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In his fundamental 1985 paper [6], Drinfeld attached a certain Hopf algebra,
which he called a Yangian, to each finite dimensional simple Lie algebra over the
ground field C. These Hopf algebras can be regarded as a tool for producing rational
solutions of the Yang-Baxter equation, and are one of the main families of examples
in Drinfeld’s seminal ICM address [8] which marked the beginning of the era of
quantum groups. For sln(C), Drinfeld’s Yangian embeds into a slightly larger Hopf
algebra Y (gln), the Yangian of gln(C), which was discovered a few years earlier in
the work on the quantum inverse scattering method by the St. Petersburg school. A
few years later, Olshanski [13] introduced the twisted Yangians Y (son) and Y (spn)
(assuming n is even in the latter case). These are certain subalgebras of Y (gln)
defined by “folding” the generators with respect to an approriate involution. The
terminology here is confusing, as Olshanski’s twisted Yangians Y (son) and Y (spn)
are quite different from Drinfeld’s Yangians associated to son(C) and spn(C); in
particular, the former are not Hopf algebras. For the rest of this review, we are
interested not with Drinfeld’s Yangians in general, but just with the three families
Y (gln), Y (son) and Y (spn). The study of these algebras has revealed some hidden
structure in the underlying classical Lie algebras, in the spirit of the sort of invariant
theory to be found in Weyl’s book [15].

Formally, the Yangian Y (gln) can be defined as the associative algebra over C
with generators {t(r)ij | 1 ≤ i, j ≤ n, r ≥ 1} subject to the relations

(1) [t(r)ij , t
(s)
kl ] =

min(r,s)∑
a=1

(t(a−1)
kj t

(r+s−a)
il − t(r+s−a)

kj t
(a−1)
il ),

where [x, y] = xy − yx is the commutator and t
(0)
ij should be interpreted as the

Kronecker δij . The motivation behind these relations will be explained shortly, but
first the reader should compare them to the familiar relations

[eij , ekl] = δkjeil − ekjδil

satisfied by the matrix units {eij | 1 ≤ i, j ≤ n} which generate the universal
enveloping algebra U(gln) of the Lie algebra gln(C). It follows that there are
algebra homomorphisms

incl : U(gln) ↪→ Y (gln), eij 7→ t
(1)
ij (1 ≤ i, j ≤ n),

eval : Y (gln) � U(gln), t
(1)
ij 7→ eij , t

(r)
ij 7→ 0 (1 ≤ i, j ≤ n, r ≥ 2),

such that the composition eval ◦ incl is the identity map. The second of these maps,
the evaluation homomorphism, is of particular importance in the theory.

To explain the origin of the relations (1), introduce the generating function

tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + · · · ,
where u is a formal variable. Next gather all these generating functions together
into a single generating matrix T (u) = (tij(u))1≤i,j≤n. Often it is convenient to
regard the n× n matrix T (u) instead as the tensor

T (u) =
n∑

i,j=1

eij ⊗ tij(u) ∈ End(Cn)⊗ Y (gln)[[u−1]],
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where End(Cn) is identified as usual with the algebra of n × n complex matrices.
This gives us the flexibility to write down the more general expressions

T1(u) =
n∑

i,j=1

ei,j ⊗ 1⊗ ti,j(u), T2(u) =
n∑

i,j=1

1⊗ ei,j ⊗ ti,j(u),

which are elements of the algebra End(Cn ⊗ Cn) ⊗ Y (gln)[[u−1]]. Finally, letting
P ∈ End(Cn ⊗ Cn) be the permutation x⊗ y 7→ y ⊗ x, we have Yang’s R-matrix

R(u) = 1− Pu−1 ∈ End(Cn ⊗ Cn)[[u−1]],

which is the simplest non-trivial solution to the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u),

where v is another indeterminate. Here, for 1 ≤ i < j ≤ 3, Rij(u) denotes the
operator in End(Cn⊗Cn⊗Cn)[[u−1]] defined by applying R(u) to the ith and jth
tensors and the identity map in the remaining tensor position. With this notation,
we can now write down the single matrix equation

(2) R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

which by some formal manipulations is exactly equivalent to the defining relations of
Y (gln) recorded in (1). The equation (2) is an instance of the R-matrix formalism of
Reshetikhin, Takhtajan and Faddeev [14], which is a basic tool in the quantization
of various matrix-like structures.

When working with Y (gln), it is usually essential to use the generating func-
tions just introduced. To illustrate this philosophy, let us explain one basic result
describing the center of the algebra Y (gln). Consider the matrix

(3)


t11(u) t12(u− 1) · · · t1n(u− n+ 1)
t21(u) t22(u− 1) · · · t2n(u− n+ 1)

...
...

. . .
...

tn1(u) tn2(u− 1) · · · tnn(u− n+ 1)

 .

