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Abstract. We give a new proof of the “super Kazhdan-Lusztig conjecture” for
the Lie superalgebra gln|m(C) as formulated originally by the first author. We

also prove for the first time that any integral block of category O for gln|m(C)

(and also all of its parabolic analogs) possesses a graded version which is Koszul.
Our approach depends crucially on an application of the uniqueness of tensor
product categorifications established recently by the second two authors.
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1. Introduction

In this paper we explain how the uniqueness of tensor product categorifica-
tions established by the second two authors in [LW] yields a quick proof of the
Kazhdan-Lusztig conjecture for the general linear Lie superalgebra gln|m(C). This

conjecture was formulated originally by the first author in [B1] and has been
proved already by a different method by Cheng, Lam and Wang in [CLW]. Ac-
tually we prove here a substantially stronger result, namely, that the analog of
the Bernstein-Gelfand-Gelfand category O for gln|m(C) possesses a Koszul graded

lift, in the spirit of the classic work [BGS].
Roughly, the super Kazhdan-Lusztig conjecture asserts that combinatorics in

integral blocks of category O for gln|m(C) is controlled by various canonical bases

in the sl∞-module V ⊗n ⊗W⊗m, where V is the natural sl∞-module and W is its
dual. In fact, we prove a generalization of the conjecture which is adapted to the
highest weight structure on O arising from any choice of conjugacy class of Borel
subalgebra; changing the Borel corresponds to shuffling the tensor factors in the
mixed tensor space V ⊗n ⊗W⊗m into more general orders. This generalization
was suggested in the introduction of [Ku], then precisely formulated and proved
in [CLW]. (We point out also the paper [CMW] which establishes an equivalence
of categories from an arbitrary non-integral block of category O for gln|m(C) to
an integral block of a direct sum of other general linear Lie superalgebras of the
same total rank.)

The basic idea of our proof is as follows. For a finite interval I ⊂ Z, let slI
be the special linear Lie algebra consisting of (complex) trace zero matrices with
rows and columns indexed by integers from the set I+ := I∪ (I+1). Let VI be the
natural slI -module of column vectors and WI := V ∗I . We construct a subquotient
OI of the super category O which is an slI -categorification of the tensor product
V ⊗nI ⊗W⊗mI in the sense of Chuang and Rouquier [CR],[R]. Then, observing that

V ⊗nI ⊗W⊗mI ∼= V ⊗nI ⊗ (
∧|I|VI)⊗m,

one can apply the uniqueness of tensor product categorifications from [LW] to
deduce that OI is equivalent to another well-known categorification O′I of this
tensor product arising from the parabolic category O associated to the Lie algebra
gln+m|I|(C) and its Levi subalgebra gl1(C)⊕n ⊕ gl|I|(C)⊕m. The combinatorics of
the latter category is understood by the ordinary Kazhdan-Lusztig conjecture
proved in [BB],[BrKa]. Since the finite interval I can be chosen freely, this gives
enough information to deduce the super Kazhdan-Lusztig conjecture.

By the well-known results from [BGS] and [B], the category O′I has a graded
version which is Koszul. Hence so does the equivalent category OI . To construct
a Koszul grading on category O for gln|m(C), we show further that the Koszul
gradings on each OI can be chosen in a compatible way so that they lift to O
itself. Again we do this also for all of the parabolic analogs of O, so that a very
special case recovers the Koszul grading on the subcategory of O consisting of
finite dimensional representations that was constructed explicitly in [BS]. Our
main result here can be paraphrased as follows.

Theorem A. Any block of parabolic category O for gln|m(C) with integral central
character has a graded lift which is a standard Koszul highest weight category.
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Moreover its graded decomposition numbers can be computed in terms of finite
type A parabolic Kazhdan-Lusztig polynomials, as predicted in [B1].

In the main body of the article we adopt a more axiomatic approach in the
spirit of [LW]. In Section 2, we write down the formal definition of an sl∞-tensor
product categorification of a tensor product of exterior powers of V and W . This
is a category with

• an sl∞-action in the sense discussed in Definition 2.6,
• a highest weight category structure as in Definition 2.8, and
• some compatibility between these structures explained in Definition 2.10,

such that the complexified Grothendieck group of the underlying category of ∆-
filtered objects is isomorphic to the given tensor product of exterior powers of
V and W . Then the bulk of the article is taken up with proving the following
fundamental result about such categorifications.

Theorem B. There exists a unique sl∞-tensor product categorification associated
to any tensor product of exterior powers of V and W . Moreover such a category
has a unique graded lift compatible with all the above structures.

The existence part of this theorem is proved in Section 3, simply by verifying
that parabolic category O for the general linear Lie superalgebra satisfies the ax-
ioms; in fact this is the only time Lie superalgebras enter into the picture. The
uniqueness (up to strongly equivariant equivalence) is proved in Section 4. It is a
non-trivial extension of the uniqueness theorem for finite slI -tensor product cate-
gorifications established in [LW]. The proof for sl∞ depends on the construction
of an interesting new category of stable modules for a certain tower of quiver Hecke
algebras. Finally in Section 5, we incorporate gradings into the picture, defining
the notion of a Uqsl∞-tensor product categorification of a tensor product of q-
deformed exterior powers of V and W ; see Definitions 5.4, 5.6 and 5.9. We prove
the existence and uniqueness of these by exploiting graded stable modules over our
tower of quiver Hecke algebras. Then we prove that any such category is standard
Koszul and deduce the graded version of the Kazhdan-Lusztig conjecture.

Conventions. We fix an algebraically closed field K of characteristic 0 throughout
the article. All categories and functors will be assumed to be K-linear without
further notice. Let Vec be the category of finite dimensional vector spaces. For
a finite dimensional graded vector space V =

⊕
n∈Z Vn, we write dimq V for its

graded dimension
∑

n∈Z(dimVn)qn ∈ Z[q, q−1].

2. Tensor product categorifications

In this section, we review the definition of tensor product categorification from
[LW, Definition 3.2] in the special case of tensor products of exterior powers of
the natural and dual natural representations of slI . We include the possibility
that the interval I ⊆ Z is infinite, when these are not highest weight modules.
Then we state our first main result asserting the existence and uniqueness of such
tensor product categorifications, extending the case of finite intervals from [LW].
After that, we make some preparations for the proof (which actually takes place
in Sections 3 and 4), and discuss some first applications.
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2.1. Schurian categories. By a Schurian category we mean an Abelian cate-
gory C such that all objects are of finite length, there are enough projectives and
injectives, and the endomorphism algebras of the irreducible objects are one di-
mensional. For example, the category mod-A of finite dimensional right modules
over a finite dimensional K-algebra A is Schurian. Note throughout this text we
will work in terms of projectives, but obviously C is Schurian if and only if Cop is
Schurian, so that everything could be expressed equivalently in terms of injectives.
We use the made-up word prinjective for an object that is both projective and
injective.

Given a Schurian category C, we let pC be the full subcategory consisting of all
projective objects. Let Funf (pC,Vecop) denote the category of all contravariant
functors from pC to Vec which are zero on all but finitely many isomorphism
classes of indecomposable projectives. The Yoneda functor

C → Funf (pC,Vecop), M 7→ HomC(−,M) (2.1)

is an equivalence. Hence C can be recovered (up to equivalence) from pC.
This assertion can be formulated in more algebraic terms as follows. Let

{L(λ) |λ ∈ Λ} be a complete set of pairwise non-isomorphic irreducible objects in
C, and fix a choice of a projective cover P (λ) of each L(λ). Let

A :=
⊕
λ,µ∈Λ

HomC(P (λ), P (µ)) (2.2)

viewed as an associative algebra with multiplication coming from composition in C.
Let 1λ ∈ A be the identity endomorphism of P (λ). If Λ is finite then A is a unital
algebra with 1 =

∑
λ∈Λ 1λ, indeed, A is the endomorphism algebra of the minimal

projective generator
⊕

λ∈Λ P (λ). However in general A is only locally unital,
meaning that it is equipped with the system {1λ | λ ∈ Λ} of mutually orthogonal
idempotents such that A =

⊕
λ,µ∈Λ 1µA1λ. Let mod-A denote the category of all

finite dimensional locally unital right A-modules, that is, finite dimensional right
A-modules M such that M =

⊕
λ∈ΛM1λ. Then our earlier assertion about the

Yoneda equivalence amounts to the statement that the functor

H : C → mod-A, M 7→
⊕
λ∈Λ

HomC(P (λ),M) (2.3)

is an equivalence of categories. Of course this functor sends P (λ) to the (neces-
sarily finite dimensional) right ideal 1λA; these are the indecomposable projective
modules in mod-A. The linear duals of the indecomposable injective modules are
isomorphic to the left ideals A1λ, so that the latter are finite dimensional too.
Conversely given any locally unital K-algebra A with distinguished idempotents
{1λ | λ ∈ Λ} such that all of the ideals 1λA and A1λ are finite dimensional, the
category mod-A is Schurian.

Let K0(C) (resp. G0(C)) be the split Grothendieck group of the additive cate-
gory pC (resp. the Grothendieck group of the Abelian category C). Set

[C] := C⊗Z K0(C), [C]∗ := C⊗Z G0(C).
So [C] is the complex vector space on basis {[P (λ)] | λ ∈ Λ}, while [C]∗ has basis
{[L(λ)] | λ ∈ Λ}. These bases are dual with respect to the bilinear Cartan pairing
(−,−) : [C]× [C]∗ → C defined from ([P ], [L]) := dim HomC(P,L).
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2.2. Combinatorics. Let I ⊆ Z be a (non-empty) interval and set

I+ := I ∪ (I + 1).

Let slI be the Lie algebra of (complex) trace zero matrices with rows and columns
indexed by I+, all but finitely many of whose entries are zero. It is generated by
the matrix units fi := ei+1,i and ei := ei,i+1 for all i ∈ I. The weight lattice of
slI is PI :=

⊕
i∈I Z$i where $i is the ith fundamental weight. The root lattice is

QI :=
⊕

i∈I Zαi < PI where αi is the ith simple root defined from

αi := 2$i −$i−1 −$i+1,

interpreting $i as 0 if i /∈ I. Let PI × QI → Z, ($,α) 7→ $ · α be the bilinear
pairing defined from $i ·αj := δi,j , so that

(
αi ·αj

)
i,j∈I is the Cartan matrix. Let

P+
I (resp. Q+

I ) be the positive cone in PI (resp. QI) generated by the fundamental
weights (resp. the simple roots). The dominance order ≥ on PI is defined by β ≥ γ
if β − γ ∈ Q+

I . For any i ∈ I+ we set

εi := $i −$i−1,

again interpreting $i as 0 for i /∈ I. The following lemma is well known.

Lemma 2.1. For β =
∑

i∈I+ biεi and γ =
∑

i∈I+ ciεi in PI with
∑

i bi =
∑

i ci,

we have that β ≥ γ if and only if
∑

i≤h bi ≥
∑

i≤h ci for all h ∈ I.

An slI -module M is integrable if it decomposes into weight spaces as M =⊕
$∈PI M$, and moreover each of the Chevalley generators fi and ei acts locally

nilpotently. Basic examples are the natural slI -module VI of column vectors with
standard basis {vi | i ∈ I+} and its dual WI with basis {wi | i ∈ I+}; the Chevalley
generators act on these basis vectors by

fivj = δi,jvi+1, eivj = δi+1,jvi,

fiwj = δi+1,jwi, eiwj = δi,jwi+1.

The vector vi is of weight εi while wi is of weight −εi.
More generally we have the exterior powers

∧n VI and
∧nWI for n ≥ 0; hence-

forth we denote these instead by
∧n,0 VI and

∧n,1 VI , respectively. For c ∈ {0, 1}
let ΛI;n,c denote the set of 01-tuples λ = (λi)i∈I+ such that∣∣{i ∈ I+ | λi 6= c}

∣∣ = n.

This set parametrizes the natural monomial basis {vλ | λ ∈ ΛI;n,c} of
∧n,c VI

defined from

vλ :=

{
vi1 ∧ · · · ∧ vin if c = 0,
wi1 ∧ · · · ∧ win if c = 1,

where i1 < · · · < in are chosen so that λij 6= c for each j. The actions of the
Chevalley generators are given explicitly by

fivλ :=

{
vti(λ) if λi = 1 and λi+1 = 0,
0 otherwise,

(2.4)

eivλ :=

{
vti(λ) if λi = 0 and λi+1 = 1,
0 otherwise,

(2.5)
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where ti(λ) denotes the tuple obtained from λ by switching λi and λi+1. Let
|λ| ∈ PI denote the weight of the vector vλ. We have that

|λ| =
∑
i∈I+

λiεi,

interpreting the sum on the right hand side when I is infinite and c = 1 using the
convention that · · ·+ εi−1 + εi = $i and εi+1 + εi+2 + · · · = −$i.

We are also going to be interested in tensor products of the modules
∧n,c VI .

Suppose that we are given n = (n1, . . . , nl) ∈ Nl and c = (c1, . . . , cl) ∈ {0, 1}l; we
refer to the pair (n, c) as a type of level l. Let∧n,c VI :=

∧n1,c1 VI ⊗ · · · ⊗
∧nl,cl VI . (2.6)

This module has the obvious basis of monomials vλ := vλ1 ⊗ · · · ⊗ vλl indexed by
elements λ = (λ1, . . . , λl) of the set

ΛI;n,c := ΛI;n1,c1 × · · · × ΛI;nl,cl . (2.7)

The vector vλ is of weight

|λ| := |λ1|+ · · ·+ |λl|.
It is often convenient to regard λ ∈ ΛI;n,c as a 01-matrix λ = (λij)1≤i≤l,j∈I+ with
ith row λi = (λij)j∈I+ . (There are several other indexing conventions possible;
for example earlier papers of the first and third authors have used the convention
that λ is represented by a column-strict tableau with l columns such that the ith
column is filled with all j ∈ I+ such that λij = 1.)

Assume for a moment that I is finite and that ΛI;n,c is non-empty. Let κ = κI;n,c
be the 01-matrix in ΛI;n,c in which all the entries 1 are as far to the left as possible
within each row. Thus |κ| ∈ PI is the unique highest weight of

∧n,c VI with respect
to the dominance ordering. For any λ ∈ ΛI;n,c define its defect by

def(λ) := 1
2(|κ| · |κ| − |λ| · |λ|) = |κ| · α− 1

2α · α, (2.8)

where α := |κ| − |λ|. In combinatorial terms, this is 1
2

∑
j∈I+(k2

j − l2j ) where kj
(resp. lj) counts the number of entries equal to 1 in the jth column of κ (resp. λ).
The following lemma extends this definition to include infinite intervals I.

Lemma 2.2. Suppose that I is an infinite interval and λ ∈ ΛI;n,c. Let J ⊂ I
be a finite subinterval such that |J+| ≥ 2 max(n) and λi,j = ci for all 1 ≤ i ≤ l
and j ∈ I+ \ J+. Let λJ ∈ ΛJ ;n,c be the submatrix (λi,j)1≤i≤l,j∈J+ of λ. Let
κJ := κJ ;n,c. Then the natural number

def(λ) := 1
2(|κJ | · |κJ | − |λJ | · |λJ |)

is independent of the particular choice of J .

Proof. Define the trivial column to be the column vector (ci)1≤i≤l. Let J and J ′ be
two intervals satisfying the hypotheses of the lemma with J ⊂ J ′. The conditions
imply that κJ (resp. λJ) can be obtained from κJ ′ (resp. λJ ′) by removing |J ′| −
|J | trivial columns. The lemma follows easily from this using the combinatorial
formulation of the definition of defect. �
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2.3. Hecke algebras. To prepare for the definition of an slI -categorification, we
recall the definition of certain associative unital K-algebras, namely, the (degen-
erate) affine Hecke algebra AHd, and the quiver Hecke algebra QHI,d associated
to the linear quiver with vertex set I and an edge i → j if i = j + 1. The latter
is also known as a Khovanov-Lauda-Rouquier algebra after [KL1] and [R].

Definition 2.3. The affine Hecke algebra AHd is the vector space

K[x1, . . . , xd]⊗KSd
with multiplication defined so that the polynomial algebra K[x1, . . . , xd] and the
group algebra KSd of the symmetric group Sd are subalgebras, and also

(AH) tjxk − xtj(k)tj =

 1 if k = j + 1,
−1 if k = j,

0 otherwise.

Here tj denotes the transposition (j j+1) ∈ Sd.

Definition 2.4. The quiver Hecke algebra QHI,d is defined by generators

{1i | i ∈ Id} ∪ {ξ1, . . . , ξd} ∪ {τ1, . . . , τd−1}
subject to relations:

(QH1) the elements ξ1, . . . , ξd commute with each other and all {1i | i ∈ Id};
(QH2) the elements

{
1i | i ∈ Id

}
are mutually orthogonal idempotents whose sum

is the identity;
(QH3) τj1i = 1tj(i)τj where tj(i) is the tuple obtained from i = (i1, . . . , id) by

flipping its jth and (j + 1)th entries;

(QH4) (τjξk − ξtj(k)τj)1i =

 1i if k = j + 1 and ij = ij+1,
−1i if k = j and ij = ij+1,

0 otherwise;
(QH5) τjτk = τkτj if |j − k| > 1;

(QH6) τ2
j 1i =


0 if ij = ij+1,
(ξj − ξj+1)1i if ij = ij+1 − 1,
(ξj+1 − ξj)1i if ij = ij+1 + 1,
1i otherwise;

(QH7) (τj+1τjτj+1 − τjτj+1τj)1i =

 1i if ij = ij+1 − 1 = ij+2,
−1i if ij = ij+1 + 1 = ij+2,
0 otherwise.

An important feature of QHI,d is that it possesses a non-trivial Z-grading. This
is defined by declaring that each idempotent 1i is in degree 0, each ξj in degree
2, and finally τk1i is in degree −αik · αik+1

.
The algebras AHd and QHI,d are closely related as explained in [R, Proposition

3.15]. This result can also be formulated as an isomorphism between certain
cyclotomic quotients of AHd and QHI,d as in [BK2]. Let $ ∈ P+

I be a dominant
weight. Define AH$

d (resp. QH$
I,d) to be the quotient of AHd (resp. QHI,d) by

the two-sided ideal generated by the polynomial
∏
i∈I(x1 − i)$·αi (resp. by the

elements {ξ$·αi11 1i | i ∈ Id}). These are finite dimensional algebras. The image of
the polynomial algebra K[x1, . . . , xd] in AH$

d is a finite dimensional commutative

algebra, hence it contains mutually orthogonal idempotents {1i | i ∈ Kd} such
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that 1i projects any module M onto its i-th word space

Mi :=
{
v ∈M

∣∣ (xj − ij)Nv = 0 for each j = 1, . . . , d and N � 0
}
.

Then let
AH$

I,d :=
⊕

i,j∈Id
1iAH

$
d 1j = AH$

d

/
〈1i | i /∈ Id〉,

which is a sum of blocks of the algebra AH$
d . The following theorem gives an

explicit choice of isomorphism between QH$
I,d and AH$

I,d; any other reasonable

choice of isomorphism such as the one from [R, Proposition 3.15] could be used
instead throughout this article.

Theorem 2.5 ([BK2], [R]). For $ ∈ P+
I there is an isomorphism QH$

I,d
∼→ AH$

I,d

defined on generators by

1i 7→ 1i; (2.9)

ξj1i 7→ (xj − ij)1i; (2.10)

τj1i 7→

 (1 + tj)(1− xj + xj+1)−11i if ij = ij+1,
(1 + tjxj − tjxj+1)1i if ij = ij+1 + 1,
(1 + tjxj − tjxj+1)(1− xj + xj+1)−11i otherwise.

(2.11)

(In fact, this isomorphism can be extended to the completions Q̂HI,d and ÂHI,d

with respect to these systems of quotients as discussed in [W2].)

Proof. This follows by [BK2, Main Theorem]. To get exactly this isomorphism one
needs to choose the power series qj(i) of [BK2, (3.27)–(3.29)] so that qj(i) = pj(i)
if ij = ij+1 + 1 and qj(i) = 1 − pj(i) if ij /∈ {ij+1, ij+1 + 1}. Note also that the
opposite orientation of the quiver was used in [BK2] so that the elements ψje(i)
in [BK2] are our τj1i if ij ∈ {ij+1, ij+1 +1} and our −τj1i otherwise; the elements
yje(i) in [BK2] are our elements ξj1i. �

Henceforth we will simply identify QH$
I,d and AH$

I,d via the isomorphism from
the theorem.

2.4. Categorification. Following their work [CR], Chuang and Rouquier intro-
duced the notion of an slI -categorification, also known as a categorical slI -action.
The following is essentially [R, Definition 5.32] (taking q = 1 and switching the
roles of E and F ).

Definition 2.6. An slI-categorification is a Schurian category C together with an
endofunctor F , a right adjoint E to F (with a specified adjunction), and natural
transformations x ∈ End(F ) and t ∈ End(F 2) satisfying the axioms (SL1)–(SL4)
formulated below. For the first axiom, we let Fi be the subfunctor of F defined by
the generalized i-eigenspace of x, i.e. FiM =

∑
k≥0 ker(xM − i)k for each M ∈ C.

(SL1) We have that F =
⊕

i∈I Fi, i.e. FM =
⊕

i∈I FiM for each M ∈ C.
(SL2) For d ≥ 0 the endomorphisms xj := F d−jxF j−1 and tk := F d−k−1tF k−1

of F d satisfy the relations of the degenerate affine Hecke algebra AHd.
(SL3) The functor F is isomorphic to a right adjoint of E.
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For the final axiom, we let c : id → EF and d : FE → id be the unit and counit
of the given adjunction, respectively. The endomorphisms x and t of F and F 2

induce endomorphisms x and t of E and E2 too:

x : E
cE→ EFE

ExE→ EFE
Ed→ E, (2.12)

t : E2 cE2

→ EFE2 EcFE2

→ E2F 2E2 E2tE2

→ E2F 2E2 E2FdE→ E2FE
E2d→ E2. (2.13)

(We remark that these satisfy slightly different relations to the original x and t:
the signs on the right hand side of the degenerate affine Hecke algebra relation
(AH) must be reversed.) Let Ei be the subfunctor of E defined by the generalized
i-eigenspace of x ∈ End(E). The axioms so far imply that E =

⊕
i∈I Ei and

moreover Fi and Ei are biadjoint, so they are both exact and send projectives to
projectives.

(SL4) The endomorphisms fi and ei of [C] = C⊗Z K0(C) induced by Fi and Ei,
respectively, make [C] into an integrable representation of slI . Moreover
the classes of the indecomposable projective objects are weight vectors.

The axiom (SL4) has the following equivalent dual formulation.

(SL4∗) The endomorphisms fi and ei of [C]∗ = C⊗ZG0(C) induced by Fi and Ei,
respectively, make [C]∗ into an integrable representation of slI . Moreover
the classes of the irreducible objects are weight vectors.

The axiom (SL1) implies that F d decomposes as
⊕

i∈Id Fi where

Fi := Fid ◦ · · · ◦ Fi1 .

This further shows that the action of AHd factors through the completion ÂHI,d

of the inverse system of cyclotomic quotients {AH$
I,d | $ ∈ P+

I }. Letting 1i ∈
End(F d) be the projection onto Fi we can then use the isomorphism of completions

given by (2.9)–(2.11) to convert the homomorphism AHd → ÂHI,d → End(F d)

into a homomorphism QHI,d → Q̂HI,d → End(F d). Hence the definition of an
slI -categorification can be formulated equivalently using the quiver Hecke algebra
QHI,d in place of the degenerate affine Hecke algebra AHd. In this incarnation,
C should be equipped with adjoint pairs (Fi, Ei) of endofunctors for all i ∈ I
(with specified adjunctions), together with natural transformations ξ ∈ End(F )
and τ ∈ End(F 2) where F :=

⊕
i∈I Fi, satisfying the axioms (SL1′)–(SL4′).

