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Abstract

We introduce the notion of a multiplicity-free subgroup of a reductive alge-
braic group in arbitrary characteristic. This concept already exists in the work
of Kramer for compact connected Lie groups. We give a classification of reduc-
tive multiplicity-free subgroups, and as a consequence obtain a simple proof of a
theorem of Kleshchev.

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. If p = 0, it is well
known that the restriction of any irreducible SL,(k)-module to the natural subgroup
GL,—1(k) is multiplicity-free. The same is true for the restriction of an irreducible
SO, (k)-module to the subgroup SO,,—1(k). In positive characteristic, these results are
no longer true, but a recent result of Kleshchev [8, Theorem A| shows nonetheless that
the socle and the head (which is isomorphic to the socle) of the restriction are both
multiplicity-free. In our first theorem, we give a simple proof of this fact, which is
quite different from Kleshchev’s original proof.

Theorem A. Let H < G be the simply connected cover of an entry in table 1. Then
(1) dimHOmH(AH,Vg) < 1

for all Weyl modules Ag for H and all coWeyl modules Vg for G. Hence, the socle
and head of resg Lg are multiplicity-free for every irreducible G-module Lg.

Kleshchev actually proves a slightly weaker result, namely that for all pairs (G, H)
in Theorem A, dim Hompy(Ap, Lg) < 1 for all Weyl modules Ay for H and all irre-
ducible modules L¢g for GG. Kleshchev also shows how to deduce from this result in
the case (G,H) = (SL,(k),GL,—1(k)) (by applying a “Schur functor”) that the re-
striction of any irreducible module for the symmetric group algebra k&, to k&, _1 has
multiplicity-free socle and head. In later work [9, 10], Kleshchev has described precisely

Table 1: Multiplicity-free subgroups

G | H |
SLn(k) n>2|GLn1(k)
SOu(k) n>4| 8O0, 1(k)
SOs(k) Spinz (k)
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which irreducible £, _i;-modules appear in this multiplicity-free socle of the restric-
tion to £&,._1 of an arbitrary irreducible £&,-module. These results of Kleshchev have
recently been extended to the corresponding Hecke algebras of type A in [2].

We call a pair (G, H) of connected reductive groups with H < G a multiplicity-free
pairif 1 holds for all Ag, Vg. The next results give a classification of multiplicity-free
pairs. To do this, we first prove a characteristic-free analogue (Theorem 3.5) of a result
due to Kimel’fel’d and Vinberg [7] in characteristic 0. In fact, only minor alterations
to the original proof are needed in characteristic p. The following characterisation of
multiplicity-free pairs is an easy consequence of Theorem 3.5.

Theorem B. Let H < G be connected reductive algebraic groups. Let B, By be Borel
subgroups of G, H respectively. Then, (G, H) is a multiplicity-free pair if and only if
there is a dense (B, By)-double coset in G.

We now describe the classification of multipicity-free pairs. Theorem B implies that
if 6 is an isogeny of G, then (G, H) is a multiplicity-free pair if and only if (6(G),0(H))
is a multiplicity-free pair (see Corollary 3.8). So it is sufficient to classify multiplicity-
free pairs up to isogenies of G. If (G1, Hy) and (Gg, Hy) are multiplicity-free pairs then
(G1 x G2, Hy x H3) is also a multiplicity-free pair, so that we only need to classify the
“indecomposable” multiplicity-free pairs (see (4.3) for a precise definition). Finally, if
R is the radical of G, then it is obvious that (G, H) is a multiplicity-free pair if and
only if (G/R, HR/R) is a multiplicity-free pair. These reductions show that to classify
multiplicity-free pairs, we need only classify the indecomposable multiplicity-free pairs
(G, H) with G semisimple and simply connected.

Theorem C. The indecomposable multiplicity-free pairs (G, H), with G semisimple
and simply connected, are precisely the following:

(i) The simply connected cover of an entry in table 1.

(il) G = Spaon(k) and H = SO, (k)(p = 2).

(iii) G = SLa(k) x SLa(k) and H is the diagonal subgroup {(g,0(g))|g € SLa(k)},
where 0 : SLa(k) — SLa(k) is a Frobenius morphism (p #0).

(iv) Any pair (G, G) with G simple and simply connected.

In characteristic 0, Theorem C follows from a result of Kramer [11] which classifies
multiplicity-free pairs of compact Lie groups. The possibilities (ii), (iii) in Theorem C
only occur in non-zero characteristic.

By definition, if (G, H) is a multiplicity-free pair, then for all Weyl modules A of
H and all coWeyl modules Vg of G, Hompy (Ag, Vi) = Ext% (Ay, Vg) is at most 1-
dimensional. We next consider higher Ext functors. Call a reductive subgroup H < G
a good filtration subgroup if Extl;(Ap,Vg) = 0 for all Weyl modules Ay of H and
all coWeyl modules V¢ of G, and all ¢ > 1. This condition is equivalent (eg by [6,
I1.4.16]) to the property that every coWeyl module V¢ of G has an H-stable filtration

0=Vyg<Vi<---<V,=Vg

such that each factor V;/V;_1 is a coWeyl module for H. Such a filtration is called a
good filtration, and it is known ([6, I1.4.16] again) that the number of factors V,;/V,;_1 in
the filtration isomorphic to a given coWeyl module V  is equal to dim Hompy (Agy, V),
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where A is the contravariant dual of V. Thus, if (G, H) is a multiplicity-free pair
such that H is also a good filtration subgroup of GG, then in fact every coWeyl module
V¢ of G has a multiplicity-free good filtration as an H-module.

Our final result shows that if (G, H) is a multiplicity-free pair, H is usually a
good filtration subgroup. For the case (G, H) = (SL,(k), GL,—1(k)), this result goes
back at least to James [4, 26.6], and is in fact a special case of the Donkin-Mathieu
restriction theorem [3, 14] which shows that any Levi subgroup of a reductive algebraic
group is a good filtration subgroup.