Expanding each (u−c)−r as a formal power series in u−1, the entries of this matrix
belong to the algebra Y (gln)[[u−1]]. Let

(4) dn(u) = 1 + d(1)
n u−1 + d(2)

n u−2 + · · · ∈ Y (gln)[[u−1]

denote the column determinant of the matrix (3), by which we mean the usual
expansion of its determinant as a sum of monomials, ordering the non-commuting
terms in each monomial so that they appear in the same order as in the columns
of the matrix. Often dn(u) is called the quantum determinant. For example:

d2(u) = t11(u)t22(u− 1)− t21(u)t12(u− 1)

= 1 +
(
t
(1)
11 + t

(1)
22

)
u−1 +

(
t
(2)
11 + t

(2)
22 + (t(1)11 + 1)t(1)22 − t

(1)
21 t

(1)
12

)
u−2 + · · · .

The infinite family of elements d(1)
n , d

(2)
n , . . . are algebraically independent and gen-

erate the center of Y (gln). The hardest part of this statement, the fact that each
d
(r)
n is actually central, has an elegant proof using the R-matrix formalism.

As an application of the result just formulated, we can give a non-classical proof
of a classical result giving explicit generators for the center of the algebra U(gln).
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Multiply the cth column of the matrix (3) by (u− c+ 1) for each c = 1, . . . , n, then
apply the evaluation homomorphism, to get the matrix

(5)


u+ e11 e12 · · · e1n

e21 u+ e22 − 1 · · · e2n

...
...

. . .
...

en1 en2 · · · u+ enn − n+ 1


with entries in U(gln)[u]. The classical Capelli determinant is the column determi-
nant of this matrix. The result from the previous paragraph implies that the coef-
ficients of 1, u, u2, . . . , un−1 in this determinant all belong to the center of U(gln).
Finally, using the Harish-Chandra homomorphism one checks routinely that these n
elements are algebraically independent and generate the center of U(gln). This anal-
ysis establishes in particular that the evaluation homomorphism Y (gln) � U(gln)
maps the center of Y (gln) surjecively onto the center of U(gln).

Another classical construction which has found a new interpretation (and proof)
in the context of Y (gln) is the Gelfand-Tsetlin basis from [10]. This is a remarkable
basis for any finite dimensional irreducible representation of gln(C) consisting of si-
multaneous eigenvectors for the action of the Gelfand-Tsetlin subalgebra of U(gln),
that is, the commutative algebra generated by the centers of all the naturally em-
bedded subalgebras U(glm) for m ≤ n. In order to define an analogous subalgebra
in the Yangian, let us identify Y (glm) with the subalgebra of Y (gln) generated
by the elements {t(r)ij | 1 ≤ i, j ≤ m, r ≥ 1}, so that the evaluation homomorphism
Y (gln) � U(gln) maps Y (glm) ⊆ Y (gln) onto U(glm) ⊆ U(gln). Then the Gelfand-
Tsetlin subalgebra of Y (gln) is the commutative subalgebra generated by the centers
of all the subalgebras Y (glm) for m ≤ n. By the observation made at the end of
the previous paragraph, the evaluation homomorphism maps the Gelfand-Tsetlin
subalgebra of Y (gln) surjectively onto the Gelfand-Tsetlin subalgebra of U(gln).
Unlike for U(gln), the Gelfand-Tsetlin subalgebra of Y (gln) is a free commutative
algebra, with generators {d(r)

m | 1 ≤ m ≤ n, r ≥ 1}.
The Gelfand-Tsetlin subalgebra of Y (gln) has another natural description. To

explain this, we must first pass to a new set of generators arising from the Gauss
factorization of the generating matrix T (u). We can uniquely factor

T (u) = F (u)H(u)E(u)

for a lower unitriangular matrix F (u), a diagonal matrix H(u) and un upper uni-
triangular matrix E(u). Let hi(u), ej(u) and fj(u) be the ii-, j(j+1)- and (j+1)j-
entries of the matrices H(u), E(u) and F (u), respectively. The u−r-coefficients
h

(r)
i , e

(r)
j and f

(r)
j of these power series for 1 ≤ i ≤ n, 1 ≤ j < n and r ≥ 1

turn out to generate the algebra Y (gln). It is even possible to write down a full
set of relations for the new generators, which is closely related to Drinfeld’s “new
presentation” for Yangians discovered in [9]. The h(r)

i ’s, e(r)j ’s and f
(r)
j ’s generate

subalgebras Y0(gln), Y+(gln) and Y−(gln), respectively, such that multiplication

(6) Y−(gln)⊗ Y0(gln)⊗ Y+(gln)→ Y (gln)

is an isomorphism of vector spaces. This is the triangular decomposition of Y (gln).
Moreover the Gelfand-Tsetlin subalgebra of Y (gln) is exactly the “diagonal” sub-
algebra Y0(gln). This coincidence is a consequence of a remarkable factorization

dn(u) = h1(u)h2(u− 1) · · ·hn(u− n+ 1)



