)

s2r = 1; (3.4)

srsr+1sr = sr+1srsr+1, srst = stsr if |r − t| > 1. (3.5)

Given Λ ∈ P+ of level l, let HΛ
d be the cyclotomic quotient from (1.2). The

elements xm1
1 · · ·x

md
d w for 0 ≤ m1, . . . ,md < l and w ∈ Sd give a basis for

HΛ
d ; see e.g. [K1, Theorem 7.5.6]. Hence:

dimHΛ
d = ldd!. (3.6)

For example, if l = 1 then HΛ
d
∼= FSd.

Let M be a finite dimensional HΛ
d -module. By [K1, Lemma 7.1.2], the

eigenvalues of each xr on M belong to I ⊆ F . So M decomposes as the
direct sum M =

⊕
i∈Id Mi of its weight spaces

Mi := {v ∈M | (xr − ir)Nv = 0 for all r = 1, . . . , d and N � 0}.
Note also by [K1, p.12] that

sr(Mi) ⊆Mi +Msr·i (3.7)

for each 1 ≤ r < d. Considering the weight space decomposition of the regular
module, we deduce that there is a system {e(i)|i ∈ Id} of mutually orthogonal
idempotents in HΛ

d such that e(i)M = Mi for each finite dimensional module
M ; see also [J, Mu] for more a explicit description of e(i) in the level one case.
In fact, each e(i) lies in the commutative subalgebra generated by x1, . . . , xd.
All but finitely many of the e(i)’s are zero, and their sum is the identity
element in HΛ

d . (Although not needed here, we remark also that e(i) 6= 0
if and only if there exists a standard tableau of residue sequence i in the
sense of [BKW, §3.2]; this follows from considerations involving the formal
characters of Specht modules.)

By [B, Theorem 1], the center Z(HΛ
d ) consists of all symmetric polynomials

in x1, . . . , xd. So, given also α ∈ Q+ of height d, the idempotent eα from (1.3)
is either zero or it is a primitive central idempotent in HΛ

d . This means that
the algebra HΛ

α := eαH
Λ
d from (1.4) is either zero or it is a block of HΛ

d . The
subalgebra of HΛ

α generated by (the images of) x1, . . . , xd will be denoted
PolΛα . Note PolΛαe(i) is an algebra with identity element e(i). If x ∈ PolΛα
is such that xe(i) is a unit in PolΛαe(i), we write x−1e(i) for its inverse in
PolΛαe(i) (interpreted as 0 if e(i) = 0). For example, set

xr,s := xr − xs, (3.8)

and let i ∈ Iα be such that ir 6= is. Then x−1
r,se(i) makes sense.
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3.2. Intertwining elements ϕr. We now introduce certain remarkable el-
ements of HΛ

α called intertwining elements: let

ϕr := sr +
∑
i∈Iα

ir 6=ir+1

x−1
r,r+1e(i) +

∑
i∈Iα

ir=ir+1

e(i) (3.9)

for 1 ≤ r < d. This is a slightly modified version of the usual intertwining
element as in [Ro, §2] or [K1, (3.19)]:

θr := srxr,r+1 + 1. (3.10)

The elements θr have the following nice properties [K1, §3.8] (cf. [L1, Propo-
sition 5.2]):

θ2
r = 1− x2

r,r+1; (3.11)

θrxr+1 = xrθr, xr+1θr = θrxr, θrxs = xsθr if s 6= r, r + 1; (3.12)

θrθr+1θr = θr+1θrθr+1, θrθs = θsθr if |r − s| > 1. (3.13)

The elements ϕr inherit similar properties:

Lemma 3.1. The intertwining elements satisfy the following relations for
all i ∈ Iα and admissible r, s:

ϕre(i) = e(sr·i)ϕr; (3.14)

ϕrxs = xsϕr if s 6= r, r + 1; (3.15)

ϕrϕs = ϕsϕr if |r − s| > 1; (3.16)

ϕrxr+1e(i) =

{
xrϕre(i) if ir 6= ir+1,

(xrϕr + 1− xr,r+1)e(i) if ir = ir+1;
(3.17)

xr+1ϕre(i) =

{
ϕrxre(i) if ir 6= ir+1,

(ϕrxr + 1− xr,r+1)e(i) if ir = ir+1;
(3.18)

ϕ2
re(i) =

{
(1− x−2

r,r+1)e(i) if ir 6= ir+1,

2ϕre(i) if ir = ir+1;
(3.19)

ϕrϕr+1ϕre(i) =


(ϕr+1ϕrϕr+1 + ϕr − ϕr+1)e(i) if ir = ir+2 = ir+1,

(ϕr+1ϕrϕr+1 + zr)e(i) if ir = ir+2 6= ir+1,

ϕr+1ϕrϕr+1e(i) otherwise,
(3.20)

where zr denotes (x−1
r,r+1 − x

−1
r+1,r+2)(x

−1
r,r+1x

−1
r+1,r+2 − x

−1
r,r+1 − x

−1
r+1,r+2).

Proof. To see (3.14), it suffices to prove that its left hand side and right
hand side act in the same way on Mj for any finite dimensional HΛ

α -module
M and j ∈ Iα. If jr = jr+1 then ϕrMj ⊆ Msr·j by (3.7). If jr 6= jr+1 then
ϕre(j) = θrx

−1
r,r+1e(j), hence ϕrMj = θrMj which is contained in Msr·j by

(3.12). Hence in any case e(sr·i)ϕr maps Mj to zero unless j = i, and it
maps v ∈ Mi to ϕrv. This is the same as the action of ϕre(i), hence (3.14)
is checked. The properties (3.15) and (3.16) are clear, and the properties
(3.17) and (3.18) come easily from (3.12). For (3.19), if ir = ir+1 then we
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have that ϕ2
re(i) = (sr + 1)2e(i) = (2 + 2sr)e(i) = 2ϕre(i). Now suppose

that ir 6= ir+1. Then, using (3.12) and (3.11), we have

ϕ2
re(i) = θrx

−1
r,r+1θrx

−1
r,r+1e(i) = −θ2

rx
−2
r,r+1e(i) = (1− x−2

r,r+1)e(i).

It remains to check (3.20). For this, let us stop writing e(i) on the right of
all expressions (but of course remember it is there). Assume without loss of
generality that r = 1 and denote i := i1, j := i2, k := i3. We consider five
cases:

Case 1: i, j, k all distinct. Using (3.12), (3.13) and (3.14), we have:

ϕ2ϕ1ϕ2 = θ2x
−1
2,3θ1x

−1
1,2θ2x

−1
2,3 = θ2θ1θ2x

−1
1,2x

−1
1,3x

−1
2,3

= θ1θ2θ1x
−1
2,3x

−1
1,3x

−1
1,2 = θ1x

−1
1,2θ2x

−1
2,3θ1x

−1
1,2 = ϕ1ϕ2ϕ1.

Case 2: i = j 6= k. Using (3.14), we see that ϕ2ϕ1ϕ2 = ϕ1ϕ2ϕ1 is equivalent
to (s2 + 1)ϕ1ϕ2 = ϕ1ϕ2(s1 + 1), or s2ϕ1ϕ2 = ϕ1ϕ2s1. Also the relations
in HΛ

α give that x−1
1,3s1 = s1x

−1
2,3 + x−1

2,3x
−1
1,3 and x−1

2,3s1 = s1x
−1
1,3 − x−1

2,3x
−1
1,3

(remembering the idempotent e(i) implicitly appears on the right so all the
inverses here make sense). Now apply (3.12), (3.13) and these two relations
to commute all x’s to the right and show that both sides are equal to s2s1s2+
s2s1x

−1
2,3 + s2x

−1
2,3x

−1
1,3 + x−1

1,3.

Case 3: i 6= j = k. This case is similar to Case 2.

Case 4: i = k 6= j. Using (3.12), (3.13) and (3.14), we get

ϕ2ϕ1ϕ2 = θ2x
−1
2,3(s1 + 1)θ2x−1

2,3 = θ2x
−1
2,3s1θ2x

−1
2,3 − θ

2
2x
−2
2,3

= θ2(s1x−1
1,3 − x

−1
2,3x

−1
1,3)θ2x

−1
2,3 − (1− x2

2,3)x
−2
2,3

= θ2s1θ2x
−1
1,2x

−1
2,3 + θ2

2x
−2
2,3x

−1
1,2 − x

−2
2,3 + 1

= (s2x2,3 + 1)s1θ2x−1
1,2x

−1
2,3 + (1− x2

2,3)x
−2
2,3x

−1
1,2 − x

−2
2,3 + 1

= s2(s1x1,3 + 1)θ2x−1
1,2x

−1
2,3 + s1θ2x

−1
1,2x

−1
2,3 + (x−2

2,3 − 1)(x−1
1,2 − 1)

= s2s1θ2x
−1
2,3 + s2θ2x

−1
1,2x

−1
2,3 + s1θ2x

−1
1,2x

−1
2,3 + (x−2

2,3 − 1)(x−1
1,2 − 1)

= s2s1(s2x2,3 + 1)x−1
2,3 + s2(s2x2,3 + 1)x−1

1,2x
−1
2,3

+ s1(s2x2,3 + 1)x−1
1,2x

−1
2,3 + (x−2

2,3 − 1)(x−1
1,2 − 1)

= s2s1s2 + s2s1x
−1
2,3 + s1s2x

−1
1,2 + s2x

−1
1,2x

−1
2,3 + s1x

−1
1,2x

−1
2,3

+ x−1
1,2 + (x−2

2,3 − 1)(x−1
1,2 − 1).

Similarly, we have

ϕ1ϕ2ϕ1 = s1s2s1 + s1s2x
−1
1,2 + s2s1x

−1
2,3 + s1x

−1
2,3x

−1
1,2 + s2x

−1
2,3x

−1
1,2

+ x−1
2,3 + (x−2

1,2 − 1)(x−1
2,3 − 1),

and (3.20) now follows.

