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Abstract

We introduce the notion of a multiplicity-free subgroup of a reductive alge-
braic group in arbitrary characteristic. This concept already exists in the work
of Krämer for compact connected Lie groups. We give a classification of reduc-
tive multiplicity-free subgroups, and as a consequence obtain a simple proof of a
theorem of Kleshchev.

1 Introduction

Let k be an algebraically closed field of characteristic p ≥ 0. If p = 0, it is well
known that the restriction of any irreducible SLn(k)-module to the natural subgroup
GLn−1(k) is multiplicity-free. The same is true for the restriction of an irreducible
SOn(k)-module to the subgroup SOn−1(k). In positive characteristic, these results are
no longer true, but a recent result of Kleshchev [8, Theorem A] shows nonetheless that
the socle and the head (which is isomorphic to the socle) of the restriction are both
multiplicity-free. In our first theorem, we give a simple proof of this fact, which is
quite different from Kleshchev’s original proof.

Theorem A. Let H < G be the simply connected cover of an entry in table 1. Then

dim HomH(∆H ,∇G) ≤ 1(1)

for all Weyl modules ∆H for H and all coWeyl modules ∇G for G. Hence, the socle
and head of resGH LG are multiplicity-free for every irreducible G-module LG.

Kleshchev actually proves a slightly weaker result, namely that for all pairs (G,H)
in Theorem A, dim HomH(∆H , LG) ≤ 1 for all Weyl modules ∆H for H and all irre-
ducible modules LG for G. Kleshchev also shows how to deduce from this result in
the case (G,H) = (SLn(k), GLn−1(k)) (by applying a “Schur functor”) that the re-
striction of any irreducible module for the symmetric group algebra kSr to kSr−1 has
multiplicity-free socle and head. In later work [9, 10], Kleshchev has described precisely

Table 1: Multiplicity-free subgroups

G H

SLn(k) n ≥ 2 GLn−1(k)
SOn(k) n ≥ 4 SOn−1(k)
SO8(k) Spin7(k)
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which irreducible kSr−1-modules appear in this multiplicity-free socle of the restric-
tion to kSr−1 of an arbitrary irreducible kSr-module. These results of Kleshchev have
recently been extended to the corresponding Hecke algebras of type A in [2].

We call a pair (G,H) of connected reductive groups with H ≤ G a multiplicity-free
pair if 1 holds for all ∆H ,∇G. The next results give a classification of multiplicity-free
pairs. To do this, we first prove a characteristic-free analogue (Theorem 3.5) of a result
due to Kimel’fel’d and Vinberg [7] in characteristic 0. In fact, only minor alterations
to the original proof are needed in characteristic p. The following characterisation of
multiplicity-free pairs is an easy consequence of Theorem 3.5.

Theorem B. Let H < G be connected reductive algebraic groups. Let B,BH be Borel
subgroups of G,H respectively. Then, (G,H) is a multiplicity-free pair if and only if
there is a dense (B,BH)-double coset in G.

We now describe the classification of multipicity-free pairs. Theorem B implies that
if θ is an isogeny of G, then (G,H) is a multiplicity-free pair if and only if (θ(G), θ(H))
is a multiplicity-free pair (see Corollary 3.8). So it is sufficient to classify multiplicity-
free pairs up to isogenies of G. If (G1,H1) and (G2,H2) are multiplicity-free pairs then
(G1×G2,H1×H2) is also a multiplicity-free pair, so that we only need to classify the
“indecomposable” multiplicity-free pairs (see (4.3) for a precise definition). Finally, if
R is the radical of G, then it is obvious that (G,H) is a multiplicity-free pair if and
only if (G/R,HR/R) is a multiplicity-free pair. These reductions show that to classify
multiplicity-free pairs, we need only classify the indecomposable multiplicity-free pairs
(G,H) with G semisimple and simply connected.

Theorem C. The indecomposable multiplicity-free pairs (G,H), with G semisimple
and simply connected, are precisely the following:

(i) The simply connected cover of an entry in table 1.
(ii) G = Sp2n(k) and H = SO2n(k)(p = 2).
(iii) G = SL2(k)×SL2(k) and H is the diagonal subgroup {(g, θ(g)) | g ∈ SL2(k)},

where θ : SL2(k)→ SL2(k) is a Frobenius morphism (p 6= 0).
(iv) Any pair (G,G) with G simple and simply connected.

In characteristic 0, Theorem C follows from a result of Krämer [11] which classifies
multiplicity-free pairs of compact Lie groups. The possibilities (ii), (iii) in Theorem C
only occur in non-zero characteristic.

By definition, if (G,H) is a multiplicity-free pair, then for all Weyl modules ∆H of
H and all coWeyl modules ∇G of G, HomH(∆H ,∇G) = Ext0

H(∆H ,∇G) is at most 1-
dimensional. We next consider higher Ext functors. Call a reductive subgroup H < G
a good filtration subgroup if ExtiH(∆H ,∇G) = 0 for all Weyl modules ∆H of H and
all coWeyl modules ∇G of G, and all i ≥ 1. This condition is equivalent (eg by [6,
II.4.16]) to the property that every coWeyl module ∇G of G has an H-stable filtration

0 = ∇0 < ∇1 < · · · < ∇n = ∇G

such that each factor ∇i/∇i−1 is a coWeyl module for H. Such a filtration is called a
good filtration, and it is known ([6, II.4.16] again) that the number of factors∇i/∇i−1 in
the filtration isomorphic to a given coWeyl module∇H is equal to dim HomH(∆H ,∇G),
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where ∆H is the contravariant dual of ∇H . Thus, if (G,H) is a multiplicity-free pair
such that H is also a good filtration subgroup of G, then in fact every coWeyl module
∇G of G has a multiplicity-free good filtration as an H-module.

Our final result shows that if (G,H) is a multiplicity-free pair, H is usually a
good filtration subgroup. For the case (G,H) = (SLn(k), GLn−1(k)), this result goes
back at least to James [4, 26.6], and is in fact a special case of the Donkin-Mathieu
restriction theorem [3, 14] which shows that any Levi subgroup of a reductive algebraic
group is a good filtration subgroup.

Theorem D. Let H < G be the simply connected cover of an entry in table 1. Then,
H is a good filtration subgroup of G, so that

ExtiH(∆H ,∇G) = 0

for all Weyl modules ∆H for H and coWeyl modules ∇G for G, and all i ≥ 1. Hence
each ∇G also has a multiplicity-free good filtration as an H-module.

