MONOIDAL SUPERCATEGORIES

JONATHAN BRUNDAN AND ALEXANDER P. ELLIS

ABSTRACT. This work is a companion to our article “Super Kac-Moody 2-
categories,” which introduces super analogs of the Kac-Moody 2-categories
of Khovanov-Lauda and Rouquier. In the case of sla, the super Kac-Moody
2-category was constructed already in [A. Ellis and A. Lauda, “An odd cate-
gorification of Ug(sl2)”], but we found that the formalism adopted there be-
came too cumbersome in the general case. Instead, it is better to work with
2-supercategories (roughly, 2-categories enriched in vector superspaces). Then
the Ellis-Lauda 2-category, which we call here a IT-2-category (roughly, a 2-
category equipped with a distinguished involution in its Drinfeld center), can
be recovered by taking the superadditive envelope then passing to the under-
lying 2-category. The main goal of this article is to develop this language and
the related formal constructions, in the hope that these foundations may prove
useful in other contexts.

1. INTRODUCTION

1.1. In representation theory, one finds many monoidal categories and 2-categories
playing an increasingly prominent role. Examples include the Brauer category B(J),
the oriented Brauer category OB(9), the Temperley-Lieb category T L(), the web
category Web(Uy(sl,,)), the category of Soergel bimodules S(W') associated to a
Coxeter group W, and the Kac-Moody 2-category $U(g) associated to a Kac-Moody
algebra g. Each of these categories, or perhaps its additive Karoubi envelope, has
a definition “in nature,” as well as a diagrammatic description by generators and
relations. It is also often instructive after taking additive Karoubi envelope to pass
to the Grothendieck ring. Let us go through our examples in turn.

e The Brauer category B(9) is the symmetric monoidal category generated
by a self-dual object of dimension 6 € C. By [LZ, Theorem 2.6], it may
be presented as the strict monoidal category with one generating object -
and three generating morphisms >< = ®,U:1—-® - and
M\:- ® - — 1, subject to the following relations:

&% U
X KU O

Here, we are using the well-known string calculus for morphisms in a strict
monoidal category as in [BK]. We remark also that the additive Karoubi
envelope of B(§) is Deligne’s interpolating category REP(Ogs). There is a
similar story for the oriented Brauer category. It is the symmetric monoidal
category generated by a dual pair of objects of dimension §. An explicit
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presentation is recorded in [BCNR, Theorem 1.1]. Its additive Karoubi
envelope is Deligne’s interpolating category REP(GLy).

e For § = —(¢+ ¢ ') € Q(q), the additive Karoubi envelope of TL() is
monoidally equivalent to the category of finite-dimensional representations
of the quantum group U,(slz). More generally, for n > 2, the additive
Karoubi envelope of Web(Uy(sl,,)) is monoidally equivalent to the category
of finite-dimensional representations of Uy,(sl,). An explicit diagrammatic
presentation was derived by Cautis, Kamnitzer and Morrison [CKM], build-
ing on the influential work of Kuperberg [K] which treated the case n = 3.

e When W is a Weyl group, Soergel [S] showed that S(WW) is monoidally
equivalent to the Hecke category H(G/B) of Kazhdan-Lusztig (certain B-
equivariant sheaves on the associated Lie group G). In general, S(W) is
the additive Karoubi envelope of the category of Bott-Samelson bimodules.
In almost all cases, a diagrammatic presentation of the latter monoidal cat-
egory has been derived by Elias and Williamson [EW1]. The Grothendieck
ring Ko(S(W)) is isomorphic to the group ring of W; if one incorporates
the natural grading into the picture one actually gets the Iwahori-Hecke
algebra H, (W) associated to W.

e The Kac-Moody 2-category (g) was defined by generators and relations
by Rouquier [R] and Khovanov-Lauda [KL]; see also [B]. The Grothendieck
ring of its additive Karoubi envelope is naturally an idempotented ring, with
idempotents indexed by the underlying weight lattice, and is isomorphic to
the idempotented integral form U (g) of the universal enveloping algebra of
g; if one incorporates the grading one gets Lusztig’s idempotented integral
form Uq(g) of the associated quantum group. (These statements are still
only conjectural outside of finite type.)

1.2. We are interested in this article in superalgebra, i.e. Z/2-graded algebra. Our
motivation comes from the belief that there should be interesting super analogs of
all of the categories just mentioned. In fact, they are already known in several cases.
For example, analogs of the Brauer and oriented Brauer categories are suggested
by [KT] and [JK], respectively. Also in [BE], we have defined a super analog of the
Kac-Moody 2-category, building on [EL] which treated the case of slp. In thinking
about such questions, one quickly runs into some basic foundational issues. To start
with, already in the literature, there are several competing notions as to what should
be called a “super monoidal category.” The goal of the paper is to clarify these
notions and the connections between them; see also [U] for further developments.

Let k be a field of characteristic different from 2. A superspace is a Z/2-graded
vector space V = V5 @ V5. We use the notation |v| for the parity of a homogeneous
vector v in a superspace. Formulae involving this notation for inhomogeneous v
should be interpreted by extending additively from the homogeneous case.

Let SVec (resp. SVecyq) be the category of all superspaces (resp. finite dimen-
sional superspaces) and (not necessarily homogeneous) linear maps. These catego-
ries possess some additional structure:

e A linear map between superspaces V and W is even (resp. odd) if it preserves
(resp. reverses) the parity of vectors. Moreover, any linear map f: V — W
decomposes uniquely as a sum f = f5 + f1 with f5 even and f7 odd. This
makes each morphism space Homgy..(V, W) into a superspace.

e The usual k-linear tensor product of two superspaces is again a superspace
with (VW) =Vi@W;dVi@Wi and (VW) =150 Wi @ Vi @ Ws.
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Also the tensor product f ® g of two linear maps is the linear map defined
from (f ® g)(v & w) = (~1)l7I £(v) @ g(w).
Let SVec be the subcategory of SVec consisting of all superspaces but only the
even linear maps. The restriction of the tensor product operation just defined gives
a functor — ® — : SVec x SVec — SVec making SVec into a monoidal category.
However, SVec itself is not monoidal in the usual sense, because of the sign in the
following formula for composing tensor products of linear maps:

(fegohak) = (-l (fon)® (gok). (1.1)

In fact, SVec is what we’ll call a monoidal supercategory. We proceed to the formal
definitions.

Definition 1.1. (i) A supercategory means a SVec-enriched category, i.e. each
morphism space is a superspace and composition induces an even linear map. (We
refer to [K, §1.2] for the basic language of enriched categories.)

(ii) A superfunctor F : A — B between supercategories is a SVec-enriched
functor, i.e. the function Hom 4 (A, u) — Homg(FA, Fu), f — Ff is an even linear
map for all A, € ob A. (See [K, §1.2] again.)

(iii) Given superfunctors F, G : A — B, a supernatural transformationx : F' = G
is a family of morphisms x\ = ) 5+, 1 € Hompg(F X, GA) for A € ob A, such that
|Zxp| =pand z,, 0 Ff = (=1)PFIGf oxy, for all p € Z/2 and f € Homa(\, p).
The supernatural transformation z decomposes as a sum of homogeneous super-
natural transformations as x = x5 + x7 where (z,) := x,, making the space
Hom(F,G) of all supernatural transformations from F to G into a superspace.
(Even supernatural transformations are just the same as the SVec-enriched natu-
ral transformations of [K, §1.2].)

(iv) A superfunctor F' : A — B is a superequivalence if there is a superfunctor
G : B — A such that F o G and G o F are isomorphic to identities via even
supernatural transformations. To check that F' is a superequivalence, it suffices to
show that it is full, faithful, and evenly dense, i.e. every object of B should be
isomorphic to an object in the image of F' via an even isomorphism.

(v) For any supercategory A, the underlying category A is the category with the
same objects as A but only its even morphisms. If F' : A — B is a superfunctor
between supercategories, it restricts to F : A — B. Also an even supernatural
transformation x : F' = ( is the same data as a natural transformation z : F = G.
(These definitions are special cases of ones in [K, §1.3].)

Example 1.2. (i) We've already explained how to make SVec into a supercategory.
The underlying category is SVec.

(ii) A superalgebra is a superspace A = Ay & Aj equipped with an even linear
map ma : A ® A — A making A into an associative, unital algebra; we denote the
image of @ ® b under this map simply by ab. Any superalgebra A can be viewed as
a supercategory A with one object whose endomorphism superalgebra is A.

(iii) Suppose we are given superalgebras A and B. Then there is a supercategory
A-SMod-B consisting of all (A, B)-superbimodules and superbimodule homomor-
pisms. Here, an (A, B)-superbimodule is a superspace V plus an even linear map
my : AQV ® B — V making V into an (A, B)-bimodule in the usual sense; we
denote the image of a ® v ® b under this map simply by avb. A superbimodule
homomorphism f : V — W is a linear map such that my o (14 ® f®15) = fomy.
In view of the definition of tensor product of linear maps between superspaces, this
means explicitly that f(avb) = (=1)I/llelg f(v)b.
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(iv) For any two supercategories A and B, there is a supercategory Hom/(A, B)
consisting of all superfunctors and supernatural transformations.

The monoidal category SVec is symmetric with braiding u®@v — (=1)I*“1*ly @ u.
As in [K, §1.4], this allows us to introduce a product operation — X — which makes
the category SCat of all supercategories and superfunctors into a monoidal category.
On objects (i.e. supercategories) A and B, this operation is defined by letting
A K B be the supercategory whose objects are ordered pairs (A, u) of objects of
A and B, respectively, and Hom gzp((\, @), (0,7)) := Hom4 (XA, o) @ Hompg(u, 7).
Composition in A X B is defined using the symmetric braiding in SVec, so that
(f®g)o(h®k)=(=1)19"(foh)® (gok). The unit object Z is a distinguished
supercategory with one object whose endomorphism superalgebra is k (concentrated
in even parity). The definition of — K — on morphisms (i.e. superfunctors) is
obvious, as are the coherence maps.

Remark 1.3. Example 1.2(iii) is a special case of Example 1.2(iv). Let A and
B be defined from superalgebras A and B as in Example 1.2(ii). Let B%°P be the
supercategory with ob 3%P := ob B, and new composition law aeb := (—1)|a”b‘boa.
Then the supercategory Hom(AK B%°P, SVec) is isomorphic to A-SMod-B via the
superfunctor which identifies V' : AKB%P — SVec with the superspace obtained by
evaluating at the only object, viewed as a superbimodule so avb := (—1)PII*1V(a ®
b)(v). The data of a supernatural transformation f : V — W is exactly the same
as the data of a superbimodule homomorphism.

Definition 1.4. (i) A monoidal supercategory is a supercategory A equipped with
a superfunctor — ® — : AKX A — A, a unit object 1, and even supernatural
isomorphisms! ¢: (- ® -)® - - @ (-®-),:1®—= —andr: —® 1= —
called coherence maps, which satisfy axioms analogous to the ones of a monoidal
category. In any monoidal supercategory, tensor products of morphisms compose
according to the same rule (1.1) that we already observed in SVec. We call this
the super interchange law.

(ii) Given monoidal supercategories A and B, a monoidal superfunctor is a su-
perfunctor F : A — B plus coherence maps ¢ : (F —) ® (F —) =& F(— ® —) and
i:1g = Fl 4 satisfying axioms analogous to the ones of a monoidal category;
we require that ¢ is an even supernatural isomorphism and that 7 is an even iso-
morphism. (Note we implicitly assume all monoidal (super)functors are strong
throughout the article.)

(iii) Given monoidal superfunctors F,G : A — B, a monoidal natural transfor-
mation is an even supernatural transformation z : F' = G such that

Tagu © (CF)au = (ca)au 0 (Tr @ Tp),
Ty, © iF = iGa
in Homp((FA) ® (Fu),G(A ® p)) and Homp(1p, G1 4), respectively. (There is no
such thing as a monoidal supernatural transformation.)

A monoidal supercategory (resp. superfunctor) is strict if its coherence maps are
identities. There is a version of Mac Lane’s Coherence Theorem [Mac] for monoidal

1By (—®—) ® — we mean the superfunctor (AX.4)K.A — A obtained by applying ® twice in the
order indicated. Similarly, —® (—® —) is a superfunctor AK (AKX .A) — A, but we are viewing it
as a superfunctor (AX A)X .4 — A by using the canonical isomorphism defined by the associator
in SCat. Also, 1® —: A— Aand —® 1 : A — A denote the superfunctors defined by tensoring
on the left and right by the unit object, respectively.
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supercategories. It implies that any monoidal supercategory A is monoidally su-
perequivalent to a strict monoidal supercategory B, i.e. there are monoidal super-
functors F': A — B and G : B — A such that G o F' and F o G are isomorphic to
identities via monoidal natural transformations; equivalently, there is a monoidal
superfunctor F' : A — B which defines a superequivalence between the underlying
supercategories.

With a little care about signs, the string calculus mentioned earlier can be used
to represent morphisms in a strict monoidal supercategory A. Thus, a morphism

f € Hom 4 (A, p) is the picture
m
(%) : (1.2)
A

Often we will omit the object labels A, 4 here. Then the horizontal and vertical
compositions f ® g and f o g are obtained by horizontally and vertically stacking:

bob-d & o]

More complicated pictures should be interpreted by first composing horizontally
then composing vertically. For example, the following is (f ® ¢g) o (h ® k):

Unlike in the purely even setting, this is not the same as (f o h) ® (g o k). In fact,
in pictures, the super interchange law tells us that

R R K

Example 1.5. (i) The supercategory SVec is a monoidal supercategory with tensor
functor as defined above. The unit object is k. More generally, for a superalgebra
A, A-SMod-A is a monoidal supercategory with tensor functor defined by taking
the usual tensor product of superbimodules over A. The unit object is the regular
superbimodule A.

(ii) For a supercategory A, End(A) is a strict monoidal supercategory, with
— ® — defined on functors F;G: A — Aby F ® G := F o, and on supernatural
transformations = : F = G and y : H = K so that (z @ y)x := xxx o Fyx.
The unit object is the identity functor I : A — A. Later on, we will denote the
horizontal compositions F' ® G and = ® y of two superfunctors or two supernatural
transformations simply by F'G and xy, respectively. In more complicated horizontal
compositions, we often adopt the standard shorthand of writing simply F' in place
of the identity morphism 1p, e.g. for x : F = G, y : H = K, the expressions F'y
and zH denote lpy: FH = FK and zly : FH = GH, respectively.

(iii) Here is a purely diagrammatic example. The odd Brauer supercategory is the
strict monoidal supercategory SBB with one generating object -, an even generating
morphism >< - ® - — - ® -, and two odd generating morphisms\_/J: 1 — - ® -
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and M\ :- ® - — 1, subject to the following relations:

This was introduced in [KT] where it is called the marked Brauer category, mo-
tivated by Schur-Weyl duality for the Lie superalgebra p,(C). Unlike the Brauer

category defined earlier, there is no parameter §. Indeed, using the relations and
super interchange, one can check that

Q) e O-1Q13

1.3. Now we switch the focus to one of the competing notions. Instead of working
with additive categories enriched in the monoidal category SVec, one can work with
module categories over the monoidal category SVec;, (e.g. see [EGNO, §7.1]),
or equivalently, additive k-linear categories equipped with a strict action of the
cyclic group Z/2 (e.g. see [EW2, §1.3]). We adopt the following language for such
structures:

Definition 1.6. (i) A II-category (A,IL &) is a k-linear category A plus a k-linear
endofunctor IT : A — A and a natural isomorphism ¢ : 112 = [ such that ¢I1 = I1¢
in Hom(II3,11). Note then that IT is a self-inverse equivalence.