Case 5: i = j = k. This case follows since (s1 + 1)(s2 + 1)(s1 + 1) + s2 =
(s2 + 1)(s1 + 1)(s2 + 1) + s1.
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3.3. Khovanov-Lauda generators of HΛ
α in the degenerate case. For

each r = 1, . . . , d, the elements

yr :=
∑
i∈Iα

(xr − ir)e(i) (3.21)

are nilpotent elements of the commutative algebra PolΛα . So we are in the
situation of (2.3) and get a homomorphism F [[y1, . . . , yd]] → PolΛα mapping
each yr ∈ F [[y1, . . . , yd]] to the element (3.21). We are often going to abuse
notation by using the same symbol for a power series f ∈ F [[y1, . . . , yd]] and
for its image in PolΛα under this homomorphism.

For 1 ≤ r < d and i ∈ Iα, we define power series pr(i) ∈ F [[yr, yr+1]] ⊆
F [[y1, . . . , yd]] by setting

pr(i) :=

{
1 if ir = ir+1,

(ir − ir+1 + yr − yr+1)−1 if ir 6= ir+1.
(3.22)

The following facts are easy to check:
srpr(sr·i) = −pr(i) if ir 6= ir+1; (3.23)

srpr+1(sr·i) = sr+1pr(sr+1·i) for any i. (3.24)

Note also for all 1 ≤ r < d and i ∈ Iα that

pr(i)e(i) =

{
e(i) if ir = ir+1,

x−1
r,r+1e(i) if ir 6= ir+1;

(3.25)

ϕr =
∑
i∈Iα

(sr + pr(i))e(i). (3.26)

Also make an arbitrary but henceforth fixed choice of (invertible) elements
qr(i) ∈ F [[yr, yr+1]] with the following properties:

qr(i) = 1 + yr+1 − yr if ir = ir+1; (3.27)

qr(i)srqr(sr·i) =


1− pr(i)2 if ir /− ir+1,
(1− pr(i)2)/(yr+1 − yr) if ir → ir+1,
(1− pr(i)2)/(yr − yr+1) if ir ← ir+1,

1−pr(i)2

(yr+1−yr)(yr−yr+1) if ir � ir+1;

(3.28)

srqr+1(sr+1sr·i) = sr+1qr(srsr+1·i) for any i. (3.29)

Note in the fractions on the right hand side of (3.28) that the numerator is
divisible by the denominator in F [[yr, yr+1]], so this makes sense. Moreover,
it is always possible to choose such power series qr(i). For instance, one could
take

qr(i) :=


1 + yr+1 − yr if ir = ir+1,
1− pr(i) if ir /− ir+1,
(1− pr(i)2)/(yr+1 − yr) if ir → ir+1,
1 if ir ← ir+1,
(1− pr(i))/(yr+1 − yr) if ir � ir+1,

(3.30)

although we do not want to restrict ourselves to this particular choice.
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Now, the Khovanov-Lauda generators of HΛ
α are the elements

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}, (3.31)

where yr is the element defined by (3.21) and

ψr :=
∑
i∈Iα

ϕrqr(i)−1e(i) =
∑
i∈Iα

(sr + pr(i))qr(i)−1e(i). (3.32)

Theorem 3.2. The elements (3.31) of HΛ
α satisfy the defining relations

(1.6)–(1.15) of the cyclotomic Khovanov-Lauda algebra RΛ
α .

Proof. We have by (1.2) that
∏

i∈I(x1 − i)(Λ,αi) = 0. Moreover, if i 6= i1
then (x1 − i)e(i) is invertible in PolΛαe(i). So (x1 − i1)(Λ,αi1

)e(i) = 0, which
immediately implies (1.6). We already know that (1.7) holds. The relations
(1.8), (1.9), (1.10) and (1.11) follow using the fact that PolΛα is commutative
and the properties (3.14), (3.15) and (3.16) of the intertwining elements.

For (1.13), in view of (1.8), we have

yr+1ψre(i) = yr+1e(sr·i)ψre(i) = (xr+1 − ir)ϕrqr(i)−1e(i). (3.33)

If ir 6= ir+1, this equals ϕrqr(i)−1(xr − ir)e(i) = ψryre(i) by (3.18). If
ir = ir+1, then (3.33) gives

yr+1ψre(i) = (xr+1 − ir)(sr + 1)(1− xr,r+1)−1e(i)

=
(
(sr + 1)(xr − ir) + 1− xr,r+1

)
(1− xr,r+1)−1e(i)

= (ψryr + 1)e(i).

The proof of (1.12) is similar.
For (1.14), we have that

ψ2
re(i) = ϕrqr(sr·i)−1ψre(i). (3.34)

If ir = ir+1, the relations in HΛ
α give easily that (sr + 1)(1 + xr,r+1) =

(1− xr,r+1)(sr − 1), hence we get from (3.34) that

ψ2
re(i) = (sr + 1)(1− xr,r+1)−1(sr + 1)(1− xr,r+1)−1e(i)

= (sr + 1)(sr − 1)(1 + xr,r+1)−1(1− xr,r+1)−1e(i) = 0.

Now suppose that ir 6= ir+1. Note as we have now checked the relations
(1.10), (1.12) and (1.13), the identity (2.6) holds in the present situation.
Using (2.6), (3.19) and (3.25), the equation (3.34) becomes

ψ2
re(i) = ϕrψr(srqr(sr·i))−1e(i) = ϕ2

rqr(i)
−1 (srqr(sr·i))−1 e(i)

= (1− pr(i)2) (qr(i)srqr(sr·i))−1 e(i).

Using (3.28), this simplifies to give the right hand side of (1.14).
Finally we prove (1.15). Let us stop writing e(i) at the right of all ex-

pressions. Assume without loss of generality that r = 1, d = 3, and denote
i := i1, j := i2, k := i3.
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Case 1: i, j, k all distinct. Using (2.6) and (1.8), we get

ψ1ψ2ψ1 = ϕ1q1(jki)−1ψ2ψ1 = ϕ1ψ2ψ1 (s1s2q1(jki))
−1

= ϕ1ϕ2q2(jik)−1ψ1 (s1s2q1(jki))
−1

= ϕ1ϕ2ψ1 (s1q2(jik)s1s2q1(jki))
−1

= ϕ1ϕ2ϕ1 (q1(ijk)s1q2(jik)s1s2q1(jki))
−1 .

Similarly,

ψ2ψ1ψ2 = ϕ2ϕ1ϕ2 (q2(ijk)s2q1(ikj)s2s1q2(kij))
−1 .

Now, ϕ1ϕ2ϕ1 = ϕ2ϕ1ϕ2 by (3.20), and also q2(ijk) = s1s2q1(jki), s2q1(ikj) =
s1q2(jik) and s2s1q2(kij) = q1(ijk) by (3.29). Thus (1.15) holds.

Case 2: i = j 6= k. As in the previous case, we get that

ψ2ψ1ψ2 = ϕ2ϕ1ϕ2 (q2(iik)s2q1(iki)s2s1q2(kii))
−1 . (3.35)

On the other hand, by (2.6) and (3.29),

ψ1ψ2ψ1 = ϕ1q1(iki)−1ψ2ψ1

= ϕ1ψ2ψ1(s1s2q1(iki))−1 + ϕ1ψ2∂1

(
(s2q1(iki))−1

)
= ϕ1ϕ2q2(iik)−1ψ1(s1s2q1(iki))−1+ ϕ1ϕ2q2(iik)−1∂1

(
(s2q1(iki))−1

)
= ϕ1ϕ2ψ1 (s1q2(iik)s1s2q1(iki))

−1+ ϕ1ϕ2∂1

(
q2(iik)−1

)
(s1s2q1(iki))−1

+ ϕ1ϕ2q2(iik)−1∂1

(
(s2q1(iki))−1

)
.

= ϕ1ϕ2ϕ1 (q1(iik)s1q2(iik)s1s2q1(iki))
−1

+ ϕ1ϕ2q2(iik)−1∂1

(
q2(iik)−1 + (s1q2(iik))−1

)
.

The first term of the last expression equals the right hand side of (3.35) by
(3.20) and (3.29). It remains to observe that the second term of the last
expression is zero, as ∂1f = 0 for any f with s1f = f .

Case 3: i 6= j = k. This case is similar to Case 2.

Case 4: i = k 6= j. As in the previous cases we compute:

ψ1ψ2ψ1 = ϕ1ϕ2ϕ1 (q1(iji)s1q2(jii)s1s2q1(jii))
−1

+ (1− x−2
1,2)q1(iji)

−1
(
s1∂2(q1(jii)−1)

)
,

ψ2ψ1ψ2 = ϕ2ϕ1ϕ2 (q2(iji)s2q1(iij)s2s1q2(iij))
−1

+ (1− x−2
2,3)q2(iji)

−1
(
s2∂1(q2(iij)−1)

)
.

So by (3.20), (3.29), and (3.25), we get that ψ1ψ2ψ1−ψ2ψ1ψ2 = A+B−C,
where

A =
(
p1(iji)− p2(iji)

)(
p1(iji)p2(iji)− p1(iji)− p2(iji)

)
× (q1(iji)s1q2(jii)q2(iji))

−1 ,

B = (1− p1(iji)2)q1(iji)−1
(
s1∂2(q1(jii)−1)

)
,

C = (1− p2(iji)2)q2(iji)−1
(
s2∂1(q2(iij)−1)

)
.



CYCLOTOMIC HECKE ALGEBRAS 13

By substituting p1(iji) = (i − j + y1 − y2)−1, p2(iji) = (j − i + y2 − y3)−1

and putting over a common denominator, it is straightforward to check the
following power series identity:

p1(iji) + p2(iji) = (y1 − y3)p1(iji)p2(iji). (3.36)

Hence:
p1(iji)p2(iji)− p1(iji)− p2(iji)

1 + y3 − y1
=
p1(iji) + p2(iji)

y1 − y3
.

