Multiplicity-free subgroups of reductive algebraic groups

Jonathan Brundan

Abstract

We introduce the notion of a multiplicity-free subgroup of a reductive algebraic group in arbitrary characteristic. This concept already exists in the work of Krämer for compact connected Lie groups. We give a classification of reductive multiplicity-free subgroups, and as a consequence obtain a simple proof of a theorem of Kleshchev.

1 Introduction

Let k be an algebraically closed field of characteristic $p \ge 0$. If p = 0, it is well known that the restriction of any irreducible $SL_n(k)$ -module to the natural subgroup $GL_{n-1}(k)$ is multiplicity-free. The same is true for the restriction of an irreducible $SO_n(k)$ -module to the subgroup $SO_{n-1}(k)$. In positive characteristic, these results are no longer true, but a recent result of Kleshchev [8, Theorem A] shows nonetheless that the socle and the head (which is isomorphic to the socle) of the restriction are both multiplicity-free. In our first theorem, we give a simple proof of this fact, which is quite different from Kleshchev's original proof.

Theorem A. Let H < G be the simply connected cover of an entry in table 1. Then

(1)
$$\dim \operatorname{Hom}_{H}(\Delta_{H}, \nabla_{G}) \leq 1$$

for all Weyl modules Δ_H for H and all coWeyl modules ∇_G for G. Hence, the socle and head of res^G_H L_G are multiplicity-free for every irreducible G-module L_G .

Kleshchev actually proves a slightly weaker result, namely that for all pairs (G, H)in Theorem A, dim Hom_H $(\Delta_H, L_G) \leq 1$ for all Weyl modules Δ_H for H and all irreducible modules L_G for G. Kleshchev also shows how to deduce from this result in the case $(G, H) = (SL_n(k), GL_{n-1}(k))$ (by applying a "Schur functor") that the restriction of any irreducible module for the symmetric group algebra $k\mathfrak{S}_r$ to $k\mathfrak{S}_{r-1}$ has multiplicity-free socle and head. In later work [9, 10], Kleshchev has described precisely

Table 1: Multiplicity-free subgroups

G		Н
$SL_n(k)$	$n \ge 2$	$GL_{n-1}(k)$
$SO_n(k)$	$n \ge 4$	$SO_{n-1}(k)$
$SO_8(k)$		$Spin_7(k)$

which irreducible $k\mathfrak{S}_{r-1}$ -modules appear in this multiplicity-free socle of the restriction to $k\mathfrak{S}_{r-1}$ of an arbitrary irreducible $k\mathfrak{S}_r$ -module. These results of Kleshchev have recently been extended to the corresponding Hecke algebras of type **A** in [2].

We call a pair (G, H) of connected reductive groups with $H \leq G$ a multiplicity-free pair if 1 holds for all Δ_H, ∇_G . The next results give a classification of multiplicity-free pairs. To do this, we first prove a characteristic-free analogue (Theorem 3.5) of a result due to Kimel'fel'd and Vinberg [7] in characteristic 0. In fact, only minor alterations to the original proof are needed in characteristic p. The following characterisation of multiplicity-free pairs is an easy consequence of Theorem 3.5.

Theorem B. Let H < G be connected reductive algebraic groups. Let B, B_H be Borel subgroups of G, H respectively. Then, (G, H) is a multiplicity-free pair if and only if there is a dense (B, B_H) -double coset in G.

We now describe the classification of multiplicity-free pairs. Theorem B implies that if θ is an isogeny of G, then (G, H) is a multiplicity-free pair if and only if $(\theta(G), \theta(H))$ is a multiplicity-free pair (see Corollary 3.8). So it is sufficient to classify multiplicityfree pairs up to isogenies of G. If (G_1, H_1) and (G_2, H_2) are multiplicity-free pairs then $(G_1 \times G_2, H_1 \times H_2)$ is also a multiplicity-free pair, so that we only need to classify the "indecomposable" multiplicity-free pairs (see (4.3) for a precise definition). Finally, if R is the radical of G, then it is obvious that (G, H) is a multiplicity-free pair if and only if (G/R, HR/R) is a multiplicity-free pair. These reductions show that to classify multiplicity-free pairs, we need only classify the indecomposable multiplicity-free pairs (G, H) with G semisimple and simply connected.

Theorem C. The indecomposable multiplicity-free pairs (G, H), with G semisimple and simply connected, are precisely the following:

(i) The simply connected cover of an entry in table 1.

(ii) $G = Sp_{2n}(k)$ and $H = SO_{2n}(k)(p = 2)$.

(iii) $G = SL_2(k) \times SL_2(k)$ and H is the diagonal subgroup $\{(g, \theta(g)) | g \in SL_2(k)\}$, where $\theta : SL_2(k) \to SL_2(k)$ is a Frobenius morphism $(p \neq 0)$.

(iv) Any pair (G, G) with G simple and simply connected.

In characteristic 0, Theorem C follows from a result of Krämer [11] which classifies multiplicity-free pairs of compact Lie groups. The possibilities (ii), (iii) in Theorem C only occur in non-zero characteristic.

By definition, if (G, H) is a multiplicity-free pair, then for all Weyl modules Δ_H of H and all coWeyl modules ∇_G of G, $\operatorname{Hom}_H(\Delta_H, \nabla_G) = \operatorname{Ext}_H^0(\Delta_H, \nabla_G)$ is at most 1dimensional. We next consider higher Ext functors. Call a reductive subgroup H < Ga good filtration subgroup if $\operatorname{Ext}_H^i(\Delta_H, \nabla_G) = 0$ for all Weyl modules Δ_H of H and all coWeyl modules ∇_G of G, and all $i \geq 1$. This condition is equivalent (eg by [6, II.4.16]) to the property that every coWeyl module ∇_G of G has an H-stable filtration

$$0 = \nabla_0 < \nabla_1 < \dots < \nabla_n = \nabla_G$$

such that each factor ∇_i / ∇_{i-1} is a coWeyl module for H. Such a filtration is called a good filtration, and it is known ([6, II.4.16] again) that the number of factors ∇_i / ∇_{i-1} in the filtration isomorphic to a given coWeyl module ∇_H is equal to dim Hom_H(Δ_H, ∇_G),

where Δ_H is the contravariant dual of ∇_H . Thus, if (G, H) is a multiplicity-free pair such that H is also a good filtration subgroup of G, then in fact every coWeyl module ∇_G of G has a multiplicity-free good filtration as an H-module.

Our final result shows that if (G, H) is a multiplicity-free pair, H is usually a good filtration subgroup. For the case $(G, H) = (SL_n(k), GL_{n-1}(k))$, this result goes back at least to James [4, 26.6], and is in fact a special case of the Donkin-Mathieu restriction theorem [3, 14] which shows that any Levi subgroup of a reductive algebraic group is a good filtration subgroup.

Theorem D. Let H < G be the simply connected cover of an entry in table 1. Then, H is a good filtration subgroup of G, so that

$$\operatorname{Ext}_{H}^{i}(\Delta_{H}, \nabla_{G}) = 0$$

for all Weyl modules Δ_H for H and coWeyl modules ∇_G for G, and all $i \ge 1$. Hence each ∇_G also has a multiplicity-free good filtration as an H-module.

This result extends immediately (by [3, 4.2]) to cover any multiplicity-free pair (G, H) "defined over \mathbb{Z} " – that is, no factor in a decomposition of (G, H) into indecomposable multiplicity-free pairs is of type (ii) or (iii) from Theorem C. It is easy to see that these are genuine exceptions: for example if E is the natural $Sp_{2n}(k)$ -module and p = 2, then $\bigwedge^2 E$ does not have a good filtration as an $SO_{2n}(k)$ -module.