(ii) Given II-categories (A, 11 4,&4) and (B,115,£5), a -functor F': A — Bis a
k-linear functor plus the data of a natural isomorphism Bp : IIgF = FII 4 such that
EgF(€4)7 ! = Brll4 o pBr in Hom((I15)2F, F(I14)?). For example, the identity
functor I is a II-functor with 8; = 17, and II is a II-functor with S := —112. Note
also that the composition of two Il-functors F' : A — B and G : B — C is itself a
II-functor with Bgr := GBF o BgF.

(i) Given II-functors F,G : A — B, a I-natural transformation is a natural
transformation z : F = G such that zIl4 o Sr = Bg o lIgz in Hom(IIgF, GII 4).

There is a close relationship between supercategories and Il-categories. To ex-
plain this formally, we need the following intermediate notion. Actually, our expe-
rience suggests this is often the most convenient place to work in practice.

Definition 1.7. A II-supercategory (A,11, () is a supercategory A plus the extra
data of a superfunctor IT : A — A and an odd supernatural isomorphism ¢ : IT = I.
Note then that & := ¢¢ : [I? & [ is an even supernatural isomorphism, i.e. A is
equipped with canonical even isomorphisms &y : II?XA 5 X satisfying

=G0l = —CoCma (1.4)
for all A € ob.A. Moreover, we have that £I1 = I1¢ in Hom (IT3, II).

To specify the extra data needed to make a supercategory into a II-supercategory,
one just needs to give objects II\ and odd isomorphisms ¢y : IIXN = X for each
A € ob A. The effect of II on a morphism f : A\ — u is uniquely determined by the
requirement that ¢, oIlf = (=) fo¢y. Tt is then automatic that ¢ = ({y) : T = T
is an odd supernatural isomorphism.
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Example 1.8. Given superalgebras A and B, A-SMod-B is a Il-supercategory;
hence, taking A = B =k, so is SVec. To specify II and ¢, we just need to define an
(A, B)-supermodule IIV and an odd isomorphism ¢y : IIV = V for each (A, B)-
superbimodule V. We take IIV to be the same underlying vector space as V' viewed
as a superspace with the opposite Z/2-grading (IIV)5 := V; and (IIV)7 = V5.
The superbimodule structure on IIV is defined in terms of the original action by
a-v-b := (=1)l%avb. This ensures that the identity function on the underlying vector
space defines an odd superbimodule isomorphism ¢y : IIV 5 V. Everything else is
forced; for example, for a morphism f : V' — W we must have that ILf : IIV — IIW
is the function (—1)If1f; also, & : I’V 5 V is minus the identity.

Now we can explain the connection between supercategories and Il-categories.
Let SCat be the category of supercategories and superfunctors as above. Also let
II-SCat be the category of Il-supercategories and superfunctors, and II-Cat be the
category of Il-categories and II-functors. There are functors

scat Y 1-scat 2 11-cat. (1.5)

The functor (1) is defined in Definition 1.10 below; it sends supercategory A to its
IT-envelope A,. The functor (2) sends II-supercategory (A, I, {) to the underlying
II-category (A, 1L £), where A and II are as in Definition 1.1(v), and & := ((; it
sends superfunctor F': (A, 1 4,(4) — (B,1g, () to the II-functor (F,Br), where
Br = —(sF(Ca)~" : TIgF = FIl4.

Theorem 1.9. The functors just defined have the following properties:

e The functor (1) is left 2-adjoint to the forgetful functor v : II-SCat — SCat
in the sense that there is a superequivalence Hom(A,vB) — Hom(A,, B)
for every supercategory A and Il-supercategory B.

e The functor (2) is an equivalence of categories.

Definition 1.10. The II-envelope A, of supercategory A is the IlI-supercategory
with objects {II®A |\ € ob A, a € Z/2}, i.e. we double the objects in .A. Morphisms
are defined from

Hom 4 (TI%, TT%1) := TT*T° Hom 4 (\, ),

where the IT on the right hand side is the parity-switching functor on SVec from
Example 1.8. We denote the morphism I1°\ — I1°4 in A, coming from a homoge-
neous morphism f : A\ — g in A under this identification by f°. Thus, if | f| denotes
the parity of f in A, then f: 1\ — [° is of parity a+b+|f| in A,. Composition
in A, is induced by composition in A, so f£ o g := (f o g)5. To make A, into a
[-supercategory, we set II(TT*X) := TT**'A and (e = (13)%, ¢ : TN — TN If
F: A — B is a superfunctor, it extends to F : A; — B, sending I1*) — II*(F')\)
and fg = (Ff)g.

Remark 1.11. In [Man], one finds already the notion of a superadditive category.
In our language, this is an additive Il-supercategory. The superadditive envelope of
a supercategory A may be constructed by first taking the Il-envelope, then taking
the usual additive envelope after that.

1.4. We can now introduce monoidal I1-categories and monoidal I1-supercategories.
It is best to start with monoidal II-supercategories, since this definition is on the
surface. Then we’ll recover the correct definition of monoidal II-category on passing
to the underlying category.
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Definition 1.12. A monoidal II-supercategory (A, , () is a monoidal supercate-
gory A with the additional data of a distinguished object 7 and an odd isomorphism
¢:7 5 1 from 7 to the unit object 1.

Any monoidal II-supercategory (A, 7, () is a Il-supercategory in the sense of
Definition 1.7 with parity-switching functor Il := 7 ® — : A — A and () :=
Ixo(®1y : TIX 5 A, One could also choose to define II to be the functor —®m, but
that is isomorphic to our choice because there is an even supernatural isomorphism
B:m®— = — @7 with 3 defined as the composite

4 .
TRAER 1A B A A1 S Aer
We observe moreover that the pair (7, §) is an object in the Drinfeld center of A,
i.e. we have that

lrofr =1, (1.6)
ax pu,m © ﬂx\@u O lr A,y = (1)\ ® Bu) SO NTRS (/6)\ 02y lu)7 (17)
for all objects A, 4 € ob A. Moreover, 8, = —lgr. There is also an even isomor-

phism ¢ := (I3 =71)o(®(: 7 ®7 — 1 such that
(@& Hory ol o(€®@1)) =arrro(fr®1r) Oa;,lxm o(lx®pBr)oarxxr (1.8)
in Homy((m @ ) @ A, A ® (7 @ 7).

Example 1.13. (i) We've already explained how A-SMod-A is both a monoidal
supercategory and a Il-supercategory. In fact, it is a monoidal II-supercategory
with m := IIA and ¢ : IIA = A being the identity function. In particular, this
makes SVec into a monoidal II-supercategory.

(ii) If (A, II,¢) is any II-supercategory, then (End(.A),I1, () is a strict monoidal
II-supercategory.

Definition 1.14. (i) A monoidal TI-category (A, 7, 3,€) is a k-linear monoidal
category A plus the extra data of an object (m, 8) in its Drinfeld center with 8, =
—1rgr, and an isomorphism & : 7 ® 7 = 1 satisfying (1.8).

(ii) A monoidal TI-functor between monoidal II-categories (A, 74, Ba,&4) and
(B, 75, 88,£8) is a k-linear monoidal functor F' : A — B with its usual coher-
ence maps ¢ and i, plus an additional coherence map j : mg — Fm4 which is an
isomorphism compatible with the 8’s and the £’s in the sense that

F(Ba)aocrano(J®1pa) =cama o (Lra ® 7)o (BB)FAs
i0ép=F{a0Ch,n,0(f®]),

in Hom(7mg @ FA, F(A® m4)) and Hom(7g ® mg, F'1 4), respectively.

(iii) A monoidal -natural transformation x : F = G between monoidal II-
functors F,G : A — B is a monoidal natural transformation as usual, such that
ZTrx, 0 Jr = jo in Homp(mg, Gma).

There are categories SMon, II-SMon and II-Mon consisting of all monoidal
supercategories, monoidal II-supercategories and monoidal Il-categories, respec-
tively. Morphisms in SMon and [I-SMon are monoidal superfunctors as in Defi-
nition 1.4(ii). Morphisms in II-Mon are monoidal II-functors in the sense of Defi-
nition 1.14(ii). Now, just like in (1.5), there are functors

SMon ), m-SMon -5 TI-Mon. (1.9)
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The functor (1) is defined by the I-envelope construction explained in Defini-
tion 1.16 below. The functor (2) sends monoidal II-supercategory (A, m, () to the
underlying category A with the obvious monoidal structure, made into a monoidal
IT-category (A, m,[B,£) as explained before Definition 1.14. It sends a monoidal
superfunctor F' between monoidal II-supercategories A and B to F : A — B, made
into a monoidal II-functor by setting j := (F(4) ' oio(g:mg — Fra.

Theorem 1.15. The functors just defined satisfy analogous properties to Theo-
rem 1.9: (1) is left 2-adjoint to the forgetful functor and (2) is an equivalence.

Definition 1.16. The II-envelope of a monoidal supercategory A is the monoidal
IT-supercategory (Ax,m, () where Ay is as in Definition 1.10, 7 := IT'1, ¢ := (13)Y,
and tensor products of objects and morphisms are defined from

(1)) @ () = (A @ p),
R J b+d
fo® gl = (—1)leltifldradtac(p g gyotd

The unit object of A, is II°1. The coherence maps a,! and r extend to A, in an
obvious way. Also if F': A — B is a monoidal superfunctor then the superfunctor
F, : A, — B from Definition 1.10 is naturally monoidal too.

In the strict case, one can work with A, diagrammatically as follows. For f as
in (1.2), we represent f° € Hom 4 _(I1%)\,T1°4) by the diagram
K b
Ea

Then the rules for horizontal and vertical composition become:

c
b d b+d c b
® - (_1)a|g|+f|d+ad+acﬂ ’ ° B .
a c a+c b a
a

In order to appreciate the need for the sign in this definition of horizontal compo-
sition, the reader might want to verify the super interchange law in A.

1.5. Let us make a few remarks about Grothendieck groups/rings. Recall for a
category A that its additive Karoubi envelope Kar(A) is the idempotent comple-
tion of the additive envelope of A. The Grothendieck group Ko(Kar(A)) is the
Abelian group generated by isomorphism classes of objects of Kar(.A), subject to
the relations [V] + [W] = [V @ W]. In case A is a monoidal category, the monoidal
structure on A extends canonically to Kar(A), hence we get a ring structure on
Ky(Kar(A)) with [V]- [W] = [V @ W].

For a supercategory A, we propose that the role of additive Karoubi envelope
should be played by the II-category SKar(A) := Kar(A, ), i.e. one first passes to the
IT-envelope, then to the underlying category, and then one takes additive Karoubi
envelope as usual. The Grothendieck group Ko(SKar(A)) comes equipped with a
distinguished involution 7 defined from 7 ([V]) := [IIV], making it into a module
over the ring

7T .= Z[x]/(x® = 1).
In case A is a monoidal supercategory, SKar(.A) is a monoidal II-category. The
tensor product induces a multiplication on Ky(SKar(A)), making it into a Z"-
algebra.
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Example 1.17. (i) Suppose A is a superalgebra viewed as a supercategory A
with one object. Then SKar(A) is equivalent to the category of finitely gener-
ated projective A-supermodules and even A-supermodule homomorphisms. Hence,
Ko(SKar(A)) is the usual split Grothendieck group of the superalgebra A.

(ii) Recall that Z, the unit object of the monoidal category SCat, is a supercat-
egory with one object whose endomorphism superalgebra is k. There is a unique
way to define a tensor product making 7 into a strict monoidal supercategory. Its
super Karoubi envelope SKar(Z) is monoidally equivalent to SVec;,. Hence, it
is a semisimple Abelian category with just two isomorphism classes of irreducible
objects represented by k and Ik, and Ko(SKar(Z)) = Ko(SVec;,;) = Z".

(iii) Here is an example which may be of independent interest. For & € k,
the odd Temperley-Lieb supercategory is the strict monoidal supercategory ST L(9)
with one generating object - and two odd generating morphisms\_/: 1 — - ® - and
M ® - — 1, subject to the following relations:

|mu| =| |um == O

The following theorem will be proved in the appendix.

Theorem 1.18. Assume that 6 = —(q—q~ 1) for ¢ € k* that is not a root of unity.
Then SKar(ST L(0)) is a semisimple Abelian category. Moreover, as a based ring
with canonical basis coming from the isomorphism classes of irreducible objects,
Ko(SKar(STL(d))) is isomorphic to the subring of Z™[xz,x~'] spanned over Z by
{[n + 1oz, 70+ 1ax | n € N}, where

M+ 1pq=a2" +72" 2 4+ " (1.10)

When k is of characteristic zero, we will explain this result by constructing a
monoidal equivalence between SKar(ST L(d)) and the category of finite-dimensional
representations of the quantum superalgebra Uy (0sp;j5) as defined by Clark and
Wang [CW]. We note that

min(m,n)

n+ Uealm+on= > 7n+m—2r+1., (1.11)
r=0

which may be interpreted as the analog of Clebsch-Gordon for Uy (0sp;5). Also

> 1

T S— 1.12
Z[Tl] s 1— [2]1 7rt 4 7Tt2 ( )
n=0 ’

which is a w-deformed version of the generating function for Chebyshev polynomials
of the second kind. It follows that Ko(SKar(ST L(d))) is a polynomial algebra over
Z™ generated by [2]; r, which is the isomorphism class of the generating object -.

1.7. In the remainder of the article, we will work in the more general setting
of 2-categories. Recalling that a monoidal category is essentially the same as a
2-category with one object, the reader should have no trouble recovering the defi-
nitions made in this introduction from the more general ones formulated later on.

In Section 2, we will discuss 2-supercategories, which (in the strict case) are
categories enriched in SCat; the basic example is the 2-supercategory of supercat-
egories, superfunctors and supernatural transformations. Then in Section 3, we
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introduce II-2-supercategories; the basic example is the II-2-supercategory of II-
supercategories, superfunctors and supernatural transformations. Section 4 devel-
ops the appropriate generalization of the notion of I1-envelope to 2-supercategories,
in particular establishing the properties of the functors (1) above. In Section 5, we
discuss II-2-categories; the basic example is the I1-2-category of Il-categories, II-
functors and IT-natural transformations. Then we prove that the functors (2) above
are equivalences; more generally, we show that the categories of II-2-categories and
II-2-supercategories are equivalent.

The approach to Z/2-graded categories developed by this point can also be ap-
plied in almost exactly the same way to Z-graded categories. We give a brief
account of this in the final Section 6. Actually, we will combine the two gradings
into a single Z ® Z/2-grading, and develop a theory of graded supercategories. Al-
though we won’t discuss it further here, there are two natural ways to suppress the
Z/2-grading (thereby leaving the domain of superalgebra): one can either view Z-
gradings as Z @ Z/2-gradings with the Z/2-grading being trivial, i.e. concentrated
in parity 0; or one can view Z-gradings as Z @ Z/2-gradings with the Z/2-grading
being induced by the Z-grading, i.e. all elements of degree n € Z are of parity n
(mod 2). The first of these variations is already extensively used in representation
theory, e.g. see the last paragraph of [R, §2.2.1] or [BLW, §5.2].

We would like to say finally that many of the general definitions in this article
can be found in some equivalent form in many places in the literature. We were
influenced especially by the work of Kang, Kashiwara and Oh in [KKO, Section 7];
see also [EL, Section 2]. Our choice of terminology is different. We include here a
brief dictionary for readers familiar with [KKO] and [EL]; note also that in [KKO]
additivity is assumed from the outset.