Using this and noting s1q2(jii) = 1 + y3 − y1, we deduce that

A =
(p1(iji)2 − p2(iji)2)q1(iji)−1q2(iji)−1

y1 − y3
. (3.37)

Using the definition (2.1) and the property (3.28), we have that

s1∂2(q1(jii)−1) =
q2(iji)−1 − (s1q1(jii))−1

y1 − y3
.

Substituting this into B, we get that

B =
(1− p1(iji)2)

(
(q1(iji)−1q2(iji)−1 − (q1(iji)s1q1(jii))−1

)
y1 − y3

. (3.38)

Similarly,

C =
(1− p2(iji)2)

(
q1(iji)−1q2(iji)−1 − (q2(iji)s2q2(iij))−1

)
y1 − y3

. (3.39)

The equations (3.37), (3.38) and (3.39) easily give that A+B − C equals

(1− p2(iji)2)(q2(iji)s2q2(iij))−1 − (1− p1(iji)2)(q1(iji)s1q1(jii))−1

y1 − y3
.

Finally by (3.28) this is 0 if i /− j, 1 if i→ j, −1 if i← j or −2y2 + y1 + y3 if
i � j. This imples (1.15).

Case 5: i = j = k. We leave this case as an exercise to the reader.

3.4. Degenerate Hecke generators of RΛ
α. Let RΛ

α be the cyclotomic
Khovanov-Lauda algebra from §2.2. Using the homomorphism (2.5), we can
regard the power series pr(i) from (3.22) as elements of RΛ

α . Similarly, the
power series qr(i) satisfying (3.27)–(3.29) that were chosen in §3.3 give rise
to elements qr(i) ∈ RΛ

α . The degenerate Hecke generators of RΛ
α are the

elements
{x1, . . . , xd} ∪ {s1, . . . , sd−1} (3.40)

where

xr :=
∑
i∈Iα

(yr + ir)e(i), (3.41)

sr :=
∑
i∈Iα

(ψrqr(i)− pr(i))e(i). (3.42)

We note by (1.14) and (3.28) that

ψ2
rqr(i)

srqr(sr·i)e(i) = (1− pr(i)2)e(i) (3.43)
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for all i ∈ Iα and 1 ≤ r < d. The following result is the key technical result
needed to complete the proof of our Main Theorem in the degenerate case.

Theorem 3.3. The elements (3.40) of RΛ
α satisfy the defining relations

(3.2)–(3.5) of the degenerate affine Hecke algebra Hd.

Proof. The polynomial relation (3.2) is obvious: the xr’s commute because
the yr’s and e(i)’s do. The mixed relation (3.3) is clear for s 6= r, r + 1. For
the remaining mixed relation, it suffices to show that

(srxr+1 − xrsr)e(i) = e(i)

for every i ∈ Iα. Expand the definitions (3.41)–(3.42) using (1.8) gives:

srxr+1e(i) = (ψrqr(i)− pr(i))(yr+1 + ir+1)e(i),

xrsre(i) = xr(ψrqr(i)− pr(i))e(i)

= xre(sr·i)ψrqr(i)e(i)− xre(i)pr(i)e(i)

= (yr + ir+1)ψrqr(i)e(i)− (yr + ir)pr(i)e(i).

Hence

(srxr+1−xrsr)e(i) = (ir−ir+1+yr−yr+1)pr(i)e(i)+(ψryr+1−yrψr)qr(i)e(i).

Applying (1.12), (3.22) and (3.27), we have that (ψryr+1 − yrψr)e(i) = e(i),
pr(i) = 1 and qr(i) = 1 + yr+1 − yr if ir = ir+1, or (ψryr+1 − yrψr)e(i) = 0
and pr(i) = (ir− ir+1 + yr− yr+1)−1 if ir 6= ir+1. Making these substitutions
gives easily that (srxr+1 − xrsr)e(i) = e(i) as required.

Next we check the quadratic relation (3.4). For this we need to show that

s2re(i) = e(i)

for each i ∈ Iα. Expanding the definition (3.42), we get that

s2re(i) = sr(ψrqr(i)− pr(i))e(i) = sre(sr·i)ψrqr(i)e(i)− sre(i)pr(i)e(i)

= (ψrqr(sr·i)− pr(sr·i))ψrqr(i)e(i)− (ψrqr(i)− pr(i))pr(i)e(i)

=
(
ψrqr(sr·i)ψrqr(i)− pr(sr·i)ψrqr(i)− ψrqr(i)pr(i) + pr(i)2

)
e(i).

If ir = ir+1, we use (3.22) and (3.27) to get from this that

s2re(i) = (ψr(1 + yr+1 − yr)ψrqr(i)− 2ψrqr(i) + 1) e(i).

Using (1.12)–(1.13) to commute y’s to the right and noting that ψ2
re(i) = 0

by (1.14), this easily simplifies to give the desired equation s2re(i) = e(i).
Instead, if ir 6= ir+1, then we again commute y’s to the right and use (3.43)
and (3.23) to get that

s2re(i) =
(
(1− pr(i)2) + ψrpr(i)qr(i)− ψrqr(i)pr(i) + pr(i)2

)
e(i) = e(i).

This completes the proof of (3.4).
Finally we need to check the braid relations (3.5). The commuting braid

relation is obvious. For the length three braid relation, we assume without
loss of generality that r = 1 and d = 3, and need to show that

s2s1s2e(ijk) = s1s2s1e(ijk)

for all i, j, k. To simplify notation for the remainder of the proof, we stop
writing e(ijk) on the right hand side of all expressions, but remember it is
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always there. Expanding the definition (3.42) like in the previous paragraph,
s2s1s2 and s1s2s1 equal

− p2(ijk)p1(ijk)p2(ijk) + ψ2q2(ijk)p1(ijk)p2(ijk)

+ p2(jik)ψ1q1(ijk)p2(ijk)− ψ2q2(jik)ψ1q1(ijk)p2(ijk)

+ p2(ikj)p1(ikj)ψ2q2(ijk)− ψ2q2(ikj)p1(ikj)ψ2q2(ijk)

− p2(kij)ψ1q1(ikj)ψ2q2(ijk) + ψ2q2(kij)ψ1q1(ikj)ψ2q2(ijk),

(3.44)

and
− p1(ijk)p2(ijk)p1(ijk) + ψ1q1(ijk)p2(ijk)p1(ijk)

+ p1(ikj)ψ2q2(ijk)p1(ijk)− ψ1q1(ikj)ψ2q2(ijk)p1(ijk)

+ p1(jik)p2(jik)ψ1q1(ijk)− ψ1q1(jik)p2(jik)ψ1q1(ijk)

− p1(jki)ψ2q2(jik)ψ1q1(ijk) + ψ1q1(jki)ψ2q2(jik)ψ1q1(ijk),

(3.45)

respectively. We have to prove that (3.44) equals (3.45). For this we consider
five cases. The strategy is always to commute all ψ’s to the left using (2.6)
then to compare various ψ-coefficients.

Case 1: i, j, k are all different. By (2.6), (3.44) equals

− p2(ijk)p1(ijk)p2(ijk) + ψ2q2(ijk)p1(ijk)p2(ijk)

+ ψ1
s1p2(jik)q1(ijk)p2(ijk)− ψ2ψ1

s1q2(jik)q1(ijk)p2(ijk)

+ ψ2
s2p2(ikj)s2p1(ikj)q2(ijk)− (ψ2

2)
s2q2(ikj)s2p1(ikj)q2(ijk)

− ψ1ψ2
s2s1p2(kij)s2q1(ikj)q2(ijk) + ψ2ψ1ψ2

s2s1q2(kij)s2q1(ikj)q2(ijk),

and (3.45) equals

− p1(ijk)p2(ijk)p1(ijk) + ψ1q1(ijk)p2(ijk)p1(ijk)

+ ψ2
s2p1(ikj)q2(ijk)p1(ijk)− ψ1ψ2

s2q1(ikj)q2(ijk)p1(ijk)

+ ψ1
s1p1(jik)s1p2(jik)q1(ijk)− (ψ2

1)
s1q1(jik)s1p2(jik)q1(ijk)

− ψ2ψ1
s1s2p1(jki)s1q2(jik)q1(ijk) + ψ1ψ2ψ1

s1s2q1(jki)s1q2(jik)q1(ijk).

Note that ψ2ψ1ψ2 = ψ1ψ2ψ1 under our assumptions on i, j, k, and the cor-
responding coefficients are equal to each other by (3.29). For the ψ1ψ2-
coefficients, we need to observe by (3.24) that s2s1p2(kij) = p1(ijk). The
ψ2ψ1-coefficients are treated similarly. For the ψ1-coefficients, it suffices to
prove that

s1p2(jik)p2(ijk) = p2(ijk)p1(ijk) + s1p1(jik)s1p2(jik),

which is easily checked by expanding the definition (3.22) and clearing de-
nominators. The ψ2-coefficients are handled similarly. Finally, the constant
term reduces using (3.43) and the observation that s2p1(ikj) = s1p2(jik) to
checking that

(s2p1(ikj)− p1(ijk))p2(ijk)2 = (s1p2(jik)− p2(ijk))p1(ijk)2.

Again this identity follows by an explicit expansion using (3.22).
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Case 2: i = j 6= k. We have p1(iik) = p2(kii) = 1 by definition. So, using
(2.6), the expression (3.44) equals

− p2(iik)2 + ψ2q2(iik)p2(iik) + ψ1
s1p2(iik)q1(iik)p2(iik)

+ ∂1(p2(iik))q1(iik)p2(iik)− ψ2ψ1
s1q2(iik)q1(iik)p2(iik)

− ψ2∂1(q2(iik))q1(iik)p2(iik) + ψ2
s2p2(iki)s2p1(iki)q2(iik)

− (ψ2
2)

s2q2(iki)s2p1(iki)q2(iik)− ψ1ψ2
s2q1(iki)q2(iik)

+ ψ2ψ1ψ2
s2s1q2(kii)s2q1(iki)q2(iik).