2 Proof of Theorem A

2.1. Throughout this note, G will denote a connected reductive algebraic group defined over k. By a G-module, we shall always mean a rational kG-module. Let us fix some notation regarding root systems, Weyl modules etc., following the conventions in Jantzen [6]. Let B be a Borel subgroup of G with unipotent radical U, and let T < B be a maximal torus. Let B^+ be the opposite Borel subgroup to B relative to T, so that $B \cap B^+ = T$. The choice of T determines a root system $\Phi \subset X(T)$, where X(T) is the character group $\operatorname{Hom}(T, k^{\times})$. For $\alpha \in \Phi$, let U_{α} denote the corresponding T-root subgroup of G. Let $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ be the unique base for Φ such that B is the Borel subgroup generated by *negative* root subgroups. Let $W = N_G(T)/T$ be the Weyl group of G, and fix a positive definite W-invariant symmetric bilinear form (.,.) on $\mathbb{R} \otimes_{\mathbb{Z}} X(T)$. For $0 \neq \alpha \in \mathbb{R} \otimes_{\mathbb{Z}} X(T)$, α^{\vee} denotes $2\alpha/(\alpha, \alpha)$. Let $X_+(T) = \{\lambda \in X(T) \mid (\lambda, \alpha^{\vee}) \ge 0$ for all $\alpha \in \Pi\}$ be the dominant weights of T (with respect to Π). The choice of Π also fixes a set of simple reflections in W, so that we can talk about the longest element w_0 of W relative to these simple reflections.

Given $\lambda \in X(T)$, let k_{λ} denote the corresponding 1-dimensional *B*-module. The coWeyl module $\nabla_G(\lambda)$ is defined to be the induced module $\operatorname{ind}_B^G(k_{\lambda})$, and is non-zero precisely when $\lambda \in X_+(T)$ is dominant (see [6, II.2.6]). We will say a *G*-module is a high weight module of high weight λ if it is generated by a B^+ -eigenvector v^+ of weight $\lambda \in X(T)$. Weyl modules are high weight modules, and are 'universal' in the sense that any high weight module is a homomorphic image of some Weyl module [6, II.2.13]. For $\lambda \in X_+(T)$, let $\Delta_G(\lambda)$ denote the corresponding Weyl module of high weight λ , and let $L_G(\lambda)$ denote the simple head of $\Delta_G(\lambda)$ (isomorphic to the simple socle of $\nabla_G(\lambda)$). Finally, the dual $\Delta_G(\lambda)^*$ is isomorphic to $\nabla_G(\lambda^*)$, where $\lambda^* = -w_0\lambda$, by [6, II.2.13]. 2.2. The proof of Theorem A depends on the following elementary lemma:

Lemma. Let (G, H) be a pair of connected reductive algebraic groups with H < G. Let B^+, B_H be Borel subgroups of G, H respectively and suppose that the double coset $B_H g B^+$ is dense in G for some $g \in G$. Then,

 $\dim \operatorname{Hom}_{H}(\Delta_{H}, \nabla_{G}) = \dim \operatorname{Hom}_{H}(\Delta_{G}, \nabla_{H}) \leq 1$

for all Weyl modules $\Delta_H = \nabla_H^*$ for H and all Weyl modules $\Delta_G = \nabla_G^*$ for G. Hence, the socle and head of res_H^G L_G are multiplicity-free for every irreducible G-module L_G .

Proof. Let $\Delta_H, \nabla_H, \Delta_G, \nabla_G$ be as in the lemma. The Weyl module Δ_G is generated by some B^+ -eigenvector v^+ . Since $B_H g B^+$ is dense in G, $\Delta_G = k$ -span $\{G.v^+\} = k$ span $\{B_H g B^+.v^+\} = k$ -span $\{B_H.gv^+\}$. Hence, Δ_G is generated as a B_H -module by the vector gv^+ . Now, by definition ∇_H is an induced module $\operatorname{ind}_{B_H}^H k_\lambda$ for some 1dimensional B_H -module k_λ . Since any B_H -homomorphism $\Delta_G \to k_\lambda$ is determined by its value on the generator gv^+ , and k_λ is 1-dimensional, it is immediate that $\operatorname{Hom}_{B_H}(\Delta_G, k_\lambda)$ is at most 1-dimensional. Applying Frobenius Reciprocity [6, I.3.4] and dualising, we deduce that

$$\dim \operatorname{Hom}_{H}(\Delta_{G}, \nabla_{H}) = \dim \operatorname{Hom}_{H}(\Delta_{H}, \nabla_{G}) \leq 1$$

proving the first part of the lemma.

It remains to show that the socle and head of $\operatorname{res}_H^G L_G$ are multiplicity-free for every irreducible *G*-module L_G . For the socle, we need to compute $\operatorname{Hom}_H(L_H, L_G)$ for an irreducible *H*-module L_H . By the universal property of Weyl modules, any homomorphism $L_H \to L_G$ extends to a homomorphism $\Delta_H \to \nabla_G$, where Δ_H is the Weyl module for *H* with head L_H and ∇_G is the coWeyl module for *G* with socle L_G . Hence, $\operatorname{Hom}_H(L_H, L_G)$ is also at most 1-dimensional, so that the socle of $\operatorname{res}_H^G(L_G)$ is multiplicity-free. The same argument shows that the head is multiplicityfree, completing the proof. \Box

2.3. We shall shortly apply this lemma to prove that each entry in table 1 is a multiplicity-free pair. For later use, we shall actually construct a suitable element $g \in G$ explicitly in each case in terms of root subgroups, viewing G as a Chevalley group. Let us briefly recall the construction of Chevalley groups, following Steinberg [18].

Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{h} and root system $\Phi \subset \mathfrak{h}^*$, and let $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ be a base for Φ as in (2.1). Fix a Chevalley basis $\{X_{\alpha}, H_i \mid \alpha \in \Phi, 1 \leq i \leq l\}$ for \mathfrak{g} and let $U_{\mathbb{Z}}$ be the corresponding Kostant \mathbb{Z} -form for the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} . Let \mathfrak{n}^+ be the subalgebra generated by the X_{α} with $\alpha \in \Pi$. Fix now some irreducible \mathfrak{g} -module $\Delta_{\mathbb{C}}$ of dimension n, with a fixed high weight vector v^+ annihilated by \mathfrak{n}^+ . Set $\Delta_{\mathbb{Z}} = U_{\mathbb{Z}}.v^+$, an admissible lattice in $\Delta_{\mathbb{C}}$. Working in a basis of $\Delta_{\mathbb{Z}}$, we can identify a generator $X_{\alpha}^i/i!$ of $U_{\mathbb{Z}}$ ($\alpha \in \Phi, i \geq 0$) with a matrix in $M_n(\mathbb{Z})$, via the representation $\mathfrak{g} \to \mathfrak{gl}(\Delta_{\mathbb{C}})$. Having done this, the series $\exp(tX_{\alpha})$, where t is an indeterminate, has only finitely many non-zero terms, hence gives a well-defined element of $SL_n(\mathbb{Z}[t])$. Set $\Delta_k = \Delta_{\mathbb{Z}} \otimes_{\mathbb{Z}} k$; then $x_{\alpha}(t) = \exp(tX_{\alpha})$ defines an automorphism of Δ_k for every $t \in k$. The Chevalley group $G = G_k$ is now defined to be the subgroup of $GL(\Delta_k)$ generated by $\{x_{\alpha}(t) \mid \alpha \in \Phi, t \in k\}$. It is a semisimple algebraic group over k of the same type as \mathfrak{g} , and Δ_k is a Weyl module for G_k .

Now we consider the cases in table 1 in turn.

2.4. For $G = SL_n(k), H = GL_{n-1}(k)$, we make the following choices. Let T be the subgroup of all diagonal matrices, and B be the Borel subgroup of all lower triangular matrices, so that B^+ consists of upper triangular matrices. If $\varepsilon_i : T \to k^{\times}$ denotes the character diag $(t_1, \ldots, t_n) \mapsto t_i$, we can write $\Phi = \{\pm(\varepsilon_i - \varepsilon_j) \mid 1 \leq i < j \leq n\}$ and $\Pi = \{\varepsilon_i - \varepsilon_{i+1} \mid 1 \leq i \leq n-1\}$. Letting e_1, \ldots, e_n denote the canonical basis for the natural G-module E, choose H to be the stabiliser of the decomposition $E = \langle e_1, \ldots, e_{n-1} \rangle \oplus \langle e_n \rangle$, isomorphic to $GL_{n-1}(k)$. Let $B_H = B \cap H$, a Borel subgroup of H. For $t \in k$, let $x_{\varepsilon_i - \varepsilon_j}(t) \in U_{\varepsilon_i - \varepsilon_j}$ denote the matrix $I + te_{ij}$ (where e_{ij} is the matrix with a 1 in the ij-entry, zeros elsewhere). This is precisely the root group element $x_{\varepsilon_i - \varepsilon_j}(t)$ from the Chevalley construction of (2.3), with the usual choice of Chevalley basis for $\mathfrak{sl}_n(\mathbb{C})$, ie $X_{\varepsilon_i - \varepsilon_j} = e_{ij}$.