Theorem D. Let H < G be the simply connected cover of an entry in table 1. Then,
H is a good filtration subgroup of G, so that

Extl; (Am,Vg) =0

for all Weyl modules Ay for H and coWeyl modules Vg for G, and all i > 1. Hence
each Vg also has a multiplicity-free good filtration as an H-module.

This result extends immediately (by [3, 4.2]) to cover any multiplicity-free pair
(G, H) “defined over Z” — that is, no factor in a decomposition of (G, H) into inde-
composable multiplicity-free pairs is of type (ii) or (iii) from Theorem C. It is easy to
see that these are genuine exceptions: for example if E is the natural Spay, (k)-module
and p = 2, then A? E does not have a good filtration as an SOa, (k)-module.

2 Proof of Theorem A

2.1. Throughout this note, G will denote a connected reductive algebraic group defined
over k. By a G-module, we shall always mean a rational kG-module. Let us fix
some notation regarding root systems, Weyl modules etc., following the conventions
in Jantzen [6]. Let B be a Borel subgroup of G with unipotent radical U, and let
T < B be a maximal torus. Let BT be the opposite Borel subgroup to B relative to
T, so that BN BT = T. The choice of T determines a root system ® C X (7'), where
X(T) is the character group Hom(T, k*). For a € ®, let U, denote the corresponding
T-root subgroup of G. Let II = {ay,...,aq} be the unique base for ® such that
B is the Borel subgroup generated by negative root subgroups. Let W = Ng(T)/T
be the Weyl group of G, and fix a positive definite W-invariant symmetric bilinear
form (.,.) on R®, X(T). For 0 # a € R®, X(T), o denotes 2a/(a, ). Let
X (T)y={ e X(T)| (\,a¥) > 0 for all « € II} be the dominant weights of T' (with
respect to II). The choice of IT also fixes a set of simple reflections in W, so that we
can talk about the longest element wqy of W relative to these simple reflections.

Given A\ € X(T), let k) denote the corresponding 1-dimensional B-module. The
coWeyl module V() is defined to be the induced module ind%(ky), and is non-zero
precisely when A\ € X (T) is dominant (see [6, 11.2.6]). We will say a G-module is
a high weight module of high weight X if it is generated by a B*-eigenvector v™ of
weight A € X(T'). Weyl modules are high weight modules, and are ‘universal’ in the
sense that any high weight module is a homomorphic image of some Weyl module [6,
I1.2.13]. For A € X, (T), let Ag(\) denote the corresponding Weyl module of high
weight A, and let Lg(A) denote the simple head of Ag(\) (isomorphic to the simple
socle of Vg (A)). Finally, the dual Ag(A)* is isomorphic to Vg (A*), where A* = —wpA,
by [6, I1.2.13].
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2.2. The proof of Theorem A depends on the following elementary lemma:

Lemma. Let (G,H) be a pair of connected reductive algebraic groups with H < G.
Let B*, By be Borel subgroups of G, H respectively and suppose that the double coset
BrgBT™ is dense in G for some g € G. Then,

dimHOmH(AH,Vg) = dimHomH(Ag,VH) < 1

for all Weyl modules Ay = V5 for H and all Weyl modules Ag = V[ for G. Hence,
the socle and head of resfl Lq are multiplicity-free for every irreducible G-module L¢.

Proof. Let Ap,Vy,Aq,Va be as in the lemma. The Weyl module Ag is generated
by some Bt-eigenvector v*. Since BygB™ is dense in G, Ag = k-span{G.v"} = k-
span{ BggBt.w"} = k-span{Bp.gv"}. Hence, Ag is generated as a By-module by
the vector gv™. Now, by definition V is an induced module indgH k) for some 1-
dimensional By-module k). Since any Bp-homomorphism Ag — k) is determined
by its value on the generator gv™, and ky is 1-dimensional, it is immediate that
Homp, (Ag, ky) is at most 1-dimensional. Applying Frobenius Reciprocity [6, 1.3.4]
and dualising, we deduce that

dim Hompy (Ag, V) = dimHompy (Ay,Veg) <1

proving the first part of the lemma.

It remains to show that the socle and head of resg Lg are multiplicity-free for
every irreducible G-module Lg. For the socle, we need to compute Hompy (Ly, Lg)
for an irreducible H-module Ly. By the universal property of Weyl modules, any
homomorphism Ly — Lg extends to a homomorphism Ay — Vg, where Ay is
the Weyl module for H with head Ly and Vg is the coWeyl module for G with
socle Lg. Hence, Hompy (L, L) is also at most 1-dimensional, so that the socle of
resg (L) is multiplicity-free. The same argument shows that the head is multiplicity-
free, completing the proof. 0O

2.3. We shall shortly apply this lemma to prove that each entry in table 1 is a
multiplicity-free pair. For later use, we shall actually construct a suitable element
g € G explicitly in each case in terms of root subgroups, viewing G as a Chevalley
group. Let us briefly recall the construction of Chevalley groups, following Steinberg
[18].

Let g be a semisimple Lie algebra over C with Cartan subalgebra h and root system
® C b*, and let IT = {aq,..., o} be a base for ® as in (2.1). Fix a Chevalley basis
{Xao,Hi|a € ®,1 <i <1} for g and let Uz be the corresponding Kostant Z-form for
the universal enveloping algebra U(g) of g. Let n* be the subalgebra generated by the
X, with a € II. Fix now some irreducible g-module A¢ of dimension n, with a fixed
high weight vector v annihilated by n™. Set Az = Uz.v™", an admissible lattice in Ac.
Working in a basis of Az, we can identify a generator X¢ /i! of Uz (a € ®,i > 0) with
a matrix in M, (Z), via the representation g — gl(Ac). Having done this, the series
exp(tX,), where t is an indeterminate, has only finitely many non-zero terms, hence
gives a well-defined element of SL,(Z[t]). Set Ay = Az ®, k; then z4(t) = exp(tX,)
defines an automorphism of Ay for every t € k. The Chevalley group G = G}, is now
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defined to be the subgroup of GL(Aj) generated by {z,(t) |a € ®,¢t € k}. It is a
semisimple algebraic group over k of the same type as g, and Ay is a Weyl module for
Gy.