4

of the quantum determinant, which is another identity with a long history.
Since Y (gln) has a triangular decomposition, it is not surprising that its finite

dimensional irreducible representations can be classified in the spirit of highest
weight theory. This was worked out by Drinfeld, building on results of Tarasov in
the case of Y (gl2). The objects that parametrize the highest weights of the finite
dimensional irreducible representations are known as Drinfeld polynomials. Rather
than describe this classification in general, we want to round off this overview by
focussing on one special family of finite dimensional irreducible representations,
the so-called skew representations introduced by Cherednik [4]. These are the basic
building blocks in the classification by Nazarov and Tarasov [12] of all the finite
dimensional irreducible Y (gln)-modules on which the Gelfand-Tsetlin subalgebra
acts semisimply.

To construct the skew representations of Y (gln), we fix m ≥ 0 and a pair of finite
dimensional irreducible representations V (λ) and V (µ) of glm+n(C) and of glm(C)
parametrized by partitions λ and µ, respectively. By the Littlewood-Richardson
rule, the space

V (λ \ µ) = HomU(glm)(V (µ), V (λ))
is non-zero if and only if the Young diagram of µ is a subset of the Young diagram
of λ, i.e. λ \ µ is a skew Young diagram. By standard theory [5, §9.1], V (λ \ µ) is
irreducible as a module over the centralizer U(glm+n)U(glm). Now, as well as the
natural embedding considered so far, there is another embedding

ψm : Y (gln) ↪→ Y (glm+n), h
(r)
i 7→ h

(r)
m+i, e

(r)
j 7→ e

(r)
m+j , f

(r)
j 7→ f

(r)
m+j ,

whose image commutes with the naturally embedded subalgebra Y (glm). This map
ψm is quite non-trivial when written in terms of the usual t(r)ij generators. Com-
posing ψm with the evaluation homomorphism Y (glm+n) � U(glm+n), we get a
homomorphism Y (gln) → U(glm+n) whose image is contained in the centralizer
U(glm+n)U(glm). The key point, which was the starting point for Olshanski’s cen-
tralizer construction of the Yangian, is that U(glm+n)U(glm) is actually generated by
this image of Y (gln) together with the center of U(glm). This implies that V (λ\µ)
is also irreducible when viewed as a module over Y (gln) via our homomorphism.
This is the skew representation of Y (gln). It has a Gelfand-Tsetlin basis indexed
by skew Young tableaux, and the Gelfand-Tsetlin subalgebra acts semisimply on
this basis. Thus the Yangian provides a natural setting that extends the classical
Gelfand-Tsetlin construction from Young diagrams to skew Young diagrams.

We have not left enough space to discuss properly the twisted Yangians Y (son)
and Y (spn). These were discovered by Olshanski by studying the centralizers
U(som+n)U(som) and U(spm+n)U(spm) like in the previous paragraph. In fact, most
of the topics touched upon above have analogues for the twisted Yangians. For
instance, there is an explicit description of the centers of the twisted Yangians in
terms of the Sklyanin determinant which, via the evaluation homomorphism, has
lead to the discovery of new formulae for generators of the centers of U(son) and
U(spn). There is a classification of the finite dimensional irreducible representa-
tions by Drinfeld-like polynomials due to Molev, and there are analogues of the
skew representations too. One of the most striking applications of the theory of
twisted Yangians to date has lead to the construction of explicit weight bases for
the finite dimensional irreducible representations of son(C) and spn(C), which are
partial analogues of the Gelfand-Tsetlin bases for gln(C).
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Molev’s book gives a detailed treatment of all of the topics discussed above, and
many others, both for Y (gln) and the twisted Yangians. It looks set to replace
the foundational work [11] of Molev, Nazarov and Olshanski as the basic reference
in this subject for the beginner. The new book goes much further into represen-
tation theory, which was not touched in [11], and incorporates many subsequent
developments, several of which are due to Molev himself. It contains detailed and
comprehensive proofs, though these tend to be rather technical algebraically in the
twisted case. This subject has grown enormously in the twenty years since the in-
troduction of Yangians, to the point that a mere 400 page text like this has to leave
many interesting topics out. For instance, there is no discussion in the main body
of the text of the Drinfeld functor relating the representation theory of Y (gln) to
that of the degenerate affine Hecke algebra (see [7, 1]), or of the connection between
Y (gln), Y (son) and Y (spn) and finite W -algebras which has given further stimulus
to this subject recently (see [3, 2]). However, at the end of every chapter, the author
has included some comprehensive bibliographical notes in which these things are
mentioned, as are many other applications of Yangians in both the mathematical
and physical literature.
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