Lemma. With notation as above, the double coset $B_H g B^+$ is dense in G, where

$$g = x_{\varepsilon_n - \varepsilon_1}(1) x_{\varepsilon_n - \varepsilon_2}(1) \dots x_{\varepsilon_n - \varepsilon_{n-1}}(1).$$

Hence, $(SL_n(k), GL_{n-1}(k))$ is a multiplicity-free pair.

Proof. In terms of the basis e_1, \ldots, e_n, g is the matrix

$$g = \begin{pmatrix} 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \\ \hline 1 & \cdots & 1 & 1 \end{pmatrix}$$

Since dim $B_H g B^+ = \dim B_H + \dim B^+ - \dim g^{-1} B_H g \cap B^+ = \dim G - \dim g^{-1} B_H g \cap B^+$, it is sufficient to show $g^{-1} B_H g \cap B^+$ is finite. Suppose $h \in g^{-1} B_H g \cap B^+$; as B^+ consists of upper triangular matrices while $g^{-1} B_H g$ is lower triangular, it follows that $h = \operatorname{diag}(h_1, \ldots, h_n)$ is diagonal. Now, $ghg^{-1} \cdot e_i = h_i e_i + (h_i - h_n) e_n$. As $ghg^{-1} \in B_H$, $h_i = h_n$ for $1 \leq i \leq n - 1$. Hence, h lies in the centre Z(G), which is finite. \Box

2.5. For $G = SO_{2n+1}(k)$, $H = SO_{2n}(k)$, fix notation as follows. Let E be the natural (2n + 1)-dimensional G-module with a G-invariant bilinear form (.,.). Write elements of G as matrices with respect to an ordered basis $e_1, \ldots, e_n, e_0, e_{-n}, \ldots, e_{-1}$ for E such that $(e_i, e_j) = 0 (i \neq -j)$, $(e_i, e_{-i}) = 1 (i \neq 0)$ and $(e_0, e_0) = 2$. Let B (resp. B^+) be the lower (resp. upper) triangular matrices in G, a Borel subgroup of G, and T be the diagonal matrices, a maximal torus of G. Let $\varepsilon_i : T \to k^{\times}$ be the character diag $(t_1, \ldots, t_n, 1, t_n^{-1}, \ldots, t_1^{-1}) \mapsto t_i$. In this notation, the root system Φ can be written as $\{\pm \varepsilon_i \pm \varepsilon_j, \pm \varepsilon_k \mid 1 \leq i < j \leq n, 1 \leq k \leq n\}$ and $\Pi = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n\}$.

Let $\mathfrak{g} = \mathfrak{so}_{2n+1}(\mathbb{C})$ be the corresponding Lie algebra over \mathbb{C} with natural module E', \mathfrak{g} -invariant form (.,.)' and canonical basis $e'_1, \ldots, e'_n, e'_0, e'_{-n}, \ldots, e'_{-1}$, with properties as in the previous paragraph. Let $E_{i,j} \in \mathfrak{g}$ denote the element such that $E_{i,j}.e'_k = \delta_{jk}e'_i$ for all $-n \leq i, j, k \leq n$. Then, the elements $X_{\alpha}(\alpha \in \Phi)$ in table 2 give a Chevalley Table 2: A Chevalley basis for types B_l, D_l

	α	$\varepsilon_i - \varepsilon_j (i < j)$	$\varepsilon_i + \varepsilon_j (i < j)$	$arepsilon_i$
	X_{α}	$E_{i,j} - E_{-j,-i}$	$E_{j,-i} - E_{i,-j}$	$2E_{i,0} - E_{0,-i}$
-	$X_{-\alpha}$	$E_{j,i} - E_{-i,-j}$	$E_{-i,j} - E_{-j,i}$	$E_{0,i} - 2E_{-i,0}$

basis for \mathfrak{g} (this is the Chevalley basis used in [5, p38]). The Chevalley construction defines root group elements $x_{\alpha}(t) \in G$ for $t \in k$ corresponding to this Chevalley basis. We shall only need to use the elements $x_{-\varepsilon_i}(t)$, which act on the natural module E as follows:

$$\begin{aligned} x_{-\varepsilon_i}(t).e_i &= e_i + te_0 - t^2 e_{-i}, \\ x_{-\varepsilon_i}(t).e_0 &= e_0 - 2te_{-i}, \end{aligned}$$

with all other basis elements fixed.

Now, let H be the subgroup $SO_{2n}(k)$ generated by root groups U_{α} for $\alpha \in \{\pm \varepsilon_i \pm \varepsilon_j \mid 1 \leq i < j \leq n\}$. We can describe H geometrically as the connected stabiliser in G of the direct sum decomposition $E = \langle e_1, \ldots, e_n, e_{-n}, \ldots, e_{-1} \rangle \oplus \langle e_0 \rangle$. Note finally that $B_H = H \cap B$ is a Borel subgroup of H.

Lemma. With notation as above, the double coset $B_H g B^+$ is dense in G, where

$$g = x_{-\varepsilon_1}(1)x_{-\varepsilon_2}(1)\dots x_{-\varepsilon_n}(1)$$

Hence, $(SO_{2n+1}(k), SO_{2n}(k))$ is a multiplicity-free pair.

Proof. By the dimension argument of Lemma 2.4, we again just need to show that $g^{-1}B_Hg \cap B^+$ is finite. Suppose $h \in g^{-1}B_Hg \cap B^+$; as B^+ consists of upper triangular matrices while $g^{-1}B_Hg$ is lower triangular, it follows as before that h is diagonal. Let $h = \text{diag}(h_1, \ldots, h_n, 1, h_n^{-1}, \ldots, h_1^{-1})$. Since $ghg^{-1} \in B_H$, it stabilises $\langle e_1, \ldots, e_n, e_{-1}, \ldots, e_{-n} \rangle$. The e_0 -coefficient of $ghg^{-1}.e_i$ is $h_i - 1$. Hence, $h_i = 1$ for each i, and the intersection is trivial. \Box

2.6. For $G = SO_{2n}(k)$, $H = SO_{2n-1}(k)$, we shall realise G as the subgroup $SO_{2n}(k)$ constructed in (2.5), acting on the space $E = \langle e_1, \ldots, e_n, e_{-n}, \ldots, e_{-1} \rangle$. Write elements of G as matrices with respect to this ordered basis for E. Let T, B, B^+ be the diagonal, lower triangular, upper triangular matrices in G respectively, and let $\varepsilon_i, (.,.)$ be the restrictions of those defined in (2.5). We may write $\Phi = \{\pm \varepsilon_i \pm \varepsilon_j \mid 1 \le i < j \le n\}$ and $\Pi = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_{n-1} + \varepsilon_n\}$. Let $\mathfrak{g} = \mathfrak{so}_{2n}(\mathbb{C})$, with natural module E' and canonical basis $e'_1, \ldots, e'_n, e'_{-n}, \ldots, e'_{-1}$ corresponding to E, e_i as before. Fix a Chevalley basis for \mathfrak{g} as a subset of the Chevalley basis constructed in (2.5), so that $X_{\alpha}(\alpha \in \Phi)$ is as in table 2. This gives corresponding parametrisations $x_{\alpha}(t)$ of the T-root subgroups of G; in particular, for $i < j, x_{-\varepsilon_i-\varepsilon_i}(t)$ acts as:

$$\begin{array}{rcl} x_{-\varepsilon_i - \varepsilon_j}(t).e_i &=& e_i - te_{-j}, \\ x_{-\varepsilon_i - \varepsilon_i}(t).e_j &=& e_j + te_{-i} \end{array}$$

with all other basis elements fixed. Let H be the connected stabiliser of $\langle e_n + e_{-n} \rangle$, isomorphic to $SO_{2n-1}(k)$, and note $B_H = B \cap H$ is a Borel subgroup of H. In terms of root subgroups, H is generated by $\{U_{\pm \alpha} \mid \alpha = \varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-2} - \varepsilon_{n-1}\}$ together with the elements $\{x_{\varepsilon_{n-1}-\varepsilon_n}(t)x_{\varepsilon_{n-1}+\varepsilon_n}(t), x_{-\varepsilon_{n-1}+\varepsilon_n}(t)x_{-\varepsilon_{n-1}-\varepsilon_n}(t) \mid t \in k\}$. **Lemma.** With notation as above, the double coset $B_H g B^+$ is dense in G, where

$$g = x_{-\varepsilon_1 - \varepsilon_n}(1) x_{-\varepsilon_2 - \varepsilon_n}(1) \dots x_{-\varepsilon_{n-1} - \varepsilon_n}(1)$$