Our language Language of [KKO, EL]

Supercategory 1-supercategory [KKO, Def. 7.7]

Superfunctor Superfunctor [KKO, Def. 7.7]

Supernatural transformation | Even and odd morphisms [KKO, Def. 7.8]
2-supercategory 2-supercategory [KKO, Def. 7.12]

II-category Supercategory [KKO, Def. 7.1], [EL, Def. 2.13]
II-functor Superfunctor [KKO, Def. 7.1], [EL, Def. 2.13]
II-natural transformation Supernatural transformation [EL, Def. 2.16]
I1-2-category Super-2-category [EL, Def. 2.17]

There is a similar linguistic clash in our development of the graded theory in Section
6: by a graded category, we mean a category enriched in graded vector spaces. It is
more common in the literature for a graded category to mean a category equipped
with a distinguished autoequivalence. When working with the latter structure, we
will denote this autoequivalence by @, and call it a @-category.

Acknowledgements. The first author would like to thank Jon Kujawa for convincing
him to take categories enriched in super vector spaces seriously in the first place.
We also benefitted greatly from conversations with Victor Ostrik and Ben Elias.

2. SUPERCATEGORIES

In the main body of the article, k will denote some fixed commutative ground
ring. By superspace, we mean now a Z/2-graded k-module V = V5 @ V7; as usual
when working over a commutative ring, we make no distinction between left modules
and right modules, indeed, we’ll often view k-modules as (k,k)-bimodules whose
left and right actions are related by cv = ve. By a linear map, we mean a k-module
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homomorphism. Viewing k as a superalgebra concentrated in even parity, these are
the same as k-supermodules and k-supermodule homomorphisms?.

We have the II-supercategory SVec of all superspaces® and linear maps defined
just like in the introduction. The underlying category SVec consisting of super-
spaces and even linear maps is a symmetric monoidal category with braiding defined
as in the introduction.

Recall also the definitions of superfunctor and supernatural transformation from
Definition 1.1. Let SCat be the category of all supercategories and superfunctors.
We make it into a monoidal category with tensor functor denoted X as explained
after Example 1.2.

Definition 2.1. A strict 2-supercategory is a category enriched in the monoidal cat-
egory SCat just defined. Thus, for objects A, u in a strict 2-supercategory 2, there
is given a supercategory Homg (A, i) of morphisms from A to p, whose objects F, G
are the 1-morphisms of 2, and whose morphisms x : F' — G are the 2-morphisms
of 2. We use the shorthand Homg (F,G) for the superspace Homyopm (r,u) (F, G)
of all such 2-morphisms.

The string calculus explained for monoidal supercategories in the introduction
can also be used for strict 2-supercategories: given 1-morphisms F,G : A\ — pu, one
represents a 2-morphism z : F' = G by the picture

G

O

F

The composition y o x of 2 with another 2-morphism y € Homg (G, H) is obtained
by vertically stacking pictures:

1—O—0-O—=x

The composition law in 2 gives a coherent family of superfunctors
Ty Homy(p, v) R Homy (A, 1) — Home (A, v)

for all objects A, u,v € 2A. Given 2-morphisms z : ' — H,y : G — K between
I-morphisms F, H : A = p,G, K : p — v, we denote T, , x(y ® ) : T,y A (G, F) —
Ty u (K, H) simply by yx : GF — KH, and represent it by horizontally stacking

pictures:
K H
V¢M¢X
G F

2In Sections 2-4, one can actually work even more generally over any commutative superalgebra
k = kg @ ki, interpreting a superspace as a (k, k)-superbimodule whose left and right actions are
related by cv = (—1)l<ll?lye,

30ne should be careful about set-theoretic issues here by fixing a Grothendieck universe and taking
only small superspaces. We won’t be doing anything high enough for this to cause difficulties, so
will ignore issues of this nature.
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When confusion seems unlikely, we will use the same notation for a 1-morphism F

as for its identity 2-morphism. With this convention, we have that yH o Gx = yx =
(=)W K2 0 yF, or in pictures:

K H K K H
uﬁbuéx = u(}‘f)u = (*1)|$Hy‘vépu>\~
el F G G F

This identity is a special case of the super interchange law in a strict 2-supercategory,
which is proved by the following calculation:

m—@E—x
>

(vu) o (ya) = Tour(v@u) o Ty a(y @ 2) = Ty (v @ u) o (y @ 7))
= (~D)MMIT, A (woy) ® (uow)) = (~1)“W(voy)(uoa).

The presence of the sign here means that a strict 2-supercategory is not a 2-category
in the usual sense.

For example, we can make SCat into a strict 2-supercategory G€at by declaring
that its morphism categories are the supercategories Hom(A, B) consisting of all
superfunctors from A to B, with morphisms being all supernatural transformations.
The horizontal composition GF' of two superfunctors F': A — B and G: B — C
is defined by GF := G o F. The horizontal composition yr : GF = KH of
supernatural transformations « : F = H and y : G = K is given by (yz)) :=
yrx o Gz, for each object A of A. We leave it to the reader to verify that the super
interchange law holds; this works because of the signs built into the definition of
supernatural transformation.

So far, we have only defined the notion of strict 2-supercategory. There is also a
“weak” notion, which we call simply 2-supercategory, in which the horizontal com-
position is only assumed to be associative and unital up to some even supernatural
isomorphisms. The following are the superizations of the definitions in the purely
even setting (e.g. see the definition of bicategory in [L], or [R, §2.2.2]), replacing
the usual Cartesian product x of categories with the product K.

Definition 2.2. (i) A 2-supercategory 2 consists of:

e A set of objects ob%2f.

e A supercategory Homg (1, A) for each A, u € ob®2l, whose objects and mor-
phisms are called 1-morphisms and 2-morphisms, respectively. We refer to
the composition of 2-morphisms in these supercategories as vertical compo-
sition.

e A family of 1-morphisms 1, : A — A for each A € ob2l.

e Superfunctors T}, » : Home (p, v) ¥ Home (A, ) — Home (A, v) for all
A, v € ob2l. We usually denote T}, ,, » simply by ——, and call it horizontal
composition.

e Even supernatural isomorphisms a : (— —) — & — (= =), [ : 1y — & —
and r : — 1, = — in all situations that such horizontal compositions makes
sense.
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Then we require that the following diagrams of supernatural transformations com-
mute:

(=(=-) - (== (=)
—(Ix-)
(- 9) ) = = (= (=)

A l-morphism F : A — p in a 2-supercategory is called a superequivalence if there
is a 1-morphism G in the other direction such that GF' = 1, and F'G = 1, via
even 2-isomorphisms.

(ii) A 2-superfunctor R : 2l — B between 2-supercategories is the following data:
A function R : ob2l — ob 8.
Superfunctors R : Homg (A, u) — Homes (RA, Rp) for A, € obA.

Even supernatural isomorphisms ¢ : (R —) (R —) = R(— —).
Even 2-isomorphisms i : 1gy = R1, for all A € ob2A.

Then we require that the following diagrams commute:

(R(==)) (R -)
) (R =) R((=

-)-)

(==)

) (R =) R(-
m /
(R —) (R(=-))

(

R =) 1ey 1 (R-) (RL,)  1e, R—) "5 (R1,) (R -)
| o !
R— — R(-1,) R ¢ R(L, -)

There is a natural way to compose two 2-superfunctors. Also each 2-supercategory
2A possesses an identity 2-superfunctor, which will be denoted I. Hence, we get a
category 2-SCat consisting of 2-supercategories and 2-superfunctors.

(iii) Given 2-superfunctors RS : 2 — B for 2-supercategories 2 and B, a 2-
natural transformation® (X, ) : R = S is the following data:

e l-morphisms Xy : RA — SA in B for each A € ob2l.
e Even supernatural transformations z,  : X,(R—) = (S—)X) (which are
superfunctors Homg (A, ) — Homss (R, Sp)) for all A, u € ob2

4In nLab this is an oplax natural transformation.



MONOIDAL SUPERCATEGORIES 15

We require that the following diagrams commute for all F': A — pand G : p — v:

X, (RG)(RF)) < (X,(RG))(RF) 22C0, (56) x,)(RF)

Xy J{a

X,R(GF) (SG)(Xu(RF)) >
(xu,A)GFJ/ J/(gG)(I;L,)\)F
S(GF) X\ 57— (SG)SF)) X\ s (SG)((SF)X1)

Ioa Xy —— X - Xo1gy
’L’Xxl lXAi
(za,2)1y
(S1H) Xy +———————— X\ (R1,)

A 2-natural transformation (X, z) is strong® if each z,, \ is an isomorphism. There
is a 2-category 2-GC€at consisting of all 2-supercategories, 2-superfunctors and 2-
natural transformations.

(iv) Suppose that (X, z),(Y,y) : R — S are 2-natural transformations for 2-
superfunctors R, S : 2 — B. A supermodification « : (X,z) = (Y,y) is a family of
2-morphisms ay = a5+ ay 1 : Xy = Y) for all A € ob®(, such that the diagram

X, (RF) “VE (sF) X,
ay (RF)J{ J{(SF)O()\

Y,(RF) —— (SF)Y,
(yu,A)F

commutes for all 1-morphisms F' : A — p in A. We have that « = ag + o3
where (a)x := @y p. This makes the space Hom((X, z), (Y,y)) of supermodifica-
tions « : (X,z) = (Y,y) into a superspace. There is a supercategory Hom(R,S)
consisting of all 2-natural transformations and supermodifications. There is a 2-
supercategory $Hom (2, B) consisting of 2-superfunctors, 2-natural transformations
and supermodifications; it is strict if 9B is strict. These are the morphism 2-
supercategories in the strict 3-supercategory of 2-supercategories. Since we won'’t
do anything with this here, we omit the details.

We note that a strict 2-supercategory in the sense of Definition 2.1 is the same
thing as a 2-supercategory whose coherence maps a,l and r are identities. In
the strict case, the unit objects 1, are uniquely determined, so do not need to
be given as part of the data. A strict 2-superfunctor is a 2-superfunctor whose
coherence maps ¢ and 4 are identities. There exist 2-superfunctors between strict
2-supercategories which are themselves not strict.

Recall for superalgebras A and B that B-SMod-A denotes the supercategory of
(B, A)-superbimodules; see Example 1.2(iii). Given another superalgebra C, the
usual tensor product over B gives a superfunctor

—®p — : C-SMod-B X B-SMod-A — C-SMod-A.
The 2-supercategory &Bim of superbimodules has objects that are superalgebras,
the morphism supercategories are defined from Homemsim(A, B) := B-SMod-A,

and horizontal composition comes from the tensor product operation just men-
tioned. It gives a basic example of a 2-supercategory which is not strict.

50r a pseudonatural transformation in nLab.
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Two 2-supercategories 2 and B are 2-superequivalent if there are 2-superfunctors
R:2A - %S and S : B — A such that SoR and R o S are superequivalent
to the identities in Hom (A, A) and Hom(B,B), respectively. Equivalently, there
is a 2-superfunctor R : 2 — B that induces a superequivalence Homg (A, 1) —
Homes (RA,Rp) for all A\, € ob2l, and every v € ob*B is superequivalent to an
object of the form R for some A € ob%l.

The Coherence Theorem for 2-supercategories implies that any 2-supercategory
is 2-superequivalent to a strict 2-supercategory. The proof can be obtained by
mimicking the argument in the purely even case from [L]. In view of this result, we
will sometimes assume for simplicity that we are working in the strict case.

Definition 2.3. Let 2l be a 2-supercategory. The Drinfeld center of 2 is the
monoidal supercategory of all strong 2-natural transformations I = I and super-
modifications. Thus, an object (X, z) of the Drinfeld center is a coherent family of
1-morphisms X : A = A and even supernatural isomorphisms x, » : X, — = X,
for A\, u € ob A; a morphism « : (X, 2) = (Y,y) is coherent family of 2-morphisms
ay : Xy = Y. The tensor product (X ® Y,z ® y) of objects (X,z) and (Y,y)
is defined from (X ® Y)y := Xy\Yy, (x ® ¥)pn := @ 2Yu,n; the tensor product
a ® S of morphisms « : (X,z) — (U,u) and 8 : (Y,y) — (V,v) is defined from
(a® B)x := apBx. If A is strict then its Drinfeld center is strict too.

We remark that the Drinfeld center of a 2-supercategory is a braided monoidal
supercategory, although we omit the definition of such a structure. (See [MS] for
more about Drinfeld center in the purely even setting.)

3. II-SUPERCATEGORIES

According to Definition 1.7, a II-supercategory is a supercategory with the addi-
tional data of a parity-switching functor IT and an odd supernatural isomorphism
¢ : I = I. It is an easy structure to work with as there are no additional ax-
ioms, unlike the situation for the II-categories of Definition 1.6. The same goes for
superfunctors and supernatural transformations between Il-supercategories: there
are no additional compatibility constraints with respect to II.

Definition 3.1. A TI-2-supercategory (A, m, () is a 2-supercategory 2 plus families
7 = (my) and ¢ = ({)) of l-morphisms 7\ : A — X and odd 2-isomorphisms
(x € Homg( (7, 1) for each object A € 2. It is strict if A is strict.

Let II-SCat be the category of all II-supercategories and superfunctors. Let
II-&¢€at be the strict 2-supercategory of all II-supercategories, superfunctors and
supernatural transformations. The latter gives the archetypal example of a strict
ITI-2-supercategory: the additional data of m# = (m4) and { = ({4) are defined by
letting 74 be the parity-switching functor I 4 : A — A on the II-supercategory A,
and taking 4 : m4 — 1 4 to be the given odd supernatural isomorphism II4 = I 4.

The basic example of a [1-2-supercategory that is not strict is the 2-supercategory
G&%Bim defined at the end of the previous section. Recall the objects are superalge-
bras, the 1-morphisms are superbimodules, the 2-morphisms are superbimodule ho-
momorphisms, and horizontal composition is given by tensor product. Also, for each
object (i.e. superalgebra) A, the unit 1-morphism 1,4 is the regular superbimodule
A. The extra data m and ¢ needed to make G8Bim into a II-2-supercategory are
given by declaring that w4 := ITA (i.e. we apply the parity-switching functor to
the regular superbimodule), and each (4 : 74 = 14 comes from the superbimodule
homomorphism ITA — A that is the identity function on the underlying set.
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Each morphism supercategory Homg (A, 1) in a II-2-supercategory 2 admits a
parity-switching functor II making it into a II-supercategory, namely, the endo-
functor m,— arising by horizontally composing on the left by 7,,. Alternatively, one
could take the endofunctor —m) defined by horizontally composing on the right by
7. These two choices are isomorphic according to our first lemma.

Lemma 3.2. Let (A, 7, () be a II-2-supercategory. For objects A, u, there is an
even supernatural isomorphism

Blh)\ Ty % — TT\-
Assuming U is strict for simplicity, this is defined by (B x)F = —CMFC)Tl for each
L-morphism F : X — p. Setting f = (Bu,), the pair (m,3) is an object in the
Drinfeld center of 2 as in Definition 2.3, i.e. the following hold (still assuming
strictness):
(i) Bur)ar = G(Bur)ro(Buu)cF for 1-morphisms F: X — pand G : p — v;
(i) (Bxa)iy = 1n,.

Moreover:
(ili) maCx = —Cama hence (Baa)my = —1q2;
(iv) & = GG s = 1, is an even 2-isomorphism such that §MF§;1 =

(Bux)Fma o mu(Bux)F in Homc(wzF, F7r/2\) forall F: X\ — p.