This result extends immediately (by [3, 4.2]) to cover any multiplicity-free pair
(G,H) “defined over Z” – that is, no factor in a decomposition of (G,H) into inde-
composable multiplicity-free pairs is of type (ii) or (iii) from Theorem C. It is easy to
see that these are genuine exceptions: for example if E is the natural Sp2n(k)-module
and p = 2, then

∧2E does not have a good filtration as an SO2n(k)-module.

2 Proof of Theorem A

2.1. Throughout this note, G will denote a connected reductive algebraic group defined
over k. By a G-module, we shall always mean a rational kG-module. Let us fix
some notation regarding root systems, Weyl modules etc., following the conventions
in Jantzen [6]. Let B be a Borel subgroup of G with unipotent radical U , and let
T < B be a maximal torus. Let B+ be the opposite Borel subgroup to B relative to
T , so that B ∩ B+ = T . The choice of T determines a root system Φ ⊂ X(T ), where
X(T ) is the character group Hom(T, k×). For α ∈ Φ, let Uα denote the corresponding
T -root subgroup of G. Let Π = {α1, . . . , αl} be the unique base for Φ such that
B is the Borel subgroup generated by negative root subgroups. Let W = NG(T )/T
be the Weyl group of G, and fix a positive definite W -invariant symmetric bilinear
form (., .) on R ⊗

Z
X(T ). For 0 6= α ∈ R ⊗

Z
X(T ), α∨ denotes 2α/(α, α). Let

X+(T ) = {λ ∈ X(T ) | (λ, α∨) ≥ 0 for all α ∈ Π} be the dominant weights of T (with
respect to Π). The choice of Π also fixes a set of simple reflections in W , so that we
can talk about the longest element w0 of W relative to these simple reflections.

Given λ ∈ X(T ), let kλ denote the corresponding 1-dimensional B-module. The
coWeyl module ∇G(λ) is defined to be the induced module indGB(kλ), and is non-zero
precisely when λ ∈ X+(T ) is dominant (see [6, II.2.6]). We will say a G-module is
a high weight module of high weight λ if it is generated by a B+-eigenvector v+ of
weight λ ∈ X(T ). Weyl modules are high weight modules, and are ‘universal’ in the
sense that any high weight module is a homomorphic image of some Weyl module [6,
II.2.13]. For λ ∈ X+(T ), let ∆G(λ) denote the corresponding Weyl module of high
weight λ, and let LG(λ) denote the simple head of ∆G(λ) (isomorphic to the simple
socle of ∇G(λ)). Finally, the dual ∆G(λ)∗ is isomorphic to ∇G(λ∗), where λ∗ = −w0λ,
by [6, II.2.13].
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2.2. The proof of Theorem A depends on the following elementary lemma:

Lemma. Let (G,H) be a pair of connected reductive algebraic groups with H < G.
Let B+, BH be Borel subgroups of G,H respectively and suppose that the double coset
BHgB

+ is dense in G for some g ∈ G. Then,

dim HomH(∆H ,∇G) = dim HomH(∆G,∇H) ≤ 1

for all Weyl modules ∆H = ∇ ∗H for H and all Weyl modules ∆G = ∇ ∗G for G. Hence,
the socle and head of resGH LG are multiplicity-free for every irreducible G-module LG.

Proof. Let ∆H ,∇H ,∆G,∇G be as in the lemma. The Weyl module ∆G is generated
by some B+-eigenvector v+. Since BHgB+ is dense in G, ∆G = k-span{G.v+} = k-
span{BHgB+.v+} = k-span{BH .gv+}. Hence, ∆G is generated as a BH -module by
the vector gv+. Now, by definition ∇H is an induced module indHBH kλ for some 1-
dimensional BH -module kλ. Since any BH -homomorphism ∆G → kλ is determined
by its value on the generator gv+, and kλ is 1-dimensional, it is immediate that
HomBH (∆G, kλ) is at most 1-dimensional. Applying Frobenius Reciprocity [6, I.3.4]
and dualising, we deduce that

dim HomH(∆G,∇H) = dim HomH(∆H ,∇G) ≤ 1

proving the first part of the lemma.
It remains to show that the socle and head of resGH LG are multiplicity-free for

every irreducible G-module LG. For the socle, we need to compute HomH(LH , LG)
for an irreducible H-module LH . By the universal property of Weyl modules, any
homomorphism LH → LG extends to a homomorphism ∆H → ∇G, where ∆H is
the Weyl module for H with head LH and ∇G is the coWeyl module for G with
socle LG. Hence, HomH(LH , LG) is also at most 1-dimensional, so that the socle of
resGH(LG) is multiplicity-free. The same argument shows that the head is multiplicity-
free, completing the proof.

2.3. We shall shortly apply this lemma to prove that each entry in table 1 is a
multiplicity-free pair. For later use, we shall actually construct a suitable element
g ∈ G explicitly in each case in terms of root subgroups, viewing G as a Chevalley
group. Let us briefly recall the construction of Chevalley groups, following Steinberg
[18].

Let g be a semisimple Lie algebra over C with Cartan subalgebra h and root system
Φ ⊂ h∗, and let Π = {α1, . . . , αl} be a base for Φ as in (2.1). Fix a Chevalley basis
{Xα,Hi | α ∈ Φ, 1 ≤ i ≤ l} for g and let UZ be the corresponding Kostant Z-form for
the universal enveloping algebra U(g) of g. Let n+ be the subalgebra generated by the
Xα with α ∈ Π. Fix now some irreducible g-module ∆C of dimension n, with a fixed
high weight vector v+ annihilated by n+. Set ∆Z = UZ.v

+, an admissible lattice in ∆C.
Working in a basis of ∆Z, we can identify a generator Xi

α/i! of UZ (α ∈ Φ, i ≥ 0) with
a matrix in Mn(Z), via the representation g → gl(∆C). Having done this, the series
exp(tXα), where t is an indeterminate, has only finitely many non-zero terms, hence
gives a well-defined element of SLn(Z[t]). Set ∆k = ∆Z ⊗Z k; then xα(t) = exp(tXα)
defines an automorphism of ∆k for every t ∈ k. The Chevalley group G = Gk is now
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defined to be the subgroup of GL(∆k) generated by {xα(t) | α ∈ Φ, t ∈ k}. It is a
semisimple algebraic group over k of the same type as g, and ∆k is a Weyl module for
Gk.

Now we consider the cases in table 1 in turn.