(SL1′) The endomorphism ξ is locally nilpotent, i.e. FM =
∑

k≥0 ker ξkM for each
M ∈ C.

(SL2′) For d ≥ 0 the endomorphisms ξj := F d−jξF j−1 and τk := F d−k−1τF k−1

of F d plus the projections 1i of F d onto its summands Fi for each i ∈ Id
satisfy the relations of the quiver Hecke algebra QHI,d.

(SL3′) Each functor Fi is isomorphic to a right adjoint of Ei.
(SL4′) Same as (SL4).

In fact this is just the first of several alternate definitions of slI -categorification
in the literature. Notably in [R, Theorem 5.30] Rouquier proves that the data
of an slI -categorification as above is equivalent to the data of an integrable 2-
representation of the Kac-Moody 2-category associated to slI in the sense of [R,
Definition 5.1]; see also [KL2] and [CaL] for closely related notions. (We point out
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also the recent article [B6], which shows that the seemingly different definitions
in [R, KL2, CaL] actually yield isomorphic 2-categories.)

Definition 2.7. Given two slI -categorifications C and C′, and denoting F,E, x, t
for C′ instead by F ′, E′, x′, t′ for clarity, a functor G : C → C′ is strongly equivariant
if there exists an isomorphism of functors ζ : F ′ ◦G ∼→ G ◦ F such that

(E1) the natural transformation E′Gε ◦ E′ζE ◦ η′GE : G ◦ E → E′ ◦ G is an
isomorphism;

(E2) ζ ◦ x′G = Gx ◦ ζ in Hom(F ′ ◦G,G ◦ F );

(E3) ζF ◦ F ′ζ ◦ t′G = Gt ◦ ζF ◦ F ′ζ in Hom(F ′2 ◦G,G ◦ F 2).

If it happens that G is an equivalence of categories then the axiom (E1) holds
automatically, and we call G a strongly equivariant equivalence.

As usual, the definition of strongly equivariant functor can be formulated in
terms of quiver Hecke algebras. In that setting, the isomorphism ζ is induced by
isomorphisms ζi : F ′i ◦G

∼→ G ◦ Fi for each i, and the endomorphisms x and t in
(E2)–(E3) are replaced by ξ and τ .

2.5. Recollections about highest weight categories. We must also make a
few reminders about (artinian) highest weight categories in the sense of [CPS1];
see also [D, Appendix] which is a good source for proofs of all the results stated
in this subsection (although it only treats finite weight posets).

Definition 2.8. A highest weight category is a Schurian category C together with
an interval-finite poset (Λ,≤) indexing a complete set of pairwise non-isomorphic
irreducible objects {L(λ) | λ ∈ Λ} of C, such that the following axiom holds.

(HW) Let P (λ) be a projective cover of L(λ) in C. Define the standard object
∆(λ) to be the largest quotient of P (λ) such that [∆(λ) : L(µ)] = δλ,µ for
µ 6< λ. Then P (λ) has a finite filtration with top section isomorphic to
∆(λ) and other sections of the form ∆(µ) for µ > λ.

It is well known that this is equivalent to the axiom (HW∗) below; in other words
C is highest weight if and only if Cop is highest weight.

(HW∗) Let I(λ) be an injective hull of L(λ) in C. Define the costandard object
∇(λ) to be the largest subobject of I(λ) such that [∇(λ) : L(µ)] = δλ,µ for
µ 6< λ. Then I(λ) has a finite filtration with bottom section isomorphic
to ∇(λ) and other sections of the form ∇(µ) for µ > λ.

If C is a highest weight category, we write C∆ and C∇ for the exact subcate-
gories consisting of objects with a ∆-flag and objects with a ∇-flag, respectively.
Their complexified Grothendieck groups will be denoted [C∆] and [C∇]; they have
distinguished bases {[∆(λ)] | λ ∈ Λ} and {[∇(λ)] | λ ∈ Λ}, respectively. The nat-
ural inclusion functors induce linear maps [C] ↪→ [C∆] ↪→ [C]∗ ←↩ [C∇]. When Λ
is finite all these maps are actually isomorphisms so that all the Grothendieck
groups are usually identified.

There are a couple of well-known constructions which will be essential later
on. Suppose that we are given a decomposition Λ = Λ∨ t Λ∧ such that Λ∨
is an ideal (lower set); equivalently Λ∧ is a coideal (upper set). Let C∨ be the
Serre subcategory of C generated by {L(λ) | λ ∈ Λ∨}. We write ι : C∨ ↪→ C
for the natural inclusion, and ι! (resp. ι∗) for the left (resp. right) adjoint to ι
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which sends an object M to its largest quotient (resp. subobject) belonging to
C∨. The category C∨ is itself a highest weight category with weight poset Λ∨.
Its irreducible, standard and costandard objects are the same as the ones in C
indexed by the set Λ∨. For λ ∈ Λ∨ the projective cover (resp. injective hull) of
L(λ) in C∨ is ι!P (λ) (resp. ι∗I(λ)), which will in general be a proper quotient of
P (λ) (resp. a proper subobject of I(λ)). For any M,N ∈ C∨ we have that

ExtnC(M,N) ∼= ExtnC∨(M,N) (2.14)

for all n ≥ 0. This is proved by a Grothendieck spectral sequence argument
exactly like in [D, A3.2–A3.3]. A key step is to check that the higher right derived
functors Rnι∗ vanish on objects from C∇; dually the higher left derived functors
Lnι

! vanish on objects from C∆.
As well as the subcategory C∨, we can consider the Serre quotient category

C∧ := C/C∨; we stress that according to the definition of quotient category the
objects of C∧ are the same as the objects of C; morphisms M → N in C∧ are
obtained by taking a direct limit of the morphisms M ′ → N/N ′ in C over all
subobjects M ′ of M and N ′ of N such that M/M ′ and N ′ belong to C∨. Let
π : C → C∧ be the quotient functor, and fix a choice π! (resp. π∗) of a left
(resp. right) adjoint to π. Note that the unit (resp. counit) of adjunction gives a

canonical isomorphism id
∼→ π ◦ π! (resp. π ◦ π∗ ∼→ id). The irreducible, standard,

costandard, indecomposable projective and indecomposable injective objects in
C∧ are the same as the ones in C indexed by weights from Λ∧. Also for λ ∈ Λ∧
we have that π!P (λ) ∼= P (λ), π∗I(λ) ∼= I(λ), π!∆(λ) ∼= ∆(λ) and π∗∇(λ) ∼= ∇(λ)
in C; the first two isomorphisms here follow from properties of adjunctions; see
Lemma 2.9 below for justification of the latter two. Finally for M,N ∈ C such
that either M has a ∆-flag with sections of the form ∆(λ) indexed by weights
λ ∈ Λ∧, or N has a ∇-flag with sections ∇(λ) for λ ∈ Λ∧, we have that

ExtnC(M,N) ∼= ExtnC∧(M,N) (2.15)

for all n ≥ 0. This is [D, A3.13].

Lemma 2.9. Let π : C → C∧ be the quotient associated to a coideal Λ∧ ⊆ Λ. For
λ ∈ Λ∧ there are canonical isomorphisms π!∆(λ) ∼= ∆(λ) and ∇(λ) ∼= π∗∇(λ) in
C induced by the counit and unit of the fixed adjunctions.

Proof. Let C≤λ (resp. C<λ) be the highest weight subcategory of C associated to
the ideal {µ ∈ Λ | µ ≤ λ} (resp. {µ ∈ Λ | µ < λ}). Let Cλ := C≤λ/C<λ. This
category is a copy of Vec with unique (up to isomorphism) irreducible object L(λ).
Let πλ : C≤λ → Cλ be the quotient functor with left adjoint π!

λ. The projective
cover of L(λ) in C≤λ is ∆(λ), hence by properties of adjunctions we have that
∆(λ) ∼= π!

λL(λ) in C.
Similarly, working with C∧ in place of C, we define subcategories C∧,≤λ and

C∧,<λ. The quotient C∧,≤λ/C∧,<λ is another copy of Vec, hence is equivalent to
Cλ. This means that there is another quotient functor π∧,λ : C∧,≤λ → Cλ such that

πλ = π∧,λ ◦ π, hence π!
λ
∼= π! ◦ π!

∧,λ. Again we have that ∆(λ) ∼= π!
∧,λL(λ) in C∧.

Hence we get isomorphisms in C:
π!∆(λ) ∼= π!(π!

∧,λL(λ)) ∼= π!
λL(λ) ∼= ∆(λ).
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It remains to observe that the counit π!∆(λ) = π!(π∆(λ))→ ∆(λ) is an epimor-
phism as ∆(λ) has irreducible head L(λ) and λ ∈ Λ∧; hence this gives a canonical
choice for the isomorphism.

The argument for ∇ is similar. �

2.6. Tensor product categorifications. Suppose we are given a type (n, c) of
level l. Recall the slI -module

∧n,c VI from (2.6).

Definition 2.10. An slI-tensor product categorification of type (n, c) means a
highest weight category C together with an endofunctor F of C, a right adjoint
E to F (with specified adjunction), and natural transformations x ∈ End(F ) and
t ∈ End(F 2) satisfying axioms (SL1)–(SL3) and (TP1)–(TP3).

(TP1) The weight poset Λ is the set ΛI;n,c from (2.7) partially ordered by λ ≤ µ
if and only if |λ| = |µ| and |λ1|+ · · ·+ |λk| ≥ |µ1|+ · · ·+ |µk| for all k.

(TP2) The exact functors Fi and Ei send objects with ∆-flags to objects with
∆-flags.

(TP3) The linear isomorphism [C∆]
∼→
∧n,c VI , [∆(λ)] 7→ vλ intertwines the endo-

morphisms fi and ei of [C∆] induced by Fi and Ei with the endomorphisms
of
∧n,c VI arising from the actions of the Chevalley generators fi and ei

of slI .

Since [C] embeds into [C∆] ∼=
∧n,c VI , we deduce immediately from the axioms

that [C] is itself an integrable slI -module, i.e. the axiom (SL4) holds automati-
cally. Thus tensor product categorifications are categorifications in the sense of
Definition 2.6 too.

Remark 2.11. This definition is a slightly modified version of [LW, Definition
3.2], where a general notion of tensor product categorification for arbitrary Kac-
Moody algebras was introduced. The definition in [LW] is expressed in terms
of quiver Hecke algebras rather than affine Hecke algebras; but of course the
above definition can be formulated equivalently with the axioms (SL1′)–(SL3′)
replacing (SL1)–(SL3); so this is a superficial difference. More significantly, in
our formulation of the axioms (TP2)–(TP3), we have incorporated the explicit
monomial basis {vλ | λ ∈ Λ} which is only available in our special minuscule
situation. The analogous axioms (TPC2)–(TPC3) in [LW] are couched in terms of
some commuting categorical slI -actions on the associated graded category gr C :=⊕

λ∈Λ Cλ (where Cλ is as in the proof of Lemma 2.9). The functors iFj defining
these actions can be recovered by taking a sum of equivalences Cλ → Ctij(λ) for

all λ ∈ Λ such that λij = 1 and λi(j+1) = 0, where tij(λ) is obtained from λ
by interchanging λij and λi(j+1). Such functors exist since for a highest weight
category each Cλ is equivalent to Vec.

Any slI -tensor product categorification decomposes as

C =
⊕
$∈PI

C$ (2.16)

where C$ is the Serre subcategory of C generated by the irreducible objects
{L(λ) | λ ∈ Λ, |λ| = $}. In particular, two irreducible objects L(λ) and L(µ)
belong to the same block of C only if |λ| = |µ|; see Theorem 2.22 for the converse.

Given another type (n′, c′) of the same level, we say that (n, c) and (n′, c′) are
equivalent if one of the following holds for each i: either ci = c′i and ni = n′i;
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or I is finite, ci 6= c′i and ni = |I+| − n′i. Observe in that case that the posets
of 01-matrices ΛI;n,c and ΛI;n′,c′ are simply equal, and there is an slI -module

isomorphism
∧n,c VI

∼→
∧n′,c′ VI , vλ 7→ vλ.

We can now state the first main result of the article.

Theorem 2.12. For any interval I ⊆ Z and type (n, c), there exists an slI-tensor
product categorification C of type (n, c). Moreover C is unique in the sense that
if C′ is another tensor product categorification of an equivalent type (n′, c′) then

there is a strongly equivariant equivalence G : C ∼→ C′ with GL(λ) ∼= L′(λ) for
each weight λ.

In the case that I is finite, Theorem 2.12 is a special case of the main result
of [LW]; see §2.7 for some further discussion of that. For infinite intervals, The-
orem 2.12 is new and will be proved later in the article. Specifically, we will
establish existence for I = Z in §3.2, then existence for the other infinite but
bounded above or below intervals follows by the truncation argument explained
in §2.8. The uniqueness will be established in §4.4.

Corollary 2.13. Any slI-tensor product categorification C admits a duality ~
such that Fi ◦ ~ ∼= ~ ◦ Fi, Ei ◦ ~ ∼= ~ ◦ Ei and L(λ) ∼= L(λ)~ for each weight λ.
Similarly its category of projectives has a duality # such that Fi ◦# ∼= #◦Fi, Ei ◦
# ∼= # ◦ Ei and P (λ) ∼= P (λ)# for each λ.

Proof. Using the homological criteria for ∆- and ∇-flags, one checks that the
axioms (TP2)–(TP3) are equivalent to the axioms (TP2∗)–(TP3∗) obtained from
them by replacing all occurrences of ∆ with ∇. In other words C is a tensor
product categorification if and only if Cop is one; when I is finite this assertion
is [LW, Proposition 3.9]. Now apply the uniqueness from Theorem 2.12 with
C′ := Cop to get ~.

To obtain the duality # on projectives, one can use (2.1) to reduce to the
problem of defining a duality # on the subcategory of Funf (pC,Vecop) consisting

of all exact functors; there one sets HomC(P,−)# := ∗ ◦ HomC(P,−) ◦ ~ (where
the final ∗ is the duality on Vec). Transporting through the Yoneda equivalence
this yields a duality # on pC such that

HomC(P
#,M) ∼= HomC(P,M

~)∗ (2.17)

for all M ∈ C. It is clear from (2.17) that P (λ)# ∼= P (λ), while the fact that #
commutes with Fi and Ei follows by adjunction as ~ commutes with Ei and Fi.
(Alternatively this definition can be understood via (2.3) in terms of the algebra
A: it corresponds to the composition ~ ◦ N : pmod-A→ pmod-A where N is the
Nakayama functor HomA(−, A)∗ : pmod-A → imod-A, and pmod-A and imod-A
denote the categories of projective and injective A-modules, respectively.) �

2.7. Review of the proof of Theorem 2.12 for finite intervals. In this
subsection, we assume that I is finite and recall for future reference some of the
key ideas behind the proof of Theorem 2.12 from [LW]. Suppose we are given a
type (n, c). To avoid trivialities we assume that ni ≤ |I+| for each i. There are two
general approaches to the construction of the tensor product categorification C in
Theorem 2.12. First it can be realized in terms of certain blocks of the parabolic
category O associated to the general linear Lie algebra; see [LW, Definition 3.13].
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Alternatively, C can be constructed using the tensor product algebras of [W4]; see
[LW, Theorem 3.12].

Turning our attention to uniqueness, let C be some given slI -tensor product
categorification with weight poset Λ = ΛI,n,c. Let A be the algebra

A :=
⊕
λ,µ∈Λ

HomC(P (λ), P (µ)) (2.18)

from (2.2), and H : C → mod-A be the canonical equivalence of categories from
(2.3). There is a formal way to transport the categorical slI -action from C to
mod-A in such a way that H : C → mod-A becomes a strongly equivariant equiv-
alence. The appropriate functor F : mod-A → mod-A is the functor defined by
tensoring over A with the (A,A)-bimodule

B :=
⊕
λ,µ∈Λ

HomC(P (λ), FP (µ)). (2.19)

The natural transformations x ∈ End(F ) and t ∈ End(F 2) come from bimodule
endomorphisms x : B → B and t : B ⊗A B → B ⊗A B defined as follows: let
x : B → B be defined on the summand HomC(P (λ), FP (µ)) of B by composing
with xP (µ) : FP (µ)→ FP (µ); let t : B ⊗A B → B ⊗A B be induced similarly by

tP (µ) : F 2P (µ)→ F 2P (µ) using also the following canonical isomorphism

B ⊗A B ∼=
⊕
λ,µ∈Λ

HomC(P (λ), F 2P (µ)).

Then we may take E : mod-A → mod-A to be the canonical right adjoint to F
given by the functor

⊕
λ∈Λ HomA(1λB,−). In this way we have made explicit the

categorical slI -action on mod-A.
The strategy for the proof of uniqueness is as follows. Suppose that we are

given another slI -categorification C′ of an equivalent type (n′, c′). We repeat all
of the above, defining its associated basic algebra

A′ :=
⊕
λ,µ∈Λ

HomC′(P
′(λ), P ′(µ)), (2.20)

and an (A′, A′)-bimodule

B′ :=
⊕
λ,µ∈Λ

HomC′(P
′(λ), F ′P ′(µ)) (2.21)

together with endomorphisms x′ : B′ → B′ and t′ : B′ ⊗A′ B′ leading to a
categorical slI -action on mod-A′ too, such that the equivalence H′ : C′ → mod-A′

is strongly equivariant. Then the point is to construct an algebra isomorphism
A ∼= A′, inducing an isomorphism of categories mod-A

∼→ mod-A′. To see that
this isomorphism of categories is strongly equivariant, we must also define an
isomorphism B ∼= B′ that intertwines the actions of A, x and t with A′, x′ and t′.
Composing the isomorphism mod-A

∼→ mod-A′ on one side with H and with the
canonical adjoint equivalence to H′ on the other, we obtain the desired strongly
equivariant equivalence G : C → C′ from the statement of Theorem 2.12.

Let us begin. Recall that κ = κI;n,c is the 01-matrix indexing the basis vector
of maximal weight in

∧n,c VI . The irreducible object L(κ) is the only irreducible
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in its block, i.e. L(κ) = ∆(κ) = ∇(κ) = P (κ) = I(κ). Since the functor F has
both a left and right adjoint it sends prinjectives to prinjectives, hence the object

T =
⊕
d≥0

Td :=
⊕
d≥0

F dL(κ) ∈ C (2.22)

is prinjective. The modules Td and Td′ for d 6= d′ belong to different sums of the
blocks from (2.16), hence we have that HomC(Td, Td′) = 0 for d 6= d′. We say that
M ∈ C is homogeneous of degree d if it belongs to the same sum of blocks as Td;
then we have that HomC(T,M) = HomC(Td,M). Note further that Td = 0 for
d� 0. Let

H =
⊕
d≥0

Hd :=
⊕
d≥0

AH
|κ|
I,d. (2.23)

The following theorem is at the heart of everything; see [LW, Proposition 3.2]
for the first assertion, [LW, Theorem 5.1] for the second, and the proof of [LW,
Theorem 6.1] for the final one; in the special case that C is the tensor product
categorification arising from parabolic category O from [LW, Definition 3.13] the
results here go back to [BK1].

Theorem 2.14 ([LW]). The action of AHd on Td induces a canonical isomor-
phism between Hd and EndC(Td); hence H = EndC(T ). Moreover the exact functor

U := HomC(T,−) : C → mod-H (2.24)

is fully faithful on projectives. Finally for each weight λ ∈ Λ the H-module

Y (λ) := UP (λ) (2.25)

is independent (up to isomorphism) of the particular choice of C.

Remark 2.15. The proof of [LW, Theorem 5.1] establishes a slightly stronger
result: the map U : HomC(M,P ) → HomH(UM,UP ) is an isomorphism for any
M,P ∈ C with P projective.

Thus the functor U has similar properties to Soergel’s combinatorial functor
V from [S]. The modules Y (λ) may be called Young modules by analogy with
the modular representation theory of symmetric groups. The second assertion of
Theorem 2.14 is a version of the double centralizer property, which has already
appeared in numerous related contexts in representation theory; see e.g. [MS,
Example 2.7] where several are listed. It implies that the functor U defines an
algebra isomorphism

A ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), Y (µ)). (2.26)

Similarly for the primed category we get that

A′ ∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), Y ′(µ)) (2.27)

where Y ′(λ) := U′P ′(λ) for U′ defined analogously to U. Then, applying the final
assertion of Theorem 2.14, we choose H-module isomorphisms Y (λ) ∼= Y ′(λ) for
each λ. These choices induce the desired algebra isomorphism A ∼= A′.
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It remains to construct the bimodule isomorphism B ∼= B′. This needs just a
little more preparation. The category mod-H is also equipped with a categorical
slI -action. The endofunctors

F : mod-H → mod-H, E : mod-H → mod-H (2.28)

for this are the induction and restriction functors associated to the homomor-
phisms Hd → Hd+1 induced by the natural inclusions AHd ↪→ AHd+1 for all

d ≥ 0; so for a right Hd-module M we have that FM := ind
Hd+1

Hd
M = M⊗HdHd+1

and EM := resHdHd−1
M . The canonical adjunction makes (F,E) into an adjoint

pair. Left multiplication by xd+1 defines an (Hd, Hd+1)-bimodule endomorphism
of Hd+1, from which we obtain the natural transformation x ∈ End(F ). Also,
by transitivity of induction, F 2 is isomorphic to the functor sending a right Hd-
module M to M⊗HdHd+2; then left multiplication by td+1 defines an (Hd, Hd+2)-
bimodule endomorphism of Hd+2 inducing t ∈ End(F 2). This gives us the data
of an slI -categorification in the sense of Definition 2.6. The fact that the axioms
(SL1)–(SL4) hold goes back at least to [CR, Remark 7.13]; see also [K, Corollary
7.7.5] for the proof that F is isomorphic to a right adjoint of E.

The following lemma was noted already in the first paragraph of [LW, §5.1];
the alternative proof given below is a bit more explicit.

Lemma 2.16. The quotient functor U : C → mod-H is strongly equivariant.

Proof. First we construct the required natural transformation ζ : F ◦U→ U ◦ F .
Take M ∈ C that is homogeneous of degree d. We need to produce a natural
Hd+1-module homomorphism ζM : HomC(Td,M)⊗Hd Hd+1 → HomC(Td+1, FM).
The functor F defines a natural Hd-module homomorphism from HomC(Td,M) to
the restriction of the Hd+1-module HomC(Td+1, FM). Then we use the adjunction
of induction and restriction to convert this into the desired homomorphism ζM .

Next we show that ζ is an isomorphism of functors. It is certainly an isomor-
phism on T as for that it reduces to an identity map. Hence it is an isomorphism
on any direct sum of summands of T . By [LW, Lemma 5.3], any projective object
P ∈ C fits into an exact sequence 0 → P → J → K such that J and K are
direct sums of summands of T . Note further that both F ◦U and U ◦F are exact
functors. Hence when we apply ζ to our exact sequence we obtain a commuting
diagram with exact rows:

0 −−−−→ F ◦ U(P ) −−−−→ F ◦ U(J) −−−−→ F ◦ U(K)y y y
0 −−−−→ U ◦ F (P ) −−−−→ U ◦ F (J) −−−−→ U ◦ F (K).

We know already that the right hand vertical maps are isomorphisms, hence so
too is the first one. Now we have proved that ζ defines an isomorphism on every
projective object. For an arbitrary object M we pick a projective resolution
Q→ P →M → 0 and make another argument with the Five Lemma.

It remains to check the axioms (E1)–(E3) from Definition 2.7. For (E1), we
observe on some homogeneous M ∈ C of degree (d+ 1) that the natural transfor-
mation EUε ◦ EζE ◦ ηUE defines the Hd-module homomorphism

HomC(Td, EM)→ HomC(FTd,M)
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defined by the given adjunction between F and E. Hence it is an isomorphism.
For (E2), assume that M ∈ C is homogeneous of degree d. Then it suffices to
show that the following diagram commutes:

HomC(Td,M)⊗Hd Hd+1
(xU)M−−−−→ HomC(Td,M)⊗Hd Hd+1

ζM

y yζM
HomC(Td+1, FM)

(Ux)M−−−−→ HomC(Td+1, FM).