Proof. To show that §, » is an even supernatural isomorphism, we need to show
for any 2-morphism x : F' = G between 1-morphisms F,G : A — u that

TN © (ﬂuv\)F = (BM,A)G O Ty, (3.1)

This follows from the following calculation with the super interchange law:
amy 0 C,G¢ ! = (—1)IPlg, et = G FCT o,

For (i), we must show that G(,F( ' o C,,G(u_lF = —(,GF( Y, which is clear by
the super interchange law again. For (ii), we have that fQC/\_l = C;l oy =1g,.
For (iii), (6(x = (o malx = —Cx o (\my. Cancelling ¢ on the left, we deduce that
mx(x = —(\7y, hence —C)\’]T)\C;1 = m@{l o (T = —17T§. Finally (iv) follows from
the calculation:

Féyo (BM,X)FWX © Wu(ﬁu,/\)F =FQ(yo CuFC)Tlﬂ')\ © WMCMFC,\_l

= _CMFW/\C/\ © WMCMFC,\_l = CMCMF = guF-
O

Applying Lemma 3.2 to the strict II-2-supercategory II-&€at, we obtain the
following.

Corollary 3.3. Let (A, 11 4,C4) and (B,11p,(p) be Il-supercategories. As in Defini-
tion 1.7, there are even supernatural isomorphisms &4 : Ha = T4 andép: H% = I
both defined by setting & := ((.
(i) We have that T1I{ = —(II in Hom(I1%,II), hence 1€ = ¢IT in Hom(T13,I1).
(ii) For a superfunctor F : A — B, define Br == —(gF(Ca)~! : TIgF = FII4.
This is an even supernatural isomorphism such that EgF(£4)! = Brll4 0
1zl in Hom((HB)QF, F(HA)Q).
(iii) Ifx : F = G is a supernatural transformation between superfunctors F,G :
A — B then g o gz = zIl4 o Br in Hom(IIgF, GI1 4).
(iv) For superfunctors F' : A — B and G : B — C, we have that Bgr =
GBF OﬁgF. Also ﬂ[ = 11‘[ and B]‘[ = —11-[2.
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When working with II-2-supercategories, notions of 2-superfunctors, 2-natural
transformations and supermodifications are just as defined for 2-supercategories in
Definition 2.2: there are no additional compatibility constraints. Let I1-2-SCat be
the category of all II-2-supercategories and 2-superfunctors, and II-2-&€at be the
strict 2-category of all II-2-supercategories, 2-superfunctors and 2-natural transfor-
mations.

4. ENVELOPES

In this subsection, we prove the statements about the functors (1) in Theo-
rems 1.9 and 1.15. We will also construct II-envelopes of 2-supercategories. We
start at the level of supercategories. Recall the functor —; : SCat — II-SCat from
Definition 1.10, which sends supercategory A to its II-envelope (A, 11, (), and su-
perfunctor F' to Fy. In fact, this is part of the data of a strict 2-superfunctor

—r : 6Cat — 1I-6Cat, (4.1)

sending a supernatural transformation z : F = G to x; : Fr = G, defined from
(za)tan i= (1)l (ay)2.

For any supercategory A, there is a canonical superfunctor J : A — A, which
sends A — II°A and f — fP. This is full and faithful. It is also dense: each
object IO\ of A, is obviously in the image, while TN is isomorphic to 11O\ via
the odd isomorphism (1,)Y. This means that A and A, are equivalent as abstract
categories. However they need not be superequivalent as J need not be evenly
dense:

Lemma 4.1. The canonical superfunctor J : A — A, is a superequivalence if and
only if A is Il-complete, meaning that every object of A is the target of an odd
isomorphism.

Proof. The “only if” direction is clear as every object II°X of A is the target of
the odd isomorphism (1)), 5 e\ — TI)\. Conversely, assume that A is II-
complete. To show that J is a superequivalence, it suffices to check that it is evenly
dense. Let A be an object of A and f: p — A be an odd isomorphism in 4. Then
fg : Hau — II'\ is an even isomorphism in A4,. Hence, I\ is isomorphic via an
even isomorphism to something in the image of J, as of course is IO\, (]

Here is the universal property of Il-envelopes.

Lemma 4.2. Suppose A is a supercategory and (B,11,¢) is a I-supercategory.
(i) Given a superfunctor F' : A — B, there is a canonical superfunctor F :
A. — B such that F = FJ.
(ii) Given a supernatural transformation x : F = G between superfunctors
F.G: A — B, there is a unique supernatural transformation T : F=G
such that © = 2J.

Proof. (i) For A € ob A, we set F(II)\) := FX if a = 0 or II(F)) if a = 1. For a
morphism f : A — p in A, let F(f°) : F(II*)\) — F(IT°u) be (C%#)_l o Ffoc sk,
where (%, denotes 1py if a =0 or (py if a = 1, and C%u is interpreted similarly.

(ii) We are given that s, = x) for each A € ob.A. Also, by the definition
in (i), we have that F(qoy, = Cra for each A € ob A. Hence, to ensure the su-
pernaturality property on the morphism (poy : N — HG)\, we must have that
Fiy = (=1)#1(Caa) "t oy 0 (pa. Thus, in general, we have that

Frox = (=1)"(CEy) T o a0 (Cha). (4.2)



MONOIDAL SUPERCATEGORIES 19

It just remains to check that this is indeed a supernatural transformation, i.e.
it satisfies supernaturality on all other morphisms in A,. Take a homogeneous
f:A— pin A and consider f2: 11X\ — I1°u. We must show that

(C&)H 0 Gf 0 (Cy) 0 Fmar = ()W o (¢h) ™t o Ff o (Chy)-

This follows on substituting in the definitions of the Z’s from (4.2) and using that
Gfoxy=(-1)=lz, o Ff. 0

Most of the time, Lemmas 4.1-4.2 are all that one needs when working with
II-envelopes in practice. The following gives a more formal statement, enough to
establish the claim made about the functor (1) in Theorem 1.9 from the introduc-
tion. To state it, we let v : II-&€at — SCat be the obvious forgetful 2-superfunctor.

Theorem 4.3. For all supercategories A and Il-supercategories B, there is a func-
torial superequivalence Hom(A,vB) — Hom(Ax, B), sending superfunctor F to F
and supernatural transformation x to Z, both as defined in Lemma 4.2. Hence, the
strict 2-superfunctor —, is left 2-adjoint to v.

Proof. We must show that the given superfunctor is fully faithful and evenly dense.
The fully faithfulness follows from Lemma 4.2(ii). To see that it is evenly dense,
take a superfunctor F': A, — B. Consider the composite functor FJ : A — vB.
Then there is an even supernatural isomorphism FJ= F, which is defined by the
following even isomorphisms FT](H“)\) 5 F(I1%)) for each A € ob A and a € Z/2:
if @ = 0, then ﬁ](HD)\) = F(II°)), and we just take the identity map; if a = 1,
then FJ(II'A) = IIF(II)), so we need to produce an isomorphism ITF(IT9\) =
F(IT')\), which we get from Corollary 3.3(ii). We leave it to the reader to check the
naturality. 0

We turn our attention to 2-supercategories.

Definition 4.4. The II-envelope of a 2-supercategory 2 is the II-2-supercategory
(A, 7, ¢) with morphism supercategories that are the IT-envelopes of the morphism
supercategories in 2:
e The object set for A is the same as for 2.
e The set of 1-morphisms A — p in 2, is
{II*F | for all 1-morphisms F': A — p in A and a € Z/2}.
e The horizontal composition of 1-morphisms II°F : A — p and TI°G : u — v
is defined by (II°G)(II*F) := I1°+*(GF).
e The superspace of 2-morphisms II1*F = II°G in A, is defined from
Homg_ (II°F,TI°G) := """ Homy (F, G).
We denote the 2-morphism II°F = II°G coming from z : F = G under
this identification by x%. If z is homogeneous of parity |z| then z% is
homogeneous of parity |z| + a + b.
e The vertical composition of z% : II*F = II°G and yf : II°G = II°H is
defined from
ysoxb := (youx)¢ : TI°F = M°H. (4.3)
e The horizontal composition of z& : II*F = II°H and y¢ : [I°G = TI9K is
defined by

gl o= (L) letberal gyt d TR (GR) = IM(KHE). (44)
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e The units 1, in 2A, are the 1-morphisms II°1,. Also define 7 = ()
by 7y := II'1, and ¢ = ({)) by ¢\ = (1]“)% : Ty = 1y; in particular,
EH =00 7r§ = 1, is minus the identity.

e The structure maps a,l and r in %, are induced by the ones in 2 in the
obvious way, but there are some signs to be checked to see that this makes
sense. For example, for the associator, one needs to note that the signs in
the following two expressions agree:

(zly)a? = (_1)c|y\+|z|e+ce+bc+(b+c)\z\+(\y\+|z\>d+(b+c)d+a(b+c)((zy)x)giiig’
d
2f (ypad) = (fl)b\r|+\y\d+bd+ab+0(|xl+lyl)+|2|(d+e)+6(d+e)+(a+b)c(Z(yx))aizif.

The main check needed to verify that this is indeed a II-2-supercategory is made
in the following lemma:

Lemma 4.5. The horizontal and vertical compositions from (4.3)—(4.4) satisfy the
super interchange law.

Proof. We need to show that

(vhug) o (yhas) =

The left hand side equals

(—1)(erer DD (of o 4y (4 0 2°).

(_1)d|u\+\v|e+de+cd+b|m\+|y|c+bc+ab(vu)ii£ ° (yx)z-:db _
(_1)d\u|+\v|e+de+cd+b|m\+|y\c+bc+ab((Uu) o (yz))zii —

voy)(uow))if,

using the super interchange law in 2 for the last equality. The right hand side
equals

(71)d|u\+|'u\e+de+cd+b|a:|+|y|c+bc+ab+|u\\y| ((

(fl)(c+e+IU\)(b+d+|y|)(v o y)g(u o)t =

(_1)(c+e+\u|)(b+d+\y|)+b(|u\+|z\)+(|v\+|y\)e+be+ab(( e+f

voy)(uox)), iy

We leave it to the reader to check that the signs here are indeed equal. O

For any 2-supercategory 2, there is a canonical strict 2-superfunctor J : 2 — 2;
it is the identity on objects, it sends the 1-morphism F' : A — p to II°F, and the
2-morphism z : F' = G to 338 :IYF = TI°G. The analog of Lemma 4.1 is as follows:

Lemma 4.6. For a 2-supercategory 24, the canonical 2-superfunctor J : A — A,
is a 2-superequivalence if and only if A is II-complete, meaning that it possesses
1-morphisms my : A = X and odd 2-isomorphisms wy = 1y for every A € ob 2.

Proof. Applying Lemma 4.1 to the morphism supercategories, we get that J is a
2-superequivalence if and only if every 1-morphism in 2 is the target of an odd
2-isomorphism. It is clearly sufficient to verify this condition just for the unit
1-morphisms 1, in 2. (]

Taking IT-envelopes actually defines a strict 2-functor
—r 1 2-6Cat — II-2-GCat. (4.5)
We still need to specify this on 2-superfunctors and 2-natural transformations:

e Suppose that R : 2 — B is a 2-superfunctor with coherence maps c :
(R—)(R—) = R(——) and i : 1gy = R1, for each A € ob2. Then we let
R, : A — B, be the 2-superfunctor equal to R on objects, and given by the
rules TI*F + TI%(RF) on 1-morphisms and 2% — (Rz)® on 2-morphisms.
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Its coherence maps ¢ : (Ry—)(Rz—) = Ry(——) and iy : Ig x = Ryl

for Ry are defined by (¢r)qepmee == (CF’G)ZiZ and i, 1= ig.
o If (X,z) : R = S is a 2-natural transformation, we let (X, z,) : Ry =

S; be the 2-natural transformation defined from (X)) := X, and
((xﬂ)u,)\)H“F = (('rlhA)F)g'

Lemma 4.7. Suppose 2 is a 2-supercategory and (B, 7,() is a I-2-supercategory.

(i) Given a graded 2-superfunctor R : 2 — B, there is a canonical graded
2-superfunctor R: A — B such that R = RJ.

(ii) Given a 2-natural transformation (X,z) : R = S between 2-superfunctors
R,S : A — B, there is a unique 2-natural transformation (X,i:) :R=S§
such that X\ = X and Tpx = Tuad for all A, ;€ ob 2.

Proof. To simplify notation throughout this proof, we will assume that 5 is strict.

(i) On objects, we take R\ := R\. To specify its effect on 1- and 2-morphisms,
we first introduce some notation: for a € Z/2 and A € ob*B, let (§ : 7§ = 1,
denote the 2-morphism 13, € Homg(1y,1,) if @ = 0 or the 2-morphism () €
Homg (my, 1) if @ = 1. Then, for a 1-morphism F : A — p in 2 and a € Z/2,
we set R(IIF) := T, (RF). Also, if z : F' = G is a 2-morphism in 2 between 1-
morphisms F,G : A — p, we define R(z%) : R(II*F) = R(II’G) to be the following

composition:

2, (RF) Rz ()~ (RG)
_—

RF RG

Ty, (RE) ey (RG).

In other words, by the super interchange law, we have that
R(zq) = (=1)"(¢e,) 7 G2, (Ra). (4.6)

Recalling (4.3), it is easy to see from this definition that R(y§oz?) = R(yg) oR(a?).
Thus, we have specified the first two pieces of data from Definition 2.2(ii) that are
required to define the 2-superfunctor R.

For the other two pieces of required data, let ¢ : (R—)(R—) = R(——) and
i: 1gn = R1, be the coherence maps for R. The coherence map 7 for R is just
the same as i. We define the other coherence map ¢ for R by letting ¢ map :
R(II’G) R(II*F) = R(II*t*(GF)) be the following composition (for F : A — u and
G:u—v):

b a ”]gu(ﬁﬁu,mu,)ﬁgcl;(RF) b _a Mp,aCG,F a+b
TRy (RG)WRH(RF) TR, TRy (RG) (RF) T, R(GF).

Here, B, g, @ TRy — = —f,, is the identity if @ = 0 or the even supernatural
isomorphism Bg, g, from Lemma 3.2 if a = 1, and mp 4 : ﬂ]}%yﬂﬂ%u = Wﬁjb is the
identity if ab = 0, or the 2-isomorphism —&gr, = —(r, (g, from Lemma 3.2(iv) if
ab=1.

The key point now is to check the naturality of ¢. Take x : FF = H and y : G =
K. We must show that the following diagram commutes for all a, b, c,d € Z/2:

‘nbg,mer

Tk, (RG)7g, (RF) iy R(GF)
RODRGD | | Rota

md (RK)mg (RH) —2020, pebd( ),
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Recalling (4.4) and (4.6), the composite of the top and right hand maps is equal to

(_1)a|m|+(a+b+C)\y|+ab+bc ((Cﬁer)*lCﬁerR(ym)) O(mb,aCG,F)O (Wﬂ%y(ﬁ]ﬁuﬂu)@é(RF» )

Also the composite of the bottom and left hand maps is

b d . -1 dy—1 b o\ —
(=) (mg e mr) o (mf, (B r)rn (RH)) © (€))7 (Ry)(¢) ¢ (Ra)) -
To see that these two are indeed equal, use the following commutative diagrams:
Th,Th, — TR
(caéyrlcfzxc&urlcﬁul l(—l)“*“(cﬁjd)* w
Wﬂaéyﬂ]}%v m—> ﬂ—thd7
d,c

(BE,/,R“)LRG

g, (RG) (RG)7g,,

(Cuiy)*lCu‘iu(Ry)l l(—l)(“*c)‘y'(Ry)(Cﬁu)’ICﬁgM
m, (RK) ——— (RK)nf,
(ﬂ]%,,wmg”)RK
To establish the latter two diagrams, note by the definitions of mp . and Bg, g,
that ¢8,¢8, = (1) 0 myq and ((Ry)GE,) o (B8, m)ze = (—1)7W1CE, (Ry),
then use the super interchange law.