2.4. For G = SLn(k),H = GLn−1(k), we make the following choices. Let T be the
subgroup of all diagonal matrices, and B be the Borel subgroup of all lower triangular
matrices, so that B+ consists of upper triangular matrices. If εi : T → k× denotes
the character diag(t1, . . . , tn) 7→ ti, we can write Φ = {±(εi − εj) | 1 ≤ i < j ≤ n}
and Π = {εi − εi+1 | 1 ≤ i ≤ n − 1}. Letting e1, . . . , en denote the canonical basis
for the natural G-module E, choose H to be the stabiliser of the decomposition E =
〈e1, . . . , en−1〉 ⊕ 〈en〉, isomorphic to GLn−1(k). Let BH = B ∩H, a Borel subgroup of
H. For t ∈ k, let xεi−εj (t) ∈ Uεi−εj denote the matrix I + teij (where eij is the matrix
with a 1 in the ij-entry, zeros elsewhere). This is precisely the root group element
xεi−εj (t) from the Chevalley construction of (2.3), with the usual choice of Chevalley
basis for sln(C), ie Xεi−εj = eij .

Lemma. With notation as above, the double coset BHgB+ is dense in G, where

g = xεn−ε1(1)xεn−ε2(1) . . . xεn−εn−1(1).

Hence, (SLn(k), GLn−1(k)) is a multiplicity-free pair.

Proof. In terms of the basis e1, . . . , en, g is the matrix

g =


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
1 · · · 1 1


Since dimBHgB

+ = dimBH+dimB+−dim g−1BHg∩B+ = dimG−dim g−1BHg∩B+,
it is sufficient to show g−1BHg ∩ B+ is finite. Suppose h ∈ g−1BHg ∩ B+; as B+

consists of upper triangular matrices while g−1BHg is lower triangular, it follows that
h = diag(h1, . . . , hn) is diagonal. Now, ghg−1.ei = hiei + (hi−hn)en. As ghg−1 ∈ BH ,
hi = hn for 1 ≤ i ≤ n− 1. Hence, h lies in the centre Z(G), which is finite.

2.5. For G = SO2n+1(k),H = SO2n(k), fix notation as follows. Let E be the natural
(2n+ 1)-dimensional G-module with a G-invariant bilinear form (., .). Write elements
of G as matrices with respect to an ordered basis e1, . . . , en, e0, e−n, . . . , e−1 for E such
that (ei, ej) = 0(i 6= −j), (ei, e−i) = 1(i 6= 0) and (e0, e0) = 2. Let B (resp. B+)
be the lower (resp. upper) triangular matrices in G, a Borel subgroup of G, and T
be the diagonal matrices, a maximal torus of G. Let εi : T → k× be the character
diag(t1, . . . , tn, 1, t−1

n , . . . , t−1
1 ) 7→ ti. In this notation, the root system Φ can be written

as {±εi ± εj ,±εk | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} and Π = {ε1 − ε2, . . . , εn−1 − εn, εn}.
Let g = so2n+1(C) be the corresponding Lie algebra over C with natural module E′,

g-invariant form (., .)′ and canonical basis e′1, . . . , e
′
n, e
′
0, e
′
−n, . . . , e

′
−1, with properties

as in the previous paragraph. Let Ei,j ∈ g denote the element such that Ei,j .e′k = δjke
′
i

for all −n ≤ i, j, k ≤ n. Then, the elements Xα(α ∈ Φ) in table 2 give a Chevalley
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Table 2: A Chevalley basis for types Bl, Dl

α εi − εj(i < j) εi + εj(i < j) εi
Xα Ei,j − E−j,−i Ej,−i − Ei,−j 2Ei,0 − E0,−i
X−α Ej,i − E−i,−j E−i,j − E−j,i E0,i − 2E−i,0

basis for g (this is the Chevalley basis used in [5, p38]). The Chevalley construction
defines root group elements xα(t) ∈ G for t ∈ k corresponding to this Chevalley basis.
We shall only need to use the elements x−εi(t), which act on the natural module E as
follows:

x−εi(t).ei = ei + te0 − t2e−i,
x−εi(t).e0 = e0 − 2te−i,

with all other basis elements fixed.
Now, let H be the subgroup SO2n(k) generated by root groups Uα for α ∈ {±εi ±

εj | 1 ≤ i < j ≤ n}. We can describe H geometrically as the connected stabiliser in
G of the direct sum decomposition E = 〈e1, . . . , en, e−n, . . . , e−1〉 ⊕ 〈e0〉. Note finally
that BH = H ∩B is a Borel subgroup of H.

Lemma. With notation as above, the double coset BHgB+ is dense in G, where

g = x−ε1(1)x−ε2(1) . . . x−εn(1).

Hence, (SO2n+1(k), SO2n(k)) is a multiplicity-free pair.

Proof. By the dimension argument of Lemma 2.4, we again just need to show that
g−1BHg ∩ B+ is finite. Suppose h ∈ g−1BHg ∩ B+; as B+ consists of upper tri-
angular matrices while g−1BHg is lower triangular, it follows as before that h is di-
agonal. Let h = diag(h1, . . . , hn, 1, h−1

n , . . . , h−1
1 ). Since ghg−1 ∈ BH , it stabilises

〈e1, . . . , en, e−1, . . . , e−n〉. The e0-coefficient of ghg−1.ei is hi − 1. Hence, hi = 1 for
each i, and the intersection is trivial.

2.6. For G = SO2n(k),H = SO2n−1(k), we shall realise G as the subgroup SO2n(k)
constructed in (2.5), acting on the space E = 〈e1, . . . , en, e−n, . . . , e−1〉. Write elements
of G as matrices with respect to this ordered basis for E. Let T,B,B+ be the diagonal,
lower triangular, upper triangular matrices in G respectively, and let εi, (., .) be the
restrictions of those defined in (2.5). We may write Φ = {±εi ± εj | 1 ≤ i < j ≤ n}
and Π = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn}. Let g = so2n(C), with natural module
E′ and canonical basis e′1, . . . , e

′
n, e
′
−n, . . . , e

′
−1 corresponding to E, ei as before. Fix a

Chevalley basis for g as a subset of the Chevalley basis constructed in (2.5), so that
Xα(α ∈ Φ) is as in table 2. This gives corresponding parametrisations xα(t) of the
T -root subgroups of G; in particular, for i < j, x−εi−εj (t) acts as:

x−εi−εj (t).ei = ei − te−j ,
x−εi−εj (t).ej = ej + te−i

with all other basis elements fixed. Let H be the connected stabiliser of 〈en + e−n〉,
isomorphic to SO2n−1(k), and note BH = B∩H is a Borel subgroup of H. In terms of
root subgroups, H is generated by {U±α | α = ε1 − ε2, . . . , εn−2 − εn−1} together with
the elements {xεn−1−εn(t)xεn−1+εn(t), x−εn−1+εn(t)x−εn−1−εn(t) | t ∈ k}.
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Lemma. With notation as above, the double coset BHgB+ is dense in G, where

g = x−ε1−εn(1)x−ε2−εn(1) . . . x−εn−1−εn(1).