Take θ ∈ HomC(Td,M) and h ∈ Hd+1. Going south then east, θ ⊗ h maps
to the homomorphism Td+1 → FM, v 7→ xM ((Fθ)(hv)), while going east then
south produces the homomorphism v 7→ (Fθ)(xd+1hv). These are equal by the
naturality of x : F → F with respect to the homomorphism θ : Td → M . The
proof of (E3) is similar. �

Applying Lemma 2.16, we deduce that the functor U defines (A,A)-bimodule
isomorphisms

B ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), FY (µ)), (2.29)

B ⊗A B ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), F 2Y (µ)). (2.30)

Under these isomorphisms, x : B → B and t : B ⊗A B → B ⊗A B correspond
to the endomorphisms of the bimodules on the right induced by all of the homo-
morphisms xY (µ) : FY (µ)→ FY (µ) and tY (µ) : F 2Y (µ)→ F 2Y (µ), respectively.
Similarly

B′ ∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), FY ′(µ)), (2.31)

B′ ⊗A B′ ∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), F 2Y ′(µ)). (2.32)

Then the H-module isomorphisms Y (λ) ∼= Y ′(λ) chosen earlier induce the desired
isomorphism B ∼= B′. It is immediate that it intertwines the actions of A, x
and t with A′, x′ and t′. This completes our sketch of the proof of uniqueness in
Theorem 2.12 for finite intervals.

2.8. Truncation. In this subsection we introduce our key tool for proving results
about tensor product categorifications when I is infinite. Throughout we fix a type
(n, c) and any interval I, and set Λ := ΛI;n,c. Given a subinterval J ⊆ I, there is
an obvious embedding slJ ↪→ slI . Let ΛJ be the subposet of Λ consisting of all
01-matrices λ such that λij = ci whenever j /∈ J+. This is order-isomorphic to
the poset ΛJ ;n,c via the map sending λ = (λij)1≤i≤l,j∈I+ ∈ ΛJ to its submatrix
λJ := (λij)1≤i≤l,j∈J+ ∈ ΛJ ;n,c. In turn, the slJ -module

∧n,c VJ can be identified
with the slJ -submodule of

∧n,c VI spanned by {vλ | λ ∈ ΛJ}. We then have that∧n,c VI =
⋃
J

∧n,c VJ ,

taking the union just over the finite subintervals J ⊆ I. We are going to develop
a categorical analog of this decomposition.

Lemma 2.17. For λ, µ ∈ Λ, the following are equivalent:
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(i) λ ≤ µ;

(ii) for all h ∈ I and 1 ≤ k ≤ l we have that
k∑
i=1

∑
j≤h
λij 6=ci

(−1)ci≥
k∑
i=1

∑
j≤h
µij 6=ci

(−1)ci ,

with equality when k = l;

(iii) for all h ∈ I and 1 ≤ k ≤ l we have that

k∑
i=1

∑
j>h
λij 6=ci

(−1)ci≤
k∑
i=1

∑
j>h
µij 6=ci

(−1)ci,

with equality when k = l.

Proof. The equivalence of (i) and (ii) follows from Lemma 2.1. The equivalence
of (ii) and (iii) is obvious. �

Again let J ⊆ I be any subinterval. Let Λ≤J denote the set of all λ ∈ Λ which
satisfy the conditions

k∑
i=1

∑
j≤h
λij 6=ci

(−1)ci ≥ 0 for all h < min(J) and 1 ≤ k ≤ l,

k∑
i=1

∑
j>h
λij 6=ci

(−1)ci ≤ 0 for all h > max(J) and 1 ≤ k ≤ l.
(2.33)

Also let Λ<J denote the set of all λ ∈ Λ≤J such that at least one of the above
inequalities is strict. Lemma 2.17 implies that both Λ≤J and Λ<J are ideals in
the poset Λ. Moreover ΛJ = Λ≤J \ Λ<J .

Suppose next that we are given an slI -tensor product categorification C of type
(n, c). Let C≤J (resp. C<J) be the highest weight subcategory of C associated to
the ideal Λ≤J (resp. Λ<J). Let CJ := C≤J/C<J . We denote the quotient functor
by πJ : C≤J → CJ .

Lemma 2.18. For j ∈ J the functors Fj and Ej preserve the subcategories C≤J
and C<J of C.

Proof. We just explain for C≤J ; the same argument works for C<J . Take any
λ ∈ Λ≤J . We need to show that FjL(λ) and EjL(λ) both belong to C≤J . Since
L(λ) is a quotient of ∆(λ), this follows if we can show that Fj∆(λ) and Ej∆(λ)
belong to C≤J . These objects have filtrations with sections of the form ∆(µ) for
weights µ obtained from λ by applying the transposition tj to one of its rows.
The integers on the left hand side of the inequalities (2.33) are the same for each
of these µ as they are for λ, so that each µ arising is an element of Λ≤J and ∆(µ)
does indeed belong to C≤J . �

Hence for j ∈ J the functors Fj and Ej induce a well-defined biadjoint pair
of endofunctors of CJ . Let FJ :=

⊕
j∈J Fj and EJ :=

⊕
j∈J Ej . The natural

transformations x and s restrict to endomorphisms of FJ and F 2
J , respectively,

such that the associated endomorphisms xj and tk of F dJ satisfy the degenerate
affine Hecke algebra relations as in (SL2). The axioms (TP1)–(TP3) for C imply
the analogous statements for CJ . Thus we have proved:
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Theorem 2.19. The subquotient CJ of C equipped with the endofunctors FJ and
EJ is an slJ -tensor product categorification of type (n, c).

We record one more technical lemma for later use.

Lemma 2.20. Suppose that I is infinite and J ⊂ I is a finite subinterval with
|J+| ≥ 2 max(n). Let κ ∈ Λ be the unique weight such that κJ = κJ ;n,c ∈ ΛJ ;n,c.
Then L(κ) is the unique indecomposable object in its block; in particular it is
prinjective in C.

Proof. In view of (2.16) it suffices to show for λ ∈ Λ that |λ| = |κ| ⇒ λ = κ. We
proceed by induction on l, the case l = 0 being trivial.

For the induction step assume first that ci = 0 for some i. Amongst all the i
with ci = 0 choose one for which ni is minimal. Thus ni ≤ nj for all j with cj = 0,
and ni ≤ 2 max(n)−nj ≤ |J+|−nj for all j with cj = 1. Letting s := min(J+)−1,
it follows that the columns s + 1, . . . , s + ni of the 01-matrix κ have all entries
equal to 1. Since |λ| = |κ| the number of entries 1 in each column of λ is the
same as in κ. Hence all ni of the entries 1 in the ith row of λ appear in columns
s+ 1, . . . , s+ ni. Thus the ith row of λ is the same as the ith row of κ. Then we
remove this row and proceed by induction.

This just leaves us with the case that ci = 1 for all i. Choose i so that ni is
minimal and let s := max(J+) − ni. Then columns s + 1, . . . , s + ni of κ, hence
also of λ, have all entries equal to 0. So the ith row of λ is the same as in κ, and
then we can induct as before. �

2.9. Decomposition numbers and blocks. For any I and (n, c), let C be an
slI -tensor product categorification of type (n, c). In the finite case, Theorem 2.12
shows that C is equivalent to some blocks of parabolic category O for the general
linear Lie algebra, hence we can exploit the extensive literature about parabolic
category O to deduce results about C. In the infinite case, many questions about
C can be answered by picking a sufficiently large finite subinterval J ⊂ I, then
passing to the subquotient CJ and invoking Theorem 2.19.

For example, the following theorem shows that decomposition numbers in C can
be computed by reducing to the Kazhdan-Lusztig conjecture (which describes the
decomposition numbers in parabolic category O); see §5.9 for more about the
explicit combinatorics here. We will appeal to this observation in the next section
to prove the super Kazhdan-Lusztig conjecture for gln|m(C).

Theorem 2.21. Given λ, µ ∈ Λ, choose a finite subinterval J ⊆ I such that λ
and µ both belong to ΛJ . Then the composition multiplicity [∆(λ) : L(µ)] in C
coincides with the multiplicity [∆(λJ) : L(µJ)] computed in CJ . Hence, recalling
that CJ is equivalent to a sum of integral blocks of parabolic category O for the
general linear Lie algebra, these multiplicities can be computed via the Kazhdan-
Lusztig conjecture.

Proof. This is immediate from the exactness of the quotient functor πJ . �

As another illustration of the truncation technique, we classify the blocks of C.

Theorem 2.22. For λ, µ ∈ Λ, the irreducible objects L(λ) and L(µ) lie in the
same block of C if and only if |λ| = |µ| in the weight lattice PI .
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Proof. When I is finite, the theorem has been proved already in [B4] (working in
the parabolic category O setting). Now suppose that I is infinite. We observed
already from (2.16) that λ and µ lie in the same block only if |λ| = |µ|. Conversely
suppose that |λ| = |µ|. Pick a finite interval J ⊂ I such that λ, µ ∈ ΛJ . Then
|λJ | = |µJ | in PJ , so by the finite result there exists a sequence of weights λ =
λ0, . . . , λn = µ in ΛJ such that one of [∆(λi) : L(λi−1)] or [∆(λi−1) : L(λi)] is
non-zero for each i = 1, . . . , n. Since these composition multiplicities are the same
in C or CJ this does the job. �

2.10. Classification of prinjectives. Let C be as in the previous subsection.
To avoid trivialities assume moreover that Λ := ΛI;n,c is non-empty. The goal
in this subsection is to classify the indecomposable prinjective objects in C. For
finite I, this is a generalization of an old result of Irving [I] which was established
already in the context of parabolic category O in [MS, Theorem 5.1] or [BK1,
Theorem 4.8]. The formulation for infinite I given here is new; we prove it by
using truncation to reduce to the finite case.

We start by noting that there is a crystal graph structure on Λ. This is a
certain I-colored directed graph with vertex set Λ, such that there is at most one
edge of each color entering and one edge of each color leaving any given vertex.
To determine the edges of color i incident with vertex λ one proceeds as follows.
First label rows of the matrix λ by the sign − if the ith and (i + 1)th entries of
the row are 1 0, or by + if these entries are 0 1; leave all the other rows unlabeled.
Then reduce the labels by repeatedly erasing +−-pairs of labels whenever the
+-row is above the −-row and all the rows in between are unlabeled. If at the

end of this process a −-row (resp. a +-row) remains, then there is an edge λ
i→ µ

(resp. λ
i← µ) in the crystal graph, where µ is obtained from λ by switching the

ith and (i+ 1)th entries of the lowest −-row (resp. the highest +-row).

Lemma 2.23. For λ ∈ Λ and i ∈ I, we have that FiL(λ) = 0 (resp. EiL(λ) = 0)

unless there is an edge λ
i→ µ (resp. λ

i← µ) in the crystal graph, in which case
FiL(λ) (resp. EiL(λ)) is indecomposable with irreducible head and socle isomor-
phic to L(µ).

Proof. This is already known for finite I; see [LW, Theorem 7.2] for the most
recent but also most conceptual proof (actually the arguments of [L] are sufficient
here since C is a highest weight category). In the infinite case we pick J ⊂ I
containing i such that λ and all the weights µ indexing the composition factors of
EiL(λ) and FiL(λ) lie in ΛJ , and then pass to the subquotient CJ . �

To formulate the main result, we need slightly different notation according to
whether I is finite or infinite:

- In the finite case, we let Λ◦ be the vertex set of the connected component
of the crystal graph containing κ := κI;n,c. Let T ∈ C denote the object
from (2.22).

- In the infinite case, we fix finite subintervals I1 ⊂ I2 ⊂ · · · ⊂ I such that
I =

⋃
r≥1 Ir, |I1| + 1 ≥ 2 max(n), and |Ir+1| = |Ir| + 1 for each r. Let

Λr := ΛIr ⊂ Λ and Cr := CIr . Let κr be the element of Λr corresponding
to κIr;n,c and Λ◦r be the vertex set of the connected subgraph of the crystal
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graph generated by κr and the edges of colors from Ir. Then set

Λ◦ :=
⋃
r≥1

Λ◦r . (2.34)

For each r we have that κr ∈ Λ◦r+1; see (4.4) below for an explicit directed

path κr+1 → κr. So we have that Λ◦1 ⊂ Λ◦2 ⊂ · · · , and Λ◦ can be described
equivalently as the vertex set of the unique connected component of the
entire crystal graph that contains every κr. Finally, let T r be the object

T r =
⊕
d≥0

T rd :=
⊕
d≥0

F dIrL(κr) ∈ C. (2.35)

Theorem 2.24. Let notation be as above. For λ ∈ Λ, the following are equivalent:

(i) λ ∈ Λ◦;
(ii) L(λ) ↪→ T (resp. L(λ) ↪→ T r for some r ≥ 1) if I is finite (resp. infinite);
(ii′) T � L(λ) (resp. T r � L(λ) for some r ≥ 1) if I is finite (resp. infinite);
(iii) P (λ) ∼= I(λ).
(iv) I(λ) is projective.
(iv′) P (λ) is injective;
(v) L(λ) is a constituent of the socle of a standard object;
(v′) L(λ) is a constituent of the cosocle of a costandard object;

Proof. We just prove the equivalence of (i), (ii), (iii), (iv) and (v); the equivalence
of (i), (ii′), (iii), (iv′) and (v′) is similar.

(i)⇒(ii). In the finite case, the connected component of the crystal graph with
vertex set Λ◦ is a copy of Kashiwara’s crystal graph associated to the irreducible
slI -module of highest weight |κ|, and κ is its highest vertex. Hence there is a

directed path κ
i1→ · · · id→ λ in the crystal graph for some d ≥ 0 and i1, . . . , id ∈ I.

Similarly in the infinite case there is a path κr
i1→ · · · id→ λ in the crystal graph for

some r ≥ 1, d ≥ 0 and i1, . . . , id ∈ Ir. It remains to apply Lemma 2.23 to deduce
that L(λ) appears in the socle of Fid · · ·Fi1L(κ) (resp. Fid · · ·Fi1L(κr)), which is
a summand of T (resp. T r).

(ii)⇒(iii). In the finite case, we exploit the duality ~ from Corollary 2.13 as fol-
lows. The module T is self-dual and prinjective. By (ii), it has I(λ) as a summand.
Hence I(λ)~ is an indecomposable injective object too. Since ~ fixes irreducibles
(up to isomorphism), I(λ)~ has all the same composition multiplicities as I(λ).
Since the classes [I(λ)] of indecomposable injectives are linearly independent in
the Grothendieck group, we must therefore have that I(λ)~ ∼= I(λ). But obviously
I(λ)~ ∼= P (λ), so this shows that I(λ) ∼= P (λ).

In the infinite case, we have not yet established Corollary 2.13, so must argue
indirectly. Since T r is prinjective, (ii) implies that I(λ) ∼= P (µ) for some (possibly
different) µ ∈ Λr. But the previous paragraph shows that I(λ) ∼= P (λ) in Cr, hence
P (λ) ∼= P (µ) in Cr. Since both λ and µ lie in Λr, this implies in fact that λ = µ.

(iii)⇒(iv). Clear.
(iv)⇒(v). This follows because projectives have ∆-flags.
(v)⇒(i). We first prove this in the finite case. Suppose that L(λ) ↪→ ∆(ν) for

some ν ∈ Λ. We show that λ ∈ Λ◦ by induction on the height of |κ| − |ν| ∈ Q+
I .

The base case is clear as then λ = ν = κ. For the induction step we apply [LW,
Proposition 5.2] to deduce that there exists i ∈ I such that EiL(λ) 6= 0 in C. The
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socle of EiL(λ) is isomorphic to L(µ) where µ
i→ λ in the crystal graph. Now

it suffices to show that µ ∈ Λ◦. This follows by the induction hypothesis, noting
that L(µ) ↪→ EiL(λ) ↪→ Ei∆(ν) and Ei∆(ν) has a ∆-flag.

For the infinite case suppose that L(λ) ↪→ ∆(µ). Then we pick r ≥ 1 so that
all composition factors of ∆(µ) lie in Λr. Passing to the subquotient Cr, we still
have that L(λ) is a constituent of the socle of ∆(µ) in Cr. Hence λ ∈ Λ◦r ⊂ Λ◦

thanks to the previous paragraph. �

3. The general linear Lie superalgebra

Throughout the section we fix a type (n, c) of level l. The goal is to give an
explicit construction of an slZ-tensor product categorification C of type (n, c), thus
establishing the existence in Theorem 2.12. We will obtain C from the parabolic
analog of the BGG category O for the general linear Lie superalgebra. It is a
(mostly known) generalization of [CR, §7.4] where category O for the general
linear Lie algebra was considered. The super Kazhdan-Lusztig conjecture (in its
most general parabolic form) then follows using also Theorem 2.21.

3.1. Super category O. For i = 1, . . . , l let Ui be a vector superspace of dimen-
sion ni concentrated in degree c̄i ∈ Z/2 (over the ground field K as always). Then
set

U := U1 ⊕ · · · ⊕ Ul, (3.1)

so that U is a vector superspace of even dimension n :=
∑

ci=0 ni and odd di-
mension m :=

∑
ci=1 ni. Let g denote the Lie superalgebra gl(U) ∼= gln|m(K)

consisting of all linear endomorphisms of U under the supercommutator [−,−].
We choose a homogeneous basis u1, . . . , um+n for U by concatenating bases for
U1, . . . , Ul in order and let {ei,j |1 ≤ i, j ≤ m+n} be the resulting basis of matrix
units for g. We then have that

[ei,j , ek,l] = δk,jei,l − (−1)(pi+pj)(pk+pl)δi,lek,j ,

where pi ∈ Z/2 is the parity of the ith basis vector ui.
Let t (resp. b) be the Cartan (resp. Borel) subalgebra of g consisting of di-

agonal (resp. upper triangular) matrices relative to the ordered basis just cho-
sen. Let δ1, . . . , δm+n be the basis for t∗ dual to the basis e1,1, . . . , em+n,m+n,
and define a non-degenerate symmetric bilinear form (−,−) on t∗ by setting
(δi, δj) := (−1)piδi,j . The root system of g is

R := {δi − δj | 1 ≤ i, j ≤ m+ n, i 6= j},
which decomposes into even and odd roots R = R0̄tR1̄ so that δi−δj is of parity
pi + pj . Let R+ = R+

0̄
t R+

1̄
denote the positive roots associated to the Borel

subalgebra b, i.e. δi − δj is positive if and only if i < j. The dominance order D
on t∗ is defined so that λD µ if λ− µ ∈ NR+.

An important role is played by the weight ρ̄ ∈ t∗ that is one half of the sum
of the positive even roots minus one half of the sum of the positive odd roots.
Translating by a multiple of supertrace, we obtain the weight

ρ := ρ̄+
1

2
(m− n+ 1)

m+n∑
i=1

(−1)piδi, (3.2)
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which is uniquely determined by the properties

(ρ, δ1) =

{
0 if p1 = 0̄,
1 if p1 = 1̄;

(ρ, δi − δi+1) =

{
(−1)pi if pi = pi+1,

0 if pi 6= pi+1.
(3.3)

Note that ρ is an integral weight, that is, it belongs to t∗Z := Zδ1⊕· · ·⊕Zδm+n ⊂ t∗.
We are ready to introduce the category O associated to t ⊂ b ⊂ g, restricting

our attention from the outset just to blocks corresponding integral weights.

Definition 3.1. For λ ∈ t∗Z let pλ :=
∑

pi=1̄(λ, δi) ∈ Z/2. Then define O to be
the category of all finitely generated g-supermodules M = M0̄ ⊕M1̄ which are
locally finite dimensional over b and satisfy

M =
⊕
λ∈t∗Z

Mλ,pλ , (3.4)

where for λ ∈ t∗ and p ∈ Z/2 we write Mλ,p for the λ-weight space of Mp with
respect to t defined in the standard way. Morphisms in O mean arbitrary g-
supermodule homomorphisms. The parity assumption in (3.4) ensures that all
morphisms are automatically even, hence O is an Abelian category.

Remark 3.2. One can also define an equivalent category where we remove the
parity assumption above, but allow inhomogeneous morphisms. See the discus-
sions in [B1, §4-e], [CL, §2.5] and [B5, Remarks 2.1-2.3].

Note that both the natural g-supermodule U and its dual belong to O, and O
is closed under tensoring with these objects. As usual, to classify the irreducible
objects in O, one starts from the Verma supermodules {M(λ) | λ ∈ t∗Z} defined
from

M(λ) := U(g)⊗U(b) Kλ,pλ

where Kλ,pλ is the one-dimensional b-supermodule of weight λ with Z/2-grading
concentrated in degree pλ. The weight λ is the highest weight of M(λ) with
respect to the dominance ordering, and the corresponding weight space is one
dimensional. Therefore, by the usual arguments of highest weight theory, M(λ)
has a unique irreducible quotient L(λ), and the supermodules {L(λ) |λ ∈ t∗Z} give
a complete set of pairwise non-isomorphic irreducible objects of O.

For later use, we note that the Casimir element

c :=
∑

1≤i,j≤m+n

(−1)pjei,jej,i ∈ Z(U(g)) (3.5)

acts on M(λ) by the scalar
cλ := (λ+ 2ρ̄, λ). (3.6)

We need one other non-trivial result about linkage. For α ∈ R+
0̄

and λ ∈ t∗Z let

sα · λ := λ− (λ+ ρ, α∨)α, where α∨ := 2α/(α, α). Let

A(λ) := {α ∈ R+
0̄
| (λ+ ρ, α∨) > 0},

B(λ) := {α ∈ R+
1̄
| (λ+ ρ, α) = 0}.

Then introduce a relation ↑ on t∗Z by declaring that µ ↑ λ if we either have that
µ = sα · λ for some α ∈ A(λ) or we have that µ = λ− β for some β ∈ B(λ).

Lemma 3.3. Suppose λ, µ ∈ t∗Z satisfy [M(λ) : L(µ)] 6= 0. Then there exists
r ≥ 0 and weights ν0, . . . , νr ∈ t∗Z such that µ = ν0 ↑ ν1 ↑ · · · ↑ µr = λ.
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Proof. This is a consequence of the superalgebra analog of the Jantzen sum for-
mula from [M, Theorem 10.3.1]; see also [G]. In more detail, the Jantzen filtration
on M(λ) is a certain exhaustive descending filtration M(λ) = M(λ)0 ⊃M(λ)1 ⊇
M(λ)2 ⊇ · · · such that M(λ)0/M(λ)1

∼= L(λ), and the sum formula shows that∑
k≥1

chM(λ)k =
∑

α∈A(λ)

chM(sα · λ) +
∑

β∈B(λ)

∑
k≥1

(−1)k−1 chM(λ− kβ).

To deduce the lemma from this, suppose that [M(λ) : L(µ)] 6= 0. Then µ E
λ, so that λ − µ is a sum of N simple roots δi − δi+1 for some N ≥ 0. We
proceed by induction on N , the case N = 0 being vacuous. If N > 0 then
L(µ) is a composition factor of M(λ)1 and the sum formula implies that L(µ)
is a composition factor either of M(sα · λ) for some α ∈ A(λ) or that L(µ) is a
composition factor of M(λ − kβ) for some odd k ≥ 1 and β ∈ B(λ). It remains
to apply the induction hypothesis and the definition of ↑. �

There is another partial order ≤ on t∗Z, which we call the Bruhat order, defined
from

λ ≤ µ ⇔
∑

1≤i≤j
(λ+ρ,δi)≤h

(−1)pi ≥
∑

1≤i≤j
(µ+ρ,δi)≤h

(−1)pi (3.7)

for all h ∈ Z and 1 ≤ j ≤ m+ n, with equality whenever j = m+ n.