Now we consider the cases in table 1 in turn.

2.4. For G = SLy(k),H = GL,—1(k), we make the following choices. Let T" be the
subgroup of all diagonal matrices, and B be the Borel subgroup of all lower triangular
matrices, so that BT consists of upper triangular matrices. If ¢; : T — k™ denotes
the character diag(ty,...,t,) — t;, we can write ® = {£(g; —¢;) |1 < i < j < n}
and IT = {e; — ;41 |1 < i < n —1}. Letting ey,...,e, denote the canonical basis
for the natural G-module F, choose H to be the stabiliser of the decomposition £ =
(e1,...,en—1) D {en), isomorphic to GL,_1(k). Let By = BN H, a Borel subgroup of
H. Fort € k, let x, (t) € Ue;—¢,; denote the matrix I +te;; (where e;; is the matrix
with a 1 in the ij-entry, zeros elsewhere). This is precisely the root group element
Te,—¢;(t) from the Chevalley construction of (2.3), with the usual choice of Chevalley
basis for sl,,(C), ie X¢, ¢, = €.

Lemma. With notation as above, the double coset BygB™ is dense in G, where
9=Tep—e; (1)Te,—e5(1) - Tep—e, (1),
Hence, (SLy(k), GLy—1(k)) is a multiplicity-free pair.

Proof. 1In terms of the basis ey, ..., ey, g is the matrix

Since dim BygB* = dim By +dim BT —dim g ! BygNB* = dim G—dim g~ ' BggNBT,
it is sufficient to show ¢~ 'Bpg N BT is finite. Suppose h € ¢ 'Byg N BT; as BT
consists of upper triangular matrices while ¢! Bpg is lower triangular, it follows that
h = diag(h1, ..., hy) is diagonal. Now, ghg~'.e; = hie; + (h; — hp)en. As ghg™' € By,
hi = hy, for 1 <i <n — 1. Hence, h lies in the centre Z(G), which is finite. O

2.5. For G = SO2p11(k), H = SO2,(k), fix notation as follows. Let E be the natural
(2n 4 1)-dimensional G-module with a G-invariant bilinear form (.,.). Write elements
of G as matrices with respect to an ordered basis e1,...,e,,€p,€_pn,...,e_1 for E such
that (e;,ej) = 0(i # —j), (ei,e—i) = 1(i # 0) and (ep,e9) = 2. Let B (resp. B™T)
be the lower (resp. upper) triangular matrices in GG, a Borel subgroup of G, and T
be the diagonal matrices, a maximal torus of G. Let ¢; : T' — k> be the character
diag(t1,...,tn, L, 2,1, ... ,tfl) — t;. In this notation, the root system ® can be written
as {te; £ej,xe, |1 <i<j<n1<k<n}andIl={e; —e2,...,6n-1 —€n,n}.
Let g = 502,,11(C) be the corresponding Lie algebra over C with natural module E’,
g-invariant form (.,.)" and canonical basis €/,... el e}, e ,,,...,€e_;, with properties
as in the previous paragraph. Let E; ; € g denote the element such that E; j.ej. = d;xe]
for all —n < 4,75,k < n. Then, the elements X,(a € ®) in table 2 give a Chevalley
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Table 2: A Chevalley basis for types B, D;

a |g—egi(i<yj)|e+ei(i <) €
Xo | Eij—E_j_i | Ej—i—Ei_j | 2Ej0 — Fo,
X o |FEji—FE_i—j| Eij—E_j;i| Foi—2E_ip

basis for g (this is the Chevalley basis used in [5, p38]). The Chevalley construction
defines root group elements z(t) € G for t € k corresponding to this Chevalley basis.
We shall only need to use the elements z_, (t), which act on the natural module £ as
follows:

T_¢,(t).e; = e +teg—tley,

T_e;(t).eg = ey — 2te_,
with all other basis elements fixed.

Now, let H be the subgroup SOz, (k) generated by root groups U, for o € {+e; +
gj|1 <i<j<n}. We can describe H geometrically as the connected stabiliser in
G of the direct sum decomposition E = (e1,...,ep,€_n,...,e_1) ® (eg). Note finally
that By = H N B is a Borel subgroup of H.

Lemma. With notation as above, the double coset By gB™ is dense in G, where

g=z_c (1)z_c,(1)...2_c, (1).
Hence, (SOan+1(k), SO2,(k)) is a multiplicity-free pair.

Proof. By the dimension argument of Lemma 2.4, we again just need to show that
g 'Bpg N Bt is finite. Suppose h € ¢ 'Byg N BT; as B consists of upper tri-
angular matrices while ¢~ Bpg is lower triangular, it follows as before that h is di-
agonal. Let h = diag(hl,...,hn,l,hgl,...,hfl). Since ghg~! € By, it stabilises
(€1,...,ense_1,...,e_yn). The eg-coefficient of ghg~'.e; is h; — 1. Hence, h; = 1 for
each i, and the intersection is trivial. O

2.6. For G = SOq9,(k), H = SO2,-1(k), we shall realise G as the subgroup SO2, (k)
constructed in (2.5), acting on the space E = (ej,...,ep,€_n,...,e_1). Write elements
of G as matrices with respect to this ordered basis for E. Let T, B, B™ be the diagonal,
lower triangular, upper triangular matrices in G respectively, and let ¢;,(.,.) be the
restrictions of those defined in (2.5). We may write & = {£e;+¢;[1<i<j<n}
and IT = {1 —e9,...,6n—1 — €n,en—1 +en}. Let g = 502,(C), with natural module

E’ and canonical basis €}, ... e} e’ ... € corresponding to E, e; as before. Fix a

b 1)
Chevalley basis for g as a subset of the Chevalley basis constructed in (2.5), so that
Xo(a € @) is as in table 2. This gives corresponding parametrisations x4 (t) of the