Hence, (SO2n(k), SO2n−1(k)) and (SO8(k), Spin7(k)) are multiplicity-free pairs.

Proof. Dimension implies that we just need to show that g−1BHg ∩ B+ is finite.
Suppose h ∈ g−1BHg ∩B+. The same argument as in (2.5) shows that h is a diagonal
matrix, say h = diag(h1, . . . , hn, h

−1
n , . . . , h−1

1 ). Now, ghg−1 ∈ BH , so ghg−1.(en +
e−n) ∈ 〈en + e−n〉. A direct computation shows that ghg−1.(en + e−n) = hnen +
(hn − h−1

1 )e−1 + · · · + (hn − h−1
n−1)e−(n−1) + h−1

n e−n. Hence, h1 = · · · = hn = ±1 so
g−1BHg ∩B+ is indeed finite.

This proves that (G,H) = (SO2n(k), SO2n−1(k)) is a multiplicity-free pair. Now
apply a triality graph automorphism (working in PSO8(k) then taking pre-images
since triality is not defined on SO8 if p 6= 2) to deduce that there is also a dense
(BH , B+)-double coset in G for the pair (G,H) = (SO8(k), Spin7(k)). Hence, this is
also a multiplicity-free pair.

Lemma 2.4-Lemma 2.6 complete the proof of Theorem A.

3 Proof of Theorem B

To classify multiplicity-free pairs, we first prove an analogue of a result of Kimel’fel’d
and Vinberg [7, Theorem 1] in characteristic 0. In this section, we give a proof of
this analogue (Theorem 3.5), following the original proof closely, and then deduce
Theorem B from it. As always, G denotes a connected reductive algebraic group, with
the conventions of (2.1).

3.1. Given an arbitrary closed subgroup H < G, we write X(H) = Hom(H, k×) for
the character group of H. For any subset J ⊂ I = {1, . . . , l}, define the parabolic
subgroup P = PJ to be the subgroup generated by B and the T -root subgroups Uαj
for j ∈ J . We shall identify X(P ) with a subgroup of X(T ) via restriction. If H is
an arbitrary closed subgroup of G, we define X+(H) = {λ ∈ X(H) | indGH kλ 6= 0}.
In particular, [6, II.2.6] implies X+(T ) = X+(B). More generally, if H = P = PJ is
parabolic, the following statements are equivalent definitions of X+(P ). Recall here
from (2.1) that U denotes the unipotent radical of the negative Borel subgroup B.

(i) X+(P ) = X(P ) ∩X+(T ).
(ii) X+(P ) = {λ ∈ X+(T ) | (λ, α∨j ) = 0 for all j ∈ J}.
(iii) X+(P ) = {λ ∈ X+(T ) |∆G(λ∗)U is P -stable}.
We shall write k[G] (resp. k(G)) for the ring of regular (resp. rational) functions

on G. We regard k[G] as a G-module in two ways, via the left regular and the right
regular representations, where (g.f)(h) = f(g−1h) and (f.g)(h) = f(hg−1) for g, h ∈
G, f ∈ k[G] respectively. These extend uniquely to define actions of G on k(G). If
P,H are any closed subgroups of G, let Pk(G)H be the subalgebra

Pk(G)H = {f ∈ k(G) | p.f.h = f, for all p ∈ P, h ∈ H} .

We shall need Rosenlicht’s Theorem [16], which implies that there is a dense (P,H)-
double coset in G if and only if Pk(G)H = k.

We begin with a basic algebraic lemma.
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3.2. Lemma. Let A be a k-algebra that is an integral domain. Let a, b ∈ A be linearly
independent elements. Then, for n ∈ Z+, the elements an, an−1b, . . . , abn−1, bn are also
linearly independent.

Proof. Let
∑s

i=0 αia
ibn−i = 0 be a dependency with αs 6= 0. Let β1, . . . , βs be the

roots of the polynomial α0 + α1x + · · · + αsx
s. Then,

∑s
i=0 αia

ibn−i = αsb
n−s(a −

β1b) . . . (a−βsb) = 0. As A is an integral domain, this implies one of b, a−β1b, . . . , a−βsb
is zero, contradicting the fact that a, b are linearly independent.

3.3. Lemma. Let H be a closed subgroup of G. Let λ ∈ X+(B), µ ∈ X(H). Write kµ
for the corresponding 1-dimensional H-module. Suppose that dim HomH(∆G(λ), kµ) ≥
2. Then, for all n ∈ Z+, dim HomH(∆G(nλ), knµ) ≥ n+ 1.

Proof. Let ∆ = ∆G(λ),∆n = ∆G(nλ) and let v+, w+ be highest weight vectors in
∆,∆n respectively. Let θ1, θ2 be linearly independent elements of HomH(∆, kµ). Let
fi ∈ k[G] be defined by fi(g) = θi(g.v+) for i = 1, 2. By the proof of Frobenius
reciprocity [6, I.3.4], f1 and f2 are linearly independent. Let α : ∆n →

⊗n ∆ be the
G-module homomorphism defined by the map w+ 7→ v+ ⊗ · · · ⊗ v+ and the universal
property of Weyl modules. Then, we can define φi ∈ HomH(∆n, knµ) for i = 0, . . . , n
by composing α with the map

⊗n ∆→ knµ defined by v1 ⊗ · · · ⊗ vn 7→ θ1(v1)⊗ · · · ⊗
θ1(vi) ⊗ θ2(vi+1) ⊗ · · · ⊗ θ2(vn). We claim φ0, . . . , φn are linearly independent, which
will complete the proof. Let a0φ0 + · · · + anφn = 0 be a dependency. Then, for all
g ∈ G,

n∑
i=0

aiφi(g.w+) =
n∑
i=0

aiθ1(g.v+)iθ2(g.v+)n−i = 0.