Similarly, using also (2.2), (3.45) becomes
− p2(iik) + ψ1q1(iik)p2(iik) + ψ2

s2p1(iki)q2(iik)− ψ1ψ2
s2q1(iki)q2(iik)

+ ψ1
s1p2(iik)q1(iik) + ∂1(p2(iik))q1(iik)− (ψ2

1)
s1q1(iik)s1p2(iik)q1(iik)

− ψ1∂1(q1(iik))s1p2(iik)q1(iik)− ψ1∂1(p2(iik))q1(iik)2

− ψ2ψ1
s1s2p1(iki)s1q2(iik)q1(iik)− ψ2∂1(s2p1(iki))s1q2(iik)q1(iik)

− ψ2
s2p1(iki)∂1(q2(iik))q1(iik) + ψ1ψ2ψ1

s1s2q1(iki)s1q2(iik)q1(iik)

+ ψ1ψ2∂1(s2q1(iki))s1q2(iik)q1(iik) + ψ1ψ2
s2q1(iki)∂1(q2(iik))q1(iik).

Now it is easy to check that the ψ1ψ2ψ1-, ψ2ψ1-coefficients in the two ex-
pressions above are equal to each other using (3.24) and (3.29). For the
ψ1ψ2-coefficient, we need to use

∂1(q2(iik)) + ∂1(s2q1(iki)) = ∂1(q2(iik) + s1q2(iik)) = 0.

By a calculation using (3.22) and (2.1), ∂1(p2(iik)) = −s1p2(iik)p2(iik) and
∂1(s2p1(iki)) = s1p2(iik)p2(iik). Also q1(iik) = 1 + y2 − y1 by (3.27) hence
∂1(q1(iik)) = 2. So to check that the ψ1-coefficients agree, it suffices to prove

s1p2(iik)p2(iik) = p2(iik)− s1p2(iik) + s1p2(iik)p2(iik)(1 + y2 − y1).

This follows from the power series identity

p2(iik)− s1p2(iik) = (y1 − y2)s1p2(iik)p2(iik), (3.46)

which is easily checked from the definition (3.22). For the ψ2-coefficients we
need to prove

q2(iik) (p2(iik)− s2p1(iki) + s2p2(iki)s2p1(iki)) =

q1(iik) (∂1(q2(iik))[p2(iik)− s2p1(iki)]− p2(iik)s1p2(iik)s1q2(iik)) .

Using (3.46), (3.23) and (3.24), the left hand side of this simplifies to

q2(iik)(y1 − y2 − 1)s1p2(iik)p2(iik).

Using (3.46) again and expanding the ∂1, the right hand side equals

q1(iik) ((s1q2(iik)− q2(iik))s1p2(iik)p2(iik)− p2(iik)s1p2(iik)s1q2(iik)) .

Making obvious cancellations and recalling (3.27) this reduces to the left
hand side. Finally, for the constant term we want

− p2(iik)2 − s1p2(iik)q1(iik)p2(iik)2 − (ψ2
2)

s2q2(iki)s2p1(iki)q2(iik)

= −p2(iik)− s1p2(iik)p2(iik)q1(iik) + (ψ2
1)

s1q1(iik)s1p2(iik)q1(iik).
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By (1.14) the third term on the right is zero. By (3.43) the third term on the
left equals s1p2(iik)(1 − p2(iik)2). Making these substitutions and replacing
q1(iik) by (1 + y2 − y1), the desired equality follows from (3.46).

Case 3: i 6= j = k. This case is similar to Case 2, so we skip it.

Case 4: i = k 6= j. Using the equalities p1(iij) = p2(jii) = 1, and commuting
as usual, (3.44) becomes

− p2(iji)p1(iji)p2(iji) + ψ2q2(iji)p1(iji)p2(iji) + ψ1q1(iji)p2(iji)

− ψ2ψ1
s1q2(jii)q1(iji)p2(iji) + ψ2

s2p2(iij)q2(iji)− (ψ2
2)

s2q2(iij)q2(iji)

− ψ1ψ2
s2s1p2(iij)s2q1(iij)q2(iji)− ψ2

s2∂1(p2(iij))s2q1(iij)q2(iji)

+ ψ2ψ1ψ2
s2s1q2(iij)s2q1(iij)q2(iji) + (ψ2

2)
s2∂1(q2(iij))s2q1(iij)q2(iji),

and (3.45) becomes

− p1(iji)p2(iji)p1(iji) + ψ1q1(iji)p2(iji)p1(iji) + ψ2q2(iji)p1(iji)

− ψ1ψ2
s2q1(iij)q2(iji)p1(iji) + ψ1

s1p1(jii)q1(iji)− (ψ2
1)

s1q1(jii)q1(iji)

− ψ2ψ1
s1s2p1(jii)s1q2(jii)q1(iji)− ψ1

s1∂2(p1(jii))s1q2(jii)q1(iji)

+ ψ1ψ2ψ1
s1s2q1(jii)s1q2(jii)q1(iji) + (ψ2

1)
s1∂2(q1(jii))s1q2(jii)q1(iji).

By (1.15), we have that ψ1ψ2ψ1 − ψ2ψ1ψ2 = ε where ε := 0 if i /− j, 1 if
i → j, −1 if i ← j and −2y2 + y1 + y3 if i � j. Hence, in view of (3.29),
the ψ2ψ1ψ2-term cancels with the ψ1ψ2ψ1-term, producing the addition of
εq1(iji)s2q1(iij)q2(iji) to the constant term of the second expression. Now
let us compare constant terms. Taking into account (3.43) and (3.29), we
need to check that

− p2(iji)2p1(iji)− (1− p2(iji)2) + (ψ2
2)

s2∂1(q2(iij))s2q1(iij)q2(iji)

= −p1(iji)2p2(iji)− (1− p1(iji)2) + (ψ2
1)

s1∂2(q1(jii))s1q2(jii)q1(iji)

+ εq1(iji)s2q1(iij)q2(iji).

Expanding the ∂’s, we rewrite this as

(p1(iji)− p2(iji))(p1(iji)p2(iji)− p1(iji)− p2(iji))

+ (ψ2
2)(

s2s1q2(iij)− s2q2(iij))s2q1(iij)q2(iji)/(y1 − y3)

− (ψ2
1)(

s1s2q1(jii)− s1q1(jii))s1q2(jii)q1(iji)/(y1 − y3)

− εq1(iji)s2q1(iij)q2(iji) = 0.

Using (3.36) and (3.27), the first term on the left hand side equals

(p1(iji)2 − p2(iji)2)s2q1(iij)/(y1 − y3).

Using (3.43) and (3.29), the second and third terms equal

(q1(iji)q2(iji)ψ2
2 − 1 + p2(iji)2)s2q1(iij)/(y1 − y3)

and

−(q2(iji)q1(iji)ψ2
1 − 1 + p1(iji)2)s2q1(iij)/(y1 − y3),
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respectively. Now we observe by (1.14) that

ψ2
2 − ψ2

1 = ε(y1 − y3). (3.47)

Making these substitutions, it is then easy to verify the required identity.
Comparing the ψ1ψ2-, ψ2ψ1-, ψ1-, and ψ2-coefficients is relatively routine,

using (3.36) and the fact that s1∂2(p1(jii)) = s2∂1(p2(iij)) = p1(iji)p2(iji).

Case 5: i = j = k. This case is the most explicit of all since we have the
precise formulas for all p’s and q’s. We leave details to the reader.

3.5. Proof of the Main Theorem in the degenerate case. Now we can
prove the Main Theorem from the introduction when q = 1. By Theorem 3.2,
there is a homomorphism

ρ : RΛ
α → HΛ

α (3.48)
mapping all the formal generators e(i), yr and ψr to the explicit elements of
HΛ

α with the same names. To prove that ρ is an isomorphism, we construct
a two-sided inverse

σ : HΛ
α → RΛ

α . (3.49)
By Theorem 3.3, there is a homomorphism σ : Hd → RΛ

α mapping the formal
generators xr and sr ofHd to the elements of RΛ

α with the same names defined
in (3.41) and (3.42). We claim that this homomorphism factors through the
natural surjection Hd � HΛ

α to give the required inverse homomorphism
(3.49). To see this, observe using the orthogonality of the e(i) and (1.6) that

σ

(∏
i∈I

(x1 − i)(Λ,αi))

)
=
∑
j∈Iα

∏
i∈I

(y1 + j1 − i)(Λ,αi)e(j) = 0.

Hence, σ factors through the quotient HΛ
d of Hd from (1.2). To show that

σ factors further through the surjection HΛ
d � HΛ

α defined by multiplication
by the block idempotent eα, we need to show that σ(eβ) = 0 for any β ∈ Q+

of height d with β 6= α. Recalling (1.3), this follows immediately from the
following lemma.

Lemma 3.4. For any i ∈ Id, we have that

σ(e(i)) =
{
e(i) if i ∈ Iα;
0 otherwise.

Proof. To avoid confusion, let us temporarily denote the idempotent e(i) ∈
RΛ

α instead by e(i)′. Recall that e(i) ∈ HΛ
d is the idempotent characterized by

the property that e(i)M = Mi for any finite dimensional left HΛ
d -module M .

The homomorphism σ makesRΛ
α into a finite dimensional leftHΛ

d -module. By
(3.41), Lemma 2.1 and the relation (1.7), the weight space (RΛ

α)i is precisely
e(i)′RΛ

α if i ∈ Iα and zero otherwise. Hence σ(e(i)) is an idempotent in
RΛ

α that projects RΛ
α onto e(i)′RΛ

α if i ∈ Iα and is zero if i /∈ Iα. Hence
σ(e(i)) = e(i)′ if i ∈ Iα and σ(e(i)) = 0 otherwise.

This completes the definition of the homomorphism (3.49). To finish the
proof of the Main Theorem in the degenerate case it remains to check that ρ
and σ are two-sided inverses. This follows by the final lemma.
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Lemma 3.5. We have that σ ◦ ρ = idRΛ
α

and ρ ◦ σ = idHΛ
α
.