Hence, $(SO_{2n}(k), SO_{2n-1}(k))$ and $(SO_8(k), Spin_7(k))$ are multiplicity-free pairs.

Proof. Dimension implies that we just need to show that $g^{-1}B_Hg \cap B^+$ is finite. Suppose $h \in g^{-1}B_Hg \cap B^+$. The same argument as in (2.5) shows that h is a diagonal matrix, say $h = \text{diag}(h_1, \ldots, h_n, h_n^{-1}, \ldots, h_1^{-1})$. Now, $ghg^{-1} \in B_H$, so $ghg^{-1}.(e_n + e_{-n}) \in \langle e_n + e_{-n} \rangle$. A direct computation shows that $ghg^{-1}.(e_n + e_{-n}) = h_ne_n + (h_n - h_1^{-1})e_{-1} + \cdots + (h_n - h_{n-1}^{-1})e_{-(n-1)} + h_n^{-1}e_{-n}$. Hence, $h_1 = \cdots = h_n = \pm 1$ so $g^{-1}B_Hg \cap B^+$ is indeed finite.

This proves that $(G, H) = (SO_{2n}(k), SO_{2n-1}(k))$ is a multiplicity-free pair. Now apply a triality graph automorphism (working in $PSO_8(k)$ then taking pre-images since triality is not defined on SO_8 if $p \neq 2$) to deduce that there is also a dense (B_H, B^+) -double coset in G for the pair $(G, H) = (SO_8(k), Spin_7(k))$. Hence, this is also a multiplicity-free pair. \Box

Lemma 2.4-Lemma 2.6 complete the proof of Theorem A.

3 Proof of Theorem B

To classify multiplicity-free pairs, we first prove an analogue of a result of Kimel'fel'd and Vinberg [7, Theorem 1] in characteristic 0. In this section, we give a proof of this analogue (Theorem 3.5), following the original proof closely, and then deduce Theorem B from it. As always, G denotes a connected reductive algebraic group, with the conventions of (2.1).

3.1. Given an arbitrary closed subgroup H < G, we write $X(H) = \text{Hom}(H, k^{\times})$ for the character group of H. For any subset $J \subset I = \{1, \ldots, l\}$, define the parabolic subgroup $P = P_J$ to be the subgroup generated by B and the T-root subgroups U_{α_j} for $j \in J$. We shall identify X(P) with a subgroup of X(T) via restriction. If H is an arbitrary closed subgroup of G, we define $X^+(H) = \{\lambda \in X(H) \mid \text{ind}_H^G k_\lambda \neq 0\}$. In particular, [6, II.2.6] implies $X_+(T) = X^+(B)$. More generally, if $H = P = P_J$ is parabolic, the following statements are equivalent definitions of $X^+(P)$. Recall here from (2.1) that U denotes the unipotent radical of the negative Borel subgroup B.

(i) $X^+(P) = X(P) \cap X_+(T)$.

(ii) $X^+(P) = \{\lambda \in X_+(T) \mid (\lambda, \alpha_j^{\vee}) = 0 \text{ for all } j \in J\}.$

(iii) $X^+(P) = \{\lambda \in X_+(T) \mid \Delta_G(\lambda^*)^U \text{ is } P \text{-stable}\}.$

We shall write k[G] (resp. k(G)) for the ring of regular (resp. rational) functions on G. We regard k[G] as a G-module in two ways, via the left regular and the right regular representations, where $(g.f)(h) = f(g^{-1}h)$ and $(f.g)(h) = f(hg^{-1})$ for $g, h \in$ $G, f \in k[G]$ respectively. These extend uniquely to define actions of G on k(G). If P, H are any closed subgroups of G, let ${}^{P}k(G)^{H}$ be the subalgebra

$${}^{P}k(G)^{H} = \{ f \in k(G) \mid p.f.h = f, \text{ for all } p \in P, h \in H \}.$$

We shall need Rosenlicht's Theorem [16], which implies that there is a dense (P, H)double coset in G if and only if ${}^{P}k(G)^{H} = k$.

We begin with a basic algebraic lemma.

3.2. Lemma. Let A be a k-algebra that is an integral domain. Let $a, b \in A$ be linearly independent elements. Then, for $n \in \mathbb{Z}^+$, the elements $a^n, a^{n-1}b, \ldots, ab^{n-1}, b^n$ are also linearly independent.

Proof. Let $\sum_{i=0}^{s} \alpha_i a^i b^{n-i} = 0$ be a dependency with $\alpha_s \neq 0$. Let β_1, \ldots, β_s be the roots of the polynomial $\alpha_0 + \alpha_1 x + \cdots + \alpha_s x^s$. Then, $\sum_{i=0}^{s} \alpha_i a^i b^{n-i} = \alpha_s b^{n-s} (a - \beta_1 b) \ldots (a - \beta_s b) = 0$. As A is an integral domain, this implies one of $b, a - \beta_1 b, \ldots, a - \beta_s b$ is zero, contradicting the fact that a, b are linearly independent. \Box

3.3. Lemma. Let H be a closed subgroup of G. Let $\lambda \in X^+(B), \mu \in X(H)$. Write k_{μ} for the corresponding 1-dimensional H-module. Suppose that dim Hom_H($\Delta_G(\lambda), k_{\mu}) \geq 2$. Then, for all $n \in \mathbb{Z}^+$, dim Hom_H($\Delta_G(n\lambda), k_{n\mu}) \geq n + 1$.

Proof. Let $\Delta = \Delta_G(\lambda), \Delta_n = \Delta_G(n\lambda)$ and let v^+, w^+ be highest weight vectors in Δ, Δ_n respectively. Let θ_1, θ_2 be linearly independent elements of $\operatorname{Hom}_H(\Delta, k_\mu)$. Let $f_i \in k[G]$ be defined by $f_i(g) = \theta_i(g.v^+)$ for i = 1, 2. By the proof of Frobenius reciprocity [6, I.3.4], f_1 and f_2 are linearly independent. Let $\alpha : \Delta_n \to \bigotimes^n \Delta$ be the *G*-module homomorphism defined by the map $w^+ \mapsto v^+ \otimes \cdots \otimes v^+$ and the universal property of Weyl modules. Then, we can define $\phi_i \in \operatorname{Hom}_H(\Delta_n, k_{n\mu})$ for $i = 0, \ldots, n$ by composing α with the map $\bigotimes^n \Delta \to k_{n\mu}$ defined by $v_1 \otimes \cdots \otimes v_n \mapsto \theta_1(v_1) \otimes \cdots \otimes \theta_1(v_i) \otimes \theta_2(v_{i+1}) \otimes \cdots \otimes \theta_2(v_n)$. We claim ϕ_0, \ldots, ϕ_n are linearly independent, which will complete the proof. Let $a_0\phi_0 + \cdots + a_n\phi_n = 0$ be a dependency. Then, for all $g \in G$,

$$\sum_{i=0}^{n} a_i \phi_i(g.w^+) = \sum_{i=0}^{n} a_i \theta_1(g.v^+)^i \theta_2(g.v^+)^{n-i} = 0.$$

So, the element $\sum_{i=0}^{n} a_i f_1^i f_2^{n-i} \in k[G]$ is zero. But, this implies $a_i = 0$ for each i as the elements $f_1^i f_2^{n-i}$ are linearly independent by the previous lemma. \Box

3.4. **Remarks.** (I) Let H < G be a connected reductive subgroup. An application of Frobenius reciprocity together with Lemma 3.3 (applied to a Borel subgroup of H) shows that if dim Hom_H($\Delta_H(\mu), \nabla_G(\lambda)$) ≥ 2 then dim Hom_H($\Delta_H(n\mu), \nabla_G(n\lambda)$) \geq n+1 for all $n \in \mathbb{Z}^+$. In [11], Krämer uses this to reduce the classification of multiplicityfree pairs (G, H) of compact Lie groups to the case that G is simply connected. We could do this now in our case, but prefer to wait until we can prove the more general Corollary 3.8.