So, the element
∑n

i=0 aif
i
1f

n−i
2 ∈ k[G] is zero. But, this implies ai = 0 for each i as

the elements f i1f
n−i
2 are linearly independent by the previous lemma.

3.4. Remarks. (I) Let H < G be a connected reductive subgroup. An application
of Frobenius reciprocity together with Lemma 3.3 (applied to a Borel subgroup of
H) shows that if dim HomH(∆H(µ),∇G(λ)) ≥ 2 then dim HomH(∆H(nµ),∇G(nλ)) ≥
n+1 for all n ∈ Z+. In [11], Krämer uses this to reduce the classification of multiplicity-
free pairs (G,H) of compact Lie groups to the case that G is simply connected. We
could do this now in our case, but prefer to wait until we can prove the more general
Corollary 3.8.

(II) Krämer also introduces the notion of a multiplicity-bounded subgroup of a
compact connected Lie group. The appropriate analogue in our setting would be a
reductive subgroup H < G such that

dim HomH(∆H ,∇G) ≤ N

for all Weyl modules ∆H for H and coWeyl modules ∇G for G, where N is some fixed
constant independent of ∆H ,∇G. By the argument in (I), the concepts of multiplicity-
bounded and multiplicity-free subgroups are equivalent.

3.5. Theorem. Let H be an arbitrary closed subgroup of G and P = PJ be the
parabolic subgroup of G corresponding to J ⊂ I. The following properties are equiva-
lent.
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(i) dim HomH(∆G(λ∗), kµ) ≤ 1 for all λ ∈ X+(P ), µ ∈ X+(H).
(ii) There is a dense (P,H)-double coset in G.

Proof. (ii)⇒(i). This is just the argument of Lemma 2.2. Recall ∆G(λ∗) is generated
by any vector 0 6= v ∈ ∆G(λ∗)U . By (3.1)(iii), v is a P -eigenvector. Hence, if HgP is
dense in G, ∆G(λ∗) is generated as an H-module by the vector gv. This immediately
implies that HomH(∆G(λ∗), kµ) is at most 1-dimensional for any 1-dimensional H-
module kµ.

(i)⇒(ii). We first prove this for G semisimple and simply connected; then, k[G]
is a unique factorisation domain by [15]. Suppose there is no dense (P,H)-double
coset in G. Then, by Rosenlicht’s Theorem, there is some non-constant f ∈P k(G)H .
Write f = f1/f2 with f1, f2 ∈ k[G] coprime. Then, for p ∈ P, h ∈ H, p.f.h = f , so
(p.f1.h)f2 = f1(p.f2.h). As k[G] is a unique factorisation domain, this implies that
p.fi.h = θ(p, h)fi for each i, where θ(p, h) ∈ k[G]. Moreover, θ(p, h) is invertible, and
the invertible elements in k[G] are constant. We thus obtain a morphism θ : P ×H →
k×, and it is easily checked that this is a character of P ×H, so θ(p, h) = λ(p)µ(h) for
characters λ, µ of P,H respectively.

Now, let Vi be the left G-submodule of k[G] generated by fi. Writing ẇ0 ∈ NG(T )
for any coset representative of w0 ∈ W , ẇ0fi is a B+-high weight vector, since fi is
P -stable hence B-stable. So each Vi is a high weight module of high weight w0λ. Let
∆ = ∆G(w0λ) = ∆G(−λ∗). By the universal property of Weyl modules, each Vi is a
homomorphic image of ∆. By definition of induced module, we can regard each fi as
an element of indGH kµ, so that each Vi is a submodule of indGH kµ. Thus, we can define
two linearly independent homomorphisms ∆ → indGH kµ by composing ∆ → Vi with
the inclusion Vi ↪→ indGH kµ. Now apply Frobenius Reciprocity to show that

dim HomG(∆, indGH kµ) = dim HomH(∆, kµ) ≥ 2.

Finally, observe that −λ ∈ X+(P ) by (3.1)(i) and µ ∈ X+(H) by definition. So, this
contradicts (i).

Now we treat the general case. Suppose first that G is semisimple and satisfies (i).
Let G̃ be the simply connected cover of G. Write H̃, P̃ for the connected pre-images
of H,P respectively in G̃. We just need to show that (G̃, H̃) also satisfies (i); then,
the simply connected result will imply that there is a dense (P̃ , H̃)-double coset in
G̃, hence that there is a dense (P,H)-double coset in G (this follows as morphisms
of algebraic groups are open maps). So, suppose (G̃, H̃) does not satisfy (i); then
there exist λ ∈ X+(P̃ ), µ ∈ X(H̃) such that dim HomH̃(∆G̃(λ∗), kµ) ≥ 2. Now, we
can choose n ∈ Z+ so that nλ, nµ are characters in X+(P ), X(H) respectively. Then,
Lemma 3.3 implies dim HomH(∆G(nλ∗), knµ) ≥ 2, a contradiction.

Finally, suppose the radical R of G is non-trivial and that (G,H) satisfies (i).
Then clearly (G/R,HR/R) satisfies (i) so the result for semisimple G implies that
there is a dense (P/R,HR/R)-double coset in G. Taking pre-images, we obtain a
dense (P,HR)-double coset in G, hence a dense (P,H)-double coset since R < P is
central.

3.6. Remarks. (I) Popov’s result [15] shows that if G is semisimple, but not neces-
sarily simply connected, then the divisor class group of G is finite. Using this and a
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straightforward argument involving divisors, Kimel’fel’d and Vinberg prove (i)⇒(ii)
without considering the simply connected case separately.

(II) A subgroup H < G is called spherical if there is a dense (H,B)-double coset in
G. Spherical subgroups of reductive algebraic groups have been classified in character-
istic 0 in [1, 12]. As far as I know, no such classification exists in arbitrary characteristic,
even for the special case of reductive spherical subgroups of simple algebraic groups.

(III) Kimel’fel’d and Vinberg also prove that if H is a connected reductive subgroup
and {αj | j ∈ J} is stable under −w0 (the longest element of W ), then (i) is equivalent
to

(i)′ dim HomH(∆G(λ∗), k) = dim∇G(λ)H ≤ 1 for all λ ∈ X+(P ).
This can be proved in arbitrary characteristic providing in addition some conjugate
of H is normalised by τ , an anti-automorphism of G (see eg [6, II.1.16]) such that
τ2 = 1,τ t = t for t ∈ T and τUα = U−α for α ∈ Φ. This extra condition holds for
example if H is reductive and of maximal rank in G. Alternatively, in the special case
that P = B, (i) and (i)′ are equivalent providing H is a closed subgroup such that
the field of rational functions k(G/H) is the field of fractions of the regular functions
k[G/H] (this includes all reductive subgroups). The proof of this depends on the
argument in [7, Theorem 2] (in fact, Kimel’fel’d and Vinberg prove a slightly weaker
statement than required here, and consider characteristic 0 only, but the method is
easily generalised).

