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Abstract. We extend Schur-Weyl duality to an arbitrary level l ≥ 1, level
one recovering the classical duality between the symmetric and general linear
groups. In general, the symmetric group is replaced by the degenerate cyclo-
tomic Hecke algebra over C parametrized by a dominant weight of level l for
the root system of type A∞. As an application, we prove that the degenerate
analogue of the quasi-hereditary cover of the cyclotomic Hecke algebra con-
structed by Dipper, James and Mathas is Morita equivalent to certain blocks
of parabolic category O for the general linear Lie algebra.

Mathematics Subject Classification (2000). 17B20.

Keywords. Schur-Weyl duality, parabolic category O, finite W -algebras, cy-
clotomic Hecke algebras.

1. Introduction

We will work over the ground field C (any algebraically closed field of characteristic
zero is fine too). Recall the definition of the degenerate affine Hecke algebra Hd

from [D]. This is the associative algebra equal as a vector space to the tensor
product C[x1, . . . , xd]⊗CSd of a polynomial algebra and the group algebra of the
symmetric group Sd. We write si for the basic transposition (i i+1) ∈ Sd, and
identify C[x1, . . . , xd] and CSd with the subspaces C[x1, . . . , xd] ⊗ 1 and 1 ⊗ CSd
of Hd, respectively. Multiplication is then defined so that C[x1, . . . , xd] and CSd
are subalgebras of Hd, sixj = xjsi if j 6= i, i+ 1, and

sixi+1 = xisi + 1.

As well as being a subalgebra of Hd, the group algebra CSd is also a quotient, via
the homomorphism Hd � CSd mapping x1 7→ 0 and si 7→ si for each i.

The degenerate affine Hecke algebra arises when studying the representation
theory of the general linear Lie algebra g = glN (C), as follows. Let V be the
natural g-module of column vectors, let M be any g-module, and consider the
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tensor product M ⊗ V ⊗ · · · ⊗ V (d copies of V ). Let ei,j ∈ g denote the ij-matrix
unit and Ω =

∑N
i,j=1 ei,j ⊗ ej,i. Then, by an observation of Arakawa and Suzuki

[AS, §2.2], there is a well-defined right action of Hd on M ⊗V ⊗d, commuting with
the left action of g, defined so that x1 acts as the endomorphism Ω ⊗ 1⊗d−1 and
each si acts as 1⊗i ⊗ Ω⊗ 1⊗(d−i−1).

The goal of this article is to extend the classical Schur-Weyl duality to some
remarkable finite dimensional quotients of Hd: the degenerate cyclotomic Hecke
algebras. Let Λ =

∑
i∈Z miΛi be a dominant weight of level l for the root system

of type A∞, so each mi is a non-negative integer and
∑
i∈Z mi = l. The degenerate

cyclotomic Hecke algebra parametrized by Λ is the quotient Hd(Λ) of Hd by the
two-sided ideal generated by the polynomial

∏
i∈Z(x1 − i)mi . If Λ = Λ0 (or any

other weight of level l = 1) then Hd(Λ) ∼= CSd as above.

Fix now a partition λ = (p1 ≤ · · · ≤ pn) of N , let (q1 ≥ · · · ≥ ql) be the
transpose partition, and take the dominant weight Λ from the previous paragraph
to be the weight Λ =

∑l
i=1 Λqi−n. Up to change of origin, any Λ arises in this way

for suitable λ. We identify λ with its Young diagram, numbering rows by 1, 2, . . . , n
from top to bottom in order of increasing length and columns by 1, 2, . . . , l from
left to right in order of decreasing length, so that there are pi boxes in the ith row
and qj boxes in the jth column. Since these are not the standard conventions, we
give an example. Suppose λ = (p1, p2, p3) = (2, 3, 4), so (q1, q2, q3, q4) = (3, 3, 2, 1),
Λ = 2Λ0 + Λ−1 + Λ−2, N = 9, n = 3, and the level l = 4. The Young diagram is

1 4
2 5 7
3 6 8 9 .

We always number the boxes of the diagram 1, 2, . . . , N down columns starting
from the first column, and write row(i) and col(i) for the row and column numbers
of the ith box. This identifies the boxes with the standard basis v1, . . . , vN of the
natural g-module V . Define e ∈ g to be the nilpotent matrix of Jordan type λ which
maps the basis vector corresponding the ith box to the one immediately to its left,
or to zero if there is no such box; in our example, e = e1,4+e2,5+e5,7+e3,6+e6,8+
e8,9. Finally, define a Z-grading g =

⊕
r∈Z gr on g by declaring that ei,j is of degree

(col(j)−col(i)) for each i, j = 1, . . . , N , and set p =
⊕

r≥0 gr, h = g0,m =
⊕

r<0 gr.
The element e ∈ g1 is a Richardson element in the parabolic subalgebra p, so the
centralizer ge of e in g is a graded subalgebra of p. Hence its universal enveloping
algebra U(ge) is a graded subalgebra of U(p).

Our first main result is best understood as a filtered deformation of the
following extension of the classical Schur-Weyl duality to the centralizer ge. Let
Cl[x1, . . . , xd] be the level l truncated polynomial algebra, that is, the quotient of
the polynomial algebra C[x1, . . . , xd] by the relations xl1 = · · · = xld = 0. Extend
the usual right action of Sd on V ⊗d to an action of the twisted tensor prod-
uct Cl[x1, . . . , xd] o©CSd by defining the action of xi to be as the endomorphism
1⊗(i−1) ⊗ e⊗ 1⊗(d−i). This commutes with the natural action of ge, making V ⊗d
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into a (U(ge),Cl[x1, . . . , xd] o©CSd)-bimodule. We have defined a homomorphism
φd and an antihomomorphism ψd:

U(ge)
φd−→ EndC(V ⊗d)

ψd←− Cl[x1, . . . , xd] o©CSd.
Now a result of Vust [KP, §6] asserts that these maps satisfy the double centralizer
property, i.e. the image of φd is the centralizer of the image of ψd and vice versa.
This is a surprising consequence of the normality of the closure of the conjugacy
class containing e.

In our filtered deformation of this picture, we replace Cl[x1, . . . , xd] o©CSd
with the degenerate cyclotomic Hecke algebra Hd(Λ) and U(ge) with the finite
W -algebra W (λ) associated to the partition λ. Let us recall the definition of the
latter algebra following [BK3]; see also [P1, P2, GG, BGK]. Let η : U(p) → U(p)
be the algebra automorphism defined by

η(ei,j) = ei,j + δi,j(n− qcol(j) − qcol(j)+1 − · · · − ql)

for each ei,j ∈ p. Let Iχ be the kernel of the homomorphism χ : U(m)→ C defined
by x 7→ (x, e) for all x ∈ m, where (., .) is the trace form on g. Then, by the
definition followed here, W (λ) is the following subalgebra of U(p):

W (λ) = {u ∈ U(p) | [x, η(u)] ∈ U(g)Iχ for all x ∈ m}.

The grading on U(p) induces a filtration on W (λ) so that the associated graded
algebra grW (λ) is naturally identified with a graded subalgebra of U(p); this is
the loop or good filtration of the finite W -algebra, not the more familiar Kazhdan
filtration. A key point is that, by a result of Premet [P2, Proposition 2.1], the
associated graded algebra grW (λ) is equal to U(ge) as a graded subalgebra of
U(p), hence W (λ) is indeed a filtered deformation of U(ge).

We still need to introduce a (W (λ),Hd(Λ))-bimodule V ⊗d which is a filtered
deformation of the (U(ge),Cl[x1, . . . , xd] o©CSd)-bimodule V ⊗d from above. The
left action of W (λ) on V ⊗d is simply the restriction of the natural action of U(p).
To define the right action of Hd(Λ), let Sd act on the right by place permutation
as usual. Let x1 act as the endomorphisme+

N∑
j=1

(qcol(j) − n)ej,j

⊗1⊗(d−1)−
d∑
k=2

N∑
i,j=1

col(i)<col(j)

ei,j⊗1⊗(k−2)⊗ej,i⊗1⊗(d−k).

This extends uniquely to make V ⊗d into a (W (λ),Hd(Λ))-bimodule. To explain
why, let Qχ denote the g-module U(g)/U(g)Iχ. It is actually a (U(g),W (λ))-
bimodule, the action of u ∈ W (λ) arising by right multiplication by η(u) (which
leaves U(g)Iχ invariant by the above definition of W (λ)). Let C(λ) be the cate-
gory of generalized Whittaker modules, that is, the g-modules on which (x−χ(x))
acts locally nilpotently for all x ∈ m. By Skryabin’s theorem [Sk], the func-
tor Qχ⊗W (λ)? : W (λ)-mod → C(λ) is an equivalence of categories. The W (λ)-
module V ⊗d corresponds under this equivalence to the g-module M ⊗V ⊗d, where
M = Qχ ⊗W (λ) C and C is the restriction of the trivial U(p)-module. The above
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formula for the action of x1 on V ⊗d arises by transporting its action on M ⊗ V ⊗d
from [AS, §2.2] through Skryabin’s equivalence.