T-root subgroups of G; in particular, for i < j, z_, ., (t) acts as:

Toge;(t)e; = e —tey,

T_ee;(t)ej = ej+tey
with all other basis elements fixed. Let H be the connected stabiliser of (e, + e_,),
isomorphic to SO2,—1(k), and note By = BN H is a Borel subgroup of H. In terms of
root subgroups, H is generated by {Uiq | =¢€1 —€9,...,6n—2 — €p—1} together with
the elements {zc, ,—c, (t)xe, 14e, (), T—c, 4o, ()T, ,—c, ()|t € k}.
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Lemma. With notation as above, the double coset BygB™ is dense in G, where

g=Te—e,(1)T-cy—,(1) ... 7, —,(1).
Hence, (SOap(k), SO2,—1(k)) and (SOs(k), Spinz(k)) are multiplicity-free pairs.

Proof. Dimension implies that we just need to show that ¢~'Byg N BY is finite.
Suppose h € g~ !BygN Bt. The same argument as in (2.5) shows that h is a diagonal
matrix, say h = diag(hl,...,hn,hgl,...,hfl). Now, ghg™! € By, so ghg~t.(en +
e n) € (en +e_y). A direct computation shows that ghg=!l.(e, + e_,) = hpe, +
(hp — hfl)e_l + -+ (hy — h;il)e_(n_l) +hte_,. Hence, hy = --- = h, = +1 so
g 'Bpg N Bt is indeed finite.

This proves that (G, H) = (SO2,(k), SO2,-1(k)) is a multiplicity-free pair. Now
apply a triality graph automorphism (working in PSOg(k) then taking pre-images
since triality is not defined on SOg if p # 2) to deduce that there is also a dense
(Bg, B*)-double coset in G for the pair (G, H) = (SOg(k), Spinz(k)). Hence, this is
also a multiplicity-free pair. O

Lemma 2.4-Lemma 2.6 complete the proof of Theorem A.

3 Proof of Theorem B

To classify multiplicity-free pairs, we first prove an analogue of a result of Kimel’fel’d
and Vinberg [7, Theorem 1] in characteristic 0. In this section, we give a proof of
this analogue (Theorem 3.5), following the original proof closely, and then deduce
Theorem B from it. As always, G denotes a connected reductive algebraic group, with
the conventions of (2.1).

3.1. Given an arbitrary closed subgroup H < G, we write X(H) = Hom(H, k*) for
the character group of H. For any subset J C I = {1,...,l}, define the parabolic
subgroup P = P; to be the subgroup generated by B and the T-root subgroups Uq;
for j € J. We shall identify X (P) with a subgroup of X (7) via restriction. If H is
an arbitrary closed subgroup of G, we define Xt (H) = {\ € X(H) | ind% ky # 0}.
In particular, [6, I1.2.6] implies X (T') = X+ (B). More generally, if H = P = Py is
parabolic, the following statements are equivalent definitions of X (P). Recall here
from (2.1) that U denotes the unipotent radical of the negative Borel subgroup B.

(i) Xt (P)=X(P)NnX(T).

(i) XH(P)={\e X (T) | ()\,oz]V) =0 for all j € J}.

(iii) XT(P) = {\ € X+ (T) | Ag(\*)V is P-stable}.

We shall write k[G] (resp. k(G)) for the ring of regular (resp. rational) functions
on G. We regard k[G] as a G-module in two ways, via the left regular and the right
regular representations, where (g.f)(h) = f(g~'h) and (f.g)(h) = f(hg™!) for g,h €
G, [ € k|G] respectively. These extend uniquely to define actions of G on k(G). If
P, H are any closed subgroups of G, let Tk(G)¥ be the subalgebra

PG ={f € k(G)|p.fh=Ff forallpe P,he H}.

We shall need Rosenlicht’s Theorem [16], which implies that there is a dense (P, H)-
double coset in G if and only if Tk(G) = k.
We begin with a basic algebraic lemma.
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3.2. Lemma. Let A be a k-algebra that is an integral domain. Let a,b € A be linearly
independent elements. Then, forn € Zt, the elements a™,a™'b,...,ab" 1, b" are also
linearly independent.

Proof. Let Y, a;a’b"* = 0 be a dependency with as # 0. Let f1,...,03s be the
roots of the polynomial ag + iz + -+ + a,x®. Then, > 5 ;;a’b" ™" = ab" 5(a —
(B1b) ... (a—pBsb) = 0. As A is an integral domain, this implies one of b, a— b, ..., a—[Fsb
is zero, contradicting the fact that a,b are linearly independent. O

3.3. Lemma. Let H be a closed subgroup of G. Let A € XT(B),p € X(H). Write k,
for the corresponding 1-dimensional H-module. Suppose that dim Hompy (Ag(X), k) >
2. Then, for alln € Z*, dimHompy (Ag(nA), knu) > n + 1.

Proof. Let A = Ag(\), A, = Ag(n)) and let v, w™ be highest weight vectors in
A, A, respectively. Let 01,03 be linearly independent elements of Homp (A, k). Let
fi € k[G] be defined by fi(g) = 0;(g.v™) for i = 1,2. By the proof of Frobenius
reciprocity [6, 1.3.4], f1 and fy are linearly independent. Let o : A, — @" A be the
G-module homomorphism defined by the map w™ +— vT ® --- ® v and the universal
property of Weyl modules. Then, we can define ¢; € Hompg (A, kpy) for i =0,...,n
by composing o with the map Q" A — ky,, defined by v1 ®@ -+ @ vy, — 01(v1) ® - ®
01(v;) ® O2(Vit1) ® - -+ ® O2(vy,). We claim ¢y, ..., ¢, are linearly independent, which
will complete the proof. Let agpo + -+ 4+ an¢pp, = 0 be a dependency. Then, for all
g€aqG,

Zai¢i(9-w+) = Zalﬂl (gvt) by (goT)" " = 0.
1=0 i=0

So, the element Y7 a;f} 77" € k[G] is zero. But, this implies a; = 0 for each i as
the elements f]f5 " are linearly independent by the previous lemma. O

3.4. Remarks. (I) Let H < G be a connected reductive subgroup. An application
of Frobenius reciprocity together with Lemma 3.3 (applied to a Borel subgroup of
H) shows that if dim Hompy (Ag (1), Va(A)) > 2 then dim Hompy (Ag(np), Va(n)) >
n+1foralln € Z*. In [11], Kramer uses this to reduce the classification of multiplicity-
free pairs (G, H) of compact Lie groups to the case that G is simply connected. We
could do this now in our case, but prefer to wait until we can prove the more general
Corollary 3.8.