3.7. Now we apply Theorem 3.5 to deduce Theorem B. For the remainder of the sec-
tion, let H < G be a connected reductive subgroup. Fix a Borel subgroup BH of H. At
this point, we need to talk about root systems, Weyl groups etc. for H as well as for G.
Rather than introduce more notation, let us just note that since indGH is exact [6, I.5.12],
X+(BH) =

{
λ ∈ X(BH) | indGBH kλ 6= 0

}
also equals

{
λ ∈ X(BH) | indHBH kλ 6= 0

}
.

Hence, by (3.1)(i) with P = BH , we can regard X+(BH) as an intrinsically defined
set of dominant weights for some root system of H, and set ∇H(λ) = indHBH kλ for
λ ∈ X+(BH).

Theorem. Let P ≥ B and PH ≥ BH be parabolic subgroups of G,H respectively. The
following properties are equivalent.

(i) dim HomH(∆G(λ∗),∇H(µ)) ≤ 1 for all λ ∈ X+(P ), µ ∈ X+(PH).
(ii) There is a dense (P, PH)-double coset in G.

Proof. (i)⇒(ii). For µ ∈ X+(PH), ∇H(µ) = indHBH kµ = indHPH kµ. Therefore, we
can apply Frobenius reciprocity to (i) to deduce dim HomPH (∆G(λ∗), kµ) ≤ 1 for all
λ ∈ X+(P ), µ ∈ X+(PH). Then, Theorem 3.5 implies there is a dense (P, PH)-double
coset in G.

(ii)⇒(i). Suppose dim HomH(∆G(λ∗),∇H(µ)) ≥ 2 for some λ ∈ X+(P ) and µ ∈
X+(PH). By Frobenius reciprocity again, dim HomPH (∆G(λ∗), kµ) ≥ 2, so there is no
dense (P, PH)-double coset in G by Theorem 3.5.

Theorem B from the introduction follows immediately from this, putting P = B
and PH = BH . As an immediate corollary, we can show that it is sufficient to consider
multiplicity-free pairs up to isogenies of G.

3.8. Corollary. Let θ be an isogeny of G. Then, (G,H) is a multiplicity-free pair if
and only if (θ(G), θ(H)) is a multiplicity-free pair
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Table 3: Reductive subgroups of dimension at least 1
2 dimG

G H G H

Sp(E), SO(E) Ni G2 A2, Ã2(p = 3)
SL(E) Sp(E) F4 B4, C4(p = 2)
Sp(E)(p = 2) SO(E) E6 F4

SO8(k) Spin7(k) E7 A1D6

SO7(k)(p 6= 2), Sp6(k)(p = 2) G2 E8 A1E7

Proof. Let B,BH be Borel subgroups of G,H respectively. By Theorem B, we need
to show that there is a dense (B,BH)-double coset in G if and only if there is a dense
(θ(B), θ(BH))-double coset in θ(G), which is immediate since morphisms of algebraic
groups are open maps.

4 Proof of Theorem C

Theorem B reduces the problem of classifying multiplicity-free pairs to group theory.
We shall need to list all reductive subgroups H of simple algebraic groups G satisfying
the dimension bound dimB+dimBH ≥ dimG given in Theorem B. Note that we make
a distinction between reductive maximal subgroups and maximal reductive subgroups
of G: the former are maximal subgroups of G, whereas the latter may lie in some
proper parabolic of G.

4.1. For G classical, we use the notation G = Cl(E) to indicate that G is a connected
classical algebraic group with natural module E. When G = SO(E), Sp(E) let Ni

denote the connected stabiliser in G of a non-degenerate subspace of E of dimension i
with i ≤ 1

2 dimE; and when (G, p) = (Dn, 2) let N1 denote the connected stabilizer of
a nonsingular 1-space. When p = 3, we write Ã2 for the subgroup of G2 generated by
the short root groups relative to some fixed maximal torus.

Lemma. Let H be a reductive maximal connected subgroup of a simple algebraic group
G, and suppose that dimH ≥ 1

2 dimG. In the case G classical, suppose that G = Cl(E)
and that (G, p) 6= (Bn, 2). Then (G,H) are in table 3.

Proof. For G classical, this is [13, Lemma 5.1]. For G exceptional, it follows from [17]
by the argument in [13, Proposition 2.3].

4.2. Lemma. The multiplicity-free pairs (G,H) with G simple are precisely those in
table 1, up to isogenies of G, together with the trivial case H = G of Theorem C(iv).

Proof. We exclude the case (G,H) = (SO4(k), SO3(k)) since here G is not simple. By
Theorem B, there is a dense (B,BH)-double coset in G, so dimB + dimBH ≥ dimG.
This implies dimH ≥ dimG − rankG − rankH ≥ dimG − 2 rankG. We show that
the only pairs (G,H) for which H satisfies this dimension bound are those in table
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1 (up to isogenies of G); we already know that all such pairs are multiplicity-free
pairs by Theorem A and Corollary 3.8. Note that for each pair (G,H) in table 1,
dimB + dimBH exactly equals dimG, so no proper reductive subgroup of H satisfies
the dimension bound.

We consider two cases.
(i) Suppose H lies in no parabolic subgroup of G. Then, H lies in some reductive

maximal connected subgroup H̄ of G. Consider first the possibilities for H̄. The
bound dim H̄ ≥ dimG− 2 rankG implies either (G, H̄) = (SL2(k), GL1(k)) (which is
in table 1) or dim H̄ ≥ 1

2 dimG. Hence, (G, H̄) are given by Lemma 4.1. Now, one
checks that the only possibilities satisfying the stronger dimension bound dim H̄ ≥
dimG − 2 rankG are those in the conclusion. Hence, (G, H̄) is in table 1, and we
deduce that H = H̄ by dimension.

(ii) Suppose H lies in a maximal parabolic subgroup P = LQ of G, with Levi factor
L and unipotent radical Q. Let H̄ ≤ L be such that H̄Q/Q = HQ/Q. Then, H is
isogenous to H̄ so L also satisfies the dimension bound dimL ≥ dimG − 2 rankG.
Computing the possible dimensions of Levi subgroups, the only possibility is (G,L) =
(SLn(k), GLn−1(k)). We deduce that H̄ = L by dimension, hence that H = GLn−1(k),
which is in table 1.