We have now defined a homomorphism Φd and an antihomomorphism Ψd

W (λ) Φd−→ EndC(V ⊗d) Ψd←− Hd(Λ).

Let Wd(λ) denote the image of Φd. This finite dimensional algebra is a natural
analogue of the classical Schur algebra for higher levels. Let Hd(λ) denote the
image of the homomorphism Ψd : Hd(Λ) → EndC(V ⊗d)op, so that V ⊗d is also a
(Wd(λ),Hd(λ))-bimodule. Actually, if at least d parts of λ are equal to l, then the
map Ψd is injective so Hd(λ) = Hd(Λ). In general Hd(λ) is a sum of certain blocks
of the finite dimensional algebra Hd(Λ). In view of the fact that Wd(λ) and Hd(λ)
are usually not semisimple algebras, the following result was to us quite surprising.

Theorem A. The maps Φd and Ψd satisfy the double centralizer property, i.e.

Wd(λ) =EndHd(λ)(V ⊗d),

EndWd(λ)(V ⊗d)op = Hd(λ).

Moreover, the functor

HomWd(λ)(V ⊗d, ?) :Wd(λ)-mod→ Hd(λ)-mod

is an equivalence of categories.

Our second main result is concerned with the parabolic analogue of the BGG
category O for the Lie algebra g relative to the subalgebra p. Let P denote the
module U(g)⊗U(p) C−ρ induced from the one dimensional p-module C−ρ on which
each ei,j ∈ p acts as δi,j(q1 + q2 + · · ·+ qcol(j) − n). This is an irreducible projec-
tive module in parabolic category O. Let Od(λ) denote the Serre subcategory of
parabolic category O generated by the module P ⊗ V ⊗d. We note that Od(λ) is
a sum of certain integral blocks of parabolic category O, and every integral block
is equivalent to a block of Od(λ) for sufficiently large d. Moreover, the module
P ⊗ V ⊗d is a self-dual projective module in Od(λ), and every self-dual projective
indecomposable module in Od(λ) is a summand of P ⊗ V ⊗d. In equivalent lan-
guage, P ⊗V ⊗d is a prinjective generator for Od(λ) where by a prinjective module
we mean a module that is both projective and injective. Applying the construction
from [AS, §2.2] once more, we can view P⊗V ⊗d as a (g,Hd)-bimodule. It turns out
that the right action of Hd on P⊗V ⊗d factors through the quotient Hd(λ) of Hd to
make P ⊗V ⊗d into a faithful right Hd(λ)-module, i.e. Hd(λ) ↪→ EndC(P ⊗V ⊗d)op.

Theorem B. Endg(P ⊗ V ⊗d)op = Hd(λ).

The link between Theorems A and B is provided by the Whittaker functor

V : Od(λ)→Wd(λ)-mod

introduced originally by Kostant and Lynch [Ly] and studied recently in [BK3,
§8.5]: theWd(λ)-module V ⊗d from above is isomorphic to V(P⊗V ⊗d). We actually
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show that Homg(P ⊗ V ⊗d, ?) ∼= HomWd(λ)(V ⊗d, ?) ◦ V, i.e. the following diagram
of functors commutes up to isomorphism:

Od(λ)

Wd(λ)-mod ∼−−−−−−−−−−−−→
HomWd(λ)(V ⊗d,?)

Hd(λ)-mod.

↙

V

�
�

��

↘@
@

@@
Homg(P⊗V ⊗d,?)

The categories Wd(λ)-mod and Hd(λ)-mod thus give two different realizations of
a natural quotient of the category Od(λ) in the general sense of [Gab, §III.1],
the respective quotient functors being the Whittaker functor V and the functor
Homg(P ⊗ V ⊗d, ?).

In many circumstances, the Whittaker functor turns out to be easier to work
with than the functor Homg(P ⊗ V ⊗d, ?), so this point of view facilitates vari-
ous other important computations regarding the relationship between Od(λ) and
Hd(λ)-mod. For example, we use it to identify the images of arbitrary projec-
tive indecomposable modules in Od(λ) with the indecomposable summands of the
degenerate analogues of the permutation modules introduced by Dipper, James
and Mathas [DJM]. Also, we identify the images of parabolic Verma modules with
Specht modules, thus recovering formulae for the latter’s composition multiplicities
directly from the Kazhdan-Lusztig conjecture for g. The degenerate analogue of
Ariki’s categorification theorem from [A] follows as an easy consequence of these
results, as we will explain in more detail in a subsequent article [BK4].

Theorem B should be compared with Soergel’s Endomorphismensatz from
[S]; the connection with Whittaker modules in that case is due to Backelin [Ba].
As observed originally by Stroppel [S1, Theorem 10.1] (as an application of [KSX,
Theorem 2.10]), there is also a version of Soergel’s Struktursatz for our parabolic
setup: the functor Homg(P ⊗ V ⊗d, ?) is fully faithful on projective objects. From
this, we obtain the third main result of the article.

Theorem C. If at least d parts of λ are equal to l, there is an equivalence of cate-
gories between Od(λ) and the category of finite dimensional modules over a degen-
erate analogue of the cyclotomic q-Schur algebra of Dipper, James and Mathas.

The proof of Theorem C explains how the category Od(λ) itself can be re-
constructed from the algebra Hd(λ). Unfortunately, this approach does not give
a direct construction of the individual blocks of Od(λ), rather, we obtain all the
blocks simultaneously. For this reason, it is important to find some more explicit
information about the individual blocks of the degenerate cyclotomic Hecke alge-
bras, especially their centers; see [Kh, S2] for further motivation for such questions.
As an application of the Schur-Weyl duality for higher levels developed here, the
first steps in this direction have recently been made in [B2, B3, S3]: the centers of
the blocks of degenerate cyclotomic Hecke algebras (and of the parabolic category
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Od(λ)) are now known explicitly and are isomorphic to cohomology algebras of
Spaltenstein varieties.

Let us now explain the organization of the remainder of the article.
• In section 2, we introduce some notation for elements of the centralizer ge

and then review Vust’s double centralizer property.
• In section 3, we define the algebras Wd(λ) and Hd(λ) and prove the filtered

version of the double centralizer property, ultimately as a consequence of
Vust’s result at the level of associated graded algebras.
• In section 4, we review some known results about parabolic category O and

the subcategory Od(λ). In particular, we reformulate Irving’s classification [I]
of self-dual projective indecomposable modules in terms of standard tableaux,
and we introduce some natural projective modules in Od(λ) built from di-
vided powers.
• In section 5, we prove Theorems A and B, modulo one technical fact the

proof of which is deferred to section 6. We also formulate a characterization
of the Whittaker functor V which is of independent interest, and we explain
how to recover the degenerate analogue of a theorem of Dipper and Mathas
[DM] in our framework.
• In section 6, we use certain weight idempotents in Wd(λ) to relate the projec-

tive modules in Od(λ) built from divided powers to the permutation modules
of Dipper, James and Mathas, completing the proof of Theorem C. In similar
fashion, we relate parabolic Verma modules to Specht modules.
• Finally there is an appendix giving a short proof of the fact that the degen-

erate cyclotomic Hecke algebras are symmetric algebras.

Acknowledgements. We thank Steve Donkin for drawing our attention to [KP] and
Catharina Stroppel, Andrew Mathas, Monica Vazirani and Weiqiang Wang for
some helpful discussions.

2. Vust’s double centralizer property

In this section we formulate Vust’s double centralizer theorem for the centralizer
of the nilpotent matrix e. This is the key technical ingredient needed to prove the
main double centralizer property formulated in Theorem A in the introduction.

2.1. The centralizer ge

We continue with the notation from the introduction. So, g = glN (C) with natural
module V , and λ = (0 ≤ p1 ≤ · · · ≤ pn) is a partition of N with transpose
partition (q1 ≥ · · · ≥ ql ≥ 0). In [BK3], we worked in slightly greater generality,
replacing the Young diagram λ with an arbitrary pyramid. There seems to be
little to be gained from that more general setup (see [MS, Theorem 5.4] for a
more precise statement), and many things later on become harder to prove, so we
will stick here to the left-justified case. To help in translation, we define the shift
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matrix σ = (si,j)1≤i,j≤n from [BK3, §3.1] by si,j = pj − pi if i ≤ j, si,j = 0 if
i ≥ j. Numbering the boxes of λ as in the introduction, let L(i) resp. R(i) be the
number of the box immediately to the left resp. right of the ith box in the diagram
λ, or ∅ if there is no such box. Let

I = {1, 2, . . . , N},
J = {(i, j) ∈ I × I | col(i) ≤ col(j), R(j) = ∅},
K = {(i, j, r) | 1 ≤ i, j ≤ n, si,j ≤ r < pj}.