We leave it to the reader to verify that the coherence axioms hold, i.e. the two
diagrams of Definition 2.2(ii) commute. This depends crucially on Lemma 3.2.

(ii) Take a 1-morphism F: A —  in 2. We are given that (Z,\)mop = (Tu)F-
In order for Z, » to satisfy naturality on the 2-morphism (1) : I'F = II'F, we
are also forced to have (Z,\ )iy = (Csu(SF)X2) ™ o (2u0) 0 (X,uCrpu(RF)). Thus,
in general, we have that

(Tpa)mmer = (Cély(gf‘j)XA)f1 o (zun)r o (Xuik, (RF))

= (8 () F) © ((Beup,) ™ (RF)). (4.7)
To check naturality in general, take some homogeneous « : F' = G, and consider
2% TI°F = II°G. We know that (z,)¢ o (X, (Rz)) = ((Sz)X)) o (z,,,)F, and
need to prove that (2, x)mrgo (f(u([@xg)) = ((Smf’l))@\) o(Zu 2 )mer. On expanding
all the definitions, this reduces to checking the following identity:

(Cgp,(SG)X)\)_l o (xM,A)G o (XMCJEM(RG)) © (XM(CD%M)_ICD%M(Rm)) =

((Cgu)ilcgy(gx)XA) o (Cgp(SF)XA) ! o (xlt)\)F o (Xﬂgﬁp.(RF)) ’
which is quite straightforward.
It remains to verify that (X, &) satisfies the two axioms for 2-natural transfor-
mations from Definition 2.2(iii). We leave this to the reader again; one needs to
use Lemma 3.2 repeatedly. (I

Example 4.8. Assume that k is a field, and recall the monoidal supercategory
Z with one object from Example 1.17(ii). Its II-envelope Z, is a monoidal II-
supercategory with two objects II° and IT'. Each morphism space Homz_ (1%, T1%)
is one-dimensional with basis 12. The tensor product satisfies 11> ® 1% = I1¢+b
and 1¢ ® 1¢ = (—1)(“+C)blzi‘i. We also have the monoidal II-supercategory SVec
from Example 1.13(i). By Lemma 4.7(i), the canonical superfunctor F : T — SVec
sending the only object to k extends to a monoidal superfunctor F : Z, — SVec.
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This sends 11 + 1%k and 1% — (idg : I1%k — TI°k, 1 ~ 1); its coherence maps are
II°k ® I°k — II%t%k,1 ® 1 — 1. The signs are consistent because the linear map
idf ®1id¢ : I’k ® %k — % ® Ik sends 1 ® 1+ (1)1 @ 1.

Using Lemma 4.7, one can prove the following. In the statement, v denotes the
obvious forgetful functor (actually, here it is a 2-functor).

Theorem 4.9. For all 2-supercategories A and 11-2-supercategories B, there is a
functorial equivalence Hom (A, vB) — Hom(U,,B), sending 2-superfunctor R to
R and 2-natural transformation (X,z) to (X,Z), both as defined in Lemma 4.7.
Hence, the strict 2-functor —, s left 2-adjoint to v.

On specializing to 2-supercategories with one object, this implies the result about
the functor (1) made in the statement of Theorem 1.15 from the introduction.

Remark 4.10. In fact, we should really go one level higher here, viewing —, as
a strict 3-superfunctor from the strict 3-supercategory of 2-supercategories to the
strict 3-supercategory of II-2-supercategories, by associating a supermodification
or (Xr,2r) = (Yr, yr) to each supermodification « : (X, z) = (Y, y) defined from
(ar)x == (ar)3. We leave it to the reader to formulate an appropriate part (iii)
to Lemma 4.7 explaining how to extend a : (X,z) = (Y,y) to & : (X, %) = (Y, ).
Then Theorem 4.9 becomes a 2-superequivalence

Hom(2A, vB) — Hom(A,, B).

In particular, it follows that there is an induced monoidal superfunctor from the
Drinfeld center of a 2-supercategory 2l to the Drinfeld center of its II-envelope 2 ;
the latter is a monoidal II-supercategory in the sense of Definition 1.12.

5. II-CATEGORIES

We continue to assume that k is a commutative ground ring. Let II-Cat be
the category of all II-categories and II-functors in the sense of Definition 1.6. Re-
call also that we denote the underlying category of a supercategory A by A; see
Definition 1.1(v). If (A,II4,{4) is a II-supercategory and we set 4 := (ala,
then (A,IL4,€4) is a Il-category thanks to Corollary 3.3(i). Given another II-
supercategory (B,11g,(p) and a superfunctor F : A — B, Corollary 3.3(ii) explains
how to construct the additional natural isomorphism g needed to make the un-
derlying functor F' into a II-functor from (A,II4,€4) to (B,1lz,¢5). Using also
Corollary 3.3(iv), this shows that there is a functor

By :11-8Cat — -Cat (A I1,¢) — (A ILE), F — (F,fBp). (5.1)

This is the functor (2) in (1.5).

In order to complete the proof of Theorem 1.9, we must show that the functor
E; is an equivalence, so that a IT-supercategory (A, II,{) can be recovered up to
superequivalence from its underlying category (A, II, £). To establish this, we define
a functor in the other direction:

Dy :-Cat — 11-8Cat (AL, ) — (AILC), (F,Brp)—F.  (5.2)

This sends II-category (A, 11, &) to the associated I1-supercategory (ﬁ,ﬁ, ¢), which
is the supercategory with the same objects as A and morphisms Hom (X, p)g :=
Hom 4 (A, p), Hom z(A, p)7 := Homy4 (A, ). Composition in A is induced by the
composition in A: if f : A — pand §: pu — v are homogeneous morphisms in A
then
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o iffandgare both even, sof:fandg:gfor morphisms f: A — p and
g:p—vin A, then we set jo f :=go f;

oiffisevenandgisoddsof fandg=gfor f: N — pand g: p— v
in A, then we again set gof :=gof;

olff1soddandglseven sof fandg=gfor f: N\ —>puand g: u — v,
we set §o f:= (Tg) o f;

olffandgarebothodd sof fandg=gfor f: N\ > Tuandg: u— v,
we set §o f =& o (Ilg) o f.

The check that (hog) f=ho (gof) for odd f, g, h dependb on the axiom ¢I1 = TIE.
To make A into a II- supercategory, we define II: A — A to be the superfunctor
that is equal to IT on objects, while Hf =1I1f if f is even coming from f: A — p
in A, and ﬁf := —IIf if f is odd coming from f: A — Iy in A. The odd natural
isomorphism ( : II — I is defined on object A by () := 1), i.e. it is the identity
morphism I\ — IIX in A viewed as an odd morphism IIA — Ain A. Finally, if
(F,Br) : A— B is a Il-functor, we get induced a superfunctor F: A — B between
the associated supercategories as follows: it is the same as [" on objects; on a
homogeneous morphism f A — pin A we have that F f:= Ffif fis even coming
from f: A — pin A, or Ff = (51:); o Ff if f is odd coming from f : A= T qp
in A. The check that ﬁ(g of) = (ﬁg) o (ﬁf) for odd f,§ depends on the axiom
Féa=¢pF ollgfy! o By T4

Lemma 5.1. The functors Dy : II-Cat — II-SCat and E; : II-SCat — I1-Cat are
mutually inverse equivalences of categories.

Proof. We have simply that Fy o Dy = If.cq¢. It remains to show that D o By &
It.scai- To see this, we have to define a natural isomorphism T : D; o By =
Iti.scat- So for each H—supercategory (A, 1L, ¢), we need to produce an isomorphism
of supercategories T'4 : (A) 5 A. We take T4 to be the identity on objects (which
are the same in @ as in A). On a morphism f : X\ —  in (A) we let TA(f) !
if f is even coming from an even morphism f : A — pin A, or (, o f if f is odd
coming from an even morphism f: A — Iy in A.

To check that T4 is a functor, we need to show that T4(jo f) = T'a(§) o Ta(f)
forf:A—)uandgtu—)V:

e This is clear if both f and ¢ are even.

oIffisevenandgisodd,sof:fandg:gforevenf:)\—)uand
g:pu— v in A, we have that Ta(jo f) = ¢ ogo f =Ta(§) o Tal(f).

. Ifflsoddandglseven sof fandg=gfor f: A= Tpand g: p— v,
then TA(gOf) ¢ o (Ilg) o f, while Ty (g )OTA(f) =go(,o f. These are
equal as ¢, oIlg = g o ¢, by the supernaturality of ¢.

e If both are odd, sof:fandg:gforf:A—)Huandg:M—>Hy,then
Ta(go f) = ¢, o (Ilg) o f. By the super interchange law, &, = —¢, o (1,
while supernaturality of ¢ gives that ¢, o Ilg = —g o (,,. Hence, T 4(g o f)
equals ¢, 0 g0 Gy o f = Ta(d) o Ta(f).

To see that T4 is an isomorphism, we just need to see that it is bijective on
morphisms. This is clear on even morphisms, and follows on odd morphisms be-

cause the function Hom(A)()\,,u)i = Hom4 (A, TIp)g — Homa (A, p)1, f — Cuo fis

invertible with inverse f+— (, Lof.
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Finally we must check the naturality of T there is an equality of superfunc-
tors FTy = Tp(F) : (A) — B for any superfunctor F' : A — B between II-
supercategories A and B. This is clear on objects and even morphisms. Consider
an odd morphism f : A — x in (/A\) coming from an even morphism f: A — Il 4pu
in A. We have that F(Taf) = F(Ca)uo Ff and Ts((E)f) = ((8)ruo (Br), ' o Ff.
These are equal because (gF = F(4 o Br by the definition in Corollary 3.3(ii) and
the super interchange law. O

We need one more general notion, which we spell out below under the simplifying
assumption that our 2-categories are strict. The reader should have no trouble
interpreting this in the non-strict case; see Definition 1.14 from the introduction
where this is done when there is only one object. Our general conventions regarding
2-categories are analogous to the ones for 2-supercategories in Definition 2.2.

Definition 5.2. (i) A II-2-category (A, =, 3,€) is a k-linear 2-category 2 plus a
family 7 = (my) of l-morphisms 7 : A — A, a family 8 = (B,,) of natural
isomorphisms 8, : 7, — = —my, and a family £ = (£)) of 2-isomorphisms &) :
73 = 1,, such that (assuming 2 is strict):
e the pair (7, ) is an object in the Drinfeld center of %, i.e. the properties
from Lemma 3.2(i)—(ii) hold,;
* (Ban)m = —1gz;
o &, FET = (Bun)rmy o mu(Bun)F in Homg (72 F, Fr}) for all 1-morphisms
F:X—p.
Using the second two of these properties, we get that {,m, = 7,§, in Homg (7‘(’2, )
Hence, each of the morphism categories Homsg (A, ) in a II-2-category is itself a
II-category, with II := m,,— and { := £, —.
(ii) A II-2-functor between two II-2-categories 2 and B is a k-linear 2-functor
R : A — B with its usual coherence maps ¢ and ¢, plus an additional family of
2-isomorphisms j : mry = Ry for each A € ob 2, such that the following commute
(assuming A and B are strict):

/(RM) (R-)
J (R-) \

(R —) R(m, —)
Brpe RA RBu
(R —)mra R(=mx)
(m /

(R —)RT{')\

Iry R1,

A TI-2-functor is strict if its coherence maps ¢,i and j are identities.
(iii) A II-2-natural transformation (X,z) : R = S between two II-2-functors
R,S : 2 — B is a 2-natural transformation as usual, with one additional coherence
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axiom:
7y X, (Bsx,ra) Xy X7y
J'Xxl JXAJ'
(-’ﬂx,x)n
(SW)\)X)\ XA(R'/T)\)

The basic example of a strict II-2-category is II-Cat: objects are Il-categories,
1-morphisms are II-functors, and 2-morphisms are II-natural transformations. We
define the additional data 7, 8 and & so that w4 := II 4 for each Il-category A, and
¢ and 8 come from the natural transformations of Definition 1.6(i)—(ii).

For a 2-supercategory 2, the underlying 2-category 2 is the 2-category with the
same objects as 2, morphism categories that are the underlying categories of the
morphism supercategories in 2, and horizontal composition that is the restriction
of the one in . If (A, 7, () is a (strict) II-2-supercategory, Lemma 3.2 shows how
to define 8 and £ making (2,7, 5,£) into a II-2-category. In particular, starting
from the II-2-supercategory II-G€&€at, we see that [I-&€at is a [1-2-category.

Now we upgrade the functors E; and D; from (5.1)—(5.2) to strict II-2-functors

E; : II-6Cat — 1I-Cat, Dy : [I-Cat — II-G&at. (5.3)

These agree with F; and D; on objects and 1-morphisms. On 2-morphisms, Eq
sends an even supernatural transformation z : F = G to x : F = G defined
from z, := x, which is a IT-natural transformation thanks to Corollary 3.3(iii).
In the other direction, D; sends a IT-natural transformation y : F = G to ¢ :
F = G defined from Yx ‘= yx. In order to check that g is an even supernatural
transformation, the subtle point is to show that g, o ﬁf = @f o gy for an odd
morphism f : A — p coming from f: X — Il4p in A, ie. Ilgy, o (BF)/;1 oFf =
(ﬂg);l o Gf oyy. This follows from the property Bg o llgy = yll4 o Bp from
Definition 1.6(iii), plus the fact that yn,, o F'f = Gf o yx by the naturality of
y. The following strengthens Lemma 5.1 by taking natural transformations into
account:

Theorem 5.3. The strict II-2-functors Dy and Ey from (5.3) give mutually inverse
II-2-equivalences between I1-Cat and 11-&S&at.

Proof. We have that E;0D; = I_¢q¢. Conversely, we show that D;0lE; is isomorphic
(not merely equivalent!) to I;;geq¢ in the 2-category II-&€at by producing a II-2-
natural isomorphism

(T, t) : Dl o El :N> HH_M.

Thus, we need to supply supercategory isomorphisms T4 : @ 5 A and even
supernatural isomorphisms (tg . 4)r : T(F) = FT4 for all Il-supercategories and
superfunctors F' : A — B. The isomorphisms T4 have already been defined in the
progf\ of Lemma 5.1. Also, in the last paragraph of that proof, we observed that
Tg(F) = FT 4. So we can simply take each ({5 4)r to be the identity. To see that
3,4 is natural, one needs to observe that 74 = Tp(z) for all even supernatural
isomorphisms = : F = G. The only other non-trivial check required is for the
coherence axiom of Definition 5.2(iii). For this, we must show that (ﬂA’@)TA is
the identity for each II-supercategory A. This amounts to checking that the natural
transformations (47T 4 and TAC(’A\) are equal. By definition, on an object A, C(/A\)

is the odd morphism gy, : TL4\ — X in (/A\) associated to the identity morphism
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11 ,. Hence, according to the definition from the first paragraph of the proof of
Lemma 5.1, (TAQ@)X =Talm,x = (Ca)r = (CaTA)x, as required. O

Recall that I1-2-SCat is the category of II-2-supercategories and 2-superfunctors.
Also let TI-2-Cat denote the category of II-2-categories and II-2-functors. There is
a functor

Ey : 1I-2-SCat — 11-2-Cat, &, m ) — 75,8, Re—R (5.4)

We’ve already defined the effect of this on II-2-supercategories. On a 2-superfunctor
R : 2 — B, we define R to be the same function as R on objects and the underlying
functor to R on morphism categories. The coherence maps ¢ and i restrict in an
obvious way to give coherence maps for R. We also need the additional coherence
map j : gy = Ry, which is defined so that the following diagram commutes:

J
TR — Rﬂ')\

le l]RCA :

]]-R/\ *Z> R]].)\

Now one has to check that the two axioms from Definition 5.2(ii) are satisfied. The
first of these is a consequence of the second two diagrams from Definition 2.2(ii)
plus the definition of 5. For the second one, we have by the super interchange law
that

(RGV)(REN)) 0 jij = ((REx) © 3)((RGx) 0 7) = (i 0 Cra) (i © Cra) = it © (CraCRA)-

Also, by the naturality of ¢, we have that R({\(x) o ¢ = co ((R¢y)(R¢y)). Putting
these together gives R(¢x(y) o cojj = coiio (CraCra), and the conclusion follows
easily.