4.3. If G is a semisimple algebraic group and H < G is any closed subgroup, we
call H a decomposable subgroup of G if G,H can be written as commuting products
G = G1G2, H = H1H2 such that, for each i, Hi ≤ Gi and Gi C G is a non-trivial
semisimple group.

Lemma. Let H < G be a connected reductive subgroup of a semisimple group G.
Suppose H is a decomposable subgroup of G, so that G,H can be written as G =
G1G2,H = H1H2 as above. Then, (G,H) is a multiplicity-free pair if and only if
(G1,H1) and (G2,H2) are both multiplicity-free pairs.

Proof. This is immediate from the definition since Weyl modules (resp. coWeyl mod-
ules) for G or H are just tensor products of Weyl modules (resp. coWeyl modules) for
G1 and G2 or H1 and H2.

We define an indecomposable multiplicity-free pair to be a multiplicity-free pair
(G,H) such that H is an indecomposable subgroup of G. As remarked in the intro-
duction, to classify all multiplicity-free pairs, it is sufficient to classify the indecom-
posable multiplicity-free pairs (G,H) with G semisimple and simply connected, by
Corollary 3.8 and the above Lemma.

The next Lemma is well known.

4.4. Lemma. Let G = G1 . . . Gn be a semisimple algebraic group written as a com-
muting product of simple subgroups Gi CG, with n ≥ 2. If H is a maximal connected
reductive subgroup of G, then one of the following holds:

(i) Some simple factor 1 6= Gi CG is contained in H.
(ii) H is diagonally embedded in G and n = 2.

Proof. We may assume G is of adjoint type, so that it is a direct product G =
G1 × · · · × Gn with each Gi simple both as algebraic and abstract groups. We shall
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write Gi =
∏
j 6=iGj . Assume Gi � H for all i, which immediately implies that H lies in

no parabolic subgroup of G. Suppose first that Z(H) 6= 1. Take z = z1 . . . zn ∈ Z(H)
with zi ∈ Gi and zj 6= 1 for some j. As H lies in no parabolic, H is maximal, so
H = CG(z)0. This implies that H = CG1(z1)0 . . . CGn(zn)0. Maximality again forces
zi = 1 for i 6= j, so that Gi ≤ H for all i 6= j, contradicting our assumption.

So, Z(H) = 1 and we can write H = H1 . . .Hm as a direct product of simple,
centreless factors Hi. By maximality, H = NG(H1)0. We now show that the projection
πi : H1 → Gi is a bijection for each i. To see this, notice H1 ∩ Gi E H1, so equals 1
or H1, as H1 is simple as an abstract group. In the latter case, H1 ≤ Gi so Gi ≤ H,
contrary to assumption. So, H1 ∩ Gi = 1 and πi is injective for each i. Next, the
normaliser NG/Gi(H1G

i/Gi) contains HGi/Gi. But this equals G/Gi by maximality
of H, so H1G

i/GiEG/Gi ∼= Gi. Hence, H1G
i/Gi = G/Gi and πi is surjective for each

i, as required.
Now let θi = πi ◦π−1

1 : G1 → Gi. We have shown that each θi is an isomorphism of
abstract groups and that H1 = {gθ2(g) . . . θn(g) | g ∈ G1}. But then H = NG(H1)0 =
H1. Finally, by maximality, we must have that n = 2 and (ii) holds.

4.5. Lemma. Let (G,H) be an indecomposable multiplicity-free pair, such that G is
semisimple and simply connected, but not simple. Then, G = SL2(k) × SL2(k) and
H < G is a diagonally embedded SL2(k).

Proof. First suppose that H is a maximal connected reductive subgroup of G. Then
Lemma 4.4 implies that G = G1×G2 is a product of two isomorphic simple factors and
H is a diagonally embedded subgroup. Now a routine dimension check shows that the
only possibility satisfying the bound dimB + dimBH ≥ dimG is as in the conclusion.

Now suppose for a contradiction that the lemma is false. Then, we can find a
counterexample (G,H), such that the lemma holds for all indecomposable multiplicity-
free pairs (G1,H1) such that either dimG1 < dimG or dimG1 = dimG and dimH1 >
dimH. By the previous paragraph, H is not a maximal connected reductive subgroup
of G, so we may embed H < K < G where K is a connected reductive subgroup of
G and H is a maximal connected reductive subgroup of K. Choose Borel subgroups
BH < BK < B for H,K,G respectively. Obviously, there is a dense (B,BK)-double
coset in G, so (G,K) is a multiplicity-free pair. By Lemma 4.3, we may write G,K
as direct products G = G1 × · · · × Gn, K = K1 × · · · × Kn, such that each pair
(Gi,Ki) is an indecompoable multiplicity-free pair. Suppose first that n = 1. Then,
the minimality hypothesis on (G,H) implies that G = SL2(k) × SL2(k) and K is a
diagonally embedded SL2(k). But for this pair dimB + dimBK is exactly equal to
dimG and BH is a proper subgroup of BK . This gives a contradiction, since (G,H) is
a multiplicity-free pair.

So n > 1. Let Z be the centre of K and, for any subgroup L ≤ K, denote its image
in KZ/Z by L′. The hypothesis on (G,H) implies that the lemma holds for each
(Gi,Ki). So each K ′i is simple and in particular H ′ is an indecomposable subgroup of
K ′, since H is an indecomposable subgroup of G. Now Lemma 4.4 implies that K ′ is
semisimple of length 2 and H ′ is diagonally embedded in K ′, as in the first paragraph.
The number of factors (Gi,Ki) isomorphic to (SLn(k), GLn−1(k)) is just dimZ, and
for these pairs dimGi > dimKi+1. Hence, dimBH+dimB ≥ dimG > dimK+dimZ,
and this implies that dimB′H + dimB′K > dimK ′. But now the dimension check from
the first paragraph gives a contradiction.
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Theorem C follows immediately from Lemma 4.2 and Lemma 4.5.

5 Proof of Theorem D

Let (G,H) be as in Theorem D, and fix notation as in Lemmas (2.4)-(2.6).