Proof. Since both σ and ρ are algebra homomorphisms, it suffices to check
that σ ◦ ρ is the identity on each generator (2.4) of RΛ

α and that ρ ◦ σ is
the identity on each generator (3.1) of HΛ

α . The fact that σ(ρ(e(i))) = e(i)
follows from Lemma 3.4. Then using (3.41) and (3.21) we get that

ρ(σ(xr)) =
∑
i∈Iα

ρ((yr + ir)e(i)) =
∑
i∈Iα

xre(i).

Since
∑

i∈Iα e(i) is the identity eα ∈ HΛ
α , this implies ρ(σ(xr)) = xr. The

proof that ρ(σ(sr)) = sr is a similar calculation using (3.42) and (3.32).
Finally one checks that σ(ρ(yr)) = yr and σ(ρ(ψr)) = ψr using the same
formulae.

4. The non-degenerate case

4.1. Blocks of cyclotomic Hecke algebras. Now we assume that q 6= 1
and let Hd be the affine Hecke algebra over F at this parameter. Thus Hd

has generators
{X±1

1 , . . . , X±1
d } ∪ {T1, . . . , Td−1} (4.1)

subject to the following relations for all admissible indices:

X±1
r X±1

s = X±1
s X±1

r , XrX
−1
r = 1; (4.2)

TrXrTr = qXr+1, TrXs = XsTr if s 6= r, r + 1; (4.3)

T 2
r = (q − 1)Tr + q; (4.4)

TrTr+1Tr = Tr+1TrTr+1, TrTs = TsTr if |r − s| > 1. (4.5)

The following relations are easy consequences of the defining relations:

T−1
r = q−1Tr + q−1 − 1;

XrTr = TrXr+1 + (1− q)Xr+1, X−1
r Tr = TrX

−1
r+1 + (q − 1)X−1

r ;

Xr+1Tr = TrXr + (q − 1)Xr+1, X−1
r+1Tr = TrX

−1
r + (1− q)X−1

r .

We’ll use these repeatedly without further note.
Given Λ ∈ P+ of level l as usual, denote by the same letters X±1

1 , . . . , X±1
d

and T1, . . . , Td−1 the images of the generators in the cyclotomic quotient HΛ
d

from (1.2). As goes back to [AK], we have that

dimHΛ
d = ldd!, (4.6)

just like in the degenerate case. In case l = 1, HΛ
d is the usual finite Hecke

algebra associated to the symmetric group Sd.
Let M be a finite dimensional HΛ

d -module. By [AK] (see also [G, Lemma
4.7]), the eigenvalues of each Xr on M are of the form qi for i ∈ I. So M
decomposes as a direct sum M =

⊕
i∈Id Mi of its weight spaces

Mi := {v ∈M | (Xr − qir)Nv = 0 for all r = 1, . . . , d and N � 0}.
As in (3.7), we have that

Tr(Mi) ⊆Mi +Msr·i. (4.7)
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Considering the weight space decomposition of the regular module as in §3.1,
we deduce that there is a system {e(i) | i ∈ Id} of mutually orthogonal
idempotents in HΛ

d such that e(i)M = Mi for each finite dimensional module
M . Each e(i) lies in the commutative subalgebra generated byX±1

1 , . . . , X±1
d ,

all but finitely many of the e(i)’s are zero, and their sum is the identity
element in HΛ

d .
As goes back to Bernstein, the center Z(Hd) consists of all symmetric poly-

nomials in X±1
1 , . . . , X±1

d ; see e.g. [CG, Proposition 7.14] and [G, Proposition
4.1]. So, given also α ∈ Q+ of height d, the idempotent eα from (1.3) is ei-
ther zero or it is a central idempotent in HΛ

d . In fact, it follows from [LM]
that the non-zero eα’s are precisely the primitive central idempotents of HΛ

d

(although we don’t ever use this). So again the algebra HΛ
α := eαH

Λ
d from

(1.4) is either zero or it is a block of HΛ
d . The commutative subalgebra of

HΛ
α generated by X±1

1 , . . . , X±1
d will be denoted PolΛα . Each PolΛαe(i) is an

algebra with identity e(i). If X ∈ PolΛα is such that Xe(i) is invertible in
PolΛαe(i), we write X−1e(i) for its inverse in PolΛαe(i). For example, set

Xr,s := XrX
−1
s . (4.8)

Then (1−Xr,s)−1e(i) makes sense if ir 6= is.

4.2. Intertwining elements Φr. For 1 ≤ r < d, set

Φr := Tr +
∑
i∈Iα

ir 6=ir+1

(1− q)(1−Xr,r+1)−1e(i) +
∑
i∈Iα

ir=ir+1

e(i). (4.9)

This is a slightly modified version of the usual intertwining elements as in
[Ro, §2] and [L1, §5.1]:

Θr := Tr(1−Xr,r+1) + 1− q. (4.10)

The elements Θr have the following nice properties which are checked from
the relations (cf. [L1, Proposition 5.2]):

Θ2
r = (1− qXr+1,r)(1− qXr,r+1); (4.11)

ΘrX
±1
r+1 = X±1

r Θr, ΘrXs = XsΘr if s 6= r, r + 1; (4.12)

ΘrΘr+1Θr = Θr+1ΘrΘr+1, ΘrΘs = ΘsΘr if |r − s| > 1. (4.13)

The elements Φr inherit similar properties:
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Lemma 4.1. The intertwining elements satisfy the following relations for
all i ∈ Iα and admissible r, s:

Φre(i) = e(sr·i)Φr; (4.14)

ΦrXs = XsΦr if s 6= r, r + 1; (4.15)

ΦrΦs = ΦsΦr if |r − s| > 1; (4.16)

ΦrXr+1e(i) =

{
XrΦre(i) if ir 6= ir+1,

(XrΦr + qXr+1 −Xr)e(i) if ir = ir+1;
(4.17)

Xr+1Φre(i) =

{
ΦrXre(i) if ir 6= ir+1,

(ΦrXr + qXr+1 −Xr)e(i) if ir = ir+1;
(4.18)

Φ2
re(i) =

{
(Xr+1−qXr)(Xr−qXr+1)
(Xr+1−Xr)(Xr−Xr+1) e(i) if ir 6= ir+1,

(1 + q)Φre(i) if ir = ir+1;
(4.19)

ΦrΦr+1Φre(i) =


(Φr+1ΦrΦr+1 + qΦr − qΦr+1)e(i) if ir = ir+2 = ir+1,

(Φr+1ΦrΦr+1 + Zr)e(i) if ir = ir+2 6= ir+1,

Φr+1ΦrΦr+1e(i) otherwise,
(4.20)

where Zr denotes (1− q)2 (XrXr+2−X2
r+1)(XrXr+1−qXr+1Xr+2)

(Xr−Xr+1)2(Xr+1−Xr+2)2
.

Proof. The first equation (4.14) follows by (4.7) and (4.12) using the
fact that Φre(i) = Θr(1 − Xr,r+1)−1e(i) for ir 6= ir+1, in the same way
that (3.14) was verified in the proof of Lemma 3.1. The properties (4.15)
and (4.16) are clear from definitions. The properties (4.17) and (4.18) come
easily from (4.12) and relations in HΛ

α . For (4.19), if ir = ir+1, we have
Φ2

re(i) = (Tr + 1)2e(i) = (1 + q)Φre(i). Now suppose that ir 6= ir+1. Then,
using (4.11) and (4.12), we have that

Φ2
re(i) =Θr(1−Xr,r+1)−1Θr(1−Xr,r+1)−1e(i)

=Θ2
r(1−Xr+1,r)−1(1−Xr,r+1)−1e(i)

=(1− qXr+1,r)(1− qXr,r+1)(1−Xr+1,r)−1(1−Xr,r+1)−1e(i).

Finally, for the proof of (4.20), we assume without loss of generality that
r = 1 and consider five cases like in the proof of Lemma 3.1. Case 4 involves
making a lengthy but routine expansion.

4.3. Khovanov-Lauda generators of HΛ
α in the non-degenerate case.

Set
yr :=

∑
i∈Iα

(1− q−irXr)e(i). (4.21)

Note that y1, . . . , yd ∈ PolΛα are nilpotent, so we are in the situation of (2.3)
and can interpret any power series in F [[y1, . . . , yd]] as an element of PolΛα .
It is convenient also to set

yr(i) := qir(1− yr) ∈ F [[y1, . . . , yd]], (4.22)
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so that
Xre(i) = yr(i)e(i) (4.23)

for each i ∈ Iα. We note further that

yr+1(i)− qyr(i) = qir+1(yr − yr+1) if ir → ir+1 or ir � ir+1, (4.24)

yr(i)− qyr+1(i) = qir(yr+1 − yr) if ir ← ir+1 or ir � ir+1, (4.25)
sryr(sr·i) = yr+1(i) for all i. (4.26)

For any 1 ≤ r < d and i ∈ Iα we define power series Pr(i) ∈ F [[yr, yr+1]] ⊆
F [[y1, . . . , yd]] by setting

Pr(i) :=

{
1 if ir = ir+1,

(1− q)
(
1− yr(i)yr+1(i)−1

)−1 if ir 6= ir+1.
(4.27)

The following facts are easy to check:

Pr(i) + srPr(sr·i) = 1− q if ir 6= ir+1; (4.28)
srPr+1(sr·i) = sr+1Pr(sr+1·i) for any i; (4.29)

Pr(i)e(i) =

{
e(i) if ir = ir+1,

(1− q)(1−Xr,r+1)−1e(i) if ir 6= ir+1;
(4.30)

Φr =
∑
i∈Iα

(Tr + Pr(i))e(i). (4.31)

By explicitly expanding both sides in terms of y1, . . . , yd, one checks that

(1− Pr(i))(q + Pr(i)) =
(yr+1(i)− qyr(i))(yr(i)− qyr+1(i))
(yr+1(i)− yr(i))(yr(i)− yr+1(i))

(4.32)

for all i ∈ Iα with ir 6= ir+1. Note the denominator on the right hand side
of (4.32) is a unit in F [[yr, yr+1]] so this makes sense.