(IT) Kramer also introduces the notion of a multiplicity-bounded subgroup of a
compact connected Lie group. The appropriate analogue in our setting would be a
reductive subgroup H < G such that

dimHompy(Ap,Va) < N

for all Weyl modules Ag for H and coWeyl modules V¢ for G, where N is some fixed
constant independent of Ay, V. By the argument in (I), the concepts of multiplicity-
bounded and multiplicity-free subgroups are equivalent.

3.5. Theorem. Let H be an arbitrary closed subgroup of G and P = Pj be the
parabolic subgroup of G corresponding to J C I. The following properties are equiva-
lent.
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(i) dimHompg(Ag(A*), ky) <1 for all X € XT(P),p € XT(H).
(ii) There is a dense (P, H)-double coset in G.

Proof. (ii)=-(i). This is just the argument of Lemma 2.2. Recall Ag(\*) is generated
by any vector 0 # v € Ag(A\*)V. By (3.1)(iii), v is a P-eigenvector. Hence, if HgP is
dense in G, Ag(\*) is generated as an H-module by the vector gv. This immediately
implies that Hompg(Ag(X*),k,) is at most 1-dimensional for any I1-dimensional H-
module k.

(i)=(ii). We first prove this for G' semisimple and simply connected; then, k[G]
is a unique factorisation domain by [15]. Suppose there is no dense (P, H)-double
coset in G. Then, by Rosenlicht’s Theorem, there is some non-constant f €Xk(G)H.
Write f = f1/f2 with fi, fo € k[G] coprime. Then, for p € P,h € H, p.f.h = f, so
(p-fi1.h)fa = fi(p.f2-h). As E[G] is a unique factorisation domain, this implies that
p.fi.h = 0(p, h) f; for each i, where 6(p,h) € k[G]. Moreover, 0(p, h) is invertible, and
the invertible elements in k[G] are constant. We thus obtain a morphism 6 : P x H —
k>, and it is easily checked that this is a character of P x H, so 0(p,h) = A(p)u(h) for
characters A, u of P, H respectively.

Now, let V; be the left G-submodule of k[G] generated by f;. Writing wo € Ng(T)
for any coset representative of wyg € W, wqf; is a BT-high weight vector, since f; is
P-stable hence B-stable. So each V; is a high weight module of high weight woA. Let
A = Ag(woA) = Ag(—A*). By the universal property of Weyl modules, each V; is a
homomorphic image of A. By definition of induced module, we can regard each f; as
an element of ind% k., so that each V; is a submodule of indg k. Thus, we can define
two linearly independent homomorphisms A — indg k, by composing A — V; with
the inclusion V; — indg k,. Now apply Frobenius Reciprocity to show that

dim Homg (A, ind$ k,) = dim Homg (A, k,) > 2.

Finally, observe that —\ € X (P) by (3.1)(i) and p € X (H) by definition. So, this
contradicts (i).

Now we treat the general case. Suppose first that G is semisimple and satisfies (i).
Let G be the simply connected cover of G. Write H, P for the connected pre-images
of H, P respectively in G. We just need to show that (G, H) also satisfies (i); then,
the simply connected result will imply that there is a dense (If’,ﬁ )-double coset in
G, hence that there is a dense (P, H)-double coset in G (this follows as morphisms
of algebraic groups are open maps). So, suppose (G, H ) does not satisfy (i); then
there exist A\ € X (P),u € X(H) such that dim Hom z(Ag(A\*), k) > 2. Now, we
can choose n € Z™* so that n\, nu are characters in X *(P), X (H) respectively. Then,
Lemma 3.3 implies dim Hom g (Ag(nA*), knyu) > 2, a contradiction.

Finally, suppose the radical R of G is non-trivial and that (G, H) satisfies (i).
Then clearly (G/R, HR/R) satisfies (i) so the result for semisimple G implies that
there is a dense (P/R, HR/R)-double coset in G. Taking pre-images, we obtain a
dense (P, HR)-double coset in G, hence a dense (P, H)-double coset since R < P is

central. O

3.6. Remarks. (I) Popov’s result [15] shows that if G is semisimple, but not neces-
sarily simply connected, then the divisor class group of G is finite. Using this and a
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straightforward argument involving divisors, Kimel'fel’d and Vinberg prove (i)=-(ii)
without considering the simply connected case separately.

(IT) A subgroup H < G is called spherical if there is a dense (H, B)-double coset in
G. Spherical subgroups of reductive algebraic groups have been classified in character-
istic 0in [1, 12]. As far as I know, no such classification exists in arbitrary characteristic,
even for the special case of reductive spherical subgroups of simple algebraic groups.

(IIT) Kimel’fel’d and Vinberg also prove that if H is a connected reductive subgroup
and {«a;|j € J} is stable under —wy (the longest element of W), then (i) is equivalent
to

(i)’ dim Hompg (Ag(\*), k) = dim Vg(\) <1 for all A € XT(P).
This can be proved in arbitrary characteristic providing in addition some conjugate
of H is normalised by 7, an anti-automorphism of G (see eg [6, II.1.16]) such that
72 = 1t =t fort € T and "U, = U_, for a € ®. This extra condition holds for
example if H is reductive and of maximal rank in G. Alternatively, in the special case
that P = B, (i) and (i)’ are equivalent providing H is a closed subgroup such that
the field of rational functions k(G/H) is the field of fractions of the regular functions
k[G/H] (this includes all reductive subgroups). The proof of this depends on the
argument in [7, Theorem 2] (in fact, Kimel’fel’d and Vinberg prove a slightly weaker
statement than required here, and consider characteristic 0 only, but the method is
easily generalised).