In the other direction, we define a functor

Dy : I1-2-Cat — 11-2-8Cat, (A, B3,&) — (A, 7,¢), R—>R  (55)

as follows. The 2-supercategory 2 has the same objects as 2. Its morphism su-
percategories Homg (A, p) arise as associated Il-supercategories to the morphism
categories Homg (A, 1). Thus the 1-morphisms in 2 are the same as in 2, while
for 1-morphisms F,G : A — p we have that Homg(F,G)y := Homg(F,G) and
Homg (F, G)7 := Homg(F,7,G). To describe horizontal and vertical composition
in §l, we assume to simplify the exposition that 2 is strict. Then vertical composi-
tion in 2 is induced by that of 2 (using £ when composing two odd 2-morphisms).
Horizontal composition of 1-morphisms in 2 is the same as in 2A; the horizontal
composition gz of homogeneous 2-morphisms & : F = H and y : G = K for
FH:\N—pand G,K : p— vin 2A is defined as follows:

e if they are both even, so & = x and § = y for morphisms z : F' = H and
y: G = K in 2, we define §Z to be the horizontal composition yz : GF =
KH in %,

o iffisevenandgyisodd,soz =zandgy =yforz: F = Handy: G = 7, K
in 2, we let g2 be the horizontal composition yz : GF' = 7, KH in 2 viewed
as an odd 2-morphism GF = KH in QAl;

e if § is even and £ is odd, so § = y and £ = z for v : F' = 7, H and
y:G = K, we let g2 be ([3,71L)I_(1Hoy:z :GF = Kn,H = 7, KH,;

e if both areodd,so 2 =z andg=yforz: F=n,Handy: G = 7, K, we
let 9@ be —&, KH o7, (By ) Hoyr : GF = n,Kn,H = n2KH = KH.
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We leave it as an instructive exercise for the reader to check the super interchange
law using the axioms from Definition 5.2(i); see also [EL, (2.44)-(2.45)] for helpful
pictures. To make 2 into a II-2-supercategory, we already have the required data
m = (my), and we get ¢ = (¢)) by defining { : 7\ = 1, to be 1, viewed as an odd
2-isomorphism in 2.

To complete the definition of Dy, we still need to define the 2-superfunctor
R:2A— B given a II-2-functor R : 2 — 8. For simplicity, we assume that 2
and B are strict. Then R is the same as R on objects and 1-morphisms. On an
even 2-morphism z : F = G, coming from x : F = G in A, we let R# be the even
2-morphism associated to Rz : RFF = RG. On an odd 2-morphism % : F = G,
coming from z : F' = 7,G, we let R be the odd 2-morphism associated to the
composition j7H(RG) o ¢t o Rz : RF = R(1,G) = (R7,)(RG) = 7g,(RG). We
take the coherence maps ¢ and ¢ for R that are defined by the same data as ¢ and
i for R. As usual, there are various checks to be made:

e To see that R is a well-defined functor on morphism supercategories, one
needs to check that R(§od) = RjoRé for 2 : F = G,§: G = H and
F.,G,H : A\ — p. This is immediate if & is even. If & is odd, it comes
from some 2-morphism z : F' = 7,G in . Suppose § is even, coming from
y: G = H in 2. Then we need to show that

FTHRH) ot o R(muy) o Rz = g, (Ry) 0 5 H(RG) o ™! o Ra.

This follows by the commutativity of the following hexagon of 2-morphisms
in B:

(Rmr,)(RG)
TR (RG) R(TF#G)
TRy (Ry)J( (Rrry.) (Ry) J{R(“uy) :
me (RH) R(W/LH)

jm /

(R, ) (RH)

To see this, note the left hand square commutes by the interchange law,

and the right hand square commutes by naturality of c¢. The case that g is

odd, coming from y : G = pu, H, is similar but a little more complicated; ul-

timately, it depends on the second coherence axiom from Definition 5.2(ii).
e To see that ¢ is a supernatural transformation, one needs to check that

(RG)(RF) —— R(GF)
@g)(m)l ﬁwﬁ)
(RK)(RH) —— R(KH)
commutes. We leave this lengthy calculation to the reader, just noting

when Z is odd that it depends also on the first coherence axiom from Defi-
nition 5.2(ii).
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The proof of the next lemma is similar to the proof of Lemma 5.1. Note also that
the remaining part of Theorem 1.15 from the introduction follows from this result
(on restricting to 2-(super)categories with one object).

Lemma 5.4. The functors Do and Es are mutually inverse equivalences between
the categories I11-2-Cat and I1-2-SCat.

Proof. We first observe that Ey o Dy = If1.9.cqs. To show that Ds o Ey & It1o_scat,
we have to define a natural isomorphism T : Dy o Ey = Ito.scar. So for each II-
2-supercategory (2, , (), we need to produce an isomorphism of 2-supercategories
Ty : (A) = 2A. This is the identity on objects and 1-morphisms. On a homogeneous
2-morphism & : F = G between 1-morphisms F,G : A — p in (), we let Ty := x
if £ is even coming from z : F = G in A, or Tyd := (,G o x if £ is odd coming
from z : F = m,G in /. Since Ty is clearly bijective on 2-morphisms, it will
certainly be a 2-isomorphism, but we still need to verify that it is indeed a well-
defined 2-superfunctor, i.e. we need to show that it respects horizontal and vertical
composition of 2-morphisms. In the next paragraph, we go through the details of
this in the most interesting situation when both 2-morphisms are odd (also assuming
2 is strict to simplify notation).

For vertical cg_r\nposition, take F, G, H : A — p and odd 2-morphisms & : F' = G,
g : G = H in () coming from z : F = 7,G, y : G = 7, H in A. The vertical

—

composition g o & in (A) is by definition the composition §,H o m,y o x in A. We
need to show that this is equal to (,H oy o (,G o x:

(uHoyo(,Gox=—-(,Ho(um,Homuyoxr =§,Hom,youw.

For horizontal composition, take F, H : A = 4, G, K : p — v and odd 2-morphisms
z:F = Hy:G= K coming from z : F' = n,H, y: G = 7, K. Recalling that

(,81,7;1);(1 = (, ' K(,, we have that C,,KO(ﬁy,u);(l = K(,, hence gl,KoHl,(ﬁy,u);(l =
¢ K¢, We deduce that

~&KHoIL(B,,) g Hoyr =~ K¢ Hoyx = (K oy)(¢.H o),

establishing that ®(§z) = ®(9)®(z).

To complete the proof we need to check naturality: we have that RTgy = T%@
for each 2-superfunctor R : 2 — B between II-2-supercategories 2l and 6. The
o/rgy tricky point is to see that they are equal on an odd 2-morphism % : F = G in

(2) coming from z : F' = 7, G in 2. For this, one needs to use the last of the unit
axioms from Definition 2.2(ii) plus the definition of j. O

Finally, we upgrade Eo and Ds to strict 2-functors
Ey : [I-2-GCat — I1I-2-Cat, Dy : II-2-Cat — 1I-2-GCat. (5.6)

We take Es to be equal to Fs on objects and 1-morphisms. On 2-morphisms,
E, sends 2-natural transformation (X,z) : R = S to (X,z) : R = S defined by
X, =Xyand z, , := z,,x. To check the coherence axiom from Definition 5.2(iii),
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we need to check that the outside square in the following diagram commutes:

TsAX A (Poma)xs X)TR
w‘(x Xy
1
Ioa Xy —— X, -~ Xolra
3 X5 ixkl lXAi X2j
(S1y)Xx W X (R1y)
%)XA XA(D;Q)\
(SW)\)XA XA(RW)\)

(mx,x)”

This follows because the other five faces commute: the middle square by Defini-
tion 2.2(iii), the left and right squares by definition of j, the top square by definition
of 3, and the bottom square by naturality of = ».

In the other direction, the strict 2-functor D is the same as Dy on objects
and l-morphisms. It sends II-2-natural transformation (Y,y) : R = S to (}7,@) :
R = S defined by EA’,\ =Y, and §, » := yu,n. The content here is to check the
supernaturality of y,, » on an odd 2-morphism & : F' = G, so F, G are 1-morphisms
A — p and 2 is the odd 2-morphism associated to a 2-morphism z : F' = 7,G. We
need to show that (S&)Y o (Uur)F = (Jur)c o ?H(@i), which amounts to checking
the commutativity of the outside of the following diagram:

Y, (RF) War) e (SF)Y;
Vi (ko) | l(swn
(yu,k)ﬂ'ﬂ,G
Y, (R(r,G) (S(r.G))Y
Y, 571l <M

(yu,u)ﬂ'u (RG)
—_—

Y, (R, )(RG) (S7,)Yu(RG) m (Sm,.)(SG)Yx
nj”(RG)l r%(RG)l lj*(sc;m
Y, mr,(RG) TsuYu(RG) ————— m5,(SG)Y)

—
(5S,L,Ru);j (RG) 75 (Yp,A) G

Now we observe that the top square commutes by naturality of y, x; the pentagon
commutes by the first axiom from Definition 2.2(iii) (we are assuming strictness as
usual); the bottom left square commutes by the axiom from Definition 5.2(iii); and
the bottom right square commutes by the interchange law.

Theorem 5.5. The strict 2-functors Dy and Eo are mutually inverse 2-equivalences
between the strict 2-categories 11-2-Cat and 11-2-GC€at.

Proof. This may be deduced from the proof of Lemma 5.4 in a similar way to how
Theorem 5.3 was obtained from the proof of Lemma 5.1. We leave the details to
the reader. O

Corollary 5.6. The 2-supercategories I1-2-GCat and T-2-Cat are 2-superequivalent.

Proof. We've already shown in Theorem 5.3 that E; : Ex(II-&C€at) — II-Cat is a
II-2-equivalence. Now apply Dy and use Theorem 5.5. (]

Remark 5.7. Like in Remark 4.10, one can go a level higher: the strict 3-category
of II-2-categories, II-2-functors, I1-2-natural transformations and modifications is



MONOIDAL SUPERCATEGORIES 31

3-equivalent to the strict 3-category of II-2-supercategories, 2-superfunctors, 2-
natural transformations and even supermodifications. In particular, this asser-
tion implies that the monoidal category underlying the Drinfeld center of a II-2-
supercategory 2 is monoidally equivalent to the Drinfeld center of 2I.

6. GRADINGS

In the final section, we explain how to incorporate an additional Z-grading. Since
this is all is very similar to the theory so far (and there are no additional issues with
signs!), we will be quite brief, introducing suitable language but leaving detailed
proofs to the reader. We continue to assume that k is a commutative ground ring®,
so a superspace means a Z/2-graded k-module as before.

By a graded superspace we mean a Z-graded superspace

V>::€}9‘CL:ZGE)v%Iigavhj'
neZ nez
We stress that the Z- and Z/2-gradings on a graded superspace are independent
of each other. We denote the degree n of v € V,, also by deg(v). Let GSVec be
the category of graded superspaces and degree-preserving even linear maps, i.e. k-
module homomorphisms f : V' — W such that f(V, ,) € W, , for each n € Z and
p € Z/2. This is a symmetric monoidal category with (V@W),, = @ V., @Ws,
and the same braiding as in SVec.

r4+s=n

Definition 6.1. By a graded supercategory we mean a category enriched in GSVec.
A graded superfunctor between graded supercategories is a superfunctor that pre-
serves degrees of morphisms. A supernatural transformation x : F = G be-
tween graded superfunctors F' and G is said to be homogeneous of degree n if
x) : FA — G is of degree n for all objects A\. Let Hom(F, G),, denote the super-
space of all homogeneous supernatural transformations of degree n. Then a graded
supernatural transformation from F to G is an element of the graded superspace
Hom(F,G) := 6, ., Hom(F, G),.

neZ

If A is a graded supercategory, the underlying category A is the k-linear category
with the same objects as A but only the even morphisms of degree zero. Here are
some basic examples of graded supercategories:

e Any graded superalgebra A = @, ., An = D, ¢z An,0D A, 1 can be viewed
as a graded supercategory with one object.

e For graded superalgebras A and B, let A-GSMod-B denote the graded su-
percategory of graded (A, B)-superbimodules V = @, ., Vo = B,z Voo ©
V,..i- Morphisms are defined from Hom(V, W) := @, ., Hom(V, W),, where
Hom(V, W),, consists of all (A4, B)-superbimodule homomorphisms f : V —
W that are homogeneous of degree n, i.e. f(Vy,) C Wiy for all m € Z.

e Taking A = B =kn (ii), we get the graded supercategory GSVec of graded
superspaces. The underlying category is GSVec as defined above.

e For graded supercategories A, B, the graded supercategory Hom(A, B) con-
sists of all graded superfunctors and graded supernatural transformations.

Let GSCat be the category of all graded supercategories and graded superfunc-
tors. We make GSCat into a monoidal category with tensor product operation
— X — defined in just the same way as was explained after Example 1.2 in the
introduction.

6Actually, everything prior to Definition 6.12 makes sense more generally working over a graded
commutative superalgebra k = @, cykn = B,z Kk, 0 Dk, 1
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Definition 6.2. A strict graded 2-supercategory is a category enriched in GSCat,
i.e. it is a 2-supercategory with an additional grading on 2-morphisms which is
respected by both horizontal and vertical composition.

The basic example of a strict graded 2-supercategory is ®S€at: graded supercat-
egories, graded superfunctors and graded supernatural transformations. There is
also the “weak” notion of graded 2-supercategory, which is the obvious graded ana-
log of Definition 2.2(i). For example, there is a graded 2-supercategory &S&Bim of
graded superbimodules, which has objects that are graded superalgebras, the mor-
phism supercategories are defined from Homesmsim(A, B) := B-GSMod-A, and
horizontal composition is defined by tensor product.

Here is the graded analog of Definition 2.2(ii):

Definition 6.3. For graded 2-supercategories 2 and B, a graded 2-superfunctor
R : 2 — B consists of:

e A function R : ob2l — obB.
Graded superfunctors R : Homg (A, ) — Homss (R, Rpu) for A, pu € ob 2.
Homogeneous graded supernatural isomorphisms ¢ : (R—) (R—) = R(— —)
that are even of degree zero.
e Homogeneous 2-isomorphisms i : Igy = R1, that are even of degree zero

for all A € ob2L.

This data should satisfy the same axioms as in Definition 2.2(ii).

We leave it to the reader to formulate the graded versions of Definition 2.2(iii)
(2-natural transformations between graded 2-superfunctors) and Definition 2.2(iv)
(graded supermodifications).

The next two definitions give the graded analogs of Definitions 1.7 and 3.1.