The map J → K, (i, j) 7→ (row(i), row(j), col(j)− col(i)) is a bijection.
The nilpotent matrix e ∈ g maps vi 7→ vL(i), interpreting v∅ as 0. Let ge be

the centralizer of e in g and let Ge be the corresponding algebraic group, i.e. the
centralizer of e in the group G = GLN (C). It is well known, see e.g. [BK2, Lemma
7.3], that the Lie algebra ge has basis {ei,j;r | (i, j, r) ∈ K} where

ei,j;r =
∑
h,k∈I

row(h)=i,row(k)=j
col(k)−col(h)=r

eh,k. (2.1)

For example, if λ is the partition whose Young diagram is displayed in the intro-
duction and n = 3, then

e3,2;0 = e3,2 + e6,5 + e8,7, e2,3;1 = e2,6 + e5,8 + e7,9, e1,3;3 = e1,9.

Note according to this definition that the notation ei,j;r still makes sense even if
r ≥ pj , but then it is simply equal to zero. We will often parametrize this basis
instead by the set J : for (i, j) ∈ J , let

ξi,j = ei,j + eL(i),L(j) + · · ·+ eLk(i),Lk(j) (2.2)

where k = col(i)− 1. This is the same as the element erow(i),row(j),col(j)−col(i) from
(2.1), so in this alternate notation our basis for ge is the set {ξi,j | (i, j) ∈ J}.

2.2. The graded Schur algebra associated to e

Consider the associative algebra Me of all N ×N matrices over C that commute
with e. Of course, Me is equal to ge as a vector space, indeed, ge is the Lie
algebra equal to Me as a vector space with Lie bracket being the commutator.
Multiplication in Me satisfies

ei,j;reh,k;s = δh,jei,k;r+s,

for 1 ≤ i, j, h, k ≤ n, r ≥ si,j and s ≥ sh,k. Note also that the algebraic group Ge
is the principal open subset of the affine variety Me defined by the non-vanishing
of determinant. The coordinate algebra C[Me] of Me is the polynomial algebra
C[xi,j;r | 1 ≤ i, j ≤ n, si,j ≤ r < pj ], where xi,j;r is the coordinate function picking
out the ei,j;r-coefficient of an element of Me when expanded in terms of the above
basis. The natural monoid structure onMe induces a bialgebra structure on C[Me],
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with comultiplication ∆ : C[Me]→ C[Me]⊗C[Me] and counit ε : C[Me]→ C given
on generators by

∆(xi,j;r) =
n∑
k=1

∑
s+t=r
s≥si,k

t≥sk,j

xi,k;s ⊗ xk,j;t,

ε(xi,j;r) = δi,jδr,0

for 1 ≤ i, j ≤ n and si,j ≤ r < pj . The localization of C[Me] at determinant is
the coordinate algebra C[Ge] of the algebraic group Ge, so it is a Hopf algebra.
We make C[Me] into a graded algebra, C[Me] =

⊕
d≥0 C[Me]d, by defining the

degree of each polynomial generator xi,j;r to be 1. Each C[Me]d is then a finite
dimensional subcoalgebra of the bialgebra C[Me]. Hence the dual vector space
C[Me]∗d has the natural structure of a finite dimensional algebra.

We pause to introduce some multi-index notation. Let Id denote the set of
all tuples i = (i1, . . . , id) with each ik ∈ I. Let Jd denote the set of all pairs
(i, j) of tuples i = (i1, . . . , id) and j = (j1, . . . , jd) with each (ik, jk) ∈ J . Let Kd

denote the set of all triples (i, j, r) of tuples i = (i1, . . . , id), j = (j1, . . . , jd) and
r = (r1, . . . , rd) with each (ik, jk, rk) ∈ K. The symmetric group Sd acts on the
right on the set Id; we write i ∼ j if the tuples i and j lie in the same Sd-orbit. Sim-
ilarly, Sd acts diagonally on the right on the sets Jd and Kd. Choose sets of orbit
representatives Jd/Sd and Kd/Sd. For i ∈ Id, let row(i) = (row(i1), . . . , row(id))
and define col(i) similarly. Then the map

Jd → Kd, (i, j) 7→ (row(i), row(j), col(j)− col(i)) (2.3)

is an Sd-equivariant bijection. Finally, given i ∈ Id and 1 ≤ j ≤ d, let

Lj(i) =
{

(i1, . . . , ij−1, L(ij), ij+1, . . . , id) if L(ij) 6= ∅,
∅ otherwise. (2.4)

Define Rj(i) similarly.
Now we can write down an explicit basis for the algebra C[Me]∗d. The mono-

mials xi,j;r = xi1,j1;r1 · · ·xid,jd;rd
for (i, j, r) ∈ Kd/Sd clearly form a basis for

C[Me]d. Let {ξi,j;r | (i, j, r) ∈ Kd/Sd} denote the dual basis for C[Me]∗d. Multi-
plication in the algebra C[Me]∗d then satisfies

ξi,j;rξh,k;s =
∑

(p,q,t)∈Kd/Sd

ai,j,h,k,p,q;r,s,tξp,q;t, (2.5)

where

ai,j,h,k,p,q;r,s,t = #

(m,u,v)

∣∣∣∣∣ (p,m,u) ∼ (i, j, r)
(m, q,v) ∼ (h,k, s)
u + v = t

 .

All this is a straightforward generalization of [G, ch. 2].
Next we want to bring the universal enveloping algebra U(ge) into the picture.

The augmentation ideal of the bialgebra C[Me] is the kernel of ε : C[Me] → C.
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The algebra of distributions

Dist(Me) = {u ∈ C[Me]∗ | u((ker ε)m) = 0 for m� 0}

has a natural bialgebra structure dual to that on C[Me] itself. It is even a Hopf
algebra because there is an isomorphism U(ge)

∼→ Dist(Me) induced by the Lie
algebra homomorphism ge → Dist(Me), ei,j;r 7→ ε ◦ d

dxi,j;r
; see [J, I.7.10(1)]. We

will always from now on identify U(ge) with Dist(Me) in this way, i.e. elements of
U(ge) are functions on C[Me]. Define an algebra homomorphism

πd : U(ge)→ C[Me]∗d
by letting πd(u)(x) = u(x) for all u ∈ U(ge) and x ∈ C[Me]d.

Lemma 2.1. πd is surjective.

Proof. Suppose not. Then we can find 0 6= x ∈ C[Me]d such that πd(u)(x) = 0 for
all u ∈ U(ge). Hence, for each m ≥ 1, we have that u(x) = 0 for all u ∈ C[Me]∗

with u((ker ε)m) = 0, i.e. x ∈ (ker ε)m. But
⋂
m≥1(ker ε)m = 0. �

2.3. The graded double centralizer property

The natural g-module V can be viewed as a right C[Me]-comodule with structure
map

V → V ⊗ C[Me], vj 7→
∑
i∈I

vi ⊗ xrow(i),row(j);col(j)−col(i) (2.6)

where the sum is over all i satisfying si,j ≤ col(j) − col(i) < pj . Since C[Me] is a
bialgebra we get from this a right C[Me]-comodule structure on the tensor space
V ⊗d. The image of the structure map of this comodule lies in V ⊗d ⊗ C[Me]d, so
V ⊗d is actually a right C[Me]d-comodule, hence a left C[Me]∗d-module. Let

ωd : C[Me]∗d → EndC(V ⊗d)

be the associated representation. For i, j ∈ Id, let vi = vi1 ⊗ · · · ⊗ vid ∈ V ⊗d and
ei,j = ei1,j1 ⊗ · · · ⊗ eid,jd ∈ EndC(V ⊗d). For (i, j) ∈ Jd, let

ξi,j =
∑

(h,k)∼(i,j)

ξh1,k1 ⊗ · · · ⊗ ξhd,kd
, (2.7)

recalling (2.2). Using (2.6), one checks for (i, j) ∈ Jd that

ξi,j = ωd(ξrow(i),row(j);col(j)−col(i)).

Hence, recalling (2.3), ωd maps the basis {ξi,j;r | (i, j, r) ∈ Kd/Sd} of the algebra
C[Me]∗d to the set {ξi,j | (i, j) ∈ Jd/Sd} in EndC(V ⊗d).

Lemma 2.2. ωd is injective.

Proof. The vectors {ξi,j | (i, j) ∈ Jd/Sd} are linearly independent. �

Introduce the twisted tensor product algebra Cl[x1, . . . , xd] o©CSd acting on
the right on the space V ⊗d as in the introduction.
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Lemma 2.3. Suppose we are given scalars ai,j ∈ C such that the endomorphism∑
i,j∈Id ai,jei,j of V ⊗d commutes with the action of Cl[x1, . . . , xd] o©CSd. Then

ai,j = ai·w,j·w for all w ∈ Sd, ai,j = 0 if col(ik) > col(jk) for some k, and

ai,j = aRk(i),Rk(j)

for all k with Rk(j) 6= ∅ (interpreting the right hand side as 0 in case Rk(i) = ∅).