3.7. Now we apply Theorem 3.5 to deduce Theorem B. For the remainder of the sec-
tion, let H < GG be a connected reductive subgroup. Fix a Borel subgroup By of H. At
this point, we need to talk about root systems, Weyl groups etc. for H as well as for G.
Rather than introduce more notation, let us just note that since ind% is exact [6, 1.5.12],
X+t(Bp) = {A€ X(Bg)| ind§, kr # 0} also equals {\ € X(By) | indj, k # 0}.
Hence, by (3.1)(i) with P = By, we can regard X " (Bpy) as an intrinsically defined
set of dominant weights for some root system of H, and set Vg () = indgH ky for
rex +(B H)

Theorem. Let P > B and Py > By be parabolic subgroups of G, H respectively. The
following properties are equivalent.

(i) dim Hompg (Ag(\*), Vi (r) <1 for all \ € X (P),u € X (Py).

(ii) There is a dense (P, Pg)-double coset in G.

Proof. (i)=-(ii). For p € X*(Pg), Vu(u) = indgH ky, = indgH k,. Therefore, we
can apply Frobenius reciprocity to (i) to deduce dim Homp, (Ag(A*),k,) < 1 for all
A€ XT(P),u € Xt(Py). Then, Theorem 3.5 implies there is a dense (P, Py)-double
coset in G.

(i))=-(i). Suppose dim Homp(Ag(A\*), Vi (1)) > 2 for some A € XT(P) and p €
X (Pg). By Frobenius reciprocity again, dim Homp, (Ag(X*), k,) > 2, so there is no
dense (P, Py )-double coset in G by Theorem 3.5. O

Theorem B from the introduction follows immediately from this, putting P = B
and Py = Bpy. As an immediate corollary, we can show that it is sufficient to consider
multiplicity-free pairs up to isogenies of G.

3.8. Corollary. Let 6 be an isogeny of G. Then, (G, H) is a multiplicity-free pair if
and only if (0(G),0(H)) is a multiplicity-free pair
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Table 3: Reductive subgroups of dimension at least %dim G

G 1 kS |1 |
Sp(E),SO(E) N; G2 Az, As(p = 3)
SL(E) Sp(E) F4 B47 C4(p = 2)
Sp(E)(p = 2) SO(E) | Es £y
SOg(k) Spin7(k') E7 A1D6
SO07(k)(p # 2), Sps(k)(p = 2) | G2 Eg Ay Fr

Proof. Let B, By be Borel subgroups of G, H respectively. By Theorem B, we need
to show that there is a dense (B, By )-double coset in G if and only if there is a dense
(0(B),0(Bp))-double coset in §(G), which is immediate since morphisms of algebraic
groups are open maps. O

4 Proof of Theorem C

Theorem B reduces the problem of classifying multiplicity-free pairs to group theory.
We shall need to list all reductive subgroups H of simple algebraic groups G satisfying
the dimension bound dim B+dim By > dim G given in Theorem B. Note that we make
a distinction between reductive mazimal subgroups and mazimal reductive subgroups
of G: the former are maximal subgroups of (G, whereas the latter may lie in some
proper parabolic of G.

4.1. For G classical, we use the notation G = CI(F) to indicate that G is a connected
classical algebraic group with natural module E. When G = SO(FE), Sp(F) let N;
denote the connected stabiliser in G of a non-degenerate subspace of E of dimension 3
with i < 1 dim E; and when (G, p) = (D, 2) let Ny denote the connected stabilizer of
a nonsingular 1-space. When p = 3, we write Ay for the subgroup of G5 generated by
the short root groups relative to some fixed maximal torus.

Lemma. Let H be a reductive mazximal connected subgroup of a simple algebraic group
G, and suppose that dim H > %dim G. In the case G classical, suppose that G = CI(E)
and that (G,p) # (Bn,2). Then (G, H) are in table 3.

Proof. For G classical, this is [13, Lemma 5.1]. For G exceptional, it follows from [17]
by the argument in [13, Proposition 2.3]. O

4.2. Lemma. The multiplicity-free pairs (G, H) with G simple are precisely those in
table 1, up to isogenies of G, together with the trivial case H = G of Theorem C(iv).

Proof. We exclude the case (G, H) = (SO4(k), SO3(k)) since here G is not simple. By
Theorem B, there is a dense (B, By)-double coset in G, so dim B + dim By > dim G.
This implies dim H > dim G — rank G — rank H > dim G — 2 rank G. We show that
the only pairs (G, H) for which H satisfies this dimension bound are those in table
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1 (up to isogenies of G); we already know that all such pairs are multiplicity-free
pairs by Theorem A and Corollary 3.8. Note that for each pair (G,H) in table 1,
dim B + dim By exactly equals dim G, so no proper reductive subgroup of H satisfies
the dimension bound.

We consider two cases.

(i) Suppose H lies in no parabolic subgroup of G. Then, H lies in some reductive
maximal connected subgroup H of G. Consider first the possibilities for H. The
bound dim H > dim G — 2 rank G implies either (G, H) = (SLa(k),GL1(k)) (which is
in table 1) or dim H > %dimG. Hence, (G, H) are given by Lemma 4.1. Now, one
checks that the only possibilities satisfying the stronger dimension bound dim H >
dim G — 2 rank G are those in the conclusion. Hence, (G, H) is in table 1, and we
deduce that H = H by dimension.