Fix from now on a choice of invertible elements Qr(i) ∈ F [[yr, yr+1]] with
the following properties:

Qr(i) = 1− q + qyr+1 − yr if ir = ir+1; (4.33)

Qr(i)srQr(sr·i) =


(1− Pr(i))(q + Pr(i)) if ir /− ir+1,
(1−Pr(i))(q+Pr(i)))

yr+1−yr
if ir → ir+1,

(1−Pr(i))(q+Pr(i))
yr−yr+1

if ir ← ir+1,
(1−Pr(i))(q+Pr(i))
(yr+1−yr)(yr−yr+1) if ir � ir+1;

(4.34)

srQr+1(sr+1sr·i) = sr+1Qr(srsr+1·i) for any i. (4.35)

In the fractions on the right hand side of (4.34), the fact that the denomina-
tors divide the numerators follows because of (4.32) and (4.24)–(4.25). For
example, one could choose

Qr(i) :=


1− q + qyr+1 − yr if ir = ir+1,
(yr(i)− qyr+1(i)))/(yr(i)− yr+1(i)) if ir /− ir+1,
(yr(i)− qyr+1(i))/(yr(i)− yr+1(i))2 if ir → ir+1,
qir if ir ← ir+1,
qir/(yr(i)− yr+1(i)) if ir � ir+1,

(4.36)
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which satisfy (4.34) by another application of (4.32) and (4.24)–(4.26).
Now, the Khovanov-Lauda generators in the non-degenerate case are

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}, (4.37)

where yr is the element defined by (4.21) and

ψr :=
∑
i∈Iα

ΦrQr(i)−1e(i) =
∑
i∈Iα

(Tr + Pr(i))Qr(i)−1e(i). (4.38)

Theorem 4.2. The elements (4.37) of HΛ
α satisfy the defining relations

(1.6)–(1.15) of the cyclotomic Khovanov-Lauda algebra RΛ
α .

Proof. The checks of (1.6)–(1.11) go in the same way as in the proof of
Theorem 3.2; these are easy so we omit them. For (1.13), we have that

yr+1ψre(i) = (1− q−irXr+1)ΦrQr(i)−1e(i). (4.39)

If ir 6= ir+1, this equals ΦrQr(i)−1(1 − q−irXr)e(i) = ψryre(i) by (4.18). If
ir = ir+1, then (4.39) gives

yr+1ψre(i) = (1− q−irXr+1)(Tr + 1)Qr(i)−1e(i)

= ((Tr + 1)(1− q−irXr) + q−irXr − q1−irXr+1)Qr(i)−1e(i)

= (ψryr + 1)e(i),

since (q−irXr − q1−irXr+1)e(i) = Qr(i)e(i). The proof of (1.12) is similar.
As we have now verified (1.10), (1.12) and (1.13), we can make use of the

identity (2.6) in HΛ
α when necessary. For (1.14), using (1.8), we have:

ψ2
re(i) = ΦrQr(sr·i)−1ψre(i). (4.40)

If ir 6= ir+1, then by (2.6), this becomes

Φrψr
srQr(sr·i)−1e(i) = Φ2

r(Qr(i)srQr(sr·i))−1e(i).

By (4.19), (4.23) and (4.32), we have that Φ2
re(i) = (1−Pr(i))(q+Pr(i))e(i),

hence this expression simplifies to give the right hand side of (1.14) by (4.34).
Now, let ir = ir+1. Then, using (2.6) again, (4.40) becomes

ψ2
re(i) = (Tr + 1)(1− q + qyr+1 − yr)−1ψre(i)

= (Tr + 1)(Tr − q)(1− q + qyr − yr+1)−1(1− q + qyr+1 − yr)−1e(i),

which is zero by (4.4).
Finally we prove (1.15). Let us also stop writing e(i) on the right of all

formulas. Assume without loss of generality that r = 1, d = 3, denote
i := i1, j := i2, k := i3, and consider the usual five cases.

Case 1: i, j, k all distinct. This is exactly the same calculation as Case 1
from the proof of Theorem 3.2; one needs to use (2.6), (4.20) and (4.35).

Case 2: i = j 6= k. This is exactly the same calculation as Case 2 from the
proof of Theorem 3.2.

Case 3: i 6= j = k. Similar.
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Case 4: i = k 6= j. Expanding as in Case 4 from the proof of Theorem 3.2
and using (4.19), (4.20), (4.33) and (4.35), we get that ψ1ψ2ψ1 − ψ2ψ1ψ2 =
A+B − C where

A = (1− q)2 (X1X3 −X2
2 )(X1X2 − qX2X3)

(X1 −X2)2(X2 −X3)2
(Q1(iji)s1Q2(jii)Q2(iji))

−1 ,

B =
(X2 − qX1)(X1 − qX2)
(X2 −X1)(X1 −X2)

Q1(iji)−1
(
s1∂2(Q1(jii)−1)

)
,

C =
(X3 − qX2)(X2 − qX3)
(X3 −X2)(X2 −X3)

Q2(iji)−1
(
s2∂1(Q2(iij)−1)

)
.

Noting that s1Q2(jii) = q−i(X1 − qX3), we get that

A = qi(1− q)2 (X1X3 −X2
2 )X2

(X1 −X2)2(X2 −X3)2
Q1(iji)−1Q2(iji)−1.

Expanding the ∂’s and using (4.35), we also have that

B =
(X2 − qX1)(X1 − qX2)
(X2 −X1)(X1 −X2)

· Q1(iji)−1Q2(iji)−1 − (Q1(iji)s1Q1(jii))−1

y1 − y3
,

C =
(X3 − qX2)(X2 − qX3)
(X3 −X2)(X2 −X3)

· Q1(iji)−1Q2(iji)−1 − (Q2(iji)s2Q2(iij))−1

y1 − y3
.

Note also that y1 − y3 = −q−i(X1 −X3), and by a direct expansion we have
the identity

(1− q)2 (X1X3 −X2
2 )X2

(X1 −X2)2(X2 −X3)2
+

(X2 − qX1)(X1 − qX2)
(X1 −X2)2(X1 −X3)

− (X3 − qX2)(X2 − qX3)
(X2 −X3)2(X1 −X3)

= 0.

Combining these things gives that

A+B − C = −(X2 − qX1)(X1 − qX2)
(X2 −X1)(X1 −X2)

· (Q1(iji)s1Q1(s1·iji))−1

y1 − y3

+
(X3 − qX2)(X2 − qX3)
(X3 −X2)(X2 −X3)

· (Q2(iji)s2Q2(s2·iji))−1

y1 − y3
.

Now use (4.23), (4.32) and (4.34) to deduce that this equals 0 if i /− j, 1 if
i→ j, −1 if i← j or −2y2 + y1 + y3 if i � j. This imples (1.15).

Case 5: i = j = k. Exercise.

4.4. Hecke generators of RΛ
α. Once again, we let RΛ

α be the cyclotomic
Khovanov-Lauda algebra from §2.2. Using the homomorphism (2.5), we can
regard the power series Pr(i), Qr(i) and yr(i) from §4.3 as elements of RΛ

α .
The Hecke generators of RΛ

α are the elements

{X1, . . . , Xd} ∪ {T1, . . . , Td−1} (4.41)
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where

Xr :=
∑
i∈Iα

yr(i)e(i) =
∑
i∈Iα

qir(1− yr)e(i), (4.42)

Tr :=
∑
i∈Iα

(ψrQr(i)− Pr(i))e(i). (4.43)

We often need the following consequence of (1.14) and (4.34):

ψ2
rQr(i)srQr(sr·i)e(i) = (1− Pr(i))(q + Pr(i))e(i). (4.44)

Now we are ready to make the final set of computations.

Theorem 4.3. The elements (4.41) of RΛ
α satisfy the defining relations

(4.2)–(4.5) of the affine Hecke algebra Hd.

Proof. The relations (4.2), (4.3) for s 6= r, r + 1, and (4.5) for |r − s| > 1
are obvious. Next we check (4.4), i.e. T 2

r e(i) = (q − 1)Tre(i) + qe(i) for all
i ∈ Iα. By exactly the same calculation as in the proof of Theorem 3.3, we
have that

T 2
r e(i) = (ψrQr(sr·i)ψrQr(i)−Pr(sr·i)ψrQr(i)−ψrQr(i)Pr(i)+Pr(i)2)e(i).

If ir = ir+1 we use the facts ψ2
re(i) = 0 and ∂r(1 − q + qyr+1 − yr) = q + 1

combined with (2.6) to deduce that

T 2
r e(i) = (ψr(1− q + qyr+1 − yr)ψrQr(i)− 2ψrQr(i) + 1)e(i)

= ((q + 1)ψrQr(i)− 2ψrQr(i) + 1)e(i)

= ((q − 1)(ψrQr(i)− 1) + q)e(i) = ((q − 1)Tr + q)e(i).

If ir 6= ir+1 then by (2.6), (4.44) and (4.28) we get instead that

T 2
r e(i) = ((ψ2

r )
srQr(sr·i)Qr(i)− ψr(Pr(i) + srPr(sr·i))Qr(i) + Pr(i)2)e(i)

= ((1− Pr(i))(q + Pr(i)) + (q − 1)ψrQr(i) + Pr(i)2)e(i)

= ((q − 1)(ψrQr(i)− Pr(i)) + q)e(i) = ((q − 1)Tr + q)e(i).