(II) Krämer also introduces the notion of a *multiplicity-bounded* subgroup of a compact connected Lie group. The appropriate analogue in our setting would be a reductive subgroup H < G such that

$$\dim \operatorname{Hom}_H(\Delta_H, \nabla_G) \le N$$

for all Weyl modules Δ_H for H and coWeyl modules ∇_G for G, where N is some fixed constant independent of Δ_H , ∇_G . By the argument in (I), the concepts of multiplicitybounded and multiplicity-free subgroups are equivalent.

3.5. **Theorem.** Let H be an arbitrary closed subgroup of G and $P = P_J$ be the parabolic subgroup of G corresponding to $J \subset I$. The following properties are equivalent.

(i) dim Hom_H($\Delta_G(\lambda^*), k_\mu$) ≤ 1 for all $\lambda \in X^+(P), \mu \in X^+(H)$.

(ii) There is a dense (P, H)-double coset in G.

Proof. (ii) \Rightarrow (i). This is just the argument of Lemma 2.2. Recall $\Delta_G(\lambda^*)$ is generated by any vector $0 \neq v \in \Delta_G(\lambda^*)^U$. By (3.1)(iii), v is a *P*-eigenvector. Hence, if HgP is dense in G, $\Delta_G(\lambda^*)$ is generated as an *H*-module by the vector gv. This immediately implies that $\operatorname{Hom}_H(\Delta_G(\lambda^*), k_\mu)$ is at most 1-dimensional for any 1-dimensional *H*module k_μ .

(i) \Rightarrow (ii). We first prove this for G semisimple and simply connected; then, k[G] is a unique factorisation domain by [15]. Suppose there is no dense (P, H)-double coset in G. Then, by Rosenlicht's Theorem, there is some non-constant $f \in {}^{P}k(G)^{H}$. Write $f = f_1/f_2$ with $f_1, f_2 \in k[G]$ coprime. Then, for $p \in P, h \in H, p.f.h = f$, so $(p.f_1.h)f_2 = f_1(p.f_2.h)$. As k[G] is a unique factorisation domain, this implies that $p.f_i.h = \theta(p,h)f_i$ for each i, where $\theta(p,h) \in k[G]$. Moreover, $\theta(p,h)$ is invertible, and the invertible elements in k[G] are constant. We thus obtain a morphism $\theta : P \times H \to k^{\times}$, and it is easily checked that this is a character of $P \times H$, so $\theta(p,h) = \lambda(p)\mu(h)$ for characters λ, μ of P, H respectively.

Now, let V_i be the left *G*-submodule of k[G] generated by f_i . Writing $\dot{w}_0 \in N_G(T)$ for any coset representative of $w_0 \in W$, $\dot{w}_0 f_i$ is a B^+ -high weight vector, since f_i is *P*-stable hence *B*-stable. So each V_i is a high weight module of high weight $w_0\lambda$. Let $\Delta = \Delta_G(w_0\lambda) = \Delta_G(-\lambda^*)$. By the universal property of Weyl modules, each V_i is a homomorphic image of Δ . By definition of induced module, we can regard each f_i as an element of $\operatorname{ind}_H^G k_\mu$, so that each V_i is a submodule of $\operatorname{ind}_H^G k_\mu$. Thus, we can define two linearly independent homomorphisms $\Delta \to \operatorname{ind}_H^G k_\mu$ by composing $\Delta \to V_i$ with the inclusion $V_i \hookrightarrow \operatorname{ind}_H^G k_\mu$. Now apply Frobenius Reciprocity to show that

$$\dim \operatorname{Hom}_{G}(\Delta, \operatorname{ind}_{H}^{G} k_{\mu}) = \dim \operatorname{Hom}_{H}(\Delta, k_{\mu}) \geq 2.$$

Finally, observe that $-\lambda \in X^+(P)$ by (3.1)(i) and $\mu \in X^+(H)$ by definition. So, this contradicts (i).

Now we treat the general case. Suppose first that G is semisimple and satisfies (i). Let \tilde{G} be the simply connected cover of G. Write \tilde{H}, \tilde{P} for the connected pre-images of H, P respectively in \tilde{G} . We just need to show that (\tilde{G}, \tilde{H}) also satisfies (i); then, the simply connected result will imply that there is a dense (\tilde{P}, \tilde{H}) -double coset in \tilde{G} , hence that there is a dense (P, H)-double coset in G (this follows as morphisms of algebraic groups are open maps). So, suppose (\tilde{G}, \tilde{H}) does not satisfy (i); then there exist $\lambda \in X^+(\tilde{P}), \mu \in X(\tilde{H})$ such that dim $\operatorname{Hom}_{\tilde{H}}(\Delta_{\tilde{G}}(\lambda^*), k_{\mu}) \geq 2$. Now, we can choose $n \in \mathbb{Z}^+$ so that $n\lambda, n\mu$ are characters in $X^+(P), X(H)$ respectively. Then, Lemma 3.3 implies dim $\operatorname{Hom}_H(\Delta_G(n\lambda^*), k_{n\mu}) \geq 2$, a contradiction.

Finally, suppose the radical R of G is non-trivial and that (G, H) satisfies (i). Then clearly (G/R, HR/R) satisfies (i) so the result for semisimple G implies that there is a dense (P/R, HR/R)-double coset in G. Taking pre-images, we obtain a dense (P, HR)-double coset in G, hence a dense (P, H)-double coset since R < P is central. \Box

3.6. **Remarks.** (I) Popov's result [15] shows that if G is semisimple, but not necessarily simply connected, then the divisor class group of G is finite. Using this and a

straightforward argument involving divisors, Kimel'fel'd and Vinberg prove $(i) \Rightarrow (ii)$ without considering the simply connected case separately.

(II) A subgroup H < G is called *spherical* if there is a dense (H, B)-double coset in G. Spherical subgroups of reductive algebraic groups have been classified in characteristic 0 in [1, 12]. As far as I know, no such classification exists in arbitrary characteristic, even for the special case of reductive spherical subgroups of simple algebraic groups.

(III) Kimel'fel'd and Vinberg also prove that if H is a connected reductive subgroup and $\{\alpha_j \mid j \in J\}$ is stable under $-w_0$ (the longest element of W), then (i) is equivalent to

(i)' dim Hom_H($\Delta_G(\lambda^*), k$) = dim $\nabla_G(\lambda)^H \leq 1$ for all $\lambda \in X^+(P)$.

This can be proved in arbitrary characteristic providing in addition some conjugate of H is normalised by τ , an anti-automorphism of G (see eg [6, II.1.16]) such that $\tau^2 = 1, \tau t = t$ for $t \in T$ and $\tau U_{\alpha} = U_{-\alpha}$ for $\alpha \in \Phi$. This extra condition holds for example if H is reductive and of maximal rank in G. Alternatively, in the special case that P = B, (i) and (i)' are equivalent providing H is a closed subgroup such that the field of rational functions k(G/H) is the field of fractions of the regular functions k[G/H] (this includes all reductive subgroups). The proof of this depends on the argument in [7, Theorem 2] (in fact, Kimel'fel'd and Vinberg prove a slightly weaker statement than required here, and consider characteristic 0 only, but the method is easily generalised).