Lemma 3.4. For λ, µ ∈ t∗Z we have that λ ↑ µ⇒ λ ≤ µ⇒ λE µ.

Proof. The implication λ ↑ µ ⇒ λ ≤ µ is an easy exercise. To prove that λ ≤ µ
implies λE µ, observe as in Lemma 2.1 that λE µ if and only if

j∑
i=1

(−1)pi(λ+ ρ, δi) ≤
j∑
i=1

(−1)pi(µ+ ρ, δi)

for each j = 1, . . . ,m + n, with equality when j = m + n. Moreover, for any
integer k such that k ≥ (λ+ ρ, δi) for all i, we have that

j∑
i=1

(−1)pi(λ+ ρ, δi) =
∑
h≤k

 ∑
1≤i≤j

(λ+ρ,δi)≤h

(−1)pih−
∑

1≤i≤j
(λ+ρ,δi)<h

(−1)pih



=
∑
h≤k

h ∑
1≤i≤j

(λ+ρ,δi)≤h

(−1)pi − (h+ 1)
∑

1≤i≤j
(λ+ρ,δi)≤h

(−1)pi


= −

∑
h≤k

∑
1≤i≤j

(λ+ρ,δi)≤h

(−1)pi .

Now use the definition (3.7). �

Remark 3.5. The Bruhat order ≤ coincides with the transitive closure of the
relation ↑ if all the 0’s appear either before or after all of the 1’s in the sequence c;
see [B1, Lemma 2.5]. However in general ≤ is a proper refinement of the transitive
closure of ↑; see [CLW, Remark 2.3] for an example.
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Theorem 3.6. The category O is a highest weight category with weight poset
(t∗Z,≤). Its standard objects are the Verma supermodules {M(λ) | λ ∈ t∗Z}.
Proof. By Lemmas 3.3 and 3.4, all composition factors of M(λ) are of the form
L(µ) for µ ≤ λ. The theorem follows from this and the BGG reciprocity estab-
lished in a general graded Lie superalgebra setting in [B2, (6.6)]; one also needs
to repeat the argument of [B2, Lemma 7.3] to check that projectives are of finite
length. �

3.2. Super parabolic category O. Let h ∼= gln1
(K) ⊕ · · · ⊕ glnl(K) be the

subalgebra of g that is the stabilizer of the direct sum decomposition (3.1) and
set p := h + b.

Definition 3.7. Let C be the full subcategory of O consisting of all objects that
are locally finite dimensional over p. We refer to this as super parabolic category
O of type (n, c).

The isomorphism classes of irreducible objects in C are represented by the
supermodules L(λ) for λ in the set

Λ :=

{
λ ∈ t∗Z

∣∣∣∣ (−1)ck(λ+ ρ, δr − δr+1) > 0 for 1 ≤ k ≤ l
and n1 + · · ·+ nk−1 < r < n1 + · · ·+ nk

}
. (3.8)

To see this, note first that the condition in the definition of Λ is the usual domi-
nance condition for finite dimensionality of irreducible highest weight modules for
h, so clearly for L(λ) to belong to C it is necessary that λ ∈ Λ. For the sufficiency,
for each λ ∈ Λ, let V (λ) be a finite dimensional irreducible h-supermodule of
highest weight λ with Z/2-grading concentrated in degree pλ. The corresponding
parabolic Verma supermodule

∆(λ) := U(g)⊗U(p) V (λ)

belongs to C and is a quotient of M(λ). Hence ∆(λ) has irreducible head L(λ),
implying that L(λ) belongs to C. We see moreover from this argument (and our
knowledge of composition factors of M(λ)) that all other composition factors of
∆(λ) are of the form L(µ) for µ < λ in the Bruhat order. The following theorem
now follows on making another application of [B2, (6.6)].

Theorem 3.8. The category C is a highest weight category with weight poset
(Λ,≤). Its standard objects are the parabolic Verma supermodules {∆(λ) |λ ∈ Λ}.

It is time to switch to more combinatorial notation by identifying the set Λ ⊂ t∗Z
from (3.8) with the set ΛZ;n,c of 01-matrices from (2.7). We do this so that λ ∈ Λ
corresponds to the 01-matrix (λij)1≤i≤l,j∈Z defined from

λij =

{
1− ci if j = (λ+ ρ, δr) for n1 + · · ·+ ni−1 < r ≤ n1 + · · ·+ ni,
ci otherwise.

(3.9)

When compared with Lemma 2.17(ii), the following lemma checks under this
identification that the Bruhat order ≤ on Λ agrees with the partial order ≤ from
the axiom (TP1) in the previous section.

Lemma 3.9. For λ, µ ∈ Λ we have that λ ≤ µ in the Bruhat order if and only if∑
1≤r≤n1+···+nk

(λ+ρ,δr)≤h

(−1)pr ≥
∑

1≤r≤n1+···+nk
(µ+ρ,δr)≤h

(−1)pr
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for all h ∈ Z and 1 ≤ k ≤ l, with equality whenever k = l.

Proof. The forward implication is clear from the definition (3.7). For the converse
suppose that λ 6≤ µ in the Bruhat order. Let 1 ≤ s ≤ m+ n be minimal so that∑

1≤r≤s
(λ+ρ,δr)≤h

(−1)pr <
∑

1≤r≤s
(µ+ρ,δr)≤h

(−1)pr

for some h ∈ Z. To complete the proof, we show for k defined from n1+· · ·+nk−1 <
s ≤ n1 + · · ·+ nk that ∑

1≤r≤n1+···+nk
(λ+ρ,δr)≤h

(−1)pr <
∑

1≤r≤n1+···+nk
(µ+ρ,δr)≤h

(−1)pr .

Suppose first that ps = 0̄. Then by the minimality of s we must have that
(λ+ρ, δs) > h and (µ+ρ, δs) = h, hence (µ+ρ, δr) < h for all s < r ≤ n1+· · ·+nk.
We deduce that∑
1≤r≤n1+···+nk

(λ+ρ,δr)≤h

(−1)pr ≤ n1 + · · ·+ nk − s+
∑

1≤r≤s
(λ+ρ,δr)≤h

(−1)pr

< n1 + · · ·+ nk − s+
∑

1≤r≤s
(µ+ρ,δr)≤h

(−1)pr =
∑

1≤r≤n1+···+nk
(µ+ρ,δr)≤h

(−1)pr .

Instead suppose that ps = 1̄. Then (λ + ρ, δs) = h and (µ + ρ, δs) > h, hence
(λ+ ρ, δr) > h and (µ+ ρ, δr) > h for all s < r ≤ n1 + · · ·+ nk. We deduce that∑
1≤r≤n1+···+nk

(λ+ρ,δr)≤h

(−1)pr =
∑

1≤r≤s
(λ+ρ,δr)≤h

(−1)pr <
∑

1≤r≤s
(µ+ρ,δr)≤h

(−1)pr =
∑

1≤r≤n1+···+nk
(µ+ρ,δr)≤h

(−1)pr .

We are done. �

Finally we introduce a categorical slZ-action on C. Let F (resp. E) be the
endofunctor of C defined by tensoring with U (resp. its dual U∗). Let x ∈ End(F )
be the endomorphism defined on a supermodule M by letting x : M⊗U →M⊗U
be the endomorphism defined by multiplication by

Ω :=
∑

1≤r,s≤m+n

(−1)pser,s ⊗ es,r.

Let s ∈ End(F 2) be the endomorphism arising from the flip U ⊗U → U ⊗U, ur⊗
us 7→ (−1)prpsus ⊗ ur.

Theorem 3.10. The preceding definitions make C into an slZ-tensor product
categorification of type (n, c).

Proof. The verification of the axioms (SL1)–(SL3) is standard; cf. [CR, §7.4] and
also [CW, Proposition 5.1] where the degenerate affine Hecke algebra relations are
checked in the super case. Also we have seen already that C is a highest weight
category with weight poset (Λ,≤) as required by axiom (TP1).

Now we take λ ∈ Λ and consider the supermodule F∆(λ). By the tensor
identity we have that

F∆(λ) = (U(g)⊗U(p) V (λ))⊗ U ∼= U(g)⊗U(p) (V (λ)⊗ U).
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Since U has an obvious p-filtration with sections U1, . . . , Ul, we deduce that F∆(λ)
has a filtration with sections U(g) ⊗U(p) (V (λ) ⊗ Ui) for i = 1, . . . , l. It is well
known how to decompose the tensor product of a finite dimensional irreducible
glni(K)-module with the natural module, so that

V (λ)⊗ Ui ∼=
⊕

n1+···+ni−1<r≤n1+···+ni
λ+δr∈Λ

V (λ+ δr).

This discussion proves that the g-supermodule F∆(λ) has a multiplicity-free ∆-
flag with sections

{∆(λ+ δr)
∣∣ for all 1 ≤ r ≤ m+ n with λ+ δr ∈ Λ}

Converting to the 01-matrix notation using (3.9) this shows equivalently that
F∆(λ) has a ∆-flag with sections{

∆(tij(λ))
∣∣ for all 1 ≤ i ≤ l and j ∈ Z such that λij = 1 and λi(j+1) = 0

}
,

where tij(λ) denotes the 01-matrix obtained by applying the transposition tj to
the ith row of λ. To aid in translating between this description and the previous
one, we note that tij(λ) = λ+ δr, where r is uniquely determined by

n1 + · · ·+ ni−1 < r ≤ n1 + · · ·+ ni, j = (λ+ ρ, δr)− (1− (−1)ci)/2. (3.10)

We claim further that the endomorphism Ω preserves the filtration just con-
structed and induces the endomorphism of the section ∆(tij(λ)) that is multipli-
cation by the scalar j ∈ Z. To see this note that

Ω = (∆(c)− c⊗ 1− 1⊗ c)/2
where ∆ is the comultiplication on U(g) and c is the Casimir element (3.5). This
shows already that Ω preserves the filtration. Also c acts on ∆(λ) by the scalar
cλ from (3.6). Hence the endomorphism of ∆(tij(λ)) induced by Ω is the scalar
(ctij(λ)−cλ−n+m)/2. Letting r be defined according to (3.10), we now calculate

using (3.6) and (3.2):

(ctij(λ) − cλ − n+m)/2 = (cλ+δr − cλ − n+m)/2

= ((λ+ 2ρ̄+ δr, λ+ δr)− (λ+ 2ρ̄, λ)− n+m)/2

= (λ+ ρ̄, δr) + ((−1)ci − n+m)/2

= (λ+ ρ, δr) + ((−1)ci − 1)/2 = j.

This proves our claim.
Thus we have shown that Fj∆(λ) has a ∆-flag and that

[Fj∆(λ)] =
∑
i

[∆(tij(λ))]

summing over all i = 1, . . . , l such that λij = 1 and λi(j+1) = 0. Similarly one
checks that Ej∆(λ) has a ∆-flag and that

[Ej∆(λ)] =
∑
i

[∆(tij(λ))]

summing over all i = 1, . . . , l such that λij = 0 and λi(j+1) = 1; it helps to know
for this that EjM is the generalized (m − n − j)-eigenspace of Ω on M ⊗ U∗.
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These formulae are consistent with the formulae for the actions of fj and ej on
vλ ∈

∧n,c VZ. So we have proved (TP2)–(TP3). �

3.3. Proof of the super Kazhdan-Lusztig conjecture. We now have in place
all of the theory needed to prove the super Kazhdan-Lusztig conjecture. Continue
with C being as in Theorem 3.10. Recall for each finite interval J ⊂ Z that we
have defined a subset ΛJ ⊂ Λ and a poset isomorphism ΛJ

∼→ ΛJ ;n,c, λ 7→ λJ ; see
the first paragraph of §2.8. Moreover we have defined a subquotient CJ of C which
is an slJ -tensor product categorification of type (n, c); see Theorem 2.19. In view
of the uniqueness from Theorem 2.12 (for finite intervals), CJ is equivalent to a
block of parabolic category O for some general linear Lie algebra.

Now Theorem 2.21 implies that the multiplicities of Verma supermodules are
computed by certain parabolic Kazhdan-Lusztig polynomials evaluated at q = 1.
The super Kazhdan-Lusztig conjecture follows from this assertion; we will give a
more detailed discussion in §5.9 after we have introduced the techniques to discuss
gradings on super parabolic category O; see also the recent survey [B5] for more
about the combinatorics.

Various other known results about super parabolic category O can be deduced
from the finite case in a similar fashion. In particular, Theorem 2.22 gives a
classification of the blocks generalizing [CMW, Theorem 3.12], Lemma 2.23 gives
another proof of the main result of [Ku], and Theorem 2.24 gives a classification
of prinjectives in super parabolic category O which appears to be new.

4. Stable modules

In this section the goal is to prove Theorem 2.12 for infinite intervals. The
strategy is almost exactly the same as the strategy for finite intervals recalled
in §2.7. The main issue is to find a suitable substitute for the quotient functor
U : C → mod-H from Theorem 2.14. This arises from a new category mod-H
of “stable modules,” which seems quite interesting in its own right. Throughout
the section (n, c) will be a fixed type and I will be an infinite interval. Like in
Theorem 2.24, we pick finite subintervals I1 ⊂ I2 ⊂ · · · of I such that I =

⋃
r≥1 Ir,

|I1|+ 1 ≥ 2 max(n), and |Ir+1| = |Ir|+ 1 for each r.

4.1. Tower of Hecke algebras. Let C be some given slI -tensor product cate-
gorification of type (n, c). For each r we denote the subcategories C≤Ir and C<Ir
from §2.8 by C≤r and C<r, respectively. Then each subquotient Cr := C≤r/C<r
gets the induced structure of an slIr -tensor product categorification with weight
poset Λr := ΛIr ⊂ Λ. Denote the element of Λr corresponding to κIr;n,c ∈ ΛIr;n,c
by κr. Thus vκr is the highest weight vector of

∧n,c VIr ⊂
∧n,c VI .

Let T r be the rth “tensor space” from (2.35). It has a ∆-flag with sections of
the form ∆(µ) for µ ∈ Λr. Hence by (2.15) the quotient functor πr : C≤r → Cr
defines a isomorphism between EndC(T

r) and EndCr(T
r). The following theo-

rem follows immediately from this observation, Theorem 2.5 and the first part of
Theorem 2.14.

Theorem 4.1. The action of QHd on T rd induces a canonical isomorphism be-
tween the algebra

Hr =
⊕
d≥0

Hr
d :=

⊕
d≥0

QH
|κr|
Ir,d

(4.1)
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and the endomorphism algebra EndC(T
r).

For each r ≥ 1 and i ∈ Ir, we introduce the idempotent

1rd;i :=
∑

i∈Id+1
r

id+1=i

1i ∈ Hr
d+1. (4.2)

There is a natural algebra homomorphism

ιrd;i : Hr
d → 1rd;iH

r
d+11rd;i, 1j 7→ 1ji, ξj 7→ ξj1

r
d;i, τj 7→ τj1

r
d;i. (4.3)

In diagrammatic terms this map is given by tensoring with a single string i→ i.
With the following lemma we construct some much less familiar maps between
Hecke algebras for different r. These are given by tensoring with some explicitly
known diagram i→ i on the left.

Lemma 4.2. Fix r ≥ 1 and d ≥ 0. If max(Ir) = max(Ir+1) we define

pj :=
∣∣{i | ci = 0, ni ≥ j}

∣∣, a := max{ni | ci = 0},
s := min(Ir+1)− 1, ε := 1,

i := (s+ a)pa · · · (s+ 2)p2(s+ 1)p1 dr :=
∑
ci=0

ni.

Instead if min(Ir) = min(Ir+1), we let

pj :=
∣∣{i | ci = 1, ni ≥ j}

∣∣, a := max{ni | ci = 1},
s := max(Ir+1) + 1, ε := −1,

i := (s− a)pa · · · (s− 2)p2(s− 1)p1 dr :=
∑
ci=1

ni.

(In either case i is a word in Idrr+1.)

(i) There exists an explicit idempotent erd ∈ H
r+1
dr+d

such that the map

φrd : Hr
d
∼→ erdH

r+1
dr+d

erd, 1j 7→ 1ije
r
d, ξj 7→ ξdr+je

r
d, τj 7→ τdr+je

r
d

is a well-defined algebra isomorphism. Moreover erd1k = 1ke
r
d = 0 unless

k = ij for some j ∈ Idr .

(ii) There exists an isomorphism θrd : T rd
∼→ erdT

r+1
dr+d

in C, such that the fol-
lowing diagram commutes for all h ∈ Hr

d :

T rd
h−−−−→ T rd

θrd

y yθrd
erdT

r+1
dr+d

−−−−→
φrd(h)

erdT
r+1
dr+d

.

(iii) For i ∈ Ir the map ιr+1
dr+d;i from (4.3) sends erd to 1r+1

dr+d;ie
r
d+1.

(iv) For i ∈ Ir we have that φrd+1(1rd;i) = 1r+1
dr+d;ie

r
d+1.

Proof. A straightforward check shows in
∧n,c VI that

f
(p1)
s+ε1f

(p2)
s+ε2 · · · f

(pa)
s+εavκr+1 = vκr , (4.4)
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where we write f
(m)
i for the divided power fmi /m!. Now recall for each i ∈ Ir+1

and m ≥ 1 that there is an explicit idempotent bm ∈ 1imQHIr+1,m1im such that

the summand F
(m)
i := bmF

m
i of the functor Fmi induces f

(m)
i at the level of the

Grothendieck group; see [R, Lemma 4.1]. Hence for each d ≥ 0 there is an explicit

idempotent erd ∈ QH
|κr+1|
Ir+1,dr+d

= Hr+1
dr+d

such that

erdF
dr+d
Ir+1

L(κr+1) = F dIrF
(p1)
s+ε1 · · ·F

(pa)
s+εaL(κr+1). (4.5)

Since L(κr+1) and L(κr) are standard objects, the identity (4.4) implies that

there exists a (unique up to scalars) isomorphism L(κr)
∼→ F

(p1)
s+ε1 · · ·F

(pa)
s+εaL(κr+1).

Applying the functor F dIr to this and using the above equality we obtain the

isomorphism θrd : T rd
∼→ T r+1

dr+d
erd. This definition ensures that θrd intertwines

the actions of 1j , ξj , τj ∈ Hr
d and 1ije

r
d, ξdr+je

r
d, τdr+je

r
d ∈ erdH

r+1
dr+d

erd. Also

erdH
r+1
dr+d

erd = EndC(e
r
dT

r+1
dr+d

) ∼= EndC(T
r
d ) = Hr

d . Parts (i) and (ii) follow.

For the final parts of the lemma, the homomorphism ιr+1
dr+d;i can be viewed

simply as an application of the functor Fi, so it maps erd to Fie
r
d, while erd+1 = FIre

r
d

by its analogous definition. This implies (iii). Part (iv) is clear. �

In the notation of the lemma, we set er :=
∑

d≥0 e
r
d, φ

r :=
∑

d≥0 φ
r
d and θr :=∑

d≥0 θ
r
d. Thus er ∈ Hr+1 is an idempotent, φr : Hr ∼→ erHr+1er is an algebra

isomorphism, and θr : T r
∼→ erT r+1 is an isomorphism in C. In particular this

gives us a tower
H1 ↪→ H2 ↪→ H3 ↪→ · · ·

of cyclotomic quiver Hecke algebras which will play a key role. If M is a right
(resp. left) Hr+1-module we will implicitly view Mer (resp. erM) as a right (resp.
left) Hr-module via φr.

More generally for r ≤ s we set

φr,s := φs−1 ◦ · · · ◦ φr, er,s := φr,s(1Hr), θr,s := θs−1 ◦ · · · ◦ θr (4.6)

Thus er,s is an idempotent inHs, φr,s : Hr ∼→ er,sHser,s is an algebra isomorphism,
and θr,s : T r → er,sT s is an isomorphism in C. If M is a right (resp. left) Hs-
module we will implicitly view Mer,s (resp. er,sM) as an Hr-module via φr,s.

4.2. Stable modules and the double centralizer property. With the fol-
lowing definition we introduce an auxiliary category which is actually a little too
big; we will cut it down to size in Definition 4.5 below.

Definition 4.3. Let mod-H∞ be the category whose objects are diagrams

M = (M1 ι1−−−−→ M2 ι2−−−−→ M3 ι3−−−−→ · · · )
such that M r ∈ mod-Hr for each r and ιr gives an Hr-module isomorphism
M r ∼→ M r+1er for all r ≥ 1. A morphism f : M → N in mod-H∞ means a
sequence (f r)r≥1 of Hr-module homomorphisms f r : M r → N r such that the
following diagram commutes:

M1 −−−−→ M2 −−−−→ M3 −−−−→ · · ·

f1
y f2

y f3
y

N1 −−−−→ N2 −−−−→ N3 −−−−→ · · · .

(4.7)
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We write simply HomH(M,N) for the morphisms in mod-H∞. It is easy to see
that mod-H∞ is an Abelian category. We stress however that there is no algebra
H in sight here.

For any s ≥ 1, an object M ∈ mod-H∞ is determined uniquely up to iso-
morphism just by knowledge of its tail (M s → M s+1 → · · · ). We make this
statement precise by introducing the category mod-H≥s consisting of diagrams

M = (M s ιs→ M s+1 ιs+1

→ · · · ) with M r ∈ mod-Hr and ιr : M r ∼→ M r+1er for each
r ≥ s (just like in Definition 4.3 but starting at r not 1). Then there is a forgetful
functor

tails : mod-H∞ → mod-H≥s (4.8)

sending (M1 →M2 → · · · ) to its tail (M s →M s+1 → · · · ). Let

heads : mod-H≥s → mod-H∞ (4.9)

be the functor sending (M s ιs→ M s+1 ιs+1

→ · · · ) to (M1 ι1→ · · · ι
s−1

→ M s ιs+1

→ · · · ),
where for r < s we let M r := M ser,s ∈ mod-Hr; the maps ιr : M r → M r+1 for
r < s are simply the inclusions. Obviously tails ◦heads = id. It is an easy exercise
to show moreover that heads ◦ tails ∼= id. Thus the functors tails and heads are
quasi-inverse equivalences of categories.

For each r ≥ 1, we define two more functors

topr : mod-H≥r → mod-Hr, top!
r : mod-Hr → mod-H≥r. (4.10)

The first of these is defined simply by projecting M onto its top term M r. The
second is defined onM ∈ mod-Hr by top!

rM := (M r →M r+1 → · · · ) ∈ mod-H≥r,
where M s := M ⊗Hr er,sHs ∈ mod-Hs. The linear maps ιs : M s →M s+1 are the
maps M s →M s+1, v ⊗ h 7→ v ⊗ φs(h). Finally we set

prr := topr ◦ tailr : mod-H∞ → mod-Hr, (4.11)

pr!
r := headr ◦ top!

r : mod-Hr → mod-H∞. (4.12)

The first of these prr is of course just the obvious projection onto the rth compo-
nent. It is also clear that prr ◦ pr!

r
∼= id.

Lemma 4.4. The functor pr!
r is left adjoint to prr.

Proof. It suffices to check that top!
r is left adjoint to topr. The counit of the

adjunction on object M = (M r ιr→M r+1 ιr+1

→ · · · ) is (ηr,s)s≥r : top!
r(toprM)→M

defined from

ηr,s : M r ⊗Hr er,sHs 7→M s, v ⊗ h 7→ ιr,s(v)h, (4.13)

setting ιr,s := ιs−1 ◦ · · · ◦ ιr. We leave the routine checks to the reader. �

Definition 4.5. We say that M ∈ mod-H∞ is r-stable if it is in the essential
image of the functor pr!

r; equivalently the maps (4.13) are isomorphisms for all
s > r. Then M is stable if it is r-stable for some r ≥ 1. Finally let mod-H be
the full subcategory of mod-H∞ consisting of all stable objects. (We will see soon
that mod-H is itself an Abelian category but this is not obvious as it is not a Serre
subcategory of mod-H∞.)