Proof. The image of vj under the given endomorphism is
∑

i∈Id ai,jvi. Applying
w ∈ Sd, we get

∑
i∈Id ai,jvi·w. This must equal the image of vj·w under our endo-

morphism, i.e.
∑

i∈Id ai·w,j·wvi·w. Equating coefficients gives that ai,j = ai·w,j·w.
A similar argument using xk in place of w gives that aRk(i),j = ai,Lk(j), inter-
preting the left resp. right hand side as zero if Rk(i) = ∅ resp. Lk(j) = ∅. The
remaining statements follow easily from this. �

Finally let φd : U(ge) → EndC(V ⊗d) be the representation induced by the
natural action of the Lie algebra ge on the tensor space. By the definitions, φd is
precisely the composite map ωd ◦ πd, so Lemmas 2.1 and 2.2 show that its image
is isomorphic to C[Me]∗d. Also let ψd : Cl[x1, . . . , xd] o©CSd → EndC(V ⊗d)op be
the homomorphism arising from the right action of Cl[x1, . . . , xd] o©CSd on V ⊗d.
Thus, we have defined maps

U(ge)
φd−→ EndC(V ⊗d)

ψd←− Cl[x1, . . . , xd] o©CSd. (2.8)

The Z-grading on g from the introduction extends to a grading U(g) =
⊕

r∈Z U(g)r
on its universal enveloping algebra, and U(ge) is a graded subalgebra. Make V
into a graded module by declaring that each vi is of degree (l − col(i)). There
are induced gradings on V ⊗d and its endomorphism algebra EndC(V ⊗d), so that
the map φd is then a homomorphism of graded algebras. Also define a grading on
Cl[x1, . . . , xd] o©CSd by declaring that each xi is of degree 1 and each w ∈ Sd is of
degree 0. The map ψd is then a homomorphism of graded algebras too.

Theorem 2.4. The maps φd and ψd satisfy the double centralizer property, i.e.

φd(U(ge)) =EndCl[x1,...,xd] o©CSd
(V ⊗d),

Endge
(V ⊗d)op = ψd(Cl[x1, . . . , xd] o©CSd).

Moreover, if at least d parts of λ are equal to l, then the map ψd is injective.

Proof. The second equality follows by a theorem of Vust; see [KP, §6]. For the
first equality, note by Lemma 2.3 that any element of EndCl[x1,...,xd] o©CSd

(V ⊗d) is
a linear combination of the elements ξi,j from (2.7). These belong to the image of
φd by Lemma 2.1. Finally, assume that at least d parts of λ are equal to l. Take
any i ∈ Id such that i1, . . . , id are all distinct and col(i1) = · · · = col(id) = l.
Then, for 0 ≤ r1, . . . , rd < l and w ∈ Sd, we have that vix

r1
1 · · ·x

rd

d w = vj where
j = Lr11 ◦ · · · ◦ L

rd

d (i) · w. These vectors are obviously linearly independent, hence
the vector vi ∈ V ⊗d generates a copy of the regular Cl[x1, . . . , xd] o©CSd module.
This implies that ψd is injective. �
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Remark 2.5. Theorem 2.4 is true over an arbitrary commutative ground ring R
(instead of just over the field C) providing one replaces the universal enveloping
algebra U(ge) everywhere with the algebra of distributions of the group scheme
Ge over R. To obtain this generalization, one first treats the case of algebraically
closed fields of positive characteristic, using the arguments above together with a
result of Donkin [Do, Theorem 2.3c] in place of [KP, §6]. From there, the result
can be lifted to Z, hence to any other commutative ground ring.

3. Higher level Schur algebras

In this section we develop the filtered deformation of Vust’s double centralizer
property. This leads naturally to the definition of certain finite dimensional quo-
tients Wd(λ) of finite W -algebras, which we call higher level Schur algebras.

3.1. The finite W -algebra as a deformation of U(ge)
Recall that

m =
⊕
r<0

gr, h = g0, p =
⊕
r≥0

gr.

Define the finite W -algebra W (λ) associated to the nilpotent matrix e as in the
introduction; see also [BK3, §3.2]. As an algebra, W (λ) is generated by certain
elements {

T
(r+1)
i,j

∣∣∣ (i, j, r) ∈ K}
of U(p) described explicitly in [BK3, §3.7]. The grading on p extends to give a
grading U(p) =

⊕
r≥0 U(p)r on its universal enveloping algebra. In general, W (λ)

is not a graded subalgebra, but the grading on U(p) does at least induce a filtration
F0W (λ) ⊆ F1W (λ) ⊆ · · · on W (λ) with

FrW (λ) = W (λ) ∩
r⊕
s=0

U(p)s.

The associated graded algebra grW (λ) is canonically identified with a graded
subalgebra of U(p). The first statement of the following lemma is a special case
of general result about finite W -algebras due to Premet [P2, Proposition 2.1]; see
also [BGK, Theorem 3.8].

Lemma 3.1. We have that grW (λ) = U(ge). In fact, for (i, j, r) ∈ K, we have that
T

(r+1)
i,j ∈ FrW (λ) and grr T

(r+1)
i,j = (−1)ei,j;r, where ei,j;r is the element of U(ge)

from (2.1).

Proof. The fact that grr T
(r+1)
i,j = (−1)rei,j;r follows by a direct calculation using

[BK3, Lemma 3.4]. By [BK3, Lemma 3.6], ordered monomials in the elements
{T (r+1)

i,j | (i, j, r) ∈ K} form a basis for W (λ). Combining this with the PBW
theorem for U(ge), we deduce that grW (λ) = U(ge). �
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3.2. Filtered deformation of tensor space

For the remainder of the article, c = (c1, . . . , cl) ∈ Cl will denote a fixed choice of
origin; in the introduction we discussed only the most interesting situation c = 0,
i.e. when c1 = · · · = cl = 0. Let ηc : U(p) → U(p) denote the automorphism
mapping ei,j 7→ ei,j + δi,jccol(i) for each ei,j ∈ p. Let V ⊗dc denote the graded
U(p)-module equal as a graded vector space to V ⊗d, but with action obtained by
twisting the natural action by the automorphism ηc, i.e. u · v = ηc(u)v. Also let
Cc = C1c denote the one dimensional p-module on which each ei,j ∈ p acts by
multiplication by δi,jccol(i); in particular, C0 is the trivial module C. Obviously,
we can identify

Cc ⊗ V ⊗d = V ⊗dc

so that 1c ⊗ v = v for every v ∈ V ⊗d. By restriction, we can view V ⊗dc also as a
graded ge-module. The resulting representation

φd,c : U(ge)→ EndC(V ⊗dc ) (3.1)

is just the composition φd ◦ ηc where φd is the map from (2.8). Because the auto-
morphism ηc of U(p) leaves the subalgebra U(ge) invariant, the image of φd,c is
the same as the image of φd itself. So the statement of Theorem 2.4 remains true
if we replace φd with φd,c.

Of course, we can also consider Cc and V ⊗dc as W (λ)-modules by restriction.
Let

Φd,c : W (λ)→ EndC(V ⊗dc ) (3.2)

be the associated representation. View the graded algebra EndC(V ⊗dc ) as a filtered
algebra with degree r filtered piece defined from

Fr EndC(V ⊗dc ) =
⊕
s≤r

EndC(V ⊗dc )s.

The homomorphism Φd,c is then a homomorphism of filtered algebras. Moreover,
identifying the associated graded algebra grEndC(V ⊗dc ) simply with EndC(V ⊗dc )
in the obvious way, Lemma 3.1 shows that the associated graded map

grΦd,c : grW (λ)→ EndC(V ⊗dc )

coincides with the map φd,c. We stress that the automorphism ηc of U(p) does not
in general leave the subalgebra W (λ) invariant (unless c1 = · · · = cl), so unlike
φd,c the image of the map Φd,c definitely does depend on the choice of c.

3.3. Skryabin’s equivalence of categories

Recall the (U(g),W (λ))-bimodule Qχ = U(g)/U(g)Iχ and the automorphism η
from the introduction. We write 1χ for the coset of 1 in Qχ. Let C(λ) denote the
category of all g-modules on which (x−χ(x)) acts locally nilpotently for all x ∈ m.
Then, by Skryabin’s theorem [Sk], the functor

Qχ⊗W (λ)? : W (λ)-mod→ C(λ)
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is an equivalence of categories; see also [BK3, §8.1]. Conversely, given M ∈ C(λ),
the subspace

Wh(M) = {v ∈M | xv = χ(x)v for all x ∈ m} (3.3)

is naturally a W (λ)-module with action u · v = η(u)v for u ∈ W (λ), v ∈Wh(M).
This defines a functor Wh : C(λ)→W (λ)-mod which gives an inverse equivalence
to Qχ⊗W (λ)?.

Given any M ∈ C(λ) and any finite dimensional g-module X, the tensor
product M ⊗X belongs to C(λ). This defines an exact functor

?⊗X : C(λ)→ C(λ).