3.7. Now we apply Theorem 3.5 to deduce Theorem B. For the remainder of the section, let H < G be a connected reductive subgroup. Fix a Borel subgroup B_H of H. At this point, we need to talk about root systems, Weyl groups etc. for H as well as for G. Rather than introduce more notation, let us just note that since ind_H^G is exact [6, I.5.12], $X^+(B_H) = \{\lambda \in X(B_H) \mid \operatorname{ind}_{B_H}^G k_\lambda \neq 0\}$ also equals $\{\lambda \in X(B_H) \mid \operatorname{ind}_{B_H}^H k_\lambda \neq 0\}$. Hence, by (3.1)(i) with $P = B_H$, we can regard $X^+(B_H)$ as an intrinsically defined set of dominant weights for some root system of H, and set $\nabla_H(\lambda) = \operatorname{ind}_{B_H}^H k_\lambda$ for $\lambda \in X^+(B_H)$.

Theorem. Let $P \ge B$ and $P_H \ge B_H$ be parabolic subgroups of G, H respectively. The following properties are equivalent.

- (i) dim Hom_H($\Delta_G(\lambda^*), \nabla_H(\mu)$) ≤ 1 for all $\lambda \in X^+(P), \mu \in X^+(P_H)$.
- (ii) There is a dense (P, P_H) -double coset in G.

Proof. (i) \Rightarrow (ii). For $\mu \in X^+(P_H)$, $\nabla_H(\mu) = \operatorname{ind}_{B_H}^H k_\mu = \operatorname{ind}_{P_H}^H k_\mu$. Therefore, we can apply Frobenius reciprocity to (i) to deduce dim $\operatorname{Hom}_{P_H}(\Delta_G(\lambda^*), k_\mu) \leq 1$ for all $\lambda \in X^+(P), \mu \in X^+(P_H)$. Then, Theorem 3.5 implies there is a dense (P, P_H) -double coset in G.

(ii) \Rightarrow (i). Suppose dim Hom_H($\Delta_G(\lambda^*), \nabla_H(\mu)$) ≥ 2 for some $\lambda \in X^+(P)$ and $\mu \in X^+(P_H)$. By Frobenius reciprocity again, dim Hom_{P_H}($\Delta_G(\lambda^*), k_{\mu}$) ≥ 2 , so there is no dense (P, P_H) -double coset in G by Theorem 3.5. \Box

Theorem B from the introduction follows immediately from this, putting P = Band $P_H = B_H$. As an immediate corollary, we can show that it is sufficient to consider multiplicity-free pairs up to isogenies of G.

3.8. Corollary. Let θ be an isogeny of G. Then, (G, H) is a multiplicity-free pair if and only if $(\theta(G), \theta(H))$ is a multiplicity-free pair

G	Н	G	Н
Sp(E), SO(E)	N_i	G_2	$A_2, \tilde{A}_2(p=3)$
SL(E)	Sp(E)	F_4	$B_4, C_4(p=2)$
Sp(E)(p=2)	SO(E)	E_6	F_4
$SO_8(k)$	$Spin_7(k)$	E_7	A_1D_6
$SO_7(k)(p \neq 2), Sp_6(k)(p = 2)$	G_2	E_8	A_1E_7

Table 3: Reductive subgroups of dimension at least $\frac{1}{2} \dim G$

Proof. Let B, B_H be Borel subgroups of G, H respectively. By Theorem B, we need to show that there is a dense (B, B_H) -double coset in G if and only if there is a dense $(\theta(B), \theta(B_H))$ -double coset in $\theta(G)$, which is immediate since morphisms of algebraic groups are open maps. \Box

4 Proof of Theorem C

Theorem B reduces the problem of classifying multiplicity-free pairs to group theory. We shall need to list all reductive subgroups H of simple algebraic groups G satisfying the dimension bound dim $B+\dim B_H \ge \dim G$ given in Theorem B. Note that we make a distinction between *reductive maximal* subgroups and *maximal reductive* subgroups of G: the former are maximal subgroups of G, whereas the latter may lie in some proper parabolic of G.

4.1. For G classical, we use the notation G = Cl(E) to indicate that G is a connected classical algebraic group with natural module E. When G = SO(E), Sp(E) let N_i denote the connected stabiliser in G of a non-degenerate subspace of E of dimension iwith $i \leq \frac{1}{2} \dim E$; and when $(G, p) = (D_n, 2)$ let N_1 denote the connected stabilizer of a nonsingular 1-space. When p = 3, we write \tilde{A}_2 for the subgroup of G_2 generated by the short root groups relative to some fixed maximal torus.

Lemma. Let H be a reductive maximal connected subgroup of a simple algebraic group G, and suppose that dim $H \ge \frac{1}{2}$ dim G. In the case G classical, suppose that G = Cl(E) and that $(G, p) \ne (B_n, 2)$. Then (G, H) are in table 3.

Proof. For G classical, this is [13, Lemma 5.1]. For G exceptional, it follows from [17] by the argument in [13, Proposition 2.3]. \Box

4.2. Lemma. The multiplicity-free pairs (G, H) with G simple are precisely those in table 1, up to isogenies of G, together with the trivial case H = G of Theorem C(iv).

Proof. We exclude the case $(G, H) = (SO_4(k), SO_3(k))$ since here G is not simple. By Theorem B, there is a dense (B, B_H) -double coset in G, so dim $B + \dim B_H \ge \dim G$. This implies dim $H \ge \dim G - \operatorname{rank} G - \operatorname{rank} H \ge \dim G - 2 \operatorname{rank} G$. We show that the only pairs (G, H) for which H satisfies this dimension bound are those in table 1 (up to isogenies of G); we already know that all such pairs are multiplicity-free pairs by Theorem A and Corollary 3.8. Note that for each pair (G, H) in table 1, dim B + dim B_H exactly equals dim G, so no proper reductive subgroup of H satisfies the dimension bound.

We consider two cases.

(i) Suppose H lies in no parabolic subgroup of G. Then, H lies in some reductive maximal connected subgroup \bar{H} of G. Consider first the possibilities for \bar{H} . The bound dim $\bar{H} \ge \dim G - 2$ rank G implies either $(G, \bar{H}) = (SL_2(k), GL_1(k))$ (which is in table 1) or dim $\bar{H} \ge \frac{1}{2} \dim G$. Hence, (G, \bar{H}) are given by Lemma 4.1. Now, one checks that the only possibilities satisfying the stronger dimension bound dim $\bar{H} \ge \dim G - 2$ rank G are those in the conclusion. Hence, (G, \bar{H}) is in table 1, and we deduce that $H = \bar{H}$ by dimension.

(ii) Suppose H lies in a maximal parabolic subgroup P = LQ of G, with Levi factor L and unipotent radical Q. Let $\overline{H} \leq L$ be such that $\overline{H}Q/Q = HQ/Q$. Then, H is isogenous to \overline{H} so L also satisfies the dimension bound dim $L \geq \dim G - 2$ rank G. Computing the possible dimensions of Levi subgroups, the only possibility is $(G, L) = (SL_n(k), GL_{n-1}(k))$. We deduce that $\overline{H} = L$ by dimension, hence that $H = GL_{n-1}(k)$, which is in table 1. \Box

4.3. If G is a semisimple algebraic group and H < G is any closed subgroup, we call H a *decomposable subgroup* of G if G, H can be written as commuting products $G = G_1G_2$, $H = H_1H_2$ such that, for each i, $H_i \leq G_i$ and $G_i \triangleleft G$ is a non-trivial semisimple group.

Lemma. Let H < G be a connected reductive subgroup of a semisimple group G. Suppose H is a decomposable subgroup of G, so that G, H can be written as $G = G_1G_2, H = H_1H_2$ as above. Then, (G, H) is a multiplicity-free pair if and only if (G_1, H_1) and (G_2, H_2) are both multiplicity-free pairs.