Definition 6.4. A graded (Q,II)-supercategory is a graded supercategory A plus
the extra data of graded superfunctors Q,Q',II : A — A, an odd supernatural
isomorphism ¢ : II = T that is homogeneous of degree 0, and even supernatural
isomorphisms ¢ : Q@ = I and & : Q~! = I that are homogeneous of degrees
—1 and 1, respectively. Note that 1 := 6o : Q7'1Q = I, 1:= 05 : QQ™' = T
and £ := (¢ : 11> = T are even isomorphisms of degree zero, so that Q and
Q! are mutually inverse graded superequivalences, and II is a self-inverse graded
superequivalence.

For example, for graded superalgebras A and B, we can view A-GSMod-B as
a graded (Q,II)-supercategory by defining IT and ¢ as in Example 1.8, and letting
Q,Q7 "' : A-GSMod-B — A-GSMod-B be the upward and downward grading shift
functors, i.e. (QV),, := Vi1, (Q71V), := V,,11. We take 0,5 to be induced by the
identity function on the underlying sets.
Definition 6.5. A graded (Q,II)-2-supercategory is a graded 2-supercategory 2
plus families ¢ = (gx : A = A, ¢! = (¢5' : A = N and 7 = (my : A = )
of 1-morphisms, and families 0 = (o) : g» = 1,),6 = (6) : ¢ = 1,) and
¢ = (¢ : ™A = 1)) of 2-isomorphisms which are even, even and odd of degrees —1,
1 and 0, respectively.

For example, there is a graded (@, II)-2-supercategory (Q,I1)-&G&SCat consisting
of all graded (@, IT)-supercategories, graded superfunctors and graded supernatural
transformations.

Lemma 6.6. Let 2 be a graded (Q,1I1)-2-supercategory, which we assume is strict
for simplicity.
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(1) There are families B = (Bux : Tu— = —m») of even supernatural isomor-
phisms of degree zero and & = (£ : 73 = 1)) of even 2-isomorphisms
of degree zero defined as in Lemma 3.2. They satisfy the properties from
Definition 5.2(i).

(ii) There is a family v = (Yux : qu— = —q») of even supernatural isomor-
phisms of degree zero defined from (y,\)p = O'#FO';1 for a 1-morphism
F: X — p. The pair (q,7) is an invertible object of the Drinfeld center of
A with (1an)ay = Lz and (M), = (Ban)g, -

(iii) There are even 2-isomorphisms of degree zero 1y := Ga0x : qglq,\ = 1,
and Jy 1= Ox\O : qu)Tl = 1. Moreover qxiy = 7qx and qu)fl = qglh m
Homm(qkqxlqA,qA) and Homm(qglqkqgl,qgl), respectively.

Proof. Similar arguments to those in the proof of Lemma 3.2. (]

Corollary 6.7. Let A and A’ be graded (Q,II)-supercategories.

(i) There are even supernatural isomorphisms of degree zero & = (¢ : 112 = 1,
1:=00:Q7'Q =1 and j) := 05 : QQ~' = I. Moreover, we have that
EIl =TI¢, and v and 7 define the unit and counit of an adjunction making
(Q,Q71) into an adjoint pair of auto-equivalences of A.

(ii) Suppose that F : A — A’ is a graded superfunctor. There are even su-
pernatural isomorphisms of degree zero Bp := —C'F¢™' : II'F = FII and
vr = d'Fo~ ! 1 Q'F 5 FQ, with ¢ F¢' = Bpll o I'Br as in Corol-
lary 3.3(i1). Also vy = ﬁél.

(iii) Suppose that x : F = G is a graded supernatural transformation. Then
Bgoll'z = zllo B as in Corollary 3.3(iii). Similarly, y¢ o Q'z = 2Qov¢.

(iv) We have that Bgr = GBFr o BgF,Br = 1n and Bn = —1mz as in Corol-
lary 3.3(iv). Similarly, yar = Gyr ovaF,v1 = 1g and vg = 1g2.

Proof. Everything follows by applying Lemma 6.6 to the (Q,II)-2-supercategory
(Q,1)-&&Cat. In particular, the assertion in (i) that 17! and j are the unit and
counit of an adjunction means that Q171 0jQ : Q = QQ'Q = Q and 17'Q ' o
Q7 :Q7'=Q'QQ ! = Q! are identities; this follows because Q1 = jQ and
QL= Q). 0

The analog of Definition 1.10 in the presence of a grading is as follows.

Definition 6.8. The (Q,II)-envelope of a graded supercategory A is the graded
(@, II)-supercategory A, » with objects {Q™II*A | X € ob A,m € Z,a € Z/2} and

Hom 4,  (Q™II*\, Q"II°w) := Q" ™II*"* Hom 4 (\, ),

where @ and II on the right hand side are the (invertible) grading and parity shift
functors on GSVec. We denote the morphism Q™II%\ — Q"II°x coming from a
homogeneous f : A — p under this identification by ,’}l% Composition in Ay -
is defined by g, o l’?;’b = (g o f)y- The parity-switching functor IT and ¢
are defined as in Definition 1.10. The degree shift functors Q,Q~' are given by
Q(Q™II)) == QMHLII ), Q=1 (Q™II*)) := Q™ !1I), and 0, & are induced by the

identity morphism in A.

In an analogous way to (4.1), Definition 6.8 may be extended to produce a strict
graded 2-superfunctor

— o 1 66Cat — (Q,11)-6&Cat. (6.1)
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There is a canonical graded superfunctor J : A — A, . which satisfies a universal
property similar to Lemma 4.2. Also J is a graded superequivalence if and only
if Ais (Q,II)-complete, meaning that every object A of A is the target of even
isomorphisms of degrees +1 and the target of an odd isomorphism of degree 0; cf.
Lemma 4.1. The analog of Theorem 4.3 is as follows:

Theorem 6.9. For all graded supercategories A and graded (Q,II)-supercategories
B, there is a functorial graded superequivalence Hom(A,vB) — Hom(Aq =, B),
where v : (Q,11)-B&Cat — &SCat denotes the obuvious forgetful 2-superfunctor.
Hence, the strict graded 2-superfunctor —q » is left 2-adjoint to v.

Moving on to 2-categories, here is the graded analog of Definition 4.4:

Definition 6.10. The (Q, IT)-envelope of a graded 2-supercategory 2 is the (@, IT)-
2-supercategory 2, » with the same object set as 20 and morphism supercategories
that are the (@, II)-envelopes of the graded morphism supercategories in 2. Thus,
the set of 1-morphisms A — p in 24, is

{QMII*F | for all 1-morphisms F': A — p in A, m € Z and a € Z/2}.
The graded superspace of 2-morphisms Q™II*F = Q"II*G in Ay~ is defined from
Homy,  (QMII*F,Q"II’G) := Q" "I1*"" Homy (F, G).

We denote the 2-morphism Q™II°F = Q"II’G coming from a homogeneous 2-

morphism z : F' = G in 2 under this identification by xﬁ;f’a. In the strict case, one

n,b
m,a

might represent x:° diagrammatically by

G
n b
n § P
m F a
This is of parity |z|+a+ b and degree deg(x) +n —m (where |z| and deg(z) denote
the parity and degree of = in 2(). Vertical composition is defined from
n,c m,b n,c
ym,b o xl,a = (y © m)l,a
Horizontal composition of 1-morphisms is defined by
(QngG) (QnLHaF) = Q7n+nHa+b(GF)
and 2-morphisms by

k+l,c+d

Ld ke . b bet-ab
¢ = (-1) |z|+|y|ct+beta (yx)m+n,a+b'

ymbxm,a :

Finally, ¢,¢~ ' and 7 are given by ¢\ := Qll'[()]l)\,q;l = QL and 7y =

QOII'1; the 2-morphisms 0,5y and £y are induced by 1;,.

Again, there is a canonical strict 2-superfunctor J : 2A — 2, », which is a graded
2-superequivalence if and only if 2[ is (Q, IT)-complete, meaning that for each \ €
ob 2 it possesses 1-morphisms ¢= : A — X and 7w, : A — ), and homogeneous
2-isomorphisms ¢ = 1, that are even of degrees F1, and 7y = 1, that is odd of
degree 0. Like in (4.5), one can extend Definition 6.10 to obtain a strict 2-functor

—gr  2-66Cat — (Q,1I)-2-B6Cat. (6.2)
The analog of Lemma 4.7 is as follows.

Lemma 6.11. Suppose 2 is a graded 2-supercategory and B is a graded (Q),II)-2-
supercategory.



MONOIDAL SUPERCATEGORIES 35

(i) Given a graded 2-superfunctor R : 2 — B, there is a canonical graded
2-superfunctor R : Agx — B such that R = RJ.

(ii) Given a 2-natural transformation (X, x) : R = S for graded 2-superfunctors
R,S : A — B, there is a unique 2-natural transformation (X, ) R =S
such that X\ = X and Tpr = Tuad for all A, pn € ob .

Proof. Since this is similar to the proof of Lemma 4.7, we just go briefly through the
definition of R in (i) (assuming that B is strict). On objects, we take RX := RA. For
A€obB, let (F: 7§ = 1, be defined as in the proof of Lemma 4.7. Also for m € Z
let o : gi* = 1y be (02)™ : (@)™ = 1y if m > 0 or (63)7™ : (g3")™™ S 1A
if m < 0. Then, for a l-morphism F : A\ —» pin A, m € Z and a € Z/2,
we set R(QMIIF) := q;, Tk, (RE). Also, if 2 : ' = G is a 2-morphism in A
for F,G : X\ — p, we define R(z™%%) : R(II*F) = R(II’G) to be the following
composition: 7

R (RE) (08,68,) " (RG)

qﬁhwﬁu(RF) RF RG —— qﬁ#ﬂfg#(RG).
We also need coherence maps 7 and ¢ for R, which are defined like in the proof of
Lemma 4.7. In particular, ¢gnipg,gmier is the following composition:

qﬁvﬁﬂiu(RG)qﬁLﬂﬂiu(RF) — Qﬁquuﬂ]%uwﬁu(RG) (RF) — q]}?ujLnW]I%jbR(GF)?

where the first map is defined using the supernatural isomorphisms 8 and ~ from
Lemma 6.6(i)—(ii), and the second map is defined by collapsing powers of gg, using
the 2-isomorphisms from Lemma 6.6(iii), collapsing mg, g, using —¢, and also using
the given coherence map cg r : (RG)(RF) = R(GF). O

Rz

Using Lemma 6.11, one gets also the analog of Theorem 4.9: the functor —, -
from (6.2) is left 2-adjoint to the forgetful functor.

Next, we explain the graded analogs of Definitions 1.6 and 5.2, and extend the
results of Section 5. The following is an efficient formulation of the general notion
of a strict action of the group Z ® Z/2 on a k-linear category.

Definition 6.12. (i) A (Q,II)-category is a k-linear category A equipped with the
following additional data: an endofunctor IT : A — A and a natural isomorphism
€ : 112 = I such that ¢I1 = TI€ in Hom (113, IT); endofunctors Q, Q' : A — A and
natural isomorphisms 1: Q7'Q = I, : QQ ™' = I so that 17! and j define a unit
and a counit making (Q, Q') into an adjoint pair of auto-equivalences; a natural
isomorphism SBg : I1Q = QII such that £Q¢~1 = Bl o 13 in Hom(I12Q, QT1?).

(ii) Given (Q,II)-categories A and A’, a (Q,II)-functor FF : A — A’ is a k-
linear functor with the additional data of natural isomorphisms fSr : II'F = FII
and vr : Q'F = FQ such that ¢'F¢~1 = Bpll o IU'Br in Hom((IU')?F, F1I2?). For
example, I, IT and @ are (Q, IT)-functors with 87 := 1y, B := —1m2, B as specified
in (i), vr == 1o,y := Bél and vq = 1g2.

(iii) Given (Q,II)-functors F,G : A — A’, a (Q,I)-natural transformation is a
natural transformation z : F' = G such that zIlo fp = Bg o Il'z and 2Q o yp =
VG 0 Q'x.

There is a 2-category (Q, II)-Cat consisting of (Q, IT)-categories, (@, IT)-functors
and (@, II)-natural transformations. We want to compare this to (Q,II)-8&Cat,
the 2-category of graded (@, II)-supercategories, graded superfunctors and homo-
geneous even supernatural transformations of degree zero. Like in (5.3), there is a

strict 2-functor
E: (Q,T)-6&¢at — (Q, TT)-Cat (6.3)
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sending a graded (@, IT)-supercategory A to the underlying category A, which is a
(Q, II)-category thanks to Corollary 6.7(i). It sends a graded superfunctor F' : A —
B to the restriction F : A — B, made into a (Q, II)-functor as in Corollary 6.7(ii).
It sends a homogeneous graded supernatural transformation z : F' = G of degree
zero to x : F = G defined from z, := z, which is a (@, II)-natural transformation
thanks to Corollary 6.7(iii).

Theorem 6.13. The 2-functor E from (6.3) is a 2-equivalence of 2-categories.

Theorem 6.13 is proved in a similar way to Theorem 5.3. The key point of course
is to define the appropriate strict 2-functor D in the opposite direction. We just go
briefly through the definition of this, since there are a few subtleties. So let A be
a (Q,II)-category. Let Q" := Q- --Q (n times) if n > 0or Q=1 ---Q~! (—n times)
if n < 0. Given any composition C' of r of the functors @ and s of the functors
Q™! (in any order), there is an isomorphism c : C' = Q" ~* defined by repeatedly
applying 1 and j to cancel Q' Q- or QQ~!-pairs. The isomorphism c is independent
of the particular order chosen for these cancellations. In particular, we obtain in
this way a canonical isomorphism ¢, , : QmQ™ = Q™™™ for any m,n € Z, and
deduce that

Clym+n © Qlcm,n = Cl4+m,n © Cl,an (64)
in Hom(Q'Q™Q", Q'*™+"). Next, let F' : A — A’ be a (Q, II)-functor between two
(Q, I)-categories. For each n € Z, we define an isomorphism 7% : (Q')"F = FQ"
as follows: set 'y% := 1p; then for n > 1 recursively define

Vi = VQo (@) M,
V"= E "7 o (@) QT o ()T (v TR T o () T YT
One can show that
V0 F = Femn o 7E(Q") 0 (Q) (6.5)
in Hom((Q")™(Q")"F, FQ™*"). In particular, taking F :=IT : A — A, this gives
us an isomorphism 4% : Q"I = TQ"; let Bor  1IQ™ = Q"I be its inverse. This

together with yg» := c;’ll ocin : QR™ S QmQ makes Q™ into a (Q, IT)-functor, i.e.
we have that

Q" = Q"¢ 0 fgnIlo Mfgn. (6.6)

‘We note also that

Cmnll o Bgmen = Q™ Bgn 0 omQ™ o Ilcy, p. (6.7)

Now, for a (@, II)-category A, we are ready to define the associated graded (Q,II)-
supercateqory A. It has the same objects as A, and morphisms Hom z(, tt)m,a :=
Hom 4 (A, Q™II%u). The composition § o f of f,§ coming from f: A\ — Q™% g :
p — Q"TIPv, respectively, is obtained from (Q™II%)o f : A — QMII*Q™I1v by first
using Bgn» to commute Q" past I1* if necessary, then using ¢ and ¢, , to simplify
Q™Q™MII Y to QmT"I1%+by. The check that this is associative uses (6.4), (6.6)—
(6.7) and the identity (11 = TIE. For a (Q,II)-functor F' : A — A, we get P
A A by composing F'f : FA — FQ™II®u with the map FQ™II%u — Q™MII*Fpu
obtained using S8p and «%. The check that F(go f) = (Fg)o (Ff) uses (6.5). In
particular, since IT, @ and Q~! are all (Q,II)-functors, this gives us the functors
ﬁ, @ and @_1 needed to make C into a graded (@, IT)-supercategory.
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Definition 6.14. A (Q,II)-2-category is a k-linear 2-category 2 plus families 7 =
(mx: A = A),qg=(gr: A — A and ¢ = (g ' : A = A) of I-morphisms, families
B = (Bux:mu— = —m\) and v = (Y : qu— = —qx) of natural isomorphisms,
and families € = (&, : 72 S 1)), 1= (1n: gy 'qn = 1) and j = (Jy : qagy - = 1)
of 2-isomorphisms, such that the following hold (assuming strictness):

(i) (m,B) and (g,7) are objects in the Drinfeld center of 2;

(i) (Baa)my = —Lez, (Iad)gr = 1gz and (an)my = ((Ban)g)

(ili) &uFE" = (Bux)rma o Tu(Bux)r for all 1-morphisms F @ X — p;

(iv) @ = 1aax and gyt = g 'y

The story here continues just as it did for II-2-supercategories and II-2-categories.
For a graded (Q,II)-2-supercategory 2, its underlying 2-category 2L, consisting of
the same objects and 1-morphisms but just the even 2-morphisms of degree zero, is
a (Q,II)-2-category. Conversely, for a (Q,II)-2-category 2, there is a construction
of its associated graded (Q,1I1)-2-supercategory §l, which we leave to the reader.
The constructions A — 2 and A +— 2 are mutual inverses (up to isomorphism), so
that (Q, II)-2-categories and graded (Q, II)-2-supercategories are equivalent notions.
Again, we leave it to the reader to formalize this statement by writing down the
appropriate analog of Theorem 5.5.