Transporting through Skryabin’s equivalence of categories, we obtain a correspond-
ing exact functor

? ~X : W (λ)-mod→W (λ)-mod, M 7→Wh((Qχ ⊗W (λ) M)⊗X);

see [BK3, §8.2].
Given another finite dimensional g-module Y and anyW (λ)-moduleM , there

is a natural associativity isomorphism [BK3, (8.8)]:

aM,X,Y : (M ~X) ~ Y
∼−→M ~ (X ⊗ Y ). (3.4)

Suppose that M is actually a p-module, and view M and M ⊗X as W (λ)-
modules by restricting from U(p) to W (λ). Consider the map

µ̂M,X : (Qχ ⊗W (λ) M)⊗X →M ⊗X (3.5)

such that (η(u)1χ ⊗ m) ⊗ x 7→ um ⊗ x for u ∈ U(p), m ∈ M and x ∈ X. The
restriction of this map to the subspace Wh((Qχ ⊗W (λ) M)⊗X) obviously defines
a homomorphism of W (λ)-modules

µM,X : M ~X
∼−→M ⊗X. (3.6)

Much less obviously, this homomorphism is actually an isomorphism; see [BK3,
Corollary 8.2].

We are going to apply these things to the dth power (? ~ V )d of the functor
?~V ; we will often denote this simply by (?~V ~d). To start with, take the module
M to be the one dimensional p-module Cc. Composing d isomorphisms built from
(3.4) and (3.6) in any order that makes sense, we obtain an isomorphism

µd : Cc ~ V ~d ∼−→ Cc ⊗ V ⊗d = V ⊗dc (3.7)

of W (λ)-modules. The associativity “pentagons” from [BK3, (8.9)–(8.10)] show
that this definition is independent of the precise order chosen. For example, µ0 :
Cc → Cc is the identity map and µd is the composite

(Cc ~ V ~(d−1)) ~ V
µd−1~idV−−−−−−−→ V

⊗(d−1)
c ~ V

µ
V
⊗(d−1)
c ,V−−−−−−−−→ V ⊗dc

(3.8)

for d ≥ 1. Alternatively, µd is the composite

Cc ~ V ~d ad−−−−→ Cc ~ V ⊗d
µCc,V⊗d

−−−−−→ V ⊗dc
(3.9)
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where a0 : Cc → Cc is the identity map and ad is the composite

(Cc ~ V ~(d−1)) ~ V
ad−1~idV−−−−−−→ (Cc ~ V ⊗(d−1)) ~ V

aCc,V⊗(d−1),V−−−−−−−−−→ Cc ~ V ⊗d

for d ≥ 1. The following technical lemma will be needed to compute the isomor-
phism µCc,V ⊗d appearing in (3.9) explicitly later on. Recall Id denotes the set of
multi-indexes i = (i1, . . . , id) ∈ Id and vi = vi1 ⊗ · · · ⊗ vid .

Lemma 3.2. For all i, j ∈ Id, there exist elements xi,j ∈ U(p) such that
(i) [ei,j , η(xi,j)] +

∑
k η(xk,j) ∈ U(g)Iχ for each ei,j ∈ m, where the sum is over

all k ∈ Id obtained from i by replacing an entry equal to i by j;
(ii) xi,j acts on the module Cc as the scalar δi,j .

The inverse image of vj ∈ V ⊗dc under the isomorphism µCc,V ⊗d is equal to∑
i∈Id

(η(xi,j)1χ ⊗ 1c)⊗ vi ∈ Cc ~ V ⊗d ⊆ (Qχ ⊗W (λ) Cc)⊗ V ⊗d

for any such choice of elements xi,j .

Proof. The existence of such elements follows from [BK3, Theorem 8.1]; one needs
to choose the projection p there in a similar way to [BK3, (8.4)] so that all u ∈ U(p)
with p(u · 1χ) = 0 act as zero on Cc. The second statement then follows from the
explicit description of the map µCc,V ⊗d given in [BK3, Corollary 8.2]. �

3.4. Action of the degenerate affine Hecke algebra

Now we bring the degenerate affine Hecke algebra Hd into the picture following
the approach of Chuang and Rouquier [CR, §7.4]. Consider the functor ? ⊗ V on
g-modules. Define an endomorphism x :?⊗ V →?⊗ V by letting

xM : M ⊗ V →M ⊗ V (3.10)

denote the endomorphism arising from left multiplication by Ω =
∑N
i,j=1 ei,j⊗ej,i,

for each g-module M . Define an endomorphism s : (?⊗ V )⊗ V → (?⊗ V )⊗ V by
letting

sM : M ⊗ V ⊗ V →M ⊗ V ⊗ V (3.11)
denote the endomorphism arising from left multiplication by 1⊗Ω, i.e. m⊗v⊗v′ 7→
m ⊗ v′ ⊗ v. More generally, for any d ≥ 1, there are endomorphisms x1, . . . , xd,
s1, . . . , sd−1 of the functor (?⊗ V ⊗d) = (?⊗ V )d defined by

xi = 1d−ix1i−1, sj = 1d−j−1s1j−1. (3.12)

By [CR, Lemma 7.21], these endomorphisms induce a well-defined right action
of the degenerate affine Hecke algebra Hd on M ⊗ V ⊗d for any g-module M .
This is precisely the action from [AS, §2.2] described at the beginning of the
introduction. Transporting x and s through Skryabin’s equivalence of categories,
we get endomorphisms also denoted x and s of the functors ?~V and (?~V )~V ;
see [BK3, (8.13)-(8.14)]. Once again, we set

xi = 1d−ix1i−1, sj = 1d−j−1s1j−1, (3.13)



Schur-Weyl duality 15

to get endomorphisms x1, . . . , xd, s1, . . . , sd−1 of the functor (?~V ~d) = (?~V )d

for all d ≥ 1. By [BK3, (8.18)–(8.23)], these induce a well-defined right action of
the degenerate affine Hecke algebra Hd on M ~ V ~d, for any W (λ)-module M .

Returning to the special case M = Cc once again, we have made Cc ~ V ~d

into a (W (λ),Hd)-bimodule. Using the isomorphisms Cc~V ~d ∼= Cc~V ⊗d ∼= V ⊗dc

from (3.9), we lift the Hd-module structure on Cc ~V ~d first to Cc ~V ⊗d then to
V ⊗dc , to make each of these spaces into (W (λ),Hd)-bimodules too. Let us describe
the resulting actions of the generators of Hd on Cc ~ V ⊗d and on V ⊗dc more
explicitly. For Cc ~ V ⊗d, this is already explained in [BK3, §8.3]: the conclusion
is that xi and sj act on

Cc ~ V ⊗d ⊆ (Qχ ⊗W (λ) Cc)⊗ V ⊗d

in the same way as the endomorphisms defined by multiplication by
∑i
h=1 Ω[h,i+1]

and Ω[j+1,j+2], respectively. Here, Ω[r,s] denotes
∑N
i,j=1 1⊗(r−1)⊗ ei,j ⊗ 1(s−r−1)⊗

ej,i ⊗ 1(d+1−s), treating Qχ ⊗W (λ) Cc as the first tensor position and the copies
of V as positions 2, 3, . . . , (d + 1). To describe the action of Hd on V ⊗dc , each
si acts by permuting the ith and (i + 1)th tensor positions, as follows from the
naturality of µCc,V ⊗d : Cc ~ V ⊗d → V ⊗dc . The action of each xj is more subtle,
and is described by the following lemma; the formula for the action of x1 on V ⊗d

from the introduction is a special case of this.

Lemma 3.3. For i ∈ Id and 1 ≤ j ≤ d, the action of xj on V ⊗dc satisfies

vixj = vLj(i) + (ccol(ij) + qcol(ij) − n)vi +
∑

1≤k<j
col(ik)≥col(ij)

vi·(k j) −
∑
j<k≤d

col(ik)<col(ij)

vi·(j k).

(Recalling (2.4), the term vLj(i) should be interpreted as 0 in case Lj(i) = ∅.)

Proof. Note that xj+1 = sjxjsj + sj . Using this and induction on j, one reduces
just to checking the given formula in the case j = 1. Let µ denote the map µ̂Cc,V ⊗d

from (3.5). Choosing elements xi,j ∈ U(p) as in Lemma 3.2, we have that

vix1 = µ

(
Ω[1,2]

∑
j∈Id

(η(xj,i)1χ ⊗ 1c)⊗ vj

)
=
∑
j,k

µ((ej1,k1η(xj,i)1χ ⊗ 1c)⊗ vk)

where the last sum is over j,k ∈ Id with j2 = k2, · · · , jd = kd. Suppose first
that col(j1) ≤ col(k1). By Lemma 3.2(ii), µ((ej1,k1η(xj,i)1χ⊗ 1c)⊗ vk) = 0 unless
i = j = k, in which case

µ((ej1,k1η(xj,i)1χ ⊗ 1)⊗ vk) = (ccol(i1) + qcol(i1) + · · ·+ ql − n)vi.

Now consider the terms with col(j1) > col(k1). By Lemma 3.2(i), we have that
ej1,k1η(xj,i)1χ = η(xj,i)ej1,k11χ −

∑
h η(xh,i)1χ where the sum is over all h ∈ Id

obtained from j by replacing an entry equal to j1 by k1. Since χ(ej1,k1) is zero
unless k1 = L(j1) when it is simply equal to 1, and using Lemma 3.2(ii), it follows
that these terms contribute vL1(i) −

∑
j,k vk where the sum is over all j,k ∈ Id
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such that col(j1) > col(k1), j2 = k2, . . . , jd = kd, and i is obtained from j by
replacing an entry equal to j1 by k1. This simplifies further to give

vL1(i) − (qcol(i1)+1 + · · ·+ ql)vi −
∑

1<k≤d
col(ik)<col(i1)

vi·(1 k)

which added to our earlier term give the conclusion. �

3.5. Degenerate cyclotomic Hecke algebras

Now we pass from the degenerate affine Hecke algebra to its cyclotomic quotients.