Proof. This is immediate from the definition since Weyl modules (resp. coWeyl modules) for G or H are just tensor products of Weyl modules (resp. coWeyl modules) for G_1 and G_2 or H_1 and H_2 . \Box

We define an *indecomposable* multiplicity-free pair to be a multiplicity-free pair (G, H) such that H is an indecomposable subgroup of G. As remarked in the introduction, to classify all multiplicity-free pairs, it is sufficient to classify the indecomposable multiplicity-free pairs (G, H) with G semisimple and simply connected, by Corollary 3.8 and the above Lemma.

The next Lemma is well known.

4.4. Lemma. Let $G = G_1 \dots G_n$ be a semisimple algebraic group written as a commuting product of simple subgroups $G_i \triangleleft G$, with $n \ge 2$. If H is a maximal connected reductive subgroup of G, then one of the following holds:

(i) Some simple factor $1 \neq G_i \triangleleft G$ is contained in H.

(ii) H is diagonally embedded in G and n = 2.

Proof. We may assume G is of adjoint type, so that it is a direct product $G = G_1 \times \cdots \times G_n$ with each G_i simple both as algebraic and abstract groups. We shall

write $G^i = \prod_{j \neq i} G_j$. Assume $G_i \not\leq H$ for all i, which immediately implies that H lies in no parabolic subgroup of G. Suppose first that $Z(H) \neq 1$. Take $z = z_1 \dots z_n \in Z(H)$ with $z_i \in G_i$ and $z_j \neq 1$ for some j. As H lies in no parabolic, H is maximal, so $H = C_G(z)^0$. This implies that $H = C_{G_1}(z_1)^0 \dots C_{G_n}(z_n)^0$. Maximality again forces $z_i = 1$ for $i \neq j$, so that $G_i \leq H$ for all $i \neq j$, contradicting our assumption.

So, Z(H) = 1 and we can write $H = H_1 \dots H_m$ as a direct product of simple, centreless factors H_i . By maximality, $H = N_G(H_1)^0$. We now show that the projection $\pi_i : H_1 \to G_i$ is a bijection for each *i*. To see this, notice $H_1 \cap G^i \trianglelefteq H_1$, so equals 1 or H_1 , as H_1 is simple as an abstract group. In the latter case, $H_1 \le G^i$ so $G_i \le H$, contrary to assumption. So, $H_1 \cap G^i = 1$ and π_i is injective for each *i*. Next, the normaliser $N_{G/G^i}(H_1G^i/G^i)$ contains HG^i/G^i . But this equals G/G^i by maximality of H, so $H_1G^i/G^i \trianglelefteq G/G^i \cong G_i$. Hence, $H_1G^i/G^i = G/G^i$ and π_i is surjective for each *i*, as required.

Now let $\theta_i = \pi_i \circ \pi_1^{-1} : G_1 \to G_i$. We have shown that each θ_i is an isomorphism of abstract groups and that $H_1 = \{g\theta_2(g) \dots \theta_n(g) \mid g \in G_1\}$. But then $H = N_G(H_1)^0 = H_1$. Finally, by maximality, we must have that n = 2 and (ii) holds. \Box

4.5. Lemma. Let (G, H) be an indecomposable multiplicity-free pair, such that G is semisimple and simply connected, but not simple. Then, $G = SL_2(k) \times SL_2(k)$ and H < G is a diagonally embedded $SL_2(k)$.

Proof. First suppose that H is a maximal connected reductive subgroup of G. Then Lemma 4.4 implies that $G = G_1 \times G_2$ is a product of two isomorphic simple factors and H is a diagonally embedded subgroup. Now a routine dimension check shows that the only possibility satisfying the bound dim $B + \dim B_H \ge \dim G$ is as in the conclusion.

Now suppose for a contradiction that the lemma is false. Then, we can find a counterexample (G, H), such that the lemma holds for all indecomposable multiplicity-free pairs (G_1, H_1) such that either dim $G_1 < \dim G$ or dim $G_1 = \dim G$ and dim $H_1 > \dim H$. By the previous paragraph, H is not a maximal connected reductive subgroup of G, so we may embed H < K < G where K is a connected reductive subgroup of G and H is a maximal connected reductive subgroup of K. Choose Borel subgroups $B_H < B_K < B$ for H, K, G respectively. Obviously, there is a dense (B, B_K) -double coset in G, so (G, K) is a multiplicity-free pair. By Lemma 4.3, we may write G, K as direct products $G = G_1 \times \cdots \times G_n$, $K = K_1 \times \cdots \times K_n$, such that each pair (G_i, K_i) is an indecomposable multiplicity-free pair. Suppose first that n = 1. Then, the minimality hypothesis on (G, H) implies that $G = SL_2(k) \times SL_2(k)$ and K is a diagonally embedded $SL_2(k)$. But for this pair dim B + dim B_K is exactly equal to dim G and B_H is a proper subgroup of B_K . This gives a contradiction, since (G, H) is a multiplicity-free pair.

So n > 1. Let Z be the centre of K and, for any subgroup $L \le K$, denote its image in KZ/Z by L'. The hypothesis on (G, H) implies that the lemma holds for each (G_i, K_i) . So each K'_i is simple and in particular H' is an indecomposable subgroup of K', since H is an indecomposable subgroup of G. Now Lemma 4.4 implies that K' is semisimple of length 2 and H' is diagonally embedded in K', as in the first paragraph. The number of factors (G_i, K_i) isomorphic to $(SL_n(k), GL_{n-1}(k))$ is just dim Z, and for these pairs dim $G_i > \dim K_i + 1$. Hence, dim $B_H + \dim B \ge \dim G > \dim K + \dim Z$, and this implies that dim $B'_H + \dim B'_K > \dim K'$. But now the dimension check from the first paragraph gives a contradiction. \Box Theorem C follows immediately from Lemma 4.2 and Lemma 4.5.

5 Proof of Theorem D

Let (G, H) be as in Theorem D, and fix notation as in Lemmas (2.4)-(2.6).

5.1. To prove Theorem D, it is sufficient to show that $\nabla_G(\lambda_i)$ has a good filtration as an *H*-module for each *fundamental* dominant weight $\lambda_i \in X(T)$. This follows by combining the Donkin-Mathieu tensor product theorem (in fact [3, Theorem 4.3.1] is sufficient for our purposes) with the argument of [3, 3.5.4]. We shall prove the equivalent dual statement, that $\Delta_G(\lambda_i)$ has a *Weyl filtration* as an *H*-module, for each fundamental dominant weight λ_i .

Let us first consider $G = B_l$ or D_l and the fundamental weights λ_l (if $G = B_l$ or D_l) and $\lambda_{l-1}(G = D_l$ only). Spin modules for B_l, D_l are irreducible Weyl modules in all characteristics. If $(G, H) = (D_l, B_{l-1})$ then $\Delta_G(\lambda_{l-1})$ and $\Delta_G(\lambda_l)$ are spin modules, and restrict to the spin module $\Delta_H(\lambda'_{l-1})$ for H. If $(G, H) = (B_l, D_l)$ then $\Delta_G(\lambda_l)$ is a spin module and restricts to a direct sum $\Delta_H(\lambda'_l) \oplus \Delta_H(\lambda'_{l-1})$. Hence $\Delta_G(\lambda_l)$ has a Weyl filtration on restriction to H in each case as required.

It remains to consider the Weyl modules $\Delta_G(\lambda_i)$ for $1 \leq i \leq l$ (if $G = A_l$), $1 \leq i \leq l-1$ (if $G = B_l$) or $1 \leq i \leq l-2$ (if $G = D_l$). Recall from (2.4)-(2.6) that \mathfrak{g} is the corresponding simple Lie algebra over \mathbb{C} , with natural module E'. The corresponding irreducible \mathfrak{g} -module is just the exterior power $\bigwedge^i E'$ in each case. Now, if $G = SL_n(k)$ or an orthogonal group in characteristic different from 2, $\bigwedge^i E'$ remains irreducible on reduction mod p by [5, p43, Lemma 11], so that $\Delta_G(\lambda_i) \cong \bigwedge^i E$. In each case, an easy argument shows that $\operatorname{res}_H^G \bigwedge^i E \cong \bigwedge^i E_0 \oplus \bigwedge^{i-1} E_0$, where E_0 is the natural module for H; these summands are Weyl modules for H. This completes the proof of Theorem D, unless G is an orthogonal group with p = 2.