Lemma 4.6. If M ∈ mod-H is r-stable and N ∈ mod-H∞ is any object then
prr : HomH(M,N)→ HomHr(M r, N r) is an isomorphism.
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Proof. We have that M ∼= pr!
r(M

r). Now use Lemma 4.4. �

Now we bring the category C back into the picture. Let

Ur := HomC(T
r,−) : C → mod-Hr. (4.14)

Then let U : C → mod-H∞ be the functor sending M ∈ C to

UM := (U1M
ι1−−−−→ U2M

ι2−−−−→ U3M
ι3−−−−→ · · · ), (4.15)

where the isomorphism ιr : HomC(T
r,M)

∼→ HomC(e
rT r+1,M) here is the map

φ 7→ φ ◦ (θr)−1. On a morphism f : M → N we let Uf := (Urf)r≥1. By
Lemma 2.20 and (2.35), each T r is a prinjective object of C, hence the functors
Ur and U are both exact. Also Ur = prr ◦U. Recalling the definition (2.34), we
let

Y (λ) = (Y 1(λ)→ Y 2(λ)→ · · · ) := UP (λ), (4.16)

D(µ) = (D1(µ)→ D2(µ)→ · · · ) := UL(µ), (4.17)

for λ ∈ Λ and µ ∈ Λ◦. By Theorem 2.24 for the category Cr (and the usual theory
of quotient functors) the objects {Dr(µ) | µ ∈ Λ◦r} give a complete set of pairwise
non-isomorphic irreducible Hr-modules. Moreover Y r(µ) is the projective cover
of Dr(µ) in mod-Hr for each µ ∈ Λ◦r .

Theorem 4.7. The essential image of the functor U is the subcategory mod-H of
mod-H∞.

Proof. We first show that UM is stable for any M ∈ C. Given M pick r ≥ 1 so
that ⋃

µ∈Λ
[M :L(µ)] 6=0

{
ν ∈ Λ

∣∣ [P (µ) : L(ν)] 6= 0
}
⊆ Λr. (4.18)

This is possible as the set on the left hand side here is finite. We claim for this r
that UM is r-stable. This amounts to showing for each s > r that the Hs-module
homomorphism

HomC(T
r,M)⊗Hr er,sHs → HomC(T

s,M), f ⊗ h 7→ f ◦ (θr,s)−1 ◦ h
is an isomorphism. For surjectivity, we split T s and T r into indecomposables
T s = P1 ⊕ · · · ⊕ Pn and T r = Q1 ⊕ · · · ⊕Qm, so that

HomC(T
s,M) =

n⊕
i=1

HomC(Pi,M), HomC(T
r,M) =

m⊕
j=1

HomC(Qj ,M).

By the assumption on r all composition factors of M are of the form L(µ) for
µ ∈ Λr. Hence HomC(Pi,M) = 0 unless Pi ∼= P (µ) for some µ ∈ Λ◦r . In that
case there is a summand Qj with Qj ∼= Pi. Thus any f ∈ HomC(Pi,M) ⊆
HomC(T

s,M) factors as g ◦ k for some g ∈ HomC(Qj ,M) ⊆ HomC(T
r,M) and

k ∈ HomC(Pi, Qj) ⊆ HomC(T
s, T r). Since HomC(T

s, T r) ∼= er,sHs, we deduce
that f = g ◦ (θr,s)−1 ◦ h for some h ∈ er,sHs, and surjectivity follows.

For injectivity, let K be the kernel of the map, so that there is a short exact
sequence

0→ K → HomC(T
r,M)⊗Hr er,sHs → HomC(T

s,M)→ 0.
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On truncating with the idempotent er,s, the second map becomes an isomorphism,
hence Ker,s = 0. Thus all composition factors of K are of the form {Ds(ν) | ν ∈
Λ◦s \ Λ◦r}. On the other hand all composition factors of HomC(T

s,M) are of the
form Ds(µ) for µ ∈ Λ◦s such that such that [M : L(µ)] 6= 0. Now the choice of r
ensures for such ν and µ that L(ν) is not a composition factor of P (µ). Hence
Ds(ν) is not a composition factor of Y s(µ), which is the projective cover of Ds(µ).
It follows that Ext1

Hs(Ds(µ), Ds(ν)) = 0, and we have proved that the above short
exact sequence splits. But then we get that

HomHs(K,Ds(ν))� HomHs(HomC(T
r,M)⊗Hr er,sHs, Ds(ν))

∼= HomHr(HomC(T
r,M), Ds(ν)er,s) = 0

for any ν ∈ Λ◦s \ Λ◦r . This implies that K = 0.
So U restricts to a well-defined functor U : C → mod-H. We next construct a

left adjoint U! : mod-H → C such that U◦U! ∼= id, implying in particular that this
new U is essentially surjective. On an object M ∈ mod-H we let r ≥ 1 be minimal
such that M is r-stable then set U!M := M r⊗Hr T r ∈ C≤r, where M r⊗Hr − here
is the tensor product functor from the category of Hr-module objects in C to C.
Note for s ≥ r that there is an isomorphism

f r,s : M r ⊗Hr T r
∼→M s ⊗Hs T s

defined by the composition of the following canonical isomorphisms

M r ⊗Hr T r
id⊗θr,s−→ M r ⊗Hr er,sT s ∼= M r ⊗Hr er,sHs ⊗Hs T s

ηr,s⊗id→ M s ⊗Hs T s,

for ηr,s coming from (4.13). Then on a morphism f = (f r)r≥1 : M → N we
define U!f by picking t such that both M and N are t-stable then setting U!f :=
(fs,t)−1 ◦ f t ◦ f r,t : M r ⊗Hr T r → M s ⊗Hs T s. One needs to observe that this is
well defined independent of the choice of t as θs,t ◦ θr,s = θr,t and ηs,t ◦ ηr,s = ηr,t.
Then it follows easily that this is a functor. To see that id ∼= U ◦ U!, take the
natural isomorphism defined on M by the canonical isomorphisms

M
∼→ pr!

r(prrM) = pr!
r(M

r)

∼= pr!
r(M

r ⊗Hr HomC(T
r, T r))

∼→ pr!
r(HomC(T

r,M r ⊗Hr T r))

= pr!
r(Ur(U!M)) = pr!

r(prr(U(U!M)))
∼→ U(U!M)

where r is minimal so that M is r-stable. Here the morphisms on the first and last
lines come from the counit of adjunction pr!

r ◦ prr
∼= id and the middle one is the

obvious isomorphism. In particular this isomorphism gives the unit ε : id→ U◦U!

of the claimed adjunction. We proceed to write down the counit η : U! ◦ U→ id.
To define this on M ∈ C, let r be minimal such that UM is r-stable. Then we
take ηM to be the obvious evaluation

U!(UM) = HomHr(T r,M)⊗Hr T r
evr→ M. (4.19)

This can also be obtained as the composition

U!(UM) = HomHr(T r,M)⊗Hr T r
fr,s→ HomHs(T s,M)⊗Hs T s

evs→ M

for any s ≥ r; in particular this makes it clear that it is surjective. We leave the
remaining checks to the reader. �
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Remark 4.8. For M ∈ C, one can consider the integer

rM := min{r ≥ 1 | UM is r-stable}.
Of course this depends implicitly on the choices of the intervals I1 ⊂ I2 ⊂ · · · .
We observed during the proof of Theorem 4.7 that the map (4.19) with r = rM
is surjective. Hence all constituents of the head of M are of the form L(λ) for
λ ∈ Λr and M ∈ C≤r; these properties give a lower bound for rM . For a (surely
much too big) upper bound one can take the smallest r satisfying (4.18).

Theorem 4.9. The category mod-H is Schurian with a complete set of pairwise
non-isomorphic irreducibles given by the objects {D(µ) | µ ∈ Λ◦}. Moreover Y (µ)
is the projective cover of D(µ) in mod-H for each µ ∈ Λ◦. Finally

U : C → mod-H (4.20)

satisfies the universal property of the quotient of C by the Serre subcategory gen-
erated by the irreducible objects {L(λ) | λ ∈ Λ \ Λ◦}.

Proof. First we check that the functor U : C → mod-H has the universal property
of quotients. We need to show for any Abelian category C′ and any exact functor
F : C → C′ such that FL(λ) = 0 for all λ ∈ Λ \ Λ◦ that there exists a unique
(up to isomorphism) functor F̄ : mod-H → C′ such that F̄ ◦ U ∼= F. Composing
on the right with U! we see at once that the only choice (up to isomorphism) is
to take F̄ := F ◦ U!. The counit of adjunction η gives a natural transformation
Fη : F◦U!◦U = F̄◦U⇒ F. To see this is an isomorphism, take M ∈ C and let r be
minimal such that UM is r-stable. Then (Fη)M : F̄(UM)→ FM is the morphism
obtained by applying F to the second arrow in the following short exact sequence:

0→ K → HomC(T
r,M)⊗Hr T r

ηM→ M → 0.

To see that this map is an isomorphism it suffices by exactness of F to show that
FK = 0. This follows because UK = 0.

Now we let C◦ be the quotient of C by the Serre subcategory generated by the
objects {L(λ) |λ ∈ Λ\Λ◦} and π : C → C◦ be the quotient functor. By the general
theory of quotients this is a Schurian category with irreducibles {πL(µ) |µ ∈ Λ◦};
the projective cover of πL(λ) is πP (λ). The universal property established in the
previous paragraph gives us a functor π̄ : mod-H → C◦ such that π ∼= π̄◦U. On the
other hand by the universal property of C◦ there is a functor Ū : C◦ → mod-H∞

such that U ∼= Ū ◦ π; we are being careful here since we do not yet know that
mod-H is itself Abelian. The essential image of Ū is mod-H, i.e. it is actually a
functor C◦ → mod-H. Then the usual argument with uniqueness shows that Ū
and π̄ are quasi-inverse equivalences. The theorem now follows directly. �

At last we can prove the appropriate analog of the double centralizer property
from Theorem 2.14.

Theorem 4.10. The functor U : C → mod-H is fully faithful on projectives.
Moreover for each λ ∈ Λ the object Y (λ) = UP (λ) ∈ mod-H is independent (up
to isomorphism) of the particular choice of C.

Proof. Take projectives P,Q ∈ C and choose r so that both UP and UQ are r-
stable. By Remark 4.8 this means that P and Q are projective objects also in Cr.
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Hence by the double centralizer property from Theorem 2.14 the composition Ur
of the following two maps is an isomorphism:

HomC(P,Q)
U→ HomH(UP,UQ)

prr→ HomHr(UrP,UrQ).

Also the second map here is an isomorphism because of Lemma 4.6. Hence the
first map is an isomorphism, proving that U is fully faithful on projectives.

Now suppose we are given another tensor product categorification C′. Define
U′ : C′ → mod-H exactly as above then set

Y ′(λ) = (Y ′
1
(λ)→ Y ′

2
(λ)→ · · · ) := U′P ′(λ).

Pick r so that both Y (λ) and Y ′(λ) are r-stable. Then P (λ) is projective in Cr
and P ′(λ) is projective in C′r. By the final part of Theorem 2.14 we get that
Y r(λ) ∼= Y ′r(λ) in mod-Hr, hence Y (λ) ∼= pr!

r Y
r(λ) ∼= pr!

r Y
′r(λ) ∼= Y ′(λ). �

Remark 4.11. The slightly stronger result from Remark 2.15 also holds in the
present situation; the proof is the same.

4.3. Categorical action on stable modules. Next we are going to introduce
a categorical slI -action onto the category mod-H in such a way that the quotient
functor U : C → mod-H is strongly equivariant. For each r ≥ 1 we have the
usual induction and restriction functors F r, Er : mod-Hr → mod-Hr from (2.28).
In terms of cyclotomic quiver Hecke algebras, these are the direct sums over all
i ∈ Ir of the i-induction and i-restriction functors

F ri : mod-Hr → mod-Hr, Eri : mod-Hr → mod-Hr (4.21)

defined as follows. Recalling the idempotent (4.2), F ri is given by tensoring over
Hr
d with the bimodule 1rd;iH

r
d+1, viewing 1rd;iH

r
d+1 as an (Hr

d , H
r
d+1)-bimodule via

the homomorphism (4.3). Its canonical right adjoint Eri is given on a right Hr
d+1-

module simply by right multiplication by this idempotent, viewing the result as
a right Hr

d-module via ιrd;i again. The endomorphism ξ ∈ End(F ri ) is induced
by the endomorphism of the bimodule 1rd;iH

r
d+1 defined by left multiplication by

ξd+1. To define τ ∈ Hom(F rj ◦ F ri , F ri ◦ F rj ), note obviously that

1rd;iH
r
d+1 ⊗Hr

d+1
1rd+1;jH

r
d+2
∼= 1d;ijH

r
d+2 where 1d;ij :=

∑
i∈Id+2

r
id+1=i
id+2=j

1i ∈ Hr
d+2.

Then τ comes from the bimodule homomorphism 1rd;ijH
r
d+2 → 1rd;jiH

r
d+2 defined

by left multiplication by τd+1. The canonical adjunction making each (F ri , E
r
i )

into an adjoint pair comes simply from adjunction of tensor and hom.

We are ready to define Fi : mod-H → mod-H. Take M = (M1 ι1→M2 ι2→ · · · ) ∈
mod-H. Suppose to start with that r is chosen so that i ∈ Ir. By Lemma 4.2(iv),
the restriction of φrd+1 gives a right Hr

d+1-module homomorphism

ψrd;i : 1rd;iH
r
d+1 ↪→ 1r+1

dr+d;iH
r+1
dr+d+1e

r
d+1.

Let ψri :=
⊕

d≥0 ψ
r
d;i so that the map ιr ⊗ ψr : F ri M

r → (F r+1
i M r+1)er is an

Hr-module homomorphism. Now we assume that r is minimal such that M is
r-stable and i ∈ Ir. Then define

FiM := headr(F
r
i M

r ι
r⊗ψr−→ F r+1

i M r+1 ιr+1⊗ψr+1

−→ · · · ). (4.22)
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For this to even make sense we need to justify that the maps ιs ⊗ ψs : F siM
s →

(F s+1
i M s+1)es are isomorphisms for all s ≥ r, so that the object in parentheses

really is an object of mod-H≥r. This follows at once from the next lemma, which
shows moreover that FiM is r-stable.

Lemma 4.12. If M ∈ mod-H is r-stable and i ∈ Ir then the maps

ηs : F siM
s ⊗Hs esHs+1 → F s+1

i M s+1, v ⊗ h′ ⊗ h 7→ ιs(v)⊗ ψs(h′)h
are isomorphisms for all s ≥ r. Hence Fi sends r-stable objects to r-stable objects.

Proof. Suppose that M s ∈ mod-Hs
d . To prove the lemma we need to show that

the map

M s ⊗Hs
d

1sd;iH
s
d+1 ⊗Hs

d+1
esd+1H

s+1
dr+d+1 →M s+1 ⊗Hs+1

dr+d
1s+1
dr+d;iH

s+1
dr+d+1

v ⊗ h′ ⊗ h 7→ ιs(v)⊗ ψs(h′)h
is an isomorphism. Taking h′ = 1sd;i and contracting the second tensor product

using Lemma 4.2(iv), this is equivalent to showing that the map

ιs ⊗ id : M s ⊗Hs
d

1s+1
dr+d;ie

s
d+1H

s+1
dr+d+1 →M s+1 ⊗Hs+1

dr+d
1s+1
dr+d;iH

s+1
dr+d+1

is an isomorphism. As M is r-stable the following map is an isomorphism:

M s ⊗Hs
d
esdH

s+1
dr+d

⊗Hs+1
dr+d

1s+1
dr+d;iH

s+1
dr+d+1 →M s+1 ⊗Hs+1

dr+d
1s+1
dr+d;iH

s+1
dr+d+1

v ⊗ h′ ⊗ h 7→ ιs(v)h′ ⊗ h.
Taking h′ = esd and contracting the second tensor product using Lemma 4.2(iii),
gives exactly the desired isomorphism. �

So now we have defined the functor Fi on objects. On a morphism f : M → N
we just pick r so that i ∈ Ir and M is r-stable. Then FiM is r-stable too, so by
Lemma 4.6 there is a unique morphism Fif : FiM → FiN such that (Fif)r =
F ri f

r. This is independent of the choice of r, which is all that is needed to check
that Fi : mod-H → mod-H is a well-defined functor.

Next we define natural transformations

ξ ∈ End(Fi), τ ∈ Hom(Fj ◦ Fi, Fi ◦ Fj).
Take some M ∈ mod-H and pick r so that i ∈ Ir and M is r-stable. Then
by Lemma 4.6 again there is a unique morphism ξM : FiM → FiM such that
(ξM )r = ξMr ; similarly, there is a unique τM : FjFiM → FiFjM such that
(τM )r = τMr . The naturality of ξ and τ follows because these definitions of ξM
and τM are independent of the particular choice of r, as may be checked using
Lemma 4.2.

Lemma 4.13. There are isomorphisms ζi : Fi ◦ U
∼→ U ◦ Fi for each i ∈ I such

that ζi ◦ ξU = Uξ ◦ ζi in Hom(Fi ◦U,U ◦Fi) and ζiFj ◦Fiζj ◦ τU = Uτ ◦ ζjFi ◦Fjζi
in Hom(Fj ◦ Fi ◦ U,U ◦ Fi ◦ Fj).

Proof. To define ζi on an object M ∈ C, take any r such that i ∈ Ir and both UM
and U(FiM) are r-stable. By Lemma 2.16, there exists a canonical isomorphism

ζri : Ur ◦ F ri
∼→ F ri ◦ Ur. Then we define (ζi)M : U(FiM) → Fi(UM) to be the

unique morphism with rth component equal to (ζri )M . For the naturality one
just needs to observe that this is independent of the choice of r. The ξ- and
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τ -equivariance properties follow because the ζri satisfy analogous equivariance
properties for sufficiently large r. �

We turn our attention to Ei : mod-H → mod-H. For this we start by defining
a functor Ei : mod-H∞ → mod-H∞. Let r be minimal such that i ∈ Ir. Then for
M = (M1 →M2 → · · · ) ∈ mod-H∞ we let

EiM := (0→ · · · → 0→ EriM
r → Er+1

i M r+1 → · · · ) (4.23)

where the maps are simply the restrictions. Lemma 4.14 below verifies that this
is indeed an object of mod-H∞. On a morphism f : M → N we define (Eif)s :=
Esi f

s if i ∈ Is and (Eif)s := 0 otherwise.

Lemma 4.14. Suppose we are given M ∈ mod-H∞, i ∈ I and r ≥ 1. If i ∈ Ir then
the restriction of ιr : M r ∼→M r+1er is an isomorphism EriM

r ∼→ (Er+1
i M r+1)er.

If i ∈ Ir+1 \ Ir then (Er+1
i M r+1)er = 0.

Proof. We may assume that M r ∈ mod-Hr
d+1. Then we just have to recall that

EriM
r = M r1rd;i. So using also Lemma 4.2(iv) we deduce that ιr maps it iso-

morphically to M r+11r+1
dr+d;ie

r
d+1, which is all of (Er+1

i M r+1)erd+1 as required. For

the second statement just note that (Er+1
i M r+1)erd+1 = M r+11r+1

dr+d;ie
r
d+1 which

is zero by Lemma 4.2(i) since i /∈ Ir. �

Lemma 4.15. The functor Ei : mod-H∞ → mod-H∞ sends stable modules to
stable modules, hence it restricts to Ei : mod-H → mod-H.

Proof. In view of Theorem 4.7, it suffices to show Ei ◦ U(M) ∼= U ◦ Ei(M) for
each M ∈ C. Take some large enough r so that i ∈ Ir and all composition
factors of M are of the form L(λ) for λ ∈ Λr. We may assume moreover that
M is homogeneous of degree d in Cr, i.e. Ur(M) = HomC(T

r
d ,M). We have

that Eri ◦ Ur(M) ∼= Ur ◦ Ei(M) by Lemma 2.16. The canonical isomorphism

here is the map f r : Eri ◦ Ur(M) = HomC(FiT
r
d−1,M)

∼→ HomC(T
r
d−1, EiM)

defined by the adjunction between Fi and Ei. Similarly we have f r+1 : Er+1
i ◦

Ur+1(M) = HomC(FiT
r+1
dr+d−1,M)

∼→ HomC(T
r+1
dr+d−1, EiM). Now we observe that

the following diagram commutes:

Eri ◦ Ur(M)
fr−−−−→ Ur ◦ Ei(M)

ιr
y yιr

Er+1
i ◦ Ur+1(M) −−−−→

fr+1
Ur+1 ◦ Ei(M).

This follows by the naturality of the adjunction, noting that the left hand vertical
map is induced by Fiθ

r
d−1 : FiT

r
d−1 → FiT

r+1
dr+d−1 as that agrees with θrd on the

summand FiT
r
d−1 of T rd by the construction in Lemma 4.2. The isomorphisms

f r for all sufficiently large r define the required isomorphism f : Ei ◦ U(M)
∼→

U ◦ Ei(M). �

So now we have defined the endofunctors Fi and Ei on mod-H. It remains to
define an adjunction making (Fi, Ei) into an adjoint pair. Given an object M we
pick r large enough so that i ∈ Ir, and M,EiM and EiFiM are r-stable. Then
we take the unit and counit of the adjunction on object M to be induced by the
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ones for Eri and F ri on M r ∈ mod-Hr. As usual to prove naturality one needs to
observe that the resulting morphisms are independent of the choice of r.

Theorem 4.16. The category mod-H, together with the adjoint pairs (Fi, Ei) for
each i ∈ I and the natural transformations ξ and τ , is an slI-categorification in
the sense of Definition 2.6. Moreover the quotient functor U : C → mod-H is
strongly equivariant.

Proof. We have already defined all of the required data for a categorical action.
To show that U is strongly equivariant, we use the isomorphism ζi : Fi ◦ U

∼→
U ◦ Fi from Lemma 4.13. We already showed this satisfies the ξ- and τ -versions
of properties (E2)–(E3). It satisfies (E1) since the composition of the natural
transformation in (E1) with prr is an isomorphism on each M ∈ C and sufficiently
large r thanks to Lemma 2.16. Therefore it induces an isomorphism U◦Ei ∼= Ei◦U
(which we already exploited in the proof of Lemma 4.15). It remains to verify
the axioms (SL1′)–(SL4′). The first two follow via Lemma 4.6 and the truth of
the corresponding axioms on each mod-Hr. For (SL3′), we can produce a second
adjunction making (Ei, Fi) into an adjoint pair by pushing some choice of such
an adjunction in C through the functor U; this argument uses our isomorphisms
Fi ◦U ∼= U ◦ Fi and U ◦Ei ∼= Ei ◦U. Finally (SL4′) holds because the left adjoint
functor U! embeds [mod-H] into [C], and the latter is integrable. �

4.4. Proof of Theorem 2.12 for infinite intervals. Now we can complete the
proof of Theorem 2.12 for infinite intervals. Existence follows from Theorem 3.10,
so we just need to establish the uniqueness. Suppose we are given another slI -
tensor product categorification C′ of the same type as C. Introduce the primed
analog U′ of the quotient functor U, and set Y ′(λ) := U′P ′(λ) for each λ ∈ Λ.
Letting A and A′ be the basic algebras underlying C and C′ as in (2.18) and
(2.20), the double centralizer property from Theorem 4.10 implies the existence
of isomorphisms (2.26)–(2.27). Applying the last assertion of Theorem 4.10, we
pick isomorphisms Y (λ) ∼= Y ′(λ) in mod-H for each λ ∈ Λ. These induce algebra

isomorphisms A ∼= A′ hence an isomorphism of categories mod-A
∼→ mod-A′.