Lemma 3.4. For d ≥ 1, the minimal polynomial of the endomorphism of V ⊗dc

defined by the action of x1 is
∏l
i=1(x− (ci + qi − n)).

Proof. In the special case d = 1, this is clear from Lemma 3.3. By the definition
of x1, it follows that for any d ≥ 1, the minimal polynomial certainly divides∏l
i=1(x−(ci+qi−n)). Finally, by Lemma 3.3, the endomorphism of V ⊗dc defined by

x1 belongs to F1 EndC(V ⊗dc ), and the associated graded endomorphism of V ⊗dc is
equal to e⊗1⊗(d−1). This clearly has minimal polynomial exactly equal to xl, since l
is the size of the largest Jordan block of e. This implies that the minimal polynomial
of the filtered endomorphism cannot be of degree smaller than l, completing the
proof. �

Let Λ =
∑l
i=1 Λci+qi−n, an element of the free abelian group generated by

the symbols {Λa | a ∈ C}. The corresponding degenerate cyclotomic Hecke algebra
is the quotient Hd(Λ) of Hd by the two-sided ideal generated by

∏l
i=1(x1 − (ci +

qi−n)). In view of Lemma 3.4, the right action of Hd on V ⊗dc factors through the
quotient Hd(Λ), and we obtain a homomorphism

Ψd : Hd(Λ)→ EndC(V ⊗dc )op. (3.14)

Define a filtration F0Hd(Λ) ⊆ F1Hd(Λ) ⊆ · · · by declaring that FrHd(Λ) is the
span of all xi11 · · ·x

id
d w for i1, . . . , id ≥ 0 and w ∈ Sd with i1 + · · · + id ≤ r.

Recalling the graded algebra Cl[x1, . . . , xd] o©CSd from the previous section, the
relations imply that there is a well-defined surjective homomorphism of graded
algebras

ζd : Cl[x1, . . . , xd] o©CSd � grHd(Λ)

such that xi 7→ gr1 xi for each i and sj 7→ gr0 sj for each j. Moreover, by
Lemma 3.3, the map Ψd from (3.14) is filtered and

(grΨd) ◦ ζd = ψd. (3.15)

Lemma 3.5. The map ζd : Cl[x1, . . . , xd] o©CSd → grHd(Λ) is an isomorphism of
graded algebras. If in addition at least d parts of λ are equal to l then the map
grΨd, hence also the map Ψd itself, is injective.
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Proof. We can add extra parts equal to l to the partition λ if necessary to assume
that at least d parts of λ are equal to l without affecting Λ or the map ζd. Under this
assumption, the last sentence of Theorem 2.4 asserts that the map ψd is injective.
Hence by (3.15) the maps ζd and gr Ψd are injective too. �

3.6. The filtered double centralizer property

To prove the main result of the section we just need one more general lemma.

Lemma 3.6. Let Φ : B → A and Ψ : C → A be homomorphisms of filtered algebras
such that Φ(B) ⊆ ZA(Ψ(C)), where ZA(Ψ(C)) denotes the centralizer of Ψ(C)
in A. View the subalgebras Φ(B), Ψ(C) and ZA(Ψ(C)) of A as filtered algebras
with filtrations induced by the one on A, so that the associated graded algebras are
naturally subalgebras of grA. Then

(grΦ)(grB) ⊆ grΦ(B) ⊆ grZA(Ψ(C)) ⊆ ZgrA(grΨ(C)) ⊆ ZgrA((grΨ)(grC)).

Proof. Exercise. �

We are going to apply this to the maps from (3.2) and (3.14):

W (λ)
Φd,c−→ EndC(V ⊗dc ) Ψd←− Hd(Λ). (3.16)

As we have already said, Lemma 3.1 means that the associated graded map gr Φd,c
is identified with the map φd,c from (3.1). Also Lemma 3.5 and (3.15) identify
grΨd with ψd. Hence, taking A = EndC(V ⊗dc ), Theorem 2.4 establishes that
(grΦ)(grB) = ZgrA((grΨ)(grC)) if (B,C,Φ,Ψ) = (W (λ),Hd(Λ)op,Φd,c,Ψd) or
if (B,C,Φ,Ψ) = (Hd(Λ)op,W (λ),Ψd,Φd,c). The following theorem now follows by
Lemma 3.6.

Theorem 3.7. The maps Φd,c and Ψd satisfy the double centralizer property, i.e.

Φd,c(W (λ)) = EndHd(Λ)(V ⊗dc ),

EndW (λ)(V ⊗dc )op = Ψd(Hd(Λ)).

Moreover, at the level of associated graded algebras, grΦd,c(W (λ)) = φd,c(U(ge))
and grΨd(Hd(Λ)) = ψd(Cl[x1, . . . , xd] o©CSd).

3.7. Basis theorem for higher level Schur algebras

Define the higher level Schur algebra Wd(λ, c) to be the image of the homo-
morphism Φd,c : W (λ) → HomC(V ⊗dc ). Also let Hd(λ, c) denote the image of
Ψd : Hd(Λ) → HomC(V ⊗dc )op. In the most important case c = 0, we denote
Wd(λ, c) and Hd(λ, c) simply by Wd(λ) and Hd(λ). Both Wd(λ, c) and Hd(λ, c)
are filtered algebras with filtrations induced by the filtration on EndC(V ⊗dc ). The
last part of Theorem 3.7 shows that

grWd(λ, c) = φd,c(U(ge)) = φd(U(ge)),

grHd(λ, c) = ψd(Cl[x1, . . . , xd] o©CSd).
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In particular, recalling Lemmas 2.1 and 2.2, the algebra Wd(λ, c) is a filtered
deformation of the algebra C[Me]∗d, so

dimWd(λ, c) =
(

dim ge + d− 1
d

)
. (3.17)

We want to construct an explicit basis for Wd(λ, c) lifting the basis {ξi,j | (i, j) ∈
Jd/Sd} for the associated graded algebra from (2.7).

Lemma 3.8. Suppose we are given scalars ai,j ∈ C such that the endomorphism∑
i,j∈Id ai,jei,j of V ⊗dc commutes with the action of Hd(Λ). Then ai,j = ai·w,j·w

for all w ∈ Sd, ai,j = 0 if col(ik) > col(jk) for some k, and

ai,j = aRk(i),Rk(j) + (ccol(ik) + qcol(ik) − ccol(jk)+1 − qcol(jk)+1)ai,Rk(j)

+
∑
h6=k

col(ih)≤col(ik)
col(jh)≤col(jk)

ai·(h k),Rk(j) −
∑
h6=k

col(ih)>col(ik)
col(jh)>col(jk)

ai·(h k),Rk(j)

for all k with Rk(j) 6= ∅ (interpreting the first term on the right hand side as 0
in case Rk(i) = ∅).

Proof. The fact that ai,j = ai·w,j·w for all w ∈ Sd is proved as in Lemma 2.3. By
Theorem 3.7 we know that all endomorphisms commuting with Hd(Λ) belong to
Wd(λ, c). By the definition of the latter algebra, they are therefore contained in
the image of the algebra U(p) under its representation on V ⊗dc . This proves that
ai,j = 0 if col(ik) > col(jk) for some k. For the final formula, a calculation like in
the proof of Lemma 2.3, using Lemma 3.3 to compute the action of xk, gives that

aRk(i),j + (ccol(ik) + qcol(ik) − n)ai,j +
∑

1≤h<k
col(ih)≤col(ik)

ai·(h k),j −
∑

k<h≤d
col(ih)>col(ik)

ai·(h k),j

= ai,Lk(j)+(ccol(jk)+qcol(jk)−n)ai,j+
∑

1≤h<k
col(jh)≥col(jk)

ai,j·(h k)−
∑

k<h≤d
col(jh)<col(jk)

ai,j·(h k),

interpreting the first terms on either side as zero if Rk(i) or Lk(j) is ∅. Now
replace j by Rk(j) and simplify. �

Theorem 3.9. For each (i, j) ∈ Jd, there exists a unique element

Ξi,j =
∑

h,k∈Id

ah,keh,k ∈Wd(λ, c)

such that the coefficients ah,k satisfy ai,j = 1 and ah,k = 0 for all (h,k) ∈ Jd

with (h,k) 6∼ (i, j). Moreover:
(i) The elements {Ξi,j | (i, j) ∈ Jd/Sd} form a basis for Wd(λ, c).
(ii) Letting r = col(j1)− col(i1) + · · ·+ col(jd)− col(id), Ξi,j belongs to FrWd(λ)

and grr Ξi,j = ξi,j .
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Proof. Lemma 3.8 and Theorem 3.7 show that any element
∑

i,j∈Id ai,jei,j of
Wd(λ, c) is uniquely determined just by the values of the coefficients ai,j for (i, j) ∈
Jd/Sd. Since dimWd(λ, c) = |Jd/Sd|, this implies that for each (i, j) ∈ Jd there
exists a unique element Ξi,j ∈ Wd(λ, c) with coefficients ah,k satisfying ai,j = 1
and ah,k = 0 for all (h,k) ∈ Jd with (h,k) 6∼ (i, j). Repeating this argument with
Wd(λ, c) replaced by FrWd(λ, c) implies that Ξi,j actually lies in FrWd(λ, c),
where r = col(j1)− col(i1) + · · ·+ col(jd)− col(id). Hence the coefficients ah,k of
Ξi,j are zero unless col(k1) − col(h1) + · · · + col(kd) − col(hd) ≤ r. Moreover, by
Lemma 3.8, ah,k = 0 if col(hj) > col(kj) for some j, and ah,k = ah·w,k·w for all
w ∈ Sd. Now the recurrence relation in Lemma 3.8 gives a recipe to compute all
remaining coefficients from the known coefficients ah,k for (h,k) ∈ Jd, proceeding
by downward induction on col(k1)+· · ·+col(kd). This establishes in particular that
the coefficients of top degree r, i.e. the ah,k’s with col(k1)−col(h1)+ · · ·+col(kd)−
col(hd) = r, satisfy the same recurrence as the coefficients of ξi,j from Lemma 2.3.
Hence grr Ξi,j = ξi,j . Finally, the fact that the elements {Ξi,j | (i, j) ∈ Jd/Sd}
form a basis for Wd(λ, c) follows because the elements {ξi,j | (i, j) ∈ Jd/Sd} form
a basis for grWd(λ, c). �

Remark 3.10. Assume throughout this remark that c = 0. In that case, it is
clear from the proof of Theorem 3.9 that all the coefficients of Ξi,j are actually
integers. Using this and Remark 2.5, we can extend some aspects of Theorem 3.7
to an arbitrary commutative ground ring R. Let Hd(Λ)Z be the subring of Hd(Λ)
generated by x1, . . . , xd and Sd. Set Hd(Λ)R = R ⊗Z Hd(Λ)Z. Let V ⊗dZ be the Z-
submodule of V ⊗d spanned by {vi | i ∈ Id} and V ⊗dR = R⊗Z V

⊗d
Z . By Lemma 3.3,

the action of Hd(Λ) restricts to a well-defined action of Hd(Λ)Z on V ⊗dZ , hence
we also get a right action of Hd(Λ)R on V ⊗dR by extending scalars. Let Hd(λ)R
denote the image of the resulting homomorphism Hd(Λ)R → EndR(V ⊗dR )op. Let
Wd(λ)R = EndHd(Λ)R

(V ⊗dR ). It is then the case that

Wd(λ)R = R⊗Z Wd(λ)Z, Hd(λ)R = R⊗Z Hd(λ)Z.

Moreover, the double centralizer property EndWd(λ)R
(V ⊗dR )op = Hd(λ)R still holds

overR. These statements are proved by an argument similar to the above, but using
Remark 2.5 in place of Theorem 2.4. The first step is to observe that the elements
{Ξi,j | (i, j) ∈ Jd/Sd} from Theorem 3.9 make sense over any ground ring R, and
give a basis for Wd(λ)R as a free R-module.

4. Parabolic category O
A basic theme from now on is that results about the representation theory of
Hd(Λ) should be deduced from known results about category O for the Lie algebra
g relative to the parabolic subalgebra p. In this section we give a brief review of
the latter theory, taking our notation from [BK3, ch. 4]. We will assume for the
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remainder of the article that the origin c = (c1, . . . , cl) ∈ Cl satisfies the condition

ci − cj ∈ Z ⇒ ci = cj . (4.1)

There is no loss in generality in making this assumption, because for every choice
of a1, . . . , al ∈ C it is possible to write Λ = Λa1 + · · · + Λal

as
∑l
i=1 Λci+qi−n for

suitable λ and c satisfying (4.1).

4.1. Combinatorics of tableaux

By a λ-tableau we mean a filling of the boxes of the diagram λ by complex numbers.
We adopt the following notations.

• Tab(λ) denotes the set of all λ-tableaux.
• Tabd(λ) is the subset of Tab(λ) consisting of the tableaux whose entries are

non-negative integers summing to d.
• γ(A) = (a1, . . . , aN ) ∈ CN is the column reading of a λ-tableau A, that is,

the tuple defined so that ai is the entry in the ith box of A.
• θ(A) denotes the content of A, that is, the element

∑N
i=1 γai of the free abelian

group on generators {γa | a ∈ C}.
• A0 denotes the ground-state tableau, that is, the λ-tableau having all entries

on its ith row equal to (1 − i) (recall we number rows 1, . . . , n from top to
bottom).
• Ac denotes the tableau obtained from A0 by adding ci to all of the entries in

the ith column for each i = 1, . . . , l.
• Col(λ) denotes the set of all column strict λ-tableaux, where a tableau is

called column strict if in every column its entries are strictly increasing from
bottom to top, working always with the partial order on C defined by a ≤ b
if (b− a) ∈ N.
• Colc(λ) denotes the set of all A ∈ Col(λ) with the property that every entry

in the ith column of A belongs to ci + Z for each i = 1, . . . , l.
• Stdc(λ) denotes the set of all standard tableaux in Colc(λ), where a column

strict tableau A is standard if in every row its entries are non-decreasing from
left to right; this means that if x < y are entries on the same row of A then
x appears to the left of y.
• Coldc(λ) denotes the set of all A ∈ Colc(λ) such that the entrywise difference

(A−Ac) lies in Tabd(λ).
• Stddc(λ) denotes Stdc(λ) ∩ Coldc(λ).

Finally let ≥ denote the Bruhat ordering on the set Col(λ), defined as in [B1, §2]
(where it is denoted ≥′). Roughly speaking, this is generated by the basic move of
swapping an entry in some column with a smaller entry in some column further
to the right, then reordering columns in increasing order. For example,

4 6
3 4 5
1 1 2

>
4 5
3 4 6
1 1 2

>
4 5
3 2 6
1 1 4

>
3 5
2 4 6
1 1 4

.
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We note by [B1, Lemma 1] that the restriction of this ordering to the subset
Stdc(λ) coincides with the restriction of the Bruhat ordering on row standard
tableaux from [BK3, (4.1)]. The first combinatorial lemma is the reason the as-
sumption (4.1) is necessary.

Lemma 4.1. Suppose that A ∈ Coldc(λ) and B ∈ Colc(λ) satisfy θ(A) = θ(B).
Then B ∈ Coldc(λ) too.

Proof. Suppose that B /∈ Coldc(λ). Then, for some i and j, the entry in the ith row
and jth column of B is < (cj + 1 − i). Hence as B is column strict, the entry in
the nth row and jth column of B is < (cj + 1− n). As θ(A) = θ(B), this implies
that some entry of A is < (cj + 1− n) too. This contradicts the assumption that
A ∈ Coldc(λ). �

4.2. Parabolic category O
Now let O(λ) denote the category of all finitely generated g-modules that are
locally finite dimensional over p and semisimple over h; recall here that h is the
standard Levi subalgebra glq1(C)⊕· · ·⊕glql

(C) of g. Modules in O(λ) are automat-
ically diagonalizable with respect to the standard Cartan subalgebra consisting of
diagonal matrices in g. We say that a vector v is of weight (a1, . . . , aN ) ∈ CN if
ei,iv = aiv for each i = 1, . . . , N . There is the usual dominance ordering on the
set CN of weights, positive roots coming from the standard Borel subalgebra of
upper triangular matrices in g. Also let ?# denote the duality on O(λ) mapping
a module to the direct sum of the duals of its weight spaces with g-action defined
via the antiautomorphism x 7→ xt (matrix transposition).

To a column strict tableau A ∈ Col(λ) we associate the following modules:

• N(A) is the usual parabolic Verma module in O(λ) of highest weight (a1, a2+
1, . . . , aN +N − 1) where γ(A) = (a1, . . . , aN ) is the column reading of A.

• K(A) is the unique irreducible quotient of N(A).
• P (A) is the projective cover of K(A) in O(λ).
• V (A) denotes the finite dimensional irreducible h-module of highest weight
γ(A−A0), viewed as a p-module via the natural projection p � h.

• V (A0) is the trivial p-module C.
• V (Ac) is the one dimensional p-module Cc on which ei,j acts as δi,jccol(i) as

in the previous section.

We point out that
N(A) = U(g)⊗U(p) (C−ρ ⊗ V (A)) (4.2)

where C−ρ is the one dimensional p-module from the introduction; cf. [BK3,
(4.38)]. Moreover, {K(A) | A ∈ Col(λ)} is a full set of irreducible modules in
O(λ).