To include characteristic 2, we now give a short direct argument exploiting the element $g \in G$ in the dense (B_H, B^+) -double coset constructed in Lemmas (2.4)-(2.6). In fact, this argument is valid in all characteristics, and does not depend on the result from [5] used in the previous paragraph. The same argument can also be given for $G = SL_n(k)$.

5.2. Lemma. Let $(G, H) = (SO_{2n}(k), SO_{2n-1}(k))$ or $(SO_{2n+1}(k), SO_{2n}(k))$ with $1 \le i \le n-2$ or $1 \le i \le n-1$ respectively. Then, $\Delta_G(\lambda_i)$ has a Weyl filtration as an *H*-module.

Proof. Let $\Delta_{\mathbb{C}} = \bigwedge^i E'$ be the corresponding irreducible \mathfrak{g} -module over \mathbb{C} , with notation as in (2.5) or (2.6). Then, $v' = e'_1 \wedge \cdots \wedge e'_i$ is a high weight vector of E', and $\Delta_{\mathbb{Z}} = U_{\mathbb{Z}} \cdot v'$ is an admissible lattice in $\Delta_{\mathbb{C}}$. The Chevalley construction of (2.3) implies that $\Delta = \Delta_{\mathbb{Z}} \otimes_{\mathbb{Z}} k$ is the Weyl module $\Delta_G(\lambda_i)$, with high weight vector $v = v' \otimes 1$. Let $T_H = T \cap H$, a maximal torus of H, and B_H^+ be the corresponding opposite Borel subgroup to B_H . Fix a dominance ordering on $X(T_H)$ so that B_H is the Borel subgroup generated by negative T_H -root subgroups.

Now recall the element $g \in G$ from Lemmas (2.5) and (2.6). Since $B_H g B^+$ is dense in G, Δ is generated as a B_H -module by the vector w = g.v. There is a canonical way to construct a filtration of Δ using this vector w which we now describe. Write w as a sum $\sum w_{\mu}$ corresponding to the T_H -weight space decomposition of Δ . Set $\Delta_0 = \{0\}$, and inductively define Δ_i as follows. Pick $\mu_i \in X(T_H)$ maximal with respect to the dominance order on $X(T_H)$ such that $w_{\mu_i} \notin \Delta_{i-1}$. Let Δ_i be the B_H -submodule generated by w_{μ_i} and Δ_{i-1} . This defines an ascending filtration of B_H -modules.

$$\{0\} = \Delta_0 < \Delta_1 < \dots < \Delta_m.$$

The construction implies that $w \in \Delta_m$, so that by density, $\Delta_m = \Delta$. The choice of μ_i immediately implies that $w_{\mu_i} + \Delta_{i-1}$ is a B_H^+ -eigenvector in Δ/Δ_{i-1} of weight μ_i . Hence, in fact Δ_i/Δ_{i-1} is an *H*-module, and the filtration is a filtration of *H*-modules. Each Δ_i/Δ_{i-1} is a high weight module of high weight μ_i , so an image of the Weyl module $\Delta_H(\mu_i)$, and each μ_i must be dominant.

Now work in $\Delta_{\mathbb{Z}}$ to compute the μ_i occuring in the filtration. Since $g \in G$ was constructed as a product of root group elements of the form $x_{\alpha}(1)$, there is a corresponding element $u \in U_{\mathbb{Z}}$ such that $(u.v') \otimes 1 = g.(v' \otimes 1)$. Let w' = u.v'. A short calculation using table 2 shows that w' is the vector

$$(e'_{1} - e'_{-n}) \wedge \dots \wedge (e'_{i} - e'_{-n})$$

if $G = D_{n}$, or
$$(e'_{1} + e'_{0} - e'_{-1}) \wedge (e'_{2} + e'_{0} - e'_{-2} - 2e'_{-1}) \wedge \dots \wedge (e'_{i} + e'_{0} - e'_{-i} - 2e'_{-1} - \dots - 2e'_{-(i-1)})$$

if $G = B_n$. It is straightforward to expand the above expressions and compute the vectors w'_{λ} occuring in decomposition $w' = \sum w'_{\lambda}$ corresponding to the weight space decomposition of $\Delta_{\mathbb{Z}}$. Let d' denote the vector e'_{-n} if $G = D_n$ or e'_0 if $G = B_n$. Then, in both cases, the only vectors w'_{λ} with λ dominant are the vectors $e'_1 \wedge \cdots \wedge e'_i$ and $\pm e'_1 \wedge \cdots \wedge e'_{i-1} \wedge d'$ in $\Delta_{\mathbb{Z}}$. Moreover, every vector $w_{\lambda} \in \Delta$ in the decomposition $w = \sum w_{\lambda}$ is the image of some vector $w'_{\lambda} \in \Delta_{\mathbb{Z}}$. This argument shows that the only possibilities for the high weights μ_i occuring in the above filtration are $\varepsilon_1 + \cdots + \varepsilon_i$ and $\varepsilon_1 + \cdots + \varepsilon_{i-1}$.

Now, dimension implies that both of these high weights must indeed occur, and that each factor Δ_i/Δ_{i-1} , which is a high weight module of weight μ_i by construction, must in fact be the Weyl module $\Delta_H(\mu_i)$. Thus, the filtration is a Weyl filtration, completing the proof. \Box

To complete the proof of Theorem D, it just remains to observe that it also holds for the pair $(G, H) = (SO_8(k), Spin_7(k))$, by applying a triality automorphism to the pair $(SO_8(k), SO_7(k))$ as in Lemma 2.6.

Acknowledgements

I would like to thank Professors Martin Liebeck, Stephen Donkin and Gordan James for useful discussions during the course of this work.

References

 M. Brion. Classification des espaces homogènes sphériques. Compositio Math., 63:189–208, 1987.

- [2] J. W. Brundan. Modular branching rules and the mullineux map for Hecke algebras of type A, 1996. submitted to Proc. London Math. Soc.
- [3] S. Donkin. Invariants of unipotent radicals. Math. Z., 198:117–125, 1988.
- [4] G. D. James. The representation theory of the symmetric groups, volume 682 of Lecture Notes in Math. Springer-Verlag, 1978.
- [5] J. C. Jantzen. Darstellungen halbeinfacher algebraischer gruppen und zugeordnete kontravariante formen. Bonner Math. Schriften, No. 67:1–124, 1973.
- [6] J. C. Jantzen. Representations of Algebraic Groups. Academic Press, Florida, 1987.
- [7] B. N. Kimel'fel'd and E. B. Vinberg. Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. *Functional Anal. Appl.*, 12:168–174, 1978.
- [8] A. S. Kleshchev. On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups. Proc. London Math. Soc., 69:515–540, 1994.
- [9] A. S. Kleshchev. Branching rules for modular representations of symmetric groups, I. J. Alg., 178:493–511, 1995.
- [10] A. S. Kleshchev. Branching rules for modular representations of symmetric groups, II. J. reine angew. Math., 459:163–212, 1995.
- [11] M. Krämer. Multiplicity free subgroups of compact connected Lie groups. Archiv. Math., 27:28–36, 1976.
- [12] M. Krämer. Sphärische untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math., 38:129–153, 1979.
- [13] M. W. Liebeck, J. Saxl, and G. M. Seitz. Factorizations of simple algebraic groups. *Trans. Amer. Math. Soc.*, 348:799–822, 1996.
- [14] O. Mathieu. Filtrations of G-modules. Ann. Sci. Ecole Norm. Sup., 23:625–644, 1990.
- [15] V. L. Popov. Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. *Math. USSR Izvestija*, 8:301–327, 1974.
- [16] M. Rosenlicht. Some basic theorems on algebraic groups. Amer. J. Math., 78:401–443, 1956.
- [17] G. M. Seitz. The maximal subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc., 441, 1991.
- [18] R. Steinberg. Lectures on Chevalley groups. Yale University Lecture Notes, 1968.

Department of Mathematics, Imperial College, London, SW7 2BZ. e-mail: j.brundan@ic.ac.uk