This completes the proof of the quadratic relation.
Next consider the remaining mixed relation from (4.3). As we have already

checked the quadratic relation, it suffices to show that XrTre(i) = (Tr + 1−
q)Xr+1e(i) for each i. Using (2.6), (4.26) and the fact that ∂r(yr(i)) = qir ,
we get that

XrTre(i) = (yr(sr·i)ψrQr(i)− yr(i)Pr(i))e(i)

= (ψryr+1(i)Qr(i) + δir,ir+1q
irQr(i)− yr(i)Pr(i))e(i),

(Tr + 1− q)Xr+1e(i) = (ψrQr(i)− Pr(i) + 1− q)yr+1(i)e(i).

Considering the two cases ir 6= ir+1 and ir = ir+1 separately, it’s now an
easy exercise to check these two expressions are equal using (4.22), (4.27)
and (4.33).

This just leaves the braid relations. We assume that r = 1, d = 3, set
i := i1, j := i2, k := i3, and need to show that T2T1T2e(ijk) = T1T2T1e(ijk).
As usual we stop writing e(ijk) on the right of all expressions. To start
with, the left (resp. right) hand side of the identity to be checked expands to
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exactly the same expression as (3.44) (resp. (3.45)), with all pr and qr there
replaced by Pr and Qr. Then we consider the usual five cases.

Case 1: i, j, k are all different. This is entirely similar to Case 1 in the proof
of Theorem 3.3. When equating ψ1-, ψ2- and constant coefficients at the end,
everything reduces to the following three identities:

s1P2(jik)P2(ijk) = P1(ijk)P2(ijk) + s1P1(jik)s1P2(jik),
s2P1(ikj)P1(ijk) = P1(ijk)P2(ijk) + s2P1(ikj)s2P2(ikj),

P1(ijk)P2(ijk)2+(ψ2
2)

s2Q2(ikj)s2P1(ikj)Q2(ijk)

= P1(ijk)2P2(ijk) + (ψ2
1)

s1Q1(jik)s1P2(jik)Q1(ijk).

The first two of these are easily checked from (4.27) and (4.26). The last one
follows using (4.44) too.

Case 2: i = j 6= k. Again, the initial expansions made in Case 2 of The-
orem 3.3 are valid in the present situation. We need to equate coefficients
on both sides of these expansions. As before, this is easy until we get to
the ψ1-, ψ2- and constant coefficients. For the ψ1-coefficients, noting that
∂1(Q1(iik)) = 1 + q, we have to show that

∂1(P2(iik))Q1(iik) = P2(iik)− q s1P2(iik)− P2(iik)s1P2(iik). (4.45)

This can be checked by brute force, expanding both sides fully using (4.27),
(4.22) and (4.33). Next, for the ψ2-coefficients, we need to show that

(P2(iik)− s2P1(iki) + s2P1(iki)s2P2(iki))Q2(iik) =

[∂1(Q2(iik))(P2(iik)− s2P1(iki))− s1Q2(iik)∂1(s2P1(iki))]Q1(iik).

Replacing s2P1(iki) with s1P2(iik) everywhere and using (4.28) to rewrite the
term s2P2(iki) as 1− q − P2(iik), this identity is equivalent to

(P2(iik)− q s1P2(iik)− P2(iik)s1P2(iik))Q2(iik) =

[∂1(Q2(iik))(P2(iik)− s1P2(iik))− s1Q2(iik)∂1(s1P2(iik))]Q1(iik). (4.46)

Now we expand the ∂1’s on the right hand side of (4.46) to see that it equals
s1P2(iik)− P2(iik)

y1 − y2
Q1(iik)Q2(iik).

This equals ∂1(P2(iik))Q1(iik)Q2(iik) which by (4.45) is equal to the left
hand side of (4.46). Finally, to check the constant coefficients, we need to
show that

P2(iik)(1− P2(iik))− (1− P2(iik))(q + P2(iik))s2P1(iki)

= ∂1(P2(iik))Q1(iik)(1− P2(iik)),

where we have used (4.44) and the observation that ψ2
1 = 0 by (1.14). Noting

that s2P1(iki) = s1P2(iik), this follows from (4.45) on multiplying both sides
by (1− P2(iik)).

Case 3: i 6= j = k. Similar.
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Case 4: i = k 6= j. Again we follow the calculation from Case 4 of Theo-
rem 3.3. Let ε := 0 if i /− j, 1 if i → j, −1 if i ← j and −2y2 + y1 + y3 if
i � j. In view of (4.34), the ψ2ψ1ψ2-term cancels with the ψ1ψ2ψ1-term,
producing the addition of εQ1(iji)s2Q1(iij)Q2(iji) to the constant term of
the second expression. Now we just consider the constant coefficients, all the
other coefficients being routine. Using (4.44), we need to show that

− P2(iji)2P1(iji)− (1− P2(iji))(q + P2(iji))

+ (ψ2
2)

s2∂1(Q2(iij))s2Q1(iij)Q2(iji)

equals

− P1(iji)2P2(iji)− (1− P1(iji))(q + P1(iji))+

(ψ2
1)

s1∂2(Q1(jii))s1Q2(jii)Q1(iji) + εQ1(iji)s2Q1(iij)Q2(iji).

Expanding the ∂’s, this means we have to show that

P1(iji)P2(iji)(P1(iji)− P2(iji))

+ (1− P1(iji))(q + P1(iji))− (1− P2(iji))(q + P2(iji))

+ (ψ2
2)
Q1(iji)Q2(iji)− s2Q2(iij)Q2(iji)

y1 − y3

s2Q1(iij)

− (ψ2
1)
Q1(iji)Q2(iji)−Q1(iji)s1Q1(jii)

y1 − y3

s2Q1(iij)

− εQ1(iji)Q2(iji)s2Q1(iij) = 0.

Now we use (3.47) and (4.44) and simplify to get that the left hand side of
this expression equals

((1− P1(iji))(q + P1(iji))− (1− P2(iji))(q + P2(iji))
s2Q1(iij) + y1 − y3

y1 − y3

+ P1(iji)P2(iji)(P1(iji)− P2(iji)).

Simplifying the first term using (4.33) then cancelling (P1(iji) − P2(iji))
everywhere, this reduces to checking

(1− q)(1− q − P1(iji)− P2(iji))(1− y3) + P1(iji)P2(iji)(y1 − y3) = 0,

which is straightforward using (4.27) then (4.22).

Case 5: i = j = k. Exercise.

4.5. Proof of the Main Theorem in the non-degenerate case. Fi-
nally we can prove the Main Theorem from the introduction for q 6= 1. By
Theorem 4.2, there is a homomorphism

ρ : RΛ
α → HΛ

α (4.47)

mapping all the formal generators e(i), yr and ψr to the explicit elements of
HΛ

α with the same names. This homomorphism is an isomorphism because
it has a two-sided inverse

σ : HΛ
α → RΛ

α (4.48)
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mapping the generators Tr and Xr to the explicit elements of RΛ
α with the

same names. This statement follows by Theorem 4.3 and arguments that are
entirely similar to those in §3.5.

5. Example: Young’s semi-normal form

In this section we make a rather drastic special assumption: Λ = Λ0 and
e = 0. With this assumption, the degenerate cyclotomic Hecke algebra HΛ

d
is equal to the group algebra FSd of the symmetric group if q = 1 or the
corresponding Iwahori-Hecke algebra if q 6= 1. Either way, HΛ

d is a semisimple
algebra, so its blocks are matrix algebras. We want to explain how in this
special case our results basically reduce to the classical Young’s semi-normal
form. From this point of view, one can think loosely of our Main Theorem as
a replacement for Young’s semi-normal form when the blocks are not simple.

Let λ be a partition of d. We identify λ with its Young diagram drawn in
the usual English notation. The residue of the box of λ in row i and column
j is defined to be j − i ∈ I. By a λ-tableau we mean a diagram obtained
by filling the boxes of λ with the entries 1, . . . , d (each appearing exactly
once). Let T (λ) denote the usual set of all standard λ-tableaux, i.e. the
λ-tableaux whose entries are strictly increasing both along rows from left to
right and down columns from top to bottom. The symmetric group Sd acts
naturally on the set of all λ-tableaux by its action on the entries, but it does
not preserve the subset T (λ) of standard λ-tableaux.

To any T ∈ T (λ) we associate its residue sequence iT := (i1, . . . , id), where
im is the residue of the box of T containing the entry m. We define the weight
of a partition λ to be the weight αi1 + · · ·+αid ∈ Q+ where (i1, . . . , id) is the
residue sequence of any standard λ-tableau. The partition λ can be uniquely
recovered from its weight.

Now fix a partition λ of d of weight α. We use Khovanov-Lauda generators
to construct a module S(λ) over the block HΛ

α of the symmetric group FSd.
As a vector space, we let

S(λ) :=
⊕

T∈T (λ)

FvT. (5.1)

The action of the Khovanov-Lauda generators on this basis is defined as
follows:

e(i)vT :=
{
vT if iT = i,
0 otherwise; (5.2)

yrvT := 0; (5.3)

ψrvT :=
{
vsrT if srT ∈ T (λ),
0 otherwise. (5.4)

It is now very easy to check that the relations (1.6)–(1.15) are satisfied, hence
applying our Main Theorem in this very special case we get an HΛ

α -action
on S(λ). Moreover, if S, T ∈ T (λ) then one can obtain T from S by a series
of basic transpositions so that on each step we still have a standard tableau;
see for example [K1, Lemma 2.2.8]. It follows that the HΛ

α -module S(λ) is
irreducible.
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Since HΛ
α is a simple matrix algebra, our construction yields an isomor-

phism HΛ
α
∼= EndF (S(λ)). So we deduce from (5.2)–(5.3) that e(i) 6= 0 if and

only if i = iT for some T ∈ T (λ), yr = 0 for all 1 ≤ r ≤ d, and the Z-grading
on HΛ

α from Corollary 1 is concentrated in degree zero. Letting λ vary over
all partitions of d, we get a full set of pairwise inequivalent irreducible HΛ

d -
modules from this construction. Finally, if q = 1 and we use (3.42), we obtain
formulas for the action of the standard generators s1, . . . , sd−1 on each S(λ)
which are exactly Young’s formulas. On the other hand if q 6= 1 and we use
(4.43) we obtain formulas for the action of T1, . . . , Td−1 on S(λ) which are
essentially the formulae going back to Hoefsmit [H]; see also [Ra] and [W].