Since C is equivalent to mod-A and C′ is equivalent to mod-A′, we get the desired
equivalence G : C → C′. To see that this equivalence is strongly equivariant we
just need to introduce the bimodules B and B′ from (2.19) and (2.21). These
satisfy (2.29)–(2.32) for the same reasons as in §2.7, using Theorem 4.16 in place
of Lemma 2.16.

5. Graded tensor product categorifications

We are in the business now of constructing graded lifts of the structures intro-
duced so far. We are going to use the same notation in this section for graded
versions as was used in the earlier sections in the ungraded setting. To avoid con-
fusion we add bars to all our earlier notation. For example we denote the natural
slI -module VI now by V I , so that the notation VI can be reused for its quantum
analog.

5.1. Quantized enveloping algebras. Consider the field Q(q) equipped with

the bar involution defined by f(q) := f(q−1). For an interval I, the quantized
enveloping algebra UqslI is the Q(q)-algebra with generators {fi, ei, ki, k−1

i | i ∈ I}
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subject to well-known relations. We will often appeal to facts from [Lu]; note for
this that our q is Lusztig’s v−1 while our fi, ei, ki are Lusztig’s Fi, Ei,K

−1
i . We

make UqslI into a Hopf algebra as in [Lu] with comultiplication ∆ defined from

∆(fi) := 1⊗ fi + fi ⊗ ki, ∆(ei) := k−1
i ⊗ ei + ei ⊗ 1, ∆(ki) := ki ⊗ ki.

There is a linear algebra antiautomorphism ∗ : UqslI → UqslI such that

f∗i := qeiki, e∗i := qfik
−1
i , k∗i := ki.

This is a coalgebra automorphism whose square is the identity. Also UqslI pos-
sesses an antilinear algebra automorphism ψ, also usually called the bar involution,
which is defined from

ψ(fi) := fi, ψ(ei) := ei, ψ(ki) := k−1
i . (5.1)

Let ψ∗ := ∗ ◦ ψ ◦ ∗, so that ψ∗ is another antilinear algebra automorphism with

ψ∗(f∗i ) = f∗i , ψ∗(e∗i ) = e∗i , ψ∗(k∗i ) = k∗i
−1. (5.2)

Equivalently

ψ∗(fi) = q2fik
−2
i , ψ∗(ei) = q2eik

2
i , ψ∗(ki) = k−1

i .

For $ ∈ PI the $-weight space of a UqslI -module M is the subspace

M$ := {v ∈M | kiv = q$·αiv for each i ∈ I}.
Then the notion of integrable module is defined in the same way as for slI . For
n ≥ 0 and c ∈ {0, 1}, let

∧n,c VI be the integrable UqslI -module on basis {vλ |λ ∈
ΛI;n,c}, with fi and ei acting by the same formulae (2.4)–(2.5) as before and

kivλ := qλi−λi+1vλ. Note that f∗i and e∗i act on
∧n,c VI in exactly the same way

as ei and fi, respectively.
More generally given a type (n, c) of level l we have the tensor product

∧n,c VI :=∧n1,c1 VI⊗· · ·⊗
∧nl,cl VI . It has a monomial basis {vλ |λ ∈ ΛI;n,c} just like before.

The actions of fj and ej on these basis vectors are given explicitly by the formulae

fjvλ =
∑

1≤i≤l
λij=1

λi(j+1)=0

q(|λi+1|+···+|λl|)·αjvtij(λ), (5.3)

ejvλ =
∑

1≤i≤l
λij=0

λi(j+1)=1

q−(|λ1|+···+|λi−1|)·αjvtij(λ), (5.4)

writing tij(λ) for the 01-matrix obtained from λ by flipping its entries λij and
λi(j+1). In general it is no longer the case that f∗i and e∗i act in the same way as
ei and fi. Instead we have that

(uv,w) = (v, u∗w) (5.5)

for u ∈ UqslI and v, w ∈
∧n,c VI , where (−,−) is the symmetric bilinear form on∧n,c VI with respect to which the monomial basis is orthonormal.
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5.2. Graded lifts. In this subsection, we review briefly some basic notions related
to graded lifts of Abelian categories and functors. The ideas here have their origins
in [S, BGS]; our exposition is based on [AJS, Appendix E].

Definition 5.1. By a graded category we mean a category C equipped with an
adjoint pair (Q,Q−1) of self-equivalences; the adjunction induces canonical iso-

morphisms Qm ◦ Qn ∼→ Qm+n for all m,n ∈ Z making the obvious square of

isomorphisms from Qm ◦Qn ◦Ql to Qm+n+l commute. Let Ĉ denote the category
with the same objects as C and

HomĈ(M,N) :=
⊕
m∈Z

HomC(M,N)m

where HomC(M,N)m denotes HomC(Q
mM,N) ∼= HomC(M,Q−mN); composition

is induced by that of C making Ĉ into a category enriched in graded vector spaces.
We refer to elements of HomC(M,N)m as homogeneous morphisms of degree m.

Thus morphisms in C itself are the homogeneous morphisms of degree zero in Ĉ.
Assuming C is Abelian, we define

ExtnĈ(M,N) :=
⊕
m∈Z

ExtnC(M,N)m

similarly.
A graded functor F : C → C′ between two graded categories means a functor

between the underlying categories plus the additional data of an isomorphism of
functors γF : F ◦Q ∼→ Q′◦F ; using the given adjunctions we get from this canonical
isomorphisms F ◦ Qn ∼→ Q′n ◦ F for all n ∈ Z making the obvious pentagon of
isomorphisms from F ◦ Qm ◦ Qn to Q′m+n ◦ F commute for all m,n ∈ Z. There

is an induced functor F̂ : Ĉ → Ĉ′ which is equal to F on objects; on a morphism

f ∈ HomC(M,N)m we define F̂ f ∈ HomC′(FM,FN)m from FM
Ff→ FQ−mN

∼→
Q′−mFN . There is an obvious way to compose two graded functors to obtain
another graded functor. The identity functor id : C → C is a graded functor
with γid being 1Q. Also each Qn is a graded functor in a canonical way, e.g.
γQ = 1Q2 . A graded equivalence F : C → C′ between two graded categories is
a graded functor that is also an equivalence of categories. A graded duality is a
graded equivalence D : C → Cop, viewing Cop as a graded category via the inverse
adjoint pair (Q−1, Q) of self-equivalences to (Q,Q−1).

A graded natural transformation α : F → G between graded functors F,G : C →
C′ is a natural transformation in the usual sense with the additional property that
Q′α◦γF = γG◦αQ. We write Hom(F,G)0 for the vector space of all graded natural
transformations α : F → G. In fact, there is a strict 2-category whose objects
are all (small) graded categories, whose 1-morphisms are graded functors, and
whose 2-morphisms are graded natural transformations. The morphism categories
Hom(C, C′) in this 2-category are themselves graded categories with grading shift
functors Q and Q−1 defined by horizontally composing on the left with the ones
in C′. This means that we also have the spaces Hom(F,G)n := Hom(QnF,G)0 for
n ∈ Z consisting of homogeneous natural transformations of degree n.

Suppose C is a graded Abelian category such that all objects have finite length,
there are enough projectives, and the endomorphism algebras of the irreducible
objects are one dimensional. Assume further that C is acyclic in the sense that
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L 6∼= QnL for each irreducible L and n 6= 0. Fix a choice of representatives
{L(λ) | λ ∈ Λ} for the homogeneous isomorphism classes of irreducible objects
in C, and let P (λ) be a projective cover of L(λ). Then the assignment q := [Q]
makes K0(C) and G0(C) into free Z[q, q−1]-modules with bases {[P (λ)] | λ ∈ Λ}
and {[L(λ)] | λ ∈ Λ}, respectively. Set [C]q := Q(q) ⊗Z[q,q−1] K0(C) and [C]∗q :=
Q(q) ⊗Z[q,q−1] G0(C). Given M,L ∈ C with L irreducible, we write [M : L]q for∑

n∈Z q
n[M : QnL]; in particular [M : L(λ)]q = dimq HomĈ(P (λ),M).

Continuing with C as in the previous paragraph, let grmod-A be the category
of finite dimensional locally unital graded right modules over the locally unital
graded algebra

A :=
⊕
λ,µ∈Λ

HomĈ(P (λ), P (µ)). (5.6)

This can be viewed as a graded category with Q being the grading shift functor,
i.e. QM is the same underlying module with new grading defined from (QM)n :=
Mn−1. We write simply HomA(M,N) for morphisms in the enriched category
̂grmod-A. Then the functor

H : C → grmod-A, M 7→
⊕
λ∈Λ

HomĈ(P (λ),M) (5.7)

is a graded equivalence. The right ideals 1λA are all finite dimensional. The left
ideals A1λ are all finite dimensional if and only if C has enough injectives; in that
case C is an acyclic graded Schurian category.

Definition 5.2. By a graded lift of a Schurian category C, we mean a graded

Abelian category C together with a fully faithful functor ν : Ĉ → C such that

(GL1) ν is dense on projectives, i.e. every projective object P ∈ C is isomorphic
to νP for some projective object P ∈ C;

(GL2) ν ◦ Q̂ ∼= ν.

The hypotheses that ν is fully faithful and dense on projectives imply that the
restriction of ν to C is exact.

Given a graded lift C of C, the gradable objects of C mean the objects in the
essential image of ν. All projective objects of C are gradable by the definition
(GL1). We will see shortly that all irreducible and all injective objects of C are
gradable too. An important point is that graded lifts of an indecomposable object
are unique up to homogeneous isomorphism; see [BGS, Lemma 2.5.3]. Note also
that the functor ν induces a canonical isomorphism

ExtnĈ(M,N)
∼→ ExtnC(νM, νN)

for any M,N ∈ C and n ≥ 0.
The problem of finding a graded lift C of a Schurian category C is easy to

understand in terms of algebras as follows. Let {L(λ) | λ ∈ Λ} be a complete
set of pairwise non-isomorphic irreducible objects of C. Let P (λ) be a projective
cover of L(λ) in C. Recall from (2.3) that C is equivalent to the category mod-A
where

A :=
⊕
λ,µ∈Λ

HomC(P (λ), P (µ)). (5.8)



42 JONATHAN BRUNDAN, IVAN LOSEV AND BEN WEBSTER

Now suppose that C is a graded lift of C, and pick graded lifts P (λ) of each
P (λ). As EndĈ(P (λ)) ∼= EndC(P (λ)) which is local, P (λ) is an indecomposable
projective object of C with irreducible head denoted L(λ). It is easy to see that
L(λ) is a graded lift of L(λ), i.e. all irreducible objects of C are gradable. Moreover
if L is any irreducible object of C then νL is irreducible in C, from which we get that
L ∼= QnL(λ) for some n ∈ Z and λ ∈ Λ. Also each EndĈ(L(λ)) is one-dimensional,
hence using also (GL2) we see that C is acyclic. Thus {QnL(λ) | λ ∈ Λ, n ∈ Z} is
a complete set of pairwise non-isomorphic irreducible objects in C. Finally note
that every object of C has finite length by the exactness of ν. This puts us in
the setup of (5.7). Using ν to identify the algebras A from (5.6) and (5.8), the
following diagram of functors commutes up to isomorphism:

Ĉ Ĥ−−−−→ ̂grmod-A

ν

y yν
C −−−−→

H
mod-A .

(5.9)

Here, the functor ν on the right is the obvious functor that forgets the grading. In
this way we see that a choice of a graded lift of C amounts to choosing a Z-grading
on the underlying basic algebra A with respect to which the idempotents 1λ ∈ A
are homogeneous.

Lemma 5.3. Let C be a graded lift of Schurian category C with notation as above.
For each λ ∈ Λ the irreducible object L(λ) has an injective hull I(λ) in C, which
is a graded lift of the injective hull of L(λ) in C. Hence C is an acyclic graded
Schurian category.

Proof. In view of (5.9), we may assume that C = mod-A and C = grmod-A for
a locally unital graded algebra A. The indecomposable injectives in mod-A are
the linear duals of the (necessarily finite dimensional) left ideals A1λ. They are
naturally graded, hence give indecomposable injective objects in grmod-A too.
This proves the first statement. Hence C has enough injectives. All the other
properties of an acyclic graded Schurian category have already been verified above.

�

Finally let F : C → C′ be a functor between two Schurian categories, and C
and C′ be graded lifts of C and C′, respectively. A graded lift of F means a graded

functor F : C → C′ such that ν ′ ◦ F̂ ∼= F ◦ ν. Assuming F has a right adjoint,
it corresponds to a functor between the underlying module categories mod-A and
mod-A′ that is defined by tensoring with an (A,A′)-bimodule. Then a choice of
graded lift amounts to choosing a Z-grading on this bimodule making it into a
graded (A,A′)-bimodule.

5.3. Graded highest weight categories. The next definition is the graded
analog of Definition 2.8; the basic example to keep in mind is the category grmod-A
of finite dimensional graded modules over a graded quasi-hereditary algebra A in
the sense of [CPS2].

Definition 5.4. A graded highest weight category is an acyclic graded Schurian
category C plus the data of a distinguished set of irreducible objects {L(λ) |λ ∈ Λ}
indexed by some interval-finite poset Λ such that the following two axioms hold.
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(GHW1) Every irreducible object of C is isomorphic to QnL(λ) for unique λ ∈ Λ and
n ∈ Z. Hence letting P (λ) be a projective cover of L(λ) in C, the objects
{QnP (λ) | λ ∈ Λ, n ∈ Z} give a complete set of pairwise non-isomorphic
indecomposable projective objects in C.

(GHW2) Define the standard object ∆(λ) to be the largest quotient of P (λ) such
that [∆(λ) : L(µ)]q = δλ,µ for µ 6< λ. Then P (λ) has a filtration with
top section isomorphic to ∆(λ) and other sections of the form Qn∆(µ) for
n ∈ Z and µ > λ.

There is also an equivalent dual formulation of this definition in terms of inde-
composable injective objects I(λ) and costandard objects ∇(λ).

An object M of a graded highest weight category C has a graded ∆-flag if it
has a filtration with sections of the form Qn∆(λ) for n ∈ Z and λ ∈ Λ. The
notion of a graded ∇-flag is defined similarly. We let C∆ be the exact subcategory
of C consisting of all objects with a graded ∆-flag. The Q(q)-form [C∆]q of its
Grothendieck group has basis {[∆(λ)] | λ ∈ Λ}.

The other basic facts about highest weight categories from §2.5 also extend to
the graded setting.

If C is a graded highest weight category and C is the underlying Schurian cate-
gory, i.e. C is a graded lift of C, then it is easy to check that C is a highest weight
category in the sense of Definition 2.8 with the same weight poset and standard
objects ∆(λ) := ν∆(λ). The following lemma establishes the converse of this
statement.

Lemma 5.5. Suppose that C is a graded lift of a highest weight category C. For
each λ ∈ Λ let L(λ) be some choice of graded lift of the irreducible object L(λ) of C.
Then C is a graded highest weight category with {L(λ) |λ ∈ Λ} as its distinguished
irreducible objects. Moreover its standard objects are graded lifts of the ones in C.

Proof. We know that C is an acyclic graded Schurian category by Lemma 5.3. Let
A be as in (5.6). We may as well assume that C is mod-A and C is grmod-A. So
we can take

P (λ) = 1λA = P (λ), HomC(P (µ), P (λ)) = 1λA1µ = HomĈ(P (µ), P (λ)).

By (HW) the standard object ∆(λ) in C is the quotient of P (λ) by the submodule
generated by the images of all (not necessarily homogeneous) homomorphisms
P (µ)→ P (λ) for µ > λ. The image of an arbitrary homomorphism is contained in
the sum of the images of its homogeneous pieces, so ∆(λ) can also be described as
the quotient of P (λ) by the submodule generated by the images of all homogeneous
homomorphisms QnP (µ)→ P (λ) of degree zero for µ > λ and n ∈ Z. Thus it is
gradable and a graded lift is given by ∆(λ) as defined by (GHW2). Similarly each
∇(λ) is a graded lift of the corresponding costandard object ∇(λ) of C. Then an
argument mimicking the usual proof of the criterion for a module to have ∆-flag
shows that P (λ) has a graded ∆-flag. �

5.4. Graded categorifications. Next we formulate the graded version of the
definition of slI -categorification from Definition 2.6.

Definition 5.6. A UqslI-categorification is an acyclic graded Schurian category C
together with the data of graded endofunctors Fi, Ei,Ki and K−1

i for each i ∈ I,
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an adjunction making F ∗i := QEiKi into a right adjoint to Fi, and homogeneous
natural transformations ξ ∈ Hom(Fi, Fi)2 and τ ∈ Hom(Fj ◦ Fi, Fi ◦ Fj)−αi·αj for
each i, j ∈ I, such that the following axioms hold.

(GSL1) There is a decomposition C =
⊕

$∈PI C$ such that Ki|C$ ∼= Q$·αi and

K−1
i |C$ ∼= Q−$·αi .

(GSL2) Letting F :=
⊕

i∈I Fi, the endomorphisms ξj := F̂ d−jξF̂ j−1 and τk :=

F̂ d−k−1τF̂ k−1 of F̂ d plus the projections 1i of F̂ d onto its summands

F̂i := F̂id ◦ · · · ◦ F̂i1 for each i ∈ Id satisfy the relations of the quiver Hecke
algebra QHI,d.

(GSL3) Each functor E∗i := QFiK
−1
i is isomorphic to a right adjoint of Ei.

(GSL4) The endomorphisms fi, ei and ki of [C]q induced by the functors Fi, Ei and
Ki make [C]q into an integrable UqslI -module.

The last axiom here has the following equivalent dual formulation.

(GSL4∗) The endomorphisms fi, ei and ki of [C]∗q induced by the functors Fi, Ei and
Ki make [C]∗q into an integrable UqslI -module.

There is also a graded analog of Definition 2.7: a strongly equivariant graded
functor (resp. equivalence) between UqslI -categorifications C and C′ is a graded
functor (resp. equivalence) G : C → C′ which is strongly equivariant as before,

such that the required isomorphisms ζi : F ′i ◦G
∼→ G ◦ Fi is also a graded natural

transformation.

The axioms (GSL1)–(GSL4) are equivalent to saying that the given data defines
a homogeneous action of the Kac-Moody 2-category associated to slI on C making
it into a graded integrable 2-representation in the sense of [R]. This is a variation
on [R, Theorem 5.30]; see the proofs of the next two lemmas.

Lemma 5.7. If C is a UqslI-categorification that is a graded lift of a Schurian

category C, then there is an induced structure of slI-categorification on C.

Proof. Let us work in terms of graded modules over the algebra A from (5.6).
Then F and E are defined by tensoring with certain graded (A,A)-bimodules,
and ξ, τ and the various adjunctions become homogeneous graded bimodule ho-
momorphisms. Forgetting the grading we get endofunctors F and E of mod-A,
natural transformations ξ and τ satisfying the relations of (SL2′), and adjunc-
tions both ways round between F and E. It remains to verify the axioms (SL1′)
and (SL4′). The first follows as ξ acts nilpotently on any graded projective by
degree considerations, hence ξ is locally nilpotent too. Finally (SL4′) follows from
(GSL4) specialized at q = 1. �

Lemma 5.8. Let C be an slI-categorification, denoting its various functors and
natural transformations by F i, Ei, ξ and τ . For each $ ∈ PI let C$ be the full
subcategory of C consisting of all objects M such that [M ] lies in the $-weight
space of the integrable slI-module [C]. Suppose that we are given the following
additional data:

(i) graded lifts C$ of each C$, hence a graded lift C =
⊕

$∈PI C$ of C;

(ii) graded functors Ki and K−1
i satisfying (GSL1);

(iii) graded lifts Fi and Ei of the functors F i and Ei together with an adjunction
making F ∗i = QEiKi into a right adjoint to Fi;
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(iv) graded lifts ξ ∈ Hom(Fi, Fi)2 and τ ∈ Hom(Fj ◦ Fi, Fi ◦ Fj)−αi·αj of ξ and

τ , meaning that χ ◦ νξ = ξν ◦ χ in Hom(ν ◦ F̂ , F ◦ ν) and Fχ ◦ χF̂ ◦ ντ =

τν ◦ Fχ ◦ χF̂ in Hom(ν ◦ F̂ 2, F
2 ◦ ν) for some choice of the isomorphism

χ : ν ◦ F̂ ∼→ F ◦ ν.

Then C is a UqslI-categorification. (Note we do not insist that the graded adjunc-

tion in (iii) is a lift of the given adjunction between F i and Ei.)

Proof. We know that C is an acyclic graded Schurian category by Lemma 5.3. In
view of [R, Theorem 5.30], we have the data required to define a homogeneous
action of the Kac-Moody 2-category associated to slI on C, making it into a graded
integrable 2-representation. The axioms (GSL1)–(GSL2) follow immediately from
the definition of the latter, while (GSL3) follows from [R, Theorem 5.16] (or [B6,
Theorem 4.3]). To check (GSL4) we need to verify the relations of UqslI . Almost
all of them follow from the 2-relations in the Kac-Moody 2-category. We are just
left with the quantum Serre relations which follow from [R, Lemma 3.13]. �

5.5. Graded tensor product categorifications. Given a type (n, c) of level l,
we can at last formulate the graded analog of Definition 2.10.

Definition 5.9. A UqslI-tensor product categorification of type (n, c) is a graded

highest weight category C together with graded endofunctors Fi, Ei,Ki and K−1
i ,

an adjunction making F ∗i := QEiKi into a right adjoint to Fi, and homogeneous
natural transformations ξ and τ as above such that such that (GSL1)–(GSL3)
and (GTP1)–(GTP3) hold.

(GTP1) Same as (TP1).
(GTP2) The exact functors Fi and Ei send objects with graded ∆-flags to objects

with graded ∆-flags.
(GTP3) The linear isomorphism [C∆]

∼→
∧n,c VI , [∆(λ)] 7→ vλ intertwines the en-

domorphisms fi, ei and ki of [C∆] induced by Fi, Ei and Ki with the en-
domorphisms of

∧n,c VI arising from the actions of fi, ei, ki ∈ UqslI .
Since [C]q embeds into [C∆]q =

∧n,c VI , these axioms imply that (GSL4) holds, so
that C is a UqslI -categorification in the sense of Definition 5.6 too.

Lemma 5.10. Suppose that C is a UqslI-tensor product categorification as above.
Then Cop is a UqslI-tensor product categorification with categorification functors

F op
i := Q2FiK

−2
i , Eop

i := Q2EiK
2
i , Kop

i := K−1
i and (Kop

i )−1 := Ki, taking
the distinguished irreducible objects and other required adjunctions and natural
transformations to be the same as in C.

Proof. All of the axioms follow immediately except for (GTP2)–(GTP3). To see
these note using (GTP2)–(GTP3) for C and (5.4) that Fj∆(λ) has a graded ∆-

flag with sections Q(|λi+1|+···+|λl|)·αj∆(tij(λ)) for i = 1, . . . , l such that λij = 1
and λi(j+1) = 0. Hence, by an argument involving the adjoint pair (Fj , F

∗
j ) and

the homological criteria for graded ∆- and ∇-flags, F ∗j ∇(λ) has a graded ∇-flag

with sections Q−(|λi+1|+···+|λl|)·αj∇(tij(λ)) for i = 1, . . . , l such that λij = 0 and
λi(j+1) = 1. Now rescale to deduce that Eop

j ∇(λ) has a filtration with sections

Q(|λ1|+···+|λi−1|)·αj∇(tij(λ)) for i = 1, . . . , l such that λij = 0 and λi(j+1) = 1.

Comparing with (5.3) and bearing in mind that it is the shift functor Q−1 on Cop
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that induces q on its Grothendieck group, this checks (GTP2) and the equivariance
from (GTP3) for ej . A similar argument works for fj , while the equivariance with
respect to each kj is obvious. �

The truncation construction of §2.8 can obviously be applied also in the graded
setting. Thus, given some UqslI -tensor product categorification C and a subinter-
val J ⊂ I, the subquotient CJ = C≤J/C<J has a naturally induced structure of
UqslJ -tensor product categorification; cf. Theorem 2.19.