A standard fact is that K(A) and K(B) have the same central character if
and only if θ(A) = θ(B); indeed, the composition multiplicity [N(A) : K(B)] is
zero unless A ≥ B in the Bruhat ordering. Recall also that BGG reciprocity in
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this setting asserts that P (A) has a parabolic Verma flag, and the multiplicity of
N(B) in any parabolic Verma flag of P (A) is given by

(P (A) : N(B)) = dim Homg(P (A), N(B)#) = [N(B) : K(A)]. (4.3)

One consequence of this is that

Ext1O(λ)(N(A), N(B)) = 0 (4.4)

for all A,B ∈ Col(λ) with A 6< B.
From now on, we restrict our attention to the Serre subcategory Oc(λ) of

O(λ) generated by the irreducible modules {K(A) | A ∈ Colc(λ)}. This is a sum
of certain blocks of O(λ), and conversely every block of O(λ) is a block of Oc(λ)
for some c chosen as in (4.1). For d ≥ 0, let Odc(λ) denote the Serre subcategory
of Oc(λ) generated by the irreducible modules {K(A) | A ∈ Coldc(λ)}. Letting
c − r1 denote the tuple (c1 − r, . . . , cl − r) for each r ∈ N, it is obvious that
Coldc(λ) ⊆ Cold+rNc−r1 (λ) and Colc(λ) = Colc−r1(λ). Hence,

Odc(λ) ⊆ Od+rNc−r1 (λ), Oc(λ) = Oc−r1(λ). (4.5)

This is useful because, by Lemma 4.1, Odc(λ) is a sum of blocks of Oc(λ), and
conversely every block ofOc(λ) is a block ofOdc−r1(λ) for some r, d ≥ 0. In this way,
questions about O(λ) can usually be reduced to questions about the subcategories
Odc(λ). In particular, since Col0c(λ) = {Ac}, we get that K(Ac) is the unique (up
to isomorphism) irreducible module in its block, hence P (Ac) = N(Ac) = K(Ac).
This module plays a special role; we denote it simply by Pc.

Lemma 4.2. Let A ∈ Col(λ). Then K(A) is a composition factor of Pc ⊗ V ⊗d if
and only if A ∈ Coldc(λ).

Proof. Recall that Cc ⊗ V ⊗d = V ⊗dc . By the classical Schur-Weyl duality, V ⊗dc

decomposes as an h-module as a direct sum of copies of the modules V (A) for
A ∈ Coldc(λ), and each such V (A) appears at least once. Hence, V ⊗dc has a filtration
as a p-module with sections of the form V (A) for A ∈ Coldc(λ), and each such V (A)
appears at least once. By the tensor identity,

Pc ⊗ V ⊗d ∼= U(g)⊗U(p) (C−ρ ⊗ V ⊗dc ).

Recalling (4.2), these two statements imply that Pc ⊗ V ⊗d has a parabolic Verma
flag with sections of the form N(A) for A ∈ Coldc(λ), and each such N(A) appears
at least once. This shows that every K(A) for A ∈ Coldc(λ) is a composition factor
of Pc ⊗ V ⊗d. Conversely, if K(A) is a composition factor of Pc ⊗ V ⊗d for some
A ∈ Col(λ), it is also a composition factor of N(B) for some A ≤ B ∈ Coldc(λ).
Hence by Lemma 4.1 we see that A ∈ Coldc(λ) too. �
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4.3. Special projective functors

We also need the special projective functors fi and ei on O(λ). We refer the reader
to [BK3, §4.4] for a more detailed discussion of the signficance of these functors;
see also [BK1] and [CR, §7.4]. For a module M , we have by definition that fiM
resp. eiM is the generalized i-eigenspace resp. generalized −(N + i)-eigenspace of
Ω acting on M ⊗ V resp. M ⊗ V ∗, where V ∗ is the dual of the natural g-module
V . In particular, we have that

M ⊗ V =
⊕
i∈C

fiM, M ⊗ V ∗ =
⊕
i∈C

eiM.

An important point is that the functors fi and ei are both left and right adjoint
to each other, so they send projective modules in O(λ) to projective modules. The
following lemma, which is a well known consequence of the tensor identity, shows
that fi and ei map objects in Oc(λ) to objects in Oc(λ), and fi maps objects in
Odc(λ) to objects in Od+1

c (λ).

Lemma 4.3. For A ∈ Colc(λ) and i ∈ C, we have that
(i) fiN(A) has a multiplicity-free parabolic Verma flag with sections of the form

N(B), one for each B ∈ Colc(λ) obtained from A by replacing an entry equal
to i with (i+ 1);

(ii) eiN(A) has a multiplicity-free parabolic Verma flag with sections of the form
N(B), one for each B ∈ Colc(λ) obtained from A by replacing an entry equal
to (i+ 1) with i.

Corollary 4.4. For any A ∈ Colc(λ), there exist i1, . . . , ir ∈ C and an irreducible
parabolic Verma module N(B) for some B ∈ Stdc(λ) such that N(A) is isomorphic
to a submodule of ei1 · · · eirN(B).

Proof. Let B be the tableau obtained from A by adding kj to all entries in the
jth column of A for each j = 2, . . . , l, where k2, . . . , kl ≥ 0 are chosen so that the
entries in column j of B are 6≤ the entries in columns 1, . . . , j − 1 for each j. It is
then automatic that B ∈ Stdc(λ), and N(B) is irreducible since B is minimal in
the Bruhat ordering. Say the entries in the jth column of A are aj,1 < · · · < aj,qj

.
Apply the functors

(eaj,qj
eaj,qj

+1 · · · eaj,qj
+kj−1) · · · (eaj,2eaj,2+1 · · · eaj,2+kj−1)

(eaj,1eaj,1+1 · · · eaj,1+kj−1)

for j = 2, then j = 3, . . . , then j = l to the parabolic Verma module N(B).
Now use Lemma 4.3, recalling by (4.4) that parabolic Verma flags can be arranged
in any order refining the Bruhat order (largest at the bottom), to show that the
result involves N(A) as a submodule. �

The effect of the projective functors fi and ei on irreducible modules is re-
flected by a crystal structure (Col(λ), ẽi, f̃i, εi, ϕi, θ) on the set Col(λ) in the gen-
eral sense of Kashiwara [Ka]. This particular crystal is defined combinatorially
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in [BK3, §4.3]; there we only described the situation for i ∈ Z but it extends
in obvious fashion to arbitrary i ∈ C. In particular, [BK3, Theorem 4.5] asserts
for A ∈ Col(λ) that fiK(A) is non-zero if and only if ϕi(A) 6= 0, in which case
fiK(A) has irreducible socle and cosocle isomorphic to K(f̃iA). There is a similar
statement about ei. The following lemma follows from the explicit combinatorial
definition of this crystal structure.

Lemma 4.5. The subset Stdc(λ) of Colc(λ) is the connected component of the
crystal (Col(λ), ẽi, f̃i, εi, ϕi, θ) generated by the ground-state tableau Ac. Moreover,
for d > 0, every A ∈ Stddc(λ) is equal to f̃iB for some B ∈ Stdd−1

c (λ) and i ∈ C.

Corollary 4.6. If A ∈ Stddc(λ) then K(A) is a quotient of Pc ⊗ V ⊗d.

Proof. Proceed by induction on d, the case d = 0 being obvious. For d > 0,
Lemma 4.5 shows that A = f̃iB for some B ∈ Stdd−1

c (λ). By induction, K(B) is
a quotient of Pc ⊗ V ⊗(d−1). So fiK(B) is a quotient of fi(Pc ⊗ V ⊗(d−1)), which
is itself a summand of Pc ⊗ V ⊗d. Since K(A) is a quotient of fiK(B) by [BK3,
Theorem 4.5], this completes the proof. �

Let [Oc(λ)] denote the Grothendieck group of the category Oc(λ). It has (at
least) two natural bases {[N(A)] | A ∈ Colc(λ)} and {[K(A)] | A ∈ Colc(λ)}
corresponding to the parabolic Verma modules and the irreducible modules. The
exact functors fi and ei induce operators on [Oc(λ)] too. The combinatorics of
all these things is well understood by the Kazhdan-Lusztig conjecture proved in
[BB, BrK]; see [BK3, Theorem 4.5] for the application to this specific situation.
With that in mind, the next lemma is a consequence of [B1, Theorem 26]. For
a representation theoretic explanation, we note that {K(A) | A ∈ Stdc(λ)} are
exactly the irreducible modules inOc(λ) with maximal Gelfand-Kirillov dimension;
see Irving’s proof of Theorem 4.8 below.

Lemma 4.7. The subgroup of the Grothendieck group [Oc(λ)] generated by the
classes {[K(A)] | A ∈ Colc(λ) \ Stdc(λ)} is stable under the actions of fi and ei.

4.4. Self-dual projective modules

Next, we record an important result originating in work of Irving [I]. Since our com-
binatorial setup is unconventional, we include the proof, though this is essentially
a translation of Irving and Shelton’s proof from [I, §A.3] into our language. We
learned this argument from [MS, Theorem 5.1] which treats the case of a regular
block. In the statement of the theorem, we have stuck with Irving’s original ter-
minology of self-dual projective indecomposable modules; note though that