(ii) Suppose H lies in a maximal parabolic subgroup P = LQ of G, with Levi factor
L and unipotent radical Q. Let H < L be such that HQ/Q = HQ/Q. Then, H is
isogenous to H so L also satisfies the dimension bound dim L > dim G — 2 rank G.
Computing the possible dimensions of Levi subgroups, the only possibility is (G, L) =
(SLn(k),GL,—1(k)). We deduce that H = L by dimension, hence that H = G L,,_1(k),
which is in table 1. 0O

4.3. If G is a semisimple algebraic group and H < G is any closed subgroup, we
call H a decomposable subgroup of G if G, H can be written as commuting products
G = G1G9, H = H1H, such that, for each ¢, H; < G; and GG; < G is a non-trivial
semisimple group.

Lemma. Let H < G be a connected reductive subgroup of a semisimple group G.
Suppose H is a decomposable subgroup of G, so that G, H can be written as G =
G1G9, H = H1Hy as above. Then, (G,H) is a multiplicity-free pair if and only if
(G1, Hy) and (G, H2) are both multiplicity-free pairs.

Proof. This is immediate from the definition since Weyl modules (resp. coWeyl mod-
ules) for G or H are just tensor products of Weyl modules (resp. coWeyl modules) for
G1 and Gy or Hy and Hy. O

We define an indecomposable multiplicity-free pair to be a multiplicity-free pair
(G, H) such that H is an indecomposable subgroup of G. As remarked in the intro-
duction, to classify all multiplicity-free pairs, it is sufficient to classify the indecom-
posable multiplicity-free pairs (G, H) with G semisimple and simply connected, by
Corollary 3.8 and the above Lemma.

The next Lemma is well known.

4.4. Lemma. Let G = G1...Gy, be a semisimple algebraic group written as a com-
muting product of simple subgroups G; < G, with n > 2. If H is a mazimal connected
reductive subgroup of G, then one of the following holds:

(i) Some simple factor 1 # G; < G is contained in H.

(ii) H is diagonally embedded in G and n = 2.

Proof. We may assume G is of adjoint type, so that it is a direct product G =
G1 x -+ x Gy, with each G; simple both as algebraic and abstract groups. We shall
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write G* = [] ki G;. Assume G; £ H for all i, which immediately implies that H lies in
no parabolic subgroup of G. Suppose first that Z(H) # 1. Take z = z1...2, € Z(H)
with z; € G; and z; # 1 for some j. As H lies in no parabolic, H is maximal, so
H = Cg(2)°. This implies that H = Cg,(21)°...Cg, (2,)°. Maximality again forces
z; = 1 for i # j, so that G; < H for all ¢ # j, contradicting our assumption.

So, Z(H) = 1 and we can write H = Hy...H,, as a direct product of simple,
centreless factors H;. By maximality, H = Ng(H1)?. We now show that the projection
7« Hi — Gy is a bijection for each i. To see this, notice H; N G* < Hy, so equals 1
or Hy, as Hj is simple as an abstract group. In the latter case, H; < G’ so G; < H,
contrary to assumption. So, H; NG’ = 1 and 7; is injective for each i. Next, the
normaliser Ng /Gi(HlGi /G%) contains HG'/G®. But this equals G//G' by maximality
of H,so H1G'/G'1G/G* = G;. Hence, H1G*/G* = G/G" and T; is surjective for each
1, as required.

Now let 6; = mjom, L. G4 — G;. We have shown that each 6; is an isomorphism of
abstract groups and that Hy = {gf2(g)...0,(9) | g € G1}. But then H = Ng(H;)? =
H;. Finally, by maximality, we must have that n = 2 and (ii) holds. O

4.5. Lemma. Let (G,H) be an indecomposable multiplicity-free pair, such that G is
semisimple and simply connected, but not simple. Then, G = SLy(k) x SLa(k) and
H < G is a diagonally embedded S Ly (k).

Proof. First suppose that H is a maximal connected reductive subgroup of G. Then
Lemma 4.4 implies that G = G1 X G5 is a product of two isomorphic simple factors and
H is a diagonally embedded subgroup. Now a routine dimension check shows that the
only possibility satisfying the bound dim B + dim By > dim G is as in the conclusion.

Now suppose for a contradiction that the lemma is false. Then, we can find a
counterexample (G, H), such that the lemma holds for all indecomposable multiplicity-
free pairs (G1, Hy) such that either dim G; < dim G or dim G; = dim G and dim H; >
dim H. By the previous paragraph, H is not a maximal connected reductive subgroup
of G, so we may embed H < K < G where K is a connected reductive subgroup of
G and H is a maximal connected reductive subgroup of K. Choose Borel subgroups
By < Bg < B for H, K, G respectively. Obviously, there is a dense (B, Bg )-double
coset in G, so (G, K) is a multiplicity-free pair. By Lemma 4.3, we may write G, K
as direct products G = G; X --- x G, K = K; X --- x K,, such that each pair
(G;, K;) is an indecompoable multiplicity-free pair. Suppose first that n = 1. Then,
the minimality hypothesis on (G, H) implies that G = SLa(k) x SLa(k) and K is a
diagonally embedded SLy(k). But for this pair dim B + dim By is exactly equal to
dim G and By is a proper subgroup of Bi. This gives a contradiction, since (G, H) is
a multiplicity-free pair.

Son > 1. Let Z be the centre of K and, for any subgroup L < K, denote its image
in KZ/Z by L'. The hypothesis on (G, H) implies that the lemma holds for each
(Gi, K;). So each K is simple and in particular H’ is an indecomposable subgroup of
K’, since H is an indecomposable subgroup of G. Now Lemma 4.4 implies that K’ is
semisimple of length 2 and H’ is diagonally embedded in K’, as in the first paragraph.
The number of factors (G;, K;) isomorphic to (SLy(k), GL,—1(k)) is just dim Z, and
for these pairs dim GG; > dim K;+1. Hence, dim By +dim B > dim G > dim K 4+dim Z,
and this implies that dim B}; + dim B} > dim K’. But now the dimension check from
the first paragraph gives a contradiction. O
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Theorem C follows immediately from Lemma 4.2 and Lemma 4.5.