If C is a UqslI -tensor product categorification then the underlying Schurian

category C is an slI -tensor product categorification in sense of Definition 2.10;
this is just like in Lemma 5.7. The main goal now is to prove the following
theorem going in the other direction; cf. Lemma 5.8.

Theorem 5.11. Let I be an interval and C be an slI-tensor product categorifica-
tion of any type.

(i) There exists a graded lift C of C together with graded functors Fi, Ei,
Ki and K−1

i , an adjunction making F ∗i = QEiKi into a right adjoint to
Fi, and homogeneous natural transformations ξ and τ , satisfying all the
hypotheses of Lemma 5.8(i)–(iv).

(ii) Given any choice for the data in (i), there exist unique (up to isomorphism
and a global shift) graded lifts L(λ) ∈ C of the irreducible objects of C such
that C satisfies (GTP2)–(GTP3), viewing C as a graded highest weight
category with these lifts as its distinguished irreducible objects. Thus C
becomes a UqslI-tensor product categorification.

(iii) If C′ is another UqslI-tensor product categorification lifting C as in (i)–

(ii), there is a strongly equivariant graded equivalence G : C ∼→ C′ with
ν ′ ◦G ∼= ν and GL(λ) ∼= L′(λ) for each weight λ.

We will prove Theorem 5.11 in the next two subsections; see also [LW, Corollary
6.3] for a closely related result when I is finite. Before we do that we record the
following variation which combines Theorems 2.12 and 5.11.

Theorem 5.12. Let I be any interval and (n, c) be any type. Then there exists
a UqslI-tensor product categorification C of type (n, c). It is unique in the sense
that if C′ is another UqslI-tensor product categorification of an equivalent type
then there exists a strongly equivariant graded equivalence G : C → C′ such that
GL(λ) ∼= L′(λ) for each weight λ.

Proof. The existence is clear from Theorems 2.12 and 5.11(i)–(ii). For the unique-

ness, given C and C′, the underlying Schurian categories C and C′ are tensor prod-
uct categorifications of equivalent types. Hence by Theorem 2.12 there exists a

strongly equivariant equivalence G : C ∼→ C′. Thus C together with the functor

G◦ν : Ĉ → C′ is a graded lift of C′ in the sense of Theorem 5.11(i)–(ii), as of course

is C′ with its given forgetful functor ν ′ : Ĉ′ → C′. Hence Theorem 5.11(iii) gives us
the desired strongly equivariant graded equivalence G : C → C′ with ν ′ ◦G ∼= G◦ν
and GL(λ) ∼= L′(λ). �

Corollary 5.13. Any UqslI-tensor product categorification C admits a graded
duality ~ with ~ ◦ F ∗i ∼= F ∗i ◦ ~ and ~ ◦ E∗i ∼= E∗i ◦ ~ (as graded functors);
moreover, L(λ) ∼= L(λ)~ for each weight λ. Similarly its category of projectives
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has a graded duality # with # ◦ Fi ∼= Fi ◦ # and # ◦ Ei ∼= Ei ◦ #; moreover
P (λ) ∼= P (λ)# for each λ.

Proof. View Cop as a UqslI -tensor product categorification as in Lemma 5.10.
Then Theorem 5.12 implies that there exists a strongly equivariant graded equiv-
alence ~ : C → Cop. In particular this means that ~◦Fi ∼= Q2FiK

−2
i ◦~, which is

equivalent to the assertion that ~ ◦E∗i ∼= E∗i ◦~. Similarly ~ ◦F ∗i ∼= F ∗i ◦~. The
graded duality # on projectives is defined by the formula (2.17) as before. �

5.6. Proof of Theorem 5.11 for finite intervals. Let I be finite and C be
an slI -tensor product categorification of some fixed type. The hardest part of
the proof of Theorem 5.11 in this situation is to show that there exists a UqslI -

tensor product categorification C lifting C as in Theorem 5.11(i)–(ii). Fortunately
this is already established in the literature. Briefly, in view of Theorem 2.12 and
[LW, Theorem 3.12], we may assume that C is the category of modules over a
tensor product algebra in the sense of [W4]. This algebra is naturally graded and
its category of graded modules gives us the desired graded lift C. The graded
functors Fi and Ei and the other data of a UqslI -categorification are constructed
in [W4]. The axioms (GTP2)–(GTP3) follow from [W4, Proposition 5.5].

Remark 5.14. There are at least two other approaches to the construction of
C in the literature. It can be realized following [BGS], [B] in terms of Soergel’s
graded lift of parabolic category O; see [W4, Corollary 9.10] for the equivalence
of graded parabolic category O with the realization of C arising from the tensor
product algebras. The appropriate definition of the graded functors Fi and Ei
on graded parabolic category O is recorded in [FKS], but a direct proof of the
axiom (GTP3) via this approach is still missing in the literature. Also Hu and
Mathas [HM] have given another construction of C in terms of their version of
quiver Schur algebras; these algebras are graded Morita equivalent to the tensor
product algebras by e.g. [HM, Theorem 6.17]. However again this is not sufficient
by itself for our purposes as Hu and Mathas do not discuss the graded categorical
actions.

This proves Theorem 5.11(i), and for this particular choice of C it also estab-
lishes the existence of the graded lifts L(λ) in (ii) making C into a UqslI -tensor
product categorification. The uniqueness of the graded lifts in (ii) follows by
passing to the graded Grothendieck group [C∆]q then applying the following ele-
mentary combinatorial lemma.

Lemma 5.15. Suppose that we are given integers {nλ |λ ∈ Λ} such that the map∧n,c VI →
∧n,c VI , vλ 7→ qnλvλ is a UqslI-module homomorphism. Then all the

integers nλ are equal.

Proof. Exercise. �

To finish the proof, let C be some fixed UqslI -tensor product categorification

lifting C in the sense of Theorem 5.11(i)–(ii). Let κ := κI;n,c and

T =
⊕
d≥0

Td :=
⊕
d≥0

F dL(κ) ∈ C, (5.10)
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which is a graded lift of T =
⊕

d≥0 T d =
⊕

d≥0 F
d
L(κ) ∈ C. We can identify

EndĈ(Td) with EndC(T d). Hence, applying the first part of Theorem 2.14, we can
identify EndĈ(T ) = EndC(T ) with the graded algebra

H =
⊕
d≥0

Hd :=
⊕
d≥0

QH
|κ|
I,d. (5.11)

Note by the definition from Lemma 5.8(iv) that the actions of 1i, ξj , τk ∈ Hd on
Td obtained in this way agree with the endomorphisms induced by the action of

QHI,d on F̂ d. Now we are going to exploit the graded functor

U := HomĈ(T,−) : C → grmod-H. (5.12)

This is a graded lift of U := HomC(T ,−) : C → mod-H, i.e. the following diagram
of functors commutes up to equivalence:

Ĉ Û−−−−→ ̂grmod-H

ν

y yν
C −−−−→

U
mod-H.

(5.13)

The bottom functor is fully faithful on projectives by the second part of Theo-
rem 2.14, as are the vertical functors, hence so is the top functor.

The category grmod-H has the structure of a UqslI -categorification, which lifts
the categorical slI -action on mod-H in the sense of Lemma 5.8. On grmod-Hd

the functor Fi is the graded induction functor − ⊗Hd 1d;iHd+1, where 1d;i :=∑
i∈Id+1,id+1=i 1i. Its natural transformations ξ and τ defined exactly as explained

in the paragraph after (4.21) are automatically homogeneous of the right degree.
The right adjoint F ∗i is the restriction functor defined on M ∈ grmod-Hd+1 by
right multiplication by 1d;i. Then Ei is defined so that F ∗i = QEiKi, where

KiM =
⊕
j∈Id

Q(|κ|−αj1−···−αjd )·αiMj

for M ∈ grmod-Hd. The graded functor U : C → grmod-H is strongly equivariant
in the graded sense; this follows because the natural transformation ζ constructed
in the proof of Lemma 2.16 is a graded natural transformation.

For λ ∈ Λ we let

Y (λ) := UP (λ) ∈ grmod-H, (5.14)

Y (λ) := UP (λ) ∈ mod-H. (5.15)

Thus Y (λ) is a graded lift of the indecomposable module Y (λ). Letting A be

the graded algebra from (5.6), the functor Û defines a canonical isomorphism of
graded algebras

A ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), Y (µ)).

From (5.7) we get a canonical graded equivalence H : C ∼→ grmod-A fitting into a
commuting square analogous to (5.9). Just like we did in the ungraded case, we lift
the UqslI -categorification structure on C to grmod-A so that H becomes a strongly
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equivariant graded equivalence. The endofunctor Fi : grmod-A → grmod-A is
given by tensoring over A with the graded (A,A)-bimodule

Bi :=
⊕
λ,µ∈Λ

HomC(P (λ), FiP (µ)).

As in (2.29)–(2.30) we then apply Û and the strong equivariance of U to obtain
isomorphisms

Bi ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), FiY (µ)), (5.16)

Bi ⊗A Bj ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), FjFiY (µ)). (5.17)

Now the homogeneous natural transformations ξ and τ come from the homoge-
neous bimodule homomorphisms ξ : Bi → Bi and τ : Bi⊗ABj → Bj⊗Bi induced
by ξ and τ at the level of grmod-H.

Suppose that C′ is another graded lift of C equipped with graded endofunctors
F ′i , E

′
i,K

′
i,K

′
i
−1, and an adjunction and homogeneous natural transformations

ξ′, τ ′ just like in Theorem 5.11(i). Fix a (unique up to homogeneous isomorphism)
graded lift L′(κ) ∈ C′ of L(κ). Then we repeat the above definitions to get a graded
lift T ′ ∈ C′ of T such that EndĈ′(T

′) = H, and a graded functor U′ : C′ → grmod-H
that is fully faithful on projectives and fits into another commuting square like
(5.13). Next we must make a coherent choice of graded lifts L′(λ) ∈ C′ of the other
irreducibles L(λ) ∈ C, thereby making C′ into a graded highest weight category;
cf. Lemma 5.5. Equivalently we choose graded lifts P ′(λ) of the indecomposable
projectives according to the following lemma.

Lemma 5.16. For each λ ∈ Λ there exists a (unique up to isomorphism) graded
lift P ′(λ) ∈ C′ of P (λ) such that Y ′(λ) := U′P ′(λ) is isomorphic to Y (λ) as a
graded H-module.

Proof. Let P ′ ∈ C′ be some arbitrary choice of graded lift of P (λ). Then Y ′ :=
U′P ′ ∈ grmod-H is a graded lift of Y (λ), as is Y (λ). As Y (λ) is indecomposable
there exists a unique n ∈ Z such that QnY ′ ∼= Y (λ). We then define P ′(λ) to be
QnP ′. �

For Y ′(λ) as in Lemma 5.16, we then introduce the graded algebra A′ and
graded (A′, A′)-bimodules B′i as above so that

A′ ∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), Y ′(µ)),

B′i
∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), FiY
′(µ)),

B′i ⊗A′ B′j ∼=
⊕
λ,µ∈Λ

HomH(Y ′(λ), FjFiY
′(µ)).

We make grmod-A′ into a UqslI -categorification with Fi := −⊗A′ B′i just like be-

fore, so that there is a strongly equivariant graded equivalence H′ : C′ ∼→ grmod-A′

fitting into another analog of (5.9). Next choose graded H-module isomorphisms
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Y (λ) ∼= Y ′(λ) for each λ ∈ Λ. These induce graded algebra isomorphisms be-
tween A and A′, and isomorphisms between the graded bimodules Bi and B′i with
appropriate equivariance properties. Hence we get a strongly equivariant graded
isomorphism of categories grmod-A

∼→ grmod-A′ sending each 1λA to 1λA
′. Since

C is strongly equivariantly equivalent to grmod-A and C′ is strongly equivariantly
equivalent to grmod-A′, we deduce that there is a strongly equivariant graded
equivalence G : C ∼→ C′ with ν ′ ◦G ∼= ν and GL(λ) ∼= L′(λ) for each λ ∈ Λ.

The existence of G implies that C′ also satisfies (GTP2)–(GTP3), so that it is
indeed a tensor product categorification, completing the proof of Theorem 5.11(ii)
for an arbitrary choice of C. We have also essentially proved (iii). More precisely,
under the assumptions of (iii), we have proved that there exists a strongly equi-
variant graded equivalence G : C → C′ with ν ′ ◦ G ∼= ν. By the uniqueness in
(ii) there exists n ∈ Z such that L′(λ) ∼= Q′nGL(λ) for all λ. Now replace G by
Q′n ◦G. This completes the proof of Theorem 5.11 for finite I.

The uniqueness just established implies that the graded Young module Y (λ)
from (5.14) does not depend on the particular choice of C (up to isomorphism
in grmod-H). The following lemma gives a slightly different characterization of
this important module. It also gives a first glimpse of the significance of the
combinatorial statistic defect introduced way back in (2.8). Note in the proof of
the lemma we use some definitions from §5.9 below, but none of the intermediate
theorems. (In fact more is true here: Y (λ) is self-dual with respect to a natural
graded duality # on grmod-H.)

Lemma 5.17. For λ ∈ Λ, the graded H-module Y (λ) from (5.14) is the unique

(up to isomorphism) graded lift of Y (λ) such that Q− def(λ)Y (λ) is self-dual as

a graded vector space. In fact each word space Q− def(λ)Y (λ)1i is self-dual as a
graded vector space.

Proof. We just check that each Q− def(λ)Y (λ)1i is graded-self-dual. Let E!
i :=

Q−1FiK
−1
i , which is left adjoint to Ei. We may assume that i = (i1, . . . , id) ∈ Id

satisfies αi1 + · · · + αid = |κ| − |λ|, since otherwise Y (λ)1i is zero. Then a little
calculation shows that

Q− def(λ)Y (λ)1i ∼= HomĈ(Q
def(λ)FiL(κ), P (λ)) ∼= HomĈ(E

!
id
· · ·E!

i1L(κ), P (λ)).

Hence we are reduced to showing that

dimq HomĈ(E
!
id
· · ·E!

i1L(κ), P (λ)) = dimq HomĈ(L(κ), Ei1 · · ·EidP (λ))

is bar-invariant. Using the notation from (5.30)–(5.35) below, setting e := ei1 · · · eid
for short, we have that

dimq HomĈ(L(κ), Ei1 · · ·EidP (λ)) = (vκ, ψ∗(ebλ)) = (ψ(vκ), ebλ)) = (vκ, ebλ).

By the symmetry of this form, this equals

(ebλ, vκ) = (ψ(ebλ), vκ) = (ebλ, ψ∗(vκ)) = (ebλ, vκ).

So it is bar-invariant. �

Corollary 5.18. If Y ′(λ) is any graded lift of Y (λ) such that Q− def(λ)Y ′(λ)1i is
a non-zero self-dual graded vector space for some word i then Y ′(λ) ∼= Y (λ).
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5.7. Proof of Theorem 5.11 for infinite intervals. Now the interval I is
infinite. Fixing a type (n, c) we set Λ := ΛI;n,c and let C be some given slI -
tensor product categorification of type (n, c). Apart from adding bars to almost
everything in sight, we are going to adopt all of the notation from Section 4. Thus
we have chosen subintervals I1 ⊂ I2 ⊂ · · · ⊂ I, leading to subquotients Cr of C
with weight posets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λ. Also κr := κIr;n,c ∈ Λr and we have

the tensor spaces T
r

=
⊕

d≥0 T
r
d ∈ C defined like in (2.35). Each EndC(T

r
) is

identified with the algebra Hr from (4.1). We have the Abelian category mod-H
of stable modules from Definition 4.5, and the exact functor U : C → mod-H
from Theorem 4.7. This functor is fully faithful on projectives by Theorem 4.10.

We have the objects Y (λ) = (Y
1
(λ) → Y

2
(λ) → · · · ) := UP (λ) ∈ mod-H as in

(4.16). We have the functor prr : mod-H → mod-Hr and its left adjoint pr!
r from

(4.11)–(4.12). Thus prr ◦ U is equal to Ur := HomC(T
r
,−) : C → mod-Hr.

The idempotents erd and the isomorphisms φrd from Lemma 4.2 are evidently

homogeneous. Thus φr : Hr ∼→ erHr+1er is an isomorphism of graded algebras.
So it makes sense to introduce a graded version grmod-H of the category mod-H
of stable modules from Definition 4.5. Its objects are diagrams

M = (M1 ι1−−−−→ M2 ι2−−−−→ M3 ι3−−−−→ · · · )
such that M r ∈ grmod-Hr, ιr : M r ∼→ M r+1er is an isomorphism of graded
Hr-modules for each r ≥ 1, and the maps (4.13) are isomorphisms for r �
1. Morphisms are tuples (f r)r≥1 such that each f r is a morphism in grmod-Hr

making the analogous diagram to (4.7) commute. The category grmod-H is graded

with Q being the obvious grading shift functor. Let ν : ̂grmod-H → mod-H be
the obvious functor that forgets the grading on each M r. Let prr : grmod-H →
grmod-Hr be the rth projection, which is clearly graded. It has an obvious left
adjoint pr!

r which is a graded lift of pr!
r; it is defined in exactly the same way as

before just working in the graded module categories.

Lemma 5.19. The category grmod-H is a graded lift of mod-H in the sense of
Definition 5.2.

Proof. We need to check that grmod-H is an Abelian category and that ν is dense
on projectives.

Let f : M → N be a morphism in grmod-H. Let f : M → N be the correspond-
ing morphism in mod-H obtained by applying the forgetful functor ν. We know
already that mod-H is an Abelian category. To show that grmod-H is Abelian
too it suffices to check that ker f → M and N → coker f are gradable. Pick r
so that all of M,N, ker f and coker f are r-stable. Then we have simply that
(ker f → M) ∼= pr!

r(ker f
r → M

r
). Hence it is graded by pr!

r(ker f r → M r).
Similarly the cokernel is gradable.

To see that ν is dense on projectives, note that every projective in mod-H is
a direct sum of summands of UT r ∼= pr!

rH
r, where Hr is the regular right Hr-

module. Each pr!
rH

r admits the graded lift pr!
rH

r, which is projective in grmod-H
by properties of adjoints. �

Hence by Lemma 5.3 we see that grmod-H is a graded Schurian category. It also
has a structure of UqslI -categorification lifting the categorical action on mod-H
as in Lemma 5.8. The graded lifts Fi and Ei on grmod-H are defined in exactly
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the same way as the original functors F i and Ei on mod-H were defined in §4.3,
just replacing each F

r
i and E

r
i with its graded version as defined in the previous

subsection. It is worth noting that Ki : grmod-H → grmod-H is defined on

M = (M1 ι1→ M2 ι2→ · · · ) so that it is the degree shift Q(|κr|−αj1−···−αjd )·αi on
1jM

r for each r ≥ 1 and j ∈ Idr . One needs to check here that the maps ιr remain
homogeneous of degree zero after these shifts are performed; this follows because
|κr| = |κr+1| − αi1 − · · · − αidr where i = i1 · · · idr is the word appearing in the
definition of φr from Lemma 4.2.

Lemma 5.20. Suppose we are given M ∈ C and r ≥ 1 such that UM is r-stable.
Then UM is a gradable object of mod-H if and only if UrM is a gradable object
of mod-Hr.

Proof. The forward direction is clear. For the converse, let M r be a graded lift of
M

r
:= HomC(T

r
,M). Since UM is r-stable it is isomorphic to pr!

rM
r ∈ mod-H.

Hence pr!
rM

r ∈ grmod-H gives the desired graded lift. �

Lemma 5.20 applies in particular to the objects Y (λ), since we know already

that Y
r
(λ) is gradable for sufficiently large r by (5.14)–(5.15). We need one more

piece of book-keeping in order to make a canonical choice of such a graded lift.

Lemma 5.21. Fix r ≥ 1. Let i and p1, . . . , pa be as in Lemma 4.2. Set

σr := 1
2p1 + · · ·+ 1

2pa. (5.18)

Then dimqM
r1j = qσr dimqM

r+11ij/[p1]! · · · [pa]! for each M ∈ grmod-H.

Proof. This follows from the explicit form of the idempotent erd constructed in the
proof of Lemma 4.2. The essential point is that bm ∈ 1imQHIr+1,m1im has the
property for any finite dimensional graded QHIr+1,m-module M that dimqMbm =

q
1
2
m(m−1) dimqM1im/[m]!. To see this note that 1imQHIr+1,m1im is a nil-Hecke

algebra. So it has a unique irreducible module L, a graded lift L of which has
graded dimension [m]!. Since bm = τw0ξ

m−1
1 ξm−2

2 · · · ξm−1 we deduce by degree

considerations that dimq Lbm = q
1
2
m(m−1). �

Then for σr as in (5.18) we define

Σr := σ1 + · · ·+ σr−1. (5.19)

Recall also the definition of def(λ) for infinite intervals from Lemma 2.2.

Theorem 5.22. For λ ∈ Λ, there exists a unique (up to isomorphism) graded lift

Y (λ) = (Y 1(λ)→ Y 2(λ)→ · · · ) ∈ grmod-H of Y (λ) such that QΣr−def(λ)Y r(λ) is
self-dual as a graded vector space for each r ≥ 1. In fact if Y ′(λ) is any graded lift

of Y (λ) such that QΣs−def(λ)Y ′s(λ) is non-zero and self-dual as a graded vector
space for some s ≥ 1, then we have that Y ′(λ) ∼= Y (λ) in grmod-H.

Proof. Choose r so that Y (λ) is r-stable. We already observed by Lemma 5.20
that Y (λ) is gradable. In view of Lemma 5.17 we can pick a graded lift Y (λ) so

that each word space of QΣr−def(λ)Y r(λ) is graded-self-dual. Lemma 5.21 then

implies immediately that QΣs−def(λ)Y s(λ) is graded-self-dual for each s < r; this
depends also on the independence from Lemma 2.2. The same argument together
also with Corollary 5.18 proves the same thing for s > r too.
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To establish the claim about uniqueness, let Y ′(λ) be another graded lift of

Y (λ) such that QΣs−def(λ)Y ′s(λ) is a non-zero self-dual graded vector space for

some s ≥ 1. Then Y ′r(λ) is a graded lift of Y
r
(λ) and the argument just given

using Lemmas 5.21, 5.17 and Corollary 5.18 imply that Y ′r(λ) is also graded-
self-dual. Hence actually Y ′r(λ) ∼= Y r(λ). But then the r-stability implies that
Y ′(λ) ∼= pr!

r(Y
′r(λ)) ∼= pr!

r(Y
r(λ)) ∼= Y (λ). �

With Theorem 5.22 in hand it is clear how to construct a graded lift C of C.
We fix a choice of object Y (λ) = (Y 1(λ) → Y 2(λ) → · · · ) ∈ grmod-H as in
Theorem 5.22 for each λ ∈ Λ, then define

A :=
⊕
λ,µ∈Λ

HomH(Y (λ), Y (µ)). (5.20)

This is a graded lift of the basic algebra underlying the original category C. Thus

C := grmod-A is a graded lift of C, with forgetful functor ν : Ĉ → C that is the

composite of the forgetful functor ̂grmod-A→ mod-A and the adjoint equivalence
mod-A→ C to the usual equivalence H : C → mod-A.