Remark 5.1. Replacing the set T (λ) with the set Te(λ) of e-standard tableaux,
the construction of the irreducible module S(λ) by the formulae (5.2)–(5.4)
can be generalized to include the so-called completely splittable irreducible
representations of the symmetric group in characteristic e > 0 (and their
q-analogues at roots of unity); see [K2] and [Ru].

6. Base change

Finally we explain an application of our main result to base change. Fix
Λ ∈ P+ of level l and α ∈ Q+ of height d. Henceforth we will denote the
algebra HΛ

α (resp. HΛ
d ) instead by HΛ

α (F ) (resp. HΛ
d (F )), as we are going

to allow the ground field to change. Also make a choice of Khovanov-Lauda
generators for HΛ

α (F ) according to (3.31) if q = 1 or (4.37) if q 6= 1. To start
with we explain how to descend from the field F to its prime subfield E.

Theorem 6.1. Let E be the prime subfield of F . Let HΛ
α (E) denote the

E-subalgebra of HΛ
α (F ) generated by the Khovanov-Lauda generators. Then

the natural map
F ⊗E HΛ

α (E)→ HΛ
α (F )

is an F -algebra isomorphism. Moreover, letting RΛ
α(E) be the cyclotomic

Khovanov-Lauda algebra over the field E defined as in §2.2, there is an
E-algebra isomorphism RΛ

α(E) ∼→ HΛ
α (E) sending the named generators of

RΛ
α(E) to the Khovanov-Lauda generators of HΛ

α (E).

Proof. There is an obvious surjective homomorphism RΛ
α(E) � HΛ

α (E)
mapping the named generators of RΛ

α(E) to the Khovanov-Lauda generators
of HΛ

α (E). Extending scalars, this yields a map F ⊗E RΛ
α(E) � HΛ

α (F ).
On the other hand by the presentation for RΛ

α(F ) arising from our Main
Theorem, there is a map HΛ

α (F ) → F ⊗E RΛ
α(E) such that e(i) 7→ 1 ⊗ e(i),

yr 7→ 1 ⊗ yr and ψr 7→ 1 ⊗ ψr for each i and r. Clearly these two maps are
mutual inverses, hence both are isomorphisms. This implies that the original
map RΛ

α(E) � HΛ
α (E) is injective, so it is an isomorphism, and the theorem

follows.

Corollary 6.2. Let D(F ) be an irreducible HΛ
α (F )-module. Then there exists

an irreducible HΛ
α (E)-module D(E) such that D(F ) ∼= F ⊗E D(E).

Proof. By [KL1, Corollary 3.19] (extended to include the case e = 2 as
well) every irreducible RΛ

α(E)-module is absolutely irreducible.
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Recall the formal character chM of a finite dimensional HΛ
α (F )-module

M means the formal linear combination
∑

i∈Iα(dimMi) · i, where Mi is the
i-weight space e(i)M ⊆M . It is known that two modules M and N are equal
in the Grothendieck group if and only if chM = chN . Corollary 6.2 implies
at once that the formal characters of the irreducible HΛ

α (F )-modules are the
same as the formal characters of the irreducible HΛ

α (E)-modules (defined in
an analogous way via the idempotents e(i) ∈ HΛ

α (E)). Since the formal char-
acters of the Specht modules of [DJM] do not depend on the underlying field,
this proves a conjecture of Mathas asserting that decomposition matrices of
Specht modules over HΛ

α (F ) depend only on e and the characteristic of F
(not on F itself):

Corollary 6.3. Conjecture 6.38 of [M] holds.

Now suppose also that K is a field of characteristic zero, and let ξ ∈ K×

be a primitive eth root of unity if e > 0, or some element that is not a root
of unity if e = 0. Let HΛ

d (K) denote the cyclotomic Hecke algebra over K
at parameter ξ, and HΛ

α (K) := eαH
Λ
d (K). Fix a choice of Khovanov-Lauda

generators for HΛ
α (K) according to (4.37). The following theorem explains

how HΛ
α (F ) can be obtained from HΛ

α (K) by base change.

Theorem 6.4. Let HΛ
α (Z) denote the subring of HΛ

α (K) generated by the
Khovanov-Lauda generators. Then HΛ

α (Z) is a free Z-module and there are
isomorphisms

HΛ
α (K) ∼→ K ⊗Z H

Λ
α (Z), (6.1)

HΛ
α (F ) ∼→ F ⊗Z H

Λ
α (Z), (6.2)

such that e(i) 7→ 1⊗ e(i), yr 7→ 1⊗ yr and ψr 7→ 1⊗ ψr for each i and r.

Proof. Let HΛ
α (Q) denote the Q-subalgebra of HΛ

α (K) generated by the
Khovanov-Lauda generators. By Theorem 6.1, we can identify HΛ

α (K) =
K⊗QH

Λ
α (Q), and HΛ

α (Z) can be viewed equivalently as the subring of HΛ
α (Q)

generated by its Khovanov-Lauda generators. By the same argument as in the
proof of Corollary 2.2, HΛ

α (Z) is spanned as a Z-module by elements defined
in terms of its Khovanov-Lauda generators like in (2.7), and only finitely
many of these elements are non-zero. Hence HΛ

α (Z) is a finitely generated
Z-submodule of HΛ

α (Q) and it generates HΛ
α (Q) over Q. As Z is a principal

ideal domain, this implies that HΛ
α (Z) is a lattice in HΛ

α (Q), hence it is also a
lattice in HΛ

α (K) i.e. it is the Z-span of a K-basis of HΛ
α (K). This shows that

HΛ
α (Z) is a free Z-module and the canonical map K ⊗Z H

Λ
α (Z)→ HΛ

α (K) is
an isomorphism.

Now consider the F -algebra F ⊗Z H
Λ
α (Z). It is generated by the elements

1 ⊗ e(i), 1 ⊗ yr and 1 ⊗ ψr for all i and r, and according to the Main
Theorem these elements satisfy the same relations as the defining relations
of the Khovanov-Lauda generators of HΛ

α (F ). Hence there is a surjection

HΛ
α (F ) � F ⊗Z H

Λ
α (Z), e(i) 7→ 1⊗ e(i), yr 7→ 1⊗ yr, ψr 7→ 1⊗ ψr.

To complete the proof of the theorem, we need to show that this surjection is
an isomorphism. Note that dimF F⊗ZH

Λ
α (Z) = dimK HΛ

α (K) by the previous
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paragraph. In view of the above surjection, we know that dimF H
Λ
α (F ) ≥

dimK HΛ
α (K) for all α, and are done if we can show that equality holds

everywhere. This follows because∑
α∈Q+

ht(α)=d

dimF H
Λ
α (F ) = dimF H

Λ
d (F ) = dimK HΛ

d (K) =
∑

α∈Q+

ht(α)=d

dimK HΛ
α (K)

by (3.6) and (4.6).

As a consequence we can explain how to reduce irreducibleHΛ
α (K)-modules

modulo p to obtain well-defined HΛ
α (F )-modules, in the spirit of the Brauer-

Nesbitt construction in finite group theory (see e.g. [CR, §82]).

Theorem 6.5. If D(K) is an irreducible HΛ
α (K)-module and 0 6= v ∈ D(K),

then D(Z) := HΛ
α (Z)v is a lattice in D(K) that is invariant under the action

of HΛ
α (Z). For any such lattice,

D(F ) := F ⊗Z D(Z)

is naturally an HΛ
α (F )-module with the same formal character as D(K). In

particular, the image of D(F ) in the Grothendieck group is independent of
the choice of lattice.

Proof. Let HΛ
α (Q) denote the Q-subalgebra of HΛ

α (K) generated by the
Khovanov-Lauda generators. By Corollary 6.2, there exists an irreducible
HΛ

α (Q)-submodule D(Q) of D(K) such that D(K) = K ⊗Q D(Q). We can
choose this so that the given non-zero vector v belongs to D(Q). Then
HΛ

α (Z)v is a finitely generated Z-submodule of D(Q) which must span D(Q)
over Q since D(Q) is irreducible. This implies that D(Z) is a lattice in D(Q),
hence also it is a lattice in D(K). The rest of the theorem follows easily since
the i-weight spaces of D(K) and D(F ) are equal to e(i)D(K) and e(i)D(F ),
respectively, and e(i)D(Z) is a lattice in e(i)D(K).

Theorem 6.5 implies that there is a well-defined notion of composition mul-
tiplicity in the reduction modulo p of an irreducible HΛ

d (K)-module. Since
the irreducible HΛ

d (K)-modules are understood by [A], it would be particu-
larly interesting to find hypotheses on α that ensure that D(F ) is an irre-
ducible HΛ

α (F )-module for every irreducible HΛ
α (K)-module D(K). In level

one, there is a precise conjecture for this known as the James conjecture; see
e.g. [Ge, §2] and [F].

References

[A] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J.
Math. Kyoto Univ. 36 (1996), 789–808.

[AK] S. Ariki and K. Koike, A Hecke algebra of (Z/rZ) o Sn and construction of its
irreducible representations, Advances Math. 106 (1994), 216–243.

[B] J. Brundan, Centers of degenerate cyclotomic Hecke algebras and parabolic cate-
gory O, Represent. Theory 12 (2008), 236-259.

[BK1] J. Brundan and A. Kleshchev, The degenerate analogue of Ariki’s categorification
theorem; arXiv:0901.0057.

[BK2] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke
algebras; arXiv:0901.4450.



32 JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

[BKW] J. Brundan, A. Kleshchev and W. Wang, Graded Specht modules;
arXiv:0901.0218.

[BS] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s
diagram algebra III: category O; arXiv:0812.1090.

[CG] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry,
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