5.1. To prove Theorem D, it is sufficient to show that ∇G(λi) has a good filtration
as an H-module for each fundamental dominant weight λi ∈ X(T ). This follows by
combining the Donkin-Mathieu tensor product theorem (in fact [3, Theorem 4.3.1]
is sufficient for our purposes) with the argument of [3, 3.5.4]. We shall prove the
equivalent dual statement, that ∆G(λi) has a Weyl filtration as an H-module, for each
fundamental dominant weight λi.

Let us first consider G = Bl or Dl and the fundamental weights λl (if G = Bl or
Dl) and λl−1(G = Dl only). Spin modules for Bl, Dl are irreducible Weyl modules in
all characteristics. If (G,H) = (Dl, Bl−1) then ∆G(λl−1) and ∆G(λl) are spin modules,
and restrict to the spin module ∆H(λ′l−1) for H. If (G,H) = (Bl, Dl) then ∆G(λl) is
a spin module and restricts to a direct sum ∆H(λ′l)⊕∆H(λ′l−1). Hence ∆G(λi) has a
Weyl filtration on restriction to H in each case as required.

It remains to consider the Weyl modules ∆G(λi) for 1 ≤ i ≤ l (if G = Al),
1 ≤ i ≤ l − 1 (if G = Bl) or 1 ≤ i ≤ l − 2 (if G = Dl). Recall from (2.4)-(2.6)
that g is the corresponding simple Lie algebra over C, with natural module E′. The
corresponding irreducible g-module is just the exterior power

∧iE′ in each case. Now,
if G = SLn(k) or an orthogonal group in characteristic different from 2,

∧iE′ remains
irreducible on reduction mod p by [5, p43, Lemma 11], so that ∆G(λi) ∼=

∧iE. In
each case, an easy argument shows that resGH

∧iE ∼=
∧iE0⊕

∧i−1E0, where E0 is the
natural module for H; these summands are Weyl modules for H. This completes the
proof of Theorem D, unless G is an orthogonal group with p = 2.

To include characteristic 2, we now give a short direct argument exploiting the
element g ∈ G in the dense (BH , B+)-double coset constructed in Lemmas (2.4)-(2.6).
In fact, this argument is valid in all characteristics, and does not depend on the result
from [5] used in the previous paragraph. The same argument can also be given for
G = SLn(k).

5.2. Lemma. Let (G,H) = (SO2n(k), SO2n−1(k)) or (SO2n+1(k), SO2n(k)) with 1 ≤
i ≤ n − 2 or 1 ≤ i ≤ n − 1 respectively. Then, ∆G(λi) has a Weyl filtration as an
H-module.

Proof. Let ∆C =
∧iE′ be the corresponding irreducible g-module over C, with no-

tation as in (2.5) or (2.6). Then, v′ = e′1 ∧ · · · ∧ e′i is a high weight vector of E′, and
∆Z = UZ.v

′ is an admissible lattice in ∆C. The Chevalley construction of (2.3) implies
that ∆ = ∆Z⊗Z k is the Weyl module ∆G(λi), with high weight vector v = v′⊗ 1. Let
TH = T ∩H, a maximal torus of H, and B+

H be the corresponding opposite Borel sub-
group to BH . Fix a dominance ordering on X(TH) so that BH is the Borel subgroup
generated by negative TH -root subgroups.

Now recall the element g ∈ G from Lemmas (2.5) and (2.6). Since BHgB+ is dense
in G, ∆ is generated as a BH -module by the vector w = g.v. There is a canonical way
to construct a filtration of ∆ using this vector w which we now describe. Write w as a
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sum
∑
wµ corresponding to the TH -weight space decomposition of ∆. Set ∆0 = {0},

and inductively define ∆i as follows. Pick µi ∈ X(TH) maximal with respect to the
dominance order on X(TH) such that wµi /∈ ∆i−1. Let ∆i be the BH -submodule
generated by wµi and ∆i−1. This defines an ascending filtration of BH -modules.

{0} = ∆0 < ∆1 < · · · < ∆m.

The construction implies that w ∈ ∆m, so that by density, ∆m = ∆. The choice of
µi immediately implies that wµi + ∆i−1 is a B+

H -eigenvector in ∆/∆i−1 of weight µi.
Hence, in fact ∆i/∆i−1 is an H-module, and the filtration is a filtration of H-modules.
Each ∆i/∆i−1 is a high weight module of high weight µi, so an image of the Weyl
module ∆H(µi), and each µi must be dominant.

Now work in ∆Z to compute the µi occuring in the filtration. Since g ∈ G was
constructed as a product of root group elements of the form xα(1), there is a corre-
sponding element u ∈ UZ such that (u.v′) ⊗ 1 = g.(v′ ⊗ 1). Let w′ = u.v′. A short
calculation using table 2 shows that w′ is the vector

(e′1 − e′−n) ∧ · · · ∧ (e′i − e′−n)

if G = Dn, or

(e′1 + e′0 − e′−1) ∧ (e′2 + e′0 − e′−2 − 2e′−1) ∧ · · · ∧ (e′i + e′0 − e′−i − 2e′−1 − · · · − 2e′−(i−1))

if G = Bn. It is straightforward to expand the above expressions and compute the
vectors w′λ occuring in decomposition w′ =

∑
w′λ corresponding to the weight space

decomposition of ∆Z. Let d′ denote the vector e′−n if G = Dn or e′0 if G = Bn. Then,
in both cases, the only vectors w′λ with λ dominant are the vectors e′1 ∧ · · · ∧ e′i and
±e′1 ∧ · · · ∧ e′i−1 ∧ d′ in ∆Z. Moreover, every vector wλ ∈ ∆ in the decomposition
w =

∑
wλ is the image of some vector w′λ ∈ ∆Z. This argument shows that the only

possibilities for the high weights µi occuring in the above filtration are ε1 + · · · + εi
and ε1 + · · ·+ εi−1.

Now, dimension implies that both of these high weights must indeed occur, and
that each factor ∆i/∆i−1, which is a high weight module of weight µi by construction,
must in fact be the Weyl module ∆H(µi). Thus, the filtration is a Weyl filtration,
completing the proof.

To complete the proof of Theorem D, it just remains to observe that it also holds
for the pair (G,H) = (SO8(k), Spin7(k)), by applying a triality automorphism to the
pair (SO8(k), SO7(k)) as in Lemma 2.6.

Acknowledgements

I would like to thank Professors Martin Liebeck, Stephen Donkin and Gordan James
for useful discussions during the course of this work.

References

[1] M. Brion. Classification des espaces homogènes sphériques. Compositio Math.,
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