Next we introduce a categorical UqslI -action on C. Let

Bi :=
⊕
λ,µ∈Λ

HomH(Y (λ), FiY (µ)),

(5.21)

so that Bi ⊗A Bj ∼=
⊕
λ,µ∈Λ

HomH(Y (λ), FjFiY (µ)). (5.22)

The natural transformations ξ and τ from the categorical action on grmod-H
induce induce homogeneous bimodule homomorphisms ξ : Bi → Bi and τ : Bi⊗A
Bj → Bj ⊗A Bi as usual. Let Fi : grmod-A→ grmod-A be the functor defined by
tensoring with Bi, with it homogeneous natural transformations ξ and τ induced
by the preceding bimodule endomorphisms. This gives us a choice of graded lifts
of F i : C → C, ξ ∈ End(F i) and τ ∈ Hom(F j ◦ F i, F i ◦ F j). For F ∗i we take the
canonical graded right adjoint

⊕
λ∈Λ HomA(1λBi,−) to Fi. All the other required

lifts are obvious, and then Lemma 5.8 tells us that all this data makes C into a
UqslI -categorification.

Theorem 5.23. There exists a (unique up to isomorphism and global shift) choice
of distinguished irreducible objects {L(λ) | λ ∈ Λ} making the graded lift C of C
just constructed into a UqslI-tensor product categorification.

Proof. We apply the truncation construction to define subquotients Cr := CIr for
each r ≥ 1. The structures defined on C make each Cr into a graded lift of Cr in
the sense of Theorem 5.11(i). Thus by Theorem 5.11(ii) for the finite interval Ir
there exists a unique (up to isomorphism and global shift) set {Lr(λ) | λ ∈ Λr}
of distinguished irreducible objects in Cr making it into a UqslIr -tensor product
categorification.

Now Cr is a subquotient of Cr+1, and the objects {Lr+1(λ) | λ ∈ Λr} give
another choice of distinguished irreducible objects of Cr making it into a UqslIr -
tensor product categorification. By the uniqueness in Theorem 5.11(ii) this means
that Lr(λ) ∼= QnLr+1(λ) for some n ∈ Z and all λ ∈ Λr. Replacing Lr+1(λ) by
QnLr+1(λ) this shows that we may assume that Lr(λ) ∼= Lr+1(λ) for each λ ∈ Λr.
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Starting at r = 1 and proceeding recursively in this way we can ensure this is the
case for all r ≥ 1.

Then we define irreducible objects L(λ) ∈ C for λ ∈ Λ by taking L(λ) to be
any irreducible object of C such that L(λ) ∼= Lr(λ) in Cr whenever λ ∈ Λr. This
gives the desired set of distinguished irreducible objects {L(λ) | λ ∈ Λ} for C.
This makes C into a graded highest weight category by Lemma 5.5. Moreover it
satisfies (GTP2)–(GTP3) because they hold in each subquotient Cr. �

Remark 5.24. We will see momentarily that the irreducible objects L(λ) in
Theorem 5.23 can be taken to be the irreducible heads of the indecomposable
projectives P (λ) := 1λA ∈ grmod-A.

We have now done the hard work, proving Theorem 5.11(i) and establishing
the existence of graded lifts L(λ) as in (ii) for one particular choice of C. The
proof of the remainder of Theorem 5.11 follows the same argument as explained
for finite intervals in the previous subsection. So let C be some fixed UqslI -tensor

product categorification lifting C in the sense of Theorem 5.11(i)–(ii). Let

T r =
⊕
d≥0

T rd := QΣr
⊕
d≥0

F dIrL(κr) ∈ C, (5.23)

which is a graded lift of T
r
, hence EndĈ(T

r) = Hr. The shifts Σr here are as in
(5.19), and their appearance is explained this time by the following lemma.

Lemma 5.25. For r ≥ 1 there is an isomorphism θr : T r
∼→ erT r+1 in C such

that θr ◦ h = φr(h) ◦ θr for each h ∈ Hr.

Proof. This follows from the proof of Lemma 4.2. The only new observation

in the graded setting is that the quantum divided power functor F
(m)
i is de-

fined from F
(m)
i := Q−

1
2
m(m−1)bmF

m
i , where bm ∈ 1imQHIr+1,m1im is the dis-

tinguished idempotent from [R, Lemma 4.1]. This implies that F dIrL(κr) ∼=
Q−σrerF dr+dIr+1

L(κr+1). �

Then we can introduce the graded functors

Ur : C → grmod-Hr, U : C → grmod-H, (5.24)

exactly like (4.14)–(4.15) but working in the graded categories. Thus Ur =

prr ◦U = HomĈ(T
r,−) is a graded lift of Ur, and U is a graded lift of U, i.e.

the analog of the diagram (5.13) commutes up to equivalence. Applying Theo-
rem 4.10 we deduce that U is fully faithful on projectives. Moreover the proof
of Theorem 4.16 works also in the graded setup, so U is a strongly equivariant
graded functor.

For λ ∈ Λ we let

Y (λ) = (Y 1(λ)→ Y 2(λ)→ · · · ) := UP (λ) ∈ grmod-H. (5.25)

Thus Y (λ) is a graded lift of Y (λ). For any sufficiently large r, Lemmas 2.2 and

5.17 imply that QΣr−def(λ)Y r(λ) is self-dual as a graded vector space. Hence the
uniqueness assertion of Theorem 5.22 implies that the object Y (λ) just defined is
isomorphic to the object Y (λ) from that theorem. Hence the graded algebra from
(5.6) is isomorphic to the algebra (5.20). As usual there is a strongly equivariant
graded equivalence between C and grmod-A with respect to the graded categorical
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action on grmod-A arising from the bimodules (5.16)–(5.17); these bimodules are
equivariantly isomorphic to the ones appearing in (5.21)–(5.22). In the present
situation, it is also clear that the projective indecomposable object P (λ) ∈ C
corresponds under this equivalence to the graded A-module 1λA, so that this
justifies the claim made in Remark 5.24.

To complete the proof of Theorem 5.11 we take another graded lift C′ of C as
in Theorem 5.11(i). We fix choices of graded lifts L′(κr) ∈ C′ of each L(κr) in

C such that F ′s+ε1
(p1) · · ·F ′s+εa

(pa)L′(κr+1) ∼= L′(κr) for each r ≥ 1, notation as in
Lemma 4.2. Then we define T ′r just like in (5.23). The careful choices just made
ensure that the analog of Lemma 5.25 holds for C′. So we can continue to define
U′ : C′ → grmod-H like in (5.24), which is fully faithful on projectives. Using
this repeat the rest of the above constructions to get an algebra A′ as in (5.25),
bimodules B′i, etc . . . . Then run the logic from the previous subsection again to
finish the proof.

5.8. Koszulity. We say that a graded Schurian category C is mixed if the graded
algebra A defined by (5.6) is strictly positively graded, i.e. A =

⊕
n≥0An with

A0 =
⊕

λ∈Λ K1λ. (The terminology “mixed” here goes back to [BGS]; it is equiv-

alent to property that Ext1
C(L,L

′) = 0 for irreducibles L,L′ with wt(L) ≤ wt(L′),
where the weight of L ∼= QnL(λ) is defined to be −n.) A graded highest weight
category is mixed if and only if both of the following holding for all weights λ and
µ, respectively:

[P (λ)] = [∆(λ)] + (a qN[q]-linear combination of [∆(µ)] for µ > λ), (5.26)

[∆(µ)] = [L(µ)] + (a qN[q]-linear combination of [L(λ)] for λ < µ). (5.27)

If C possesses a graded duality fixing the distinguished irreducible objects, then
we can use graded BGG reciprocity to deduce further that (5.26) and (5.27) are
equivalent.

Now assume instead just that C is a graded highest weight category with a
graded duality. Then C is standard Koszul if the minimal projective resolution

· · · → P 1(λ)→ P 0(λ)→ ∆(λ)→ 0

of each standard object ∆(λ) is linear, i.e. P 0(λ) ∼= P (λ) and for each n ≥ 1
the object Pn(λ) is a direct sum of objects QnP (µ) for µ > λ. This implies that
(5.26) holds for all λ, hence that C is mixed.

In fact standard Koszul implies Koszul in the usual sense, i.e. C is mixed and
ExtnC(L(λ), L(µ))m = 0 unless m + n = 0 for any λ, µ ∈ Λ. This is proved for
finite weight posets in [ADL, Theorem 1]; the general case follows on passing to
sufficiently large subquotients.

Theorem 5.26. Let C be a UqslI-tensor product categorification of any type and
for any interval I. Then C is standard Koszul.

Proof. When I is finite this is already known. In fact there are a couple of proofs
available in the literature depending on which realization of C is adopted; see [W1]
and [HM]. Both proofs depend ultimately on the known standard Koszulity of
graded parabolic category O which follows from [BGS], [B] and [ADL, Corollary
3.8]. (If the gap mentioned in Remark 5.14 related to checking directly that
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graded parabolic category O satisfies (GTP3) can be filled, then Theorem 5.11
would allow [W1] or [HM] to be bypassed entirely here.)

For the general case, take λ ∈ Λ and consider a minimal projective resolution

· · · → P 2(λ)→ P 1(λ)→ P 0(λ)→ ∆(λ)→ 0

of ∆(λ). Suppose for some n that Pn(λ) is not a direct sum of QnP (µ). Pick
a finite subinterval J ⊂ I such that all composition factors of Pm(λ) belong to
ΛJ for all m ≤ n. Then Pn(λ) → · · · → P 0(λ) → ∆(λ) → 0 is the start of a
non-linear minimal projective resolution for ∆(λ) in the subquotient CJ too. This
contradicts the standard Koszulity of CJ . �

Corollary 5.27. All UqslI-tensor product categorifications in the sense of Defi-
nition 5.9 are mixed.

Remark 5.28. One very interesting question is whether any reasonable descrip-
tion of the Koszul dual of C is possible. In the finite case, the usual singular-
parabolic duality of [B] shows that the Koszul dual of a weight space in an sln-
tensor product categorification of level l is a weight space in an sll-tensor product
categorification of level n; this is a categorical version of skew Howe duality. It is
not clear how much of this structure survives in the infinite case.

5.9. Kazhdan-Lusztig polynomials. Let C be a UqslI -tensor product categori-
fication of type (n, c) and set Λ := ΛI;n,c. We conclude by proving the graded
analog of the Kazhdan-Lusztig conjecture. This allows the polynomials

dλ,µ(q) := [∆(µ) : L(λ)]q, (5.28)

pλ,µ(q) :=
∑
n≥0

dim ExtnĈ(∆(λ), L(µ))qn (5.29)

to be computed in principle in terms of parabolic Kazhdan-Lusztig polynomials in
finite type A. Note by the general theory of standard Koszul categories that the
two families of polynomials here are closely related: the matrices (dλ,µ(q))λ,µ∈Λ

and (pλ,µ(−q))λ,µ∈Λ are inverse to each other.

To start with, we have the graded Grothendieck groups [C]q ↪→ [C∆]q ↪→ [C]∗q .
The functors Fi, Ei and Ki induce endomorphisms fi, ei and ki making these
Grothendieck groups into UqslI -modules and the inclusions above are module
homomorphisms. Recall also that [C∆]q is identified with the UqslI -module

∧n,c VI
so that vλ = [∆(λ)]. We let bλ := [P (λ)] and b∗λ := [L(λ)]; in view of the
uniqueness from Theorem 5.12 these vectors are independent of the particular
choice of the tensor product categorification C. Thus we have constructed UqslI -
modules [C]q ⊆

∧n,c VI ⊆ [C]∗q with the distinguished bases {bλ|λ ∈ Λ}, {vλ|λ ∈ Λ}
and {b∗λ |λ ∈ Λ}, respectively. When I is finite, we have equalities [C]q =

∧n,c VI =
[C]∗q , but in general this is not the case.

Let ~ : C → C and # : pC → pC be graded dualities as in Corollary 5.13. Then
define a bilinear pairing (−,−) : [C]q × [C]∗q → Q(q) by setting

([P ], [L]) := dimq HomĈ(P
#, L) = dimq HomĈ(P,L

~). (5.30)

Since F ∗i is right adjoint to Fi and E∗i is right adjoint to Ei this pairing has the
property that (uv,w) = (v, u∗w) for any u ∈ UqslI . Also it is immediate that
the bases {bλ | λ ∈ Λ} and {b∗λ | λ ∈ Λ} are dual to each other. Recall from (5.5)
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that we have also already introduced a symmetric bilinear form (−,−) on
∧n,c VI

such that (vλ, vµ) = δλ,µ. Our choice of notation here is not ambiguous as the two
forms agree on the intersection of their domains. This follows because

(bλ, vµ) = dimq HomĈ(P (λ),∇(µ)) = dimq HomĈ(P (λ),∆(µ)) = [∆(µ) : L(λ)]q

is the graded multiplicity of ∆(µ) in a graded ∆-flag of P . This argument recovers
graded BGG reciprocity: we have that

bλ =
∑
µ∈Λ

dλ,µ(q)vµ, vµ =
∑
λ∈Λ

dλ,µ(q)b∗λ, (5.31)

recalling (5.28). When I is finite we can invert these formulae to obtain also

vλ =
∑
µ∈Λ

pλ,µ(−q)bµ, b∗µ =
∑
λ∈Λ

pλ,µ(−q)vλ. (5.32)

However the last two formulae do not make sense in general when I is infinite as
the sums become infinite too; this issue can be bypassed by introducing a suitable
completion of

∧n,c VI but there is no need for us to do that here.
The dualities # and ~ induce antilinear involutions

ψ : [C]q → [C]q, ψ∗ : [C]∗q → [C]∗q , (5.33)

i.e. ψ([P ]) := [P#] and ψ∗([L]) := [L~]. Equivalently, these are the unique
antilinear involutions satisfying

ψ(bλ) = bλ, ψ∗(b∗λ) = b∗λ (5.34)

for each λ ∈ Λ. In view of (2.17), ψ and ψ∗ are adjoint antilinear maps, i.e. we

have that (ψ(v), w) = (v, ψ∗(w)). Also we have for any vector v and any u ∈ UqslI
that

ψ(uv) = ψ(u)ψ(v), ψ∗(uv) = ψ∗(u)ψ∗(v), (5.35)

thanks to the equivariance properties from Corollary 5.13.
The following theorem is a special case of [W3, Proposition 7.3], where it is

proved using the tensor product algebra realization of C. We give a slightly dif-
ferent proof here in terms of the axiomatic framework of [LW].

Theorem 5.29. Assume that I is finite so that [C]q =
∧n,c VI = [C]∗q. Then

ψ :
∧n,c VI →

∧n,c VI coincides with Lusztig’s bar involution from [Lu, §27.3].

Proof. We prove this by induction on the level l of (n, c). When l = 1 the result is
clear as both ψ and Lusztig’s bar involution fix the highest weight vector vκ and
commute with each fi. Now suppose that l > 1. Let n+ := (n1, . . . , nl−1) and

c+ := (c1, . . . , cl−1), so that
∧n,c VI =

∧n+,c+ VI ⊗
∧nl,cl VI . Let Λ+ := ΛI;n+,c+ .

To avoid potential confusion later on we denote the monomial basis vectors for∧n+,c+ VI by v+
λ instead of vλ. Let ψ̃ :

∧n,c VI →
∧n,c VI and ψ̃+ :

∧n+,c+ VI →∧n+,c+ VI be Lusztig’s bar involutions. It is easy to see from Lusztig’s definition
that the following two properties are satisfied:

(i) ψ̃(fiv) = fiψ̃(v) for all i ∈ I and v ∈
∧n,c VI ;

(ii) ψ̃(v ⊗ vκl) = ψ̃+(v)⊗ vκl for each v ∈
∧n+,c+ VI .
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Moreover these two properties characterize ψ̃ uniquely. Thus to prove the theorem
we must show that ψ(v⊗vκl) = ψ̃+(v)⊗vκl too. Let C+ be a UqslI -tensor product

categorification of type (n+, c+). Its Grothendieck group [C+] =
∧n+,c+ VI is

equipped with the antilinear involution ψ+ defined as above, so that ψ+(b+λ ) = b+λ
for each λ ∈ Λ+ where b+λ ∈

∧n+,c+ VI denotes the class of the indecomposable

projective P (λ) ∈ C+. By the induction hypothesis ψ+ = ψ̃+. So we are reduced
to showing that ψ(v ⊗ vκl) = ψ+(v)⊗ vκl ; equivalently we will show that ψ(b+λ ⊗
vκl) = b+λ ⊗ vκl for each λ ∈ Λ+.

Now we make a particular choice for the category C+. Let us identify Λ+

with the coideal {λ ∈ Λ | λl = κl} of Λ so that (λ1, . . . , λl−1) ∈ Λ+ is identified
with (λ1, . . . , λl−1, κl) ∈ Λ. Let C+ be the quotient category of C associated to
this coideal. It is a graded highest weight category with distinguished irreducible
objects {L(λ) | λ ∈ Λ+}. The functor Fi obviously leaves invariant the Serre
subcategory of C generated by the irreducible objects {QmL(λ) | m ∈ Z, λ ∈
Λ, |λl| < |κl|}. Hence it induces a well-defined graded endofunctor F+

i : C+ → C+.

The homogeneous natural transformations ξ and τ restrict to give ξ ∈ End(F+
i )2

and τ ∈ Hom(F+
j ◦ F

+
i , F

+
i ◦ F

+
j )−αi·αj . The functors Ki and K−1

i obviously

descend to C+ too. We claim further that there exists a graded endofunctor
E+
i : C+ → C+ such that QE+

i Ki is right adjoint to F+
i , and that this data

endows the graded highest weight category C+ with the structure of a UqslI -tensor
product categorification of type (n+, c+).

The proof of the claim depends on the categorical splitting construction from
[LW]. To construct E+

i for a fixed i ∈ I, we let Ci be the quotient of C associated
to the coideal Λi := {λ ∈ Λ | |κl| − |λl| ∈ Nαi}. Both of the functors Fi and Ei
descend to endofunctors of Ci. Let C−i be the subcategory of Ci associated to the
ideal {λ ∈ Λi | |λl| = |κl| − rαi} where r := κl · αi (which happens in our special
minuscule situation to be either 0 or 1). Thus we have constructed categories and

functors C−i
ι→ Ci

π→ C+. The functor Fi on Ci restricts to an endofunctor F−i
of C−i . Moreover [LW, Proposition 4.3] implies that π ◦ E(r)

i ◦ ι : C−i → C+ is a

graded equivalence of categories, which intertwines F−i and F+
i by [LW, Lemma

4.7]. Let E−i := ι∗ ◦ Ei ◦ ι : C−i → C
−
i . Since QEiKi is right adjoint to Fi it

is immediate that QE−i Ki is right adjoint to F−i . Then we transfer E−i through

the equivalence to obtain the desired functor E+
i : C+ → C+ such that QE+

i Ki

is right adjoint to F+
i . Finally let C+

be the underlying ungraded category. In

[LW, Theorem 4.10] it is shown that F
+
i and E

+
i (together with the various other

natural transformations induced by the ones constructed above) make C+
into an

slI -tensor product categorification of type (n+, c+). We have in front of us graded
lifts as in Theorem 5.11(i). Then we apply Theorem 5.11(ii) to deduce that C+

is a UqslI -tensor product categorification of type (n+, c+). So we have proved the
claim.

We can now complete the proof of the theorem. Let π : C → C+ be the quotient
functor and π! : C+ → C be a left adjoint. In C we have that π!P (λ) ∼= P (λ) and
π!∆(λ) ∼= ∆(λ) for each λ ∈ Λ+; the latter isomorphism follows by the graded

analog of Lemma 2.9. Thus π! induces a linear map
∧n+,c+ VI ↪→

∧n,c VI such that
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b+λ 7→ bλ and v+
λ 7→ vλ for each λ ∈ Λ+. It follows immediately that bλ = b+λ ⊗ vκl

for each λ ∈ Λ+. Hence ψ(b+λ ⊗ vκl) = b+λ ⊗ vκl as required. �

Now we apply the positivity from Corollary 5.27 (which we recall depended
itself on the results from [BGS], [B] which exploit relations to geometry of flag
varieties) to get the following; see also [W3, Theorem 8.8] for the generalization
of this to more general tensor products (with a different proof via geometry of
certain quiver varieties).

Corollary 5.30. For finite I, {bλ |λ ∈ Λ} is Lusztig’s canonical basis for
∧n,c VI

from [Lu, §27.3], while {b∗λ | λ ∈ Λ} is the dual canonical basis.

Proof. Corollary 5.27, (5.27) and (5.34) show that bλ is a ψ-invariant vector in
vλ +

∑
µ>λ qZ[q]vµ. �

This shows for finite I that the polynomials dλ,µ(q) from (5.28) are the en-
tries of the transition matrix from the canonical to the monomial basis of

∧n,c VI ,
while the polynomials pλ,µ(−q) are the entries of the inverse transition matrix. In
particular, the pλ,µ(q) are certain finite type A parabolic Kazhdan-Lusztig poly-
nomials; see e.g. [FKK] or [B3, Remark 14] where this elementary combinatorial
identification is made explicitly.

To determine the polynomials dλ,µ(q) and pλ,µ(q) when I is infinite it just
remains to pick a finite subinterval J ⊂ I such that λ, µ ∈ ΛJ . Then it is
immediate from the definition (5.28) and exactness of the quotient functor that
dλ,µ(q) computed in C is the same as in CJ . The same thing holds for pλ,µ(q)
in view of (2.14)–(2.15). Thus again all pλ,µ(q) are identified with some finite
type A parabolic Kazhdan-Lusztig polynomials. If we specialize to q = 1 this
proves the super Kazhdan-Lusztig conjecture as formulated in [B1, Conjecture
4.32] (see also [B5]), and all of its subsequent generalizations to other Borels
and parabolics. Note that this also establishes [CLW, Conjecture 3.13] and [B1,
Conjecture 2.28(i–ii)], showing the coefficients of this canonical basis are positive,
since they are identified with the manifestly positive dλ,µ(q), and similarly the
coefficients of the dual canonical basis are the manifestly alternating pλ,µ(−q).
Remark 5.31. The basis called “canonical basis” in [B1] is a twisted version
of the canonical basis here. It corresponds to the indecomposable tilting objects
rather than the indecomposable projectives in C. In more detail, let T (λ) ∈ C
be the unique (up to isomorphism) ~-self-dual object possessing a graded ∆-flag
with ∆(λ) at the bottom and other sections of the form Qn∆(µ) for µ < λ and
n ∈ Z. The existence of such an object follows by a construction due to Ringel
involving taking iterated extensions of standard objects; cf. [B2] which justifies in
the context of super parabolic category O that Ringel’s construction terminates
after finitely many steps. Since C is mixed the higher sections of a graded ∆-flag
of T (λ) are actually all of the form Qn∆(µ) for µ < λ and n < 0. Let

b̃λ := [T (λ)] ∈
∧n,c VI .

When I is finite this gives us the twisted canonical basis {b̃λ | λ ∈ Λ} for
∧n,c VI ;

each b̃λ here is the unique ψ∗-invariant vector in vλ +
∑

µ<λ q
−1Z[q−1]vµ. In any

case we have that
b̃λ =

∑
µ∈Λ

dλ̃,µ̃(q−1)vµ,
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where we write λ̃ for the 01-matrix obtained from λ by reversing the order of its
rows. This follows from [LW, Remark 3.10], which implies that the Ringel dual
of C has the induced structure of a UqslI -tensor product categorification of type
(ñ, c̃) where ñ = (nl, . . . , n1) and c̃ = (cl, . . . , c1).

Remark 5.32. It was established already in [CLW, Theorem 3.12] that the struc-

ture constants describing the actions of the quantum divided powers f
(r)
i /[r]! and

e
(r)
i /[r]! on the bases {bλ | λ ∈ Λ} and {b∗λ | λ ∈ Λ} all belong to N[q, q−1], proving

[B1, Conjecture 2.28(iii–iv)]. Our results give a second proof of this conjecture

since f
(r)
i and e

(r)
i have been categorified by F

(r)
i and E

(r)
i . In fact, this argument

generalizes to show that any element of Lusztig’s canonical basis of the modified
quantum algebra U̇qslI acts with coefficients in N[q, q−1], since by [W3, Theorem
A(b)] each of these basis vectors can be lifted to a functor acting on any tensor
product categorification.
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