5 Proof of Theorem D
Let (G, H) be as in Theorem D, and fix notation as in Lemmas (2.4)-(2.6).

5.1. To prove Theorem D, it is sufficient to show that V()\;) has a good filtration
as an H-module for each fundamental dominant weight \; € X(7T'). This follows by
combining the Donkin-Mathieu tensor product theorem (in fact [3, Theorem 4.3.1]
is sufficient for our purposes) with the argument of [3, 3.5.4]. We shall prove the
equivalent dual statement, that Ag(\;) has a Weyl filtration as an H-module, for each
fundamental dominant weight A;.

Let us first consider G = B; or D; and the fundamental weights \; (if G = B; or
D;) and \j_1(G = D; only). Spin modules for B, D; are irreducible Weyl modules in
all characteristics. If (G, H) = (Dy, B;—1) then Ag(A;—1) and Ag();) are spin modules,
and restrict to the spin module Ay (\,_,) for H. If (G, H) = (By, D;) then Ag()\;) is
a spin module and restricts to a direct sum Ag(\) & Ag(N\_;). Hence Ag(\;) has a
Weyl filtration on restriction to H in each case as required.

It remains to consider the Weyl modules Ag(\;) for 1 < i < [ (if G = A4;),
1<i<l-1@G0G=B)orl<i<I1-2(if G = D). Recall from (2.4)-(2.6)
that g is the corresponding simple Lie algebra over C, with natural module E’. The
corresponding irreducible g-module is just the exterior power A’ E’ in each case. Now,
if G = SL, (k) or an orthogonal group in characteristic different from 2, /\l E' remains
irreducible on reduction mod p by [5, p43, Lemma 11], so that Ag(\;)) = A"E. In
each case, an easy argument shows that resf A" E = A" Eg ® \""! Eo, where Ej is the
natural module for H; these summands are Weyl modules for H. This completes the
proof of Theorem D, unless G is an orthogonal group with p = 2.

To include characteristic 2, we now give a short direct argument exploiting the
element g € G in the dense (By, B)-double coset constructed in Lemmas (2.4)-(2.6).
In fact, this argument is valid in all characteristics, and does not depend on the result
from [5] used in the previous paragraph. The same argument can also be given for
G = SL, (k).

5.2. Lemma. Let (G,H) = (SOQn(k), SOQn_l(k)) or (SOQn_A,_l(k),SOQn(k)) with 1 S
i <n—2o0rl<i<n-—1 respectively. Then, Ag(\;) has a Weyl filtration as an
H-module.

Proof. Let Ac = /\’ E’ be the corresponding irreducible g-module over C, with no-
tation as in (2.5) or (2.6). Then, v =€} A--- A€} is a high weight vector of E’, and
Ay = Uz.v' is an admissible lattice in Ac. The Chevalley construction of (2.3) implies
that A = Az ®, k is the Weyl module Ag(\;), with high weight vector v = v’ ® 1. Let
Ty =T N H, amaximal torus of H, and BIJ; be the corresponding opposite Borel sub-
group to By. Fix a dominance ordering on X (Tj) so that By is the Borel subgroup
generated by negative T-root subgroups.

Now recall the element g € G from Lemmas (2.5) and (2.6). Since BygB™ is dense
in G, A is generated as a By-module by the vector w = ¢g.v. There is a canonical way
to construct a filtration of A using this vector w which we now describe. Write w as a



VIULLTIFLIULL Y=FREEL SUDLRUULS

sum »_ w,, corresponding to the Ty-weight space decomposition of A. Set Ay = {0},
and inductively define A; as follows. Pick p; € X (Ty) maximal with respect to the
dominance order on X (Ty) such that w,, ¢ A,_1. Let A; be the By-submodule
generated by w,, and A;_;. This defines an ascending filtration of By-modules.

{0}:A0<A1<"'<Am.

The construction implies that w € A,,, so that by density, A,, = A. The choice of
p; immediately implies that w,, + A;_1 is a B;—eigenvector in A/A;_1 of weight u;.
Hence, in fact A;/A;_1 is an H-module, and the filtration is a filtration of H-modules.
Each A;/A;_; is a high weight module of high weight u;, so an image of the Weyl
module Ag(u;), and each p; must be dominant.

Now work in Az to compute the p; occuring in the filtration. Since g € G was
constructed as a product of root group elements of the form (1), there is a corre-
sponding element u € Uy such that (u.v') ® 1 = ¢g.(v/ ® 1). Let w’ = uw.v’. A short
calculation using table 2 shows that w’ is the vector

(e —e )N A(ei—¢€,)
if G = D,, or
(6’1+€6—€/_1)/\(€,2+66—6/_2—26/_1)/\”-/\(624—66—6/_2-—26/_1—"'—26/7(1-71))

if G = By,. It is straightforward to expand the above expressions and compute the
vectors w) occuring in decomposition w’ = ) w) corresponding to the weight space
decomposition of Ay. Let d’ denote the vector ¢, if G = D,, or ¢ if G = B,,. Then,
in both cases, the only vectors w with A\ dominant are the vectors €] A --- A e} and
+el A--- ANej_y ANd in Az. Moreover, every vector wy € A in the decomposition
w = Y wy is the image of some vector w) € Az. This argument shows that the only
possibilities for the high weights u; occuring in the above filtration are 1 + --- + ¢;
and 1+ - +¢&j_1.

Now, dimension implies that both of these high weights must indeed occur, and
that each factor A;/A;_1, which is a high weight module of weight y; by construction,
must in fact be the Weyl module Ag(u;). Thus, the filtration is a Weyl filtration,
completing the proof. 0O

To complete the proof of Theorem D, it just remains to observe that it also holds
for the pair (G, H) = (SOs(k), Spinz(k)), by applying a triality automorphism to the
pair (SOs(k), SO7(k)) as in Lemma 2.6.
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