Finally, we discuss Grothendieck groups/rings in the graded setting:

e For a graded supercategory A, let GSKar(A) denote Kar(A, ), that is,
the additive Karoubi envelope of the underlying category to the (Q,II)-
envelope of A. This is a (Q,II)-category that is additive and idempotent
complete. Its Grothendieck group Ko(GSKar(A)) is a Z™[q, ¢~ !]-module
with 7 acting as [IT] and ¢ acting as [Q].

e For a graded 2-supercategory 2, let GSKar(®) := Kar(2l, ) denote the
additive Karoubi envelope of the (@, IT)-2-category underlying the (Q,II)-
envelope of 2. It is an additive, idempotent complete (Q,II)-2-category.
Its Grothendieck ring Ko(GSKar(2()) is naturally a locally unital ring with
a disinguished system of mutually orthogonal idempotents {15 | A € ob2(}.
Moreover this ring is actually a Z™[q, ¢~ ']-algebra with 7 and ¢ acting on
1,Ko(GSKar(2())1, by left multiplication by [7,] and [g,] (equivalently,
right multiplication by [7y] and [g,]), respectively.

This construction will be used in particular in [BE] in order to pass from the Kac-
Moody 2-supercategory U(g) introduced there to the modified integral form of the
corresponding covering quantum group U, (g) as in [C].

APPENDIX A. ODD TEMPERLEY-LIEB

In this appendix, we prove Theorem 1.18. Throughout we let ¢ := —1. If instead
one takes € := +1 and works in the purely even setting, replacing the quantum
superalgebra Uq(05p1|2) with the quantum algebra Uq(5[2), the arguments below
may be used to recover the classical result for the Temperley-Lieb category T L(J).
We assume some familiarity with the combinatorics from that story; e.g. see [W].

Let k be a field of characteristic different from 2, and ¢ € k* be a scalar that

is not a root of unity. For any n € Z, let [n] denote L=C2U "  For n € N,

q—eq~?!
the element [n] is the same as [n]q. from (1.10), and [-n] = —"[n]. Also set
§:=—[2] = —(g¢ +eq7!). Recall that STL(J) is the strict monoidal supercategory

with one generating object - and two odd generating morphisms \_J and /7, subject
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to the following relations:

N Iz‘, | N ==
U U |

We denote the n-fold tensor product of the generating object - by n and its identity
endomorphism by e,.

Using the string calculus, any crossingless matching connecting m points on
the bottom boundary and n points on the top boundary can be interpreted as
a morphism m — n in STL(S). In view of the super interchange law, isotopic
crossingless matchings produce the same morphism up to a sign. Moreover, to get
a spanning set for Homgy,(5)(m, n), one just has to pick a system of representatives
for the isotopy classes of crossingless matchings. Our first claim is that any such
spanning set is actually a basis for Homgy,(s)(m,n). For example, this assertion
implies that Homg7,(5)(3,3) is of dimension 5 (the third Catalan number) with

basis
AR s A T

M

To prove it, we construct an explicit representation of ST L(d).

M =6
' /

Lemma A.1. Let V be the vector superspace on basis vi,v_1, where vy is even
and v_y is odd. There is a monoidal superfunctor G : STL(5) — SVec with
G(n) =V®" and

G(kj):]k—>V®V, l—v_1®v —qu Qu_q;
G([\):V@V—Hk, v1 @ vg +— 0, v Q@u_1+—1,
V-1 QU — —sq_l, v_1 ®uv_1— 0.
Proof. Check the three relations. O

Theorem A.2. Any set of representatives for the isotopy classes of crossingless
matchings from m points to n points defines a basis for Homgys5)(m,n).

Proof. We just need to prove linear independence. There is a linear map
Homs7r(5)(m,n) — Homgrr(s)(m +n,0),  f=cpo(f®en),

where ¢,, € Homg7(s)(2n,0) is the morphism defined by n nested caps. Using this,
one reduces to proving the result in the special case that m is even and n = 0, i.e.
our crossingless matchings consist of m/2 caps. Let S be a set of representatives
for such matchings. For s € S, let 6, : V™ — k be the linear map obtained
by applying the monoidal superfunctor G from Lemma A.l to the morphism in
STL(S) that is defined by s. It suffices to show that the linear maps {0; | s € S}
are linearly independent.

By writing +1 underneath the left hand vertex and —1 underneath the right
hand vertex of each cap of s € S then reading off the resulting sequence, we obtain
a function from S to the set of Dyck sequences (s1,...,Sm) with s1,..., 8, € {£1}
and s1+---+ s, > 0 for each k =1,...,m. As s can be recovered uniquely (up to
isotopy) from its Dyck sequence, the vectors {vs := vy, ®- - -Qus, € VO™ |s € S} are
linearly independent. Finally, we observe that 0,(vs) = £1 and 64(v¢) = 0 unless
t < s, where < is the partial order defined by s < t if and only if the corresponding
Dyck sequences satisfy s; + -+ + s < t; + -+t for each k = 1,...,m. The
required linear independence follows. O

Now we can prove Theorem 1.18:
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Theorem A.3. For § as above, SKar(ST L(d)) is a semisimple Abelian category.
Moreover, as a based ring, Ko(SKar(STL(0))) is isomorphic to the subring of
Z" [z, 2~ 1] with basis {[n + g,z 7[n+ 1zx | n € N}.

Proof. We begin by defining super analogs of the Jones- Wenzl projectors

fn= € Endsyr(s)(n)-

These are defined recursively by setting fy := 1 and

Clearly, f, is equal to e, plus a linear combination of diagrams with at least one
cup and cap. Hence, using Theorem A.2, f,, is non-zero. By (1.11), we have that
[n][2] = [n + 1] + €[n — 1]. Using this, an easy but crucial inductive calculation

shows that
rag)- -,

and each f, is an idempotent. Moreover, one gets zero if one vertically composes
fn on top (resp. bottom) with any diagram involving a cap (resp. a cup).

To prove the semisimplicity, we find it convenient to replace the supercategory
ST L(4) with the superalgebra

A= @ Homgs7r(5)(m, 1),

m,neN

whose multiplication is induced by composition in ST L(d). Note that A is a locally
unital superalgebra with distinguished idempotents {e, | n € N}. Moreover, it is
locally finite dimensional in the sense that each e, Ae,, is a finite-dimensional super-
space. Consider the II-supercategory SMod-A consisting of right A-supermodules
V' which are themselves locally unital in the sense that V' = €, .y Ve,. Like in
Example 1.17(i), there is an equivalence between SKar(ST £(d)) and the full subcat-
egory of SMod-A consisting of all finitely generated projective supermodules. Thus,
we are reduced to working in SMod-A. Let P(n) := f, A, which is a projective su-
permodule. Let L be any irreducible A-supermodule. Let n € N be minimal such
that Le,, # 0. The minimality of n ensures that any basis element of A with a cup in
its diagram acts as zero on Le,,. We deduce that Hom 4 (P(n), L) = Lf, = Le,, # 0,
demonstrating that L is a quotient of P(n) or IIP(n). Moreover, End4(P(n)) =
fnAfn 2k, so P(n) is indecomposable; equivalently, f,, is a primitive idempotent.
Also for m # n, we have that Hom4(P(m), P(n)) = fnAfm = 0. These observa-
tions together imply that every A-supermodule is completely reducible, and each
irreducible A-supermodule is evenly isomorphic to a unique one of the supermodules
{P(n),IIP(n) | n € N}, which are themselves irreducible.

The previous paragraph implies that SKar(STL£(d)) is a semisimple Abelian
category. Moreover, we get a basis for Ko(SKar(STL(J))) by taking the iso-
morphism classes in SKar(STL(0)) corresponding to the primitive idempotents
{(f)3, (fu)l ‘ n € N}. Thus, we can identify Ko(SKar(STL())) with the ring in
the statement of the theorem using the correspondence ( fn)g < [n+ 1]z~ and
(fn)3 <> w[n+1]4 x. To complete the proof of the theorem, it remains to check that
the ring structures agree. Since [n]y 2]z, = [0+ 1yx + 7[n — 1]z~ by (1.11), we
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must show that the idempotents (f,—1)3® (f1)3 and (f,)3 + (fn—2)} are equivalent
0 0
0

for each n > 2. We have that (f,—1)3® (1) = (fo-1® 1) = (f2)3 + (9n)J where

Using the properties from the first paragraph of the proof, we have that g,0g, = gn

and g, o fr, = fnogn =0, so (fn)g and (gn)g are orthogonal idempotents. It just
remains to observe that

R ‘[n[ﬁ 1] T

are odd morphisms in S_TL(J) such that u, o v, = g, and v, o u, = f,_2. Hence,
we get that (v,) 0 (gn)§ © (un)? = (fn—2)7, i.e. (gn)g is equivalent to (fn—2)} in
SKar(STL(6)), as required. O

To explain what is really going on here, assume finally that the ground field
k is of characteristic zero. Let U = Uq(osp1|2) be the locally unital superalgebra
with homogeneous distinguished idempotents {1,, | n € Z} and odd generators
E, €1,4:2U1, and F,, € 1,,_5U1,, subject to the relations

En72Fn - EFn+2En == [n]ln

This is the idempotented form of the quantum supergroup Uq(05p1‘2) introduced in
[CW]”. Let C be the II-supercategory of all finite-dimensional left U-supermodules
V' which are locally unital in the sense that V = &, ., 1,V. By [CW], the under-
lying IT-category C is a semisimple Abelian category, and a complete set of pairwise
inequivalent irreducible objects is given by {V (n),IIV (n)|n € N}, where V(n) is de-
fined as follows. It has a homogeneous basis vy, V2, ..., v_, with |v;| = (n —1)/2
(mod 2). We have that 1,v; = v;. The appropriate E’s and F’s act on the basis by
the following scalars:

E o, ﬂ Un_2 [?;1] ﬁ Vo_p & V_np,

n—1
F:u, ﬂn)n,g ﬂvn,4 ﬂ> E—Ln] V_p-

For example: (E,_oF, —eFyni2E,)vn = En_ovp_o = [n]vy,.
We wish next to make U into a Hopf superalgebra by introducing a comultipli-
cation A and counit ¢ defined on generators by the following;:

A(ln) = Z 1, ® 1y, E(ln> = 5”7017
a+b=n

A(En) = Z (Ea ® 1b + q_ala ® Eb)7 E(En> = 07
a+b=n

AF) = Y ('@ F 4+ ¢"F, @ 1), e(F,) =0.
a+b=n

"More precisely, our U is the idempotented form of the algebra from [CW] as defined in [C]. Also,
we are using a different convention for quantum integers compared to [CW, C]: our ¢ is the same
as the parameter ¢~! of [CW] or the parameter v~1 of [C].
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However, some of these formulae involve infinite sums, so don’t make sense yet: we
need some completions! If A = ®x,ye 1Al is any locally unital (super)algebra
with distinguished idempotents indexed by some set X, we can form the completion
A consisting of all elements (azy)zyex € an’eX 1, A1, such that for each x there
are only finitely many y with agy # 0, and for each y there are only finitely many
x with azy = 0. Clearly the multiplication on A extends to A to make it into a
(super)algebra with 1 = >  _\ 1,. Applying this construction to U, we get the
completion (7; applying it to the superalgebra U ® U, which is locally unital with
distinguished idempotents {1,, ® 1,, | m,n € Z}, we get @; the triple tensor
product U ® U ® U may be completed similarly. Now the formulae above extend
canonically to define superalgebra homomorphisms A : U— l@ ande: U — k,
satisfying completed versions of the usual coassociativitiy and counit axioms. This
makes U into a Hopf superalgebra in a completed sense. (We remark there are
several other possible choices of coproduct here; see [C, §2.4].)

Given V,W € ob(C, the tensor product V ® W is naturally a U @ U-supermodule.
Since it is finite dimensional, it is a l@—supermodule too, hence using A we
can view it as a U-supermodule. This makes C into a monoidal II-supercategory
equipped with a fiber functor v : C — SVec, namely, the obvious forgetful super-
functor. Setting V' := V(1), we also have the monoidal superfunctor G : STL(6) —
SVec from Lemma A.1.

Theorem A.4. There is a unique monoidal superfunctor F : STL(§) — C such
that G =vo F:

STL(6) ——————— SVec

=

C
Moreover, F induces a monoidal equivalence F : SKar(STL(5)) — C.

Proof. All of the superspaces V®™ are naturally objects of C. Moreover, the linear
maps defined in Lemma A.1 are U-supermodule homomorphisms. This proves the
existence and uniqueness of F.

The proof of Theorem A.2 shows that F' is faithful. Hence, so is the induced func-
tor F : SKar(STL()) — C. Both SKar(STL(d)) and C are semisimple Abelian.
So, to prove that F is an equivalence, we just need to show that the induced
Z™-algebra homomorphism Ky (SKar(STL(d))) — Ko(C) sends the canonical basis
coming from the classes of irreducibles in SKar(ST L(J)) to that of C.

In view of Theorem A.3, we may identify Ko(SKar(ST L(d))) with the subring
of Z™ [z, x~1] having canonical basis {[n + 1], »,7[n + 1], | 7 € N}. Note this is
generated as a Z7-algebra just by [2]; r, which corresponds to the object 1 in
STL(5). To understand Ky(C), consider the map sending a finite-dimensional U-
supermodule M to its supercharacter

SChM := ) (dim(1,M)sz" + dim(1, M);mz") € Z"[z, 2~ "].
nez

We have that SCh V' (n) = [n+1]; ». Hence, SCh induces a Z™-algebra isomorphism
between Ko(C) and the same based subring of Z™[x,271] as Ko(SKar(STL(6))).

Moreover, the generator [2], . is the supercharacter of V. It remains to observe
that F(1) = V. O
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Corollary A.5. The irreducible U-supermodule V (n) is isomorphic to the image
of the idempotent F(f,) € Endy (V®™), where f, is the Jones- Wenzl projector from
the proof of Theorem A.3.

[BK]
(B]
[BCNR]

[BE]
[BLW]

[CKM]

[C]
(CW]

[EW1]
[EW2]

(BL]
[EGNO]
[JK]
[KKO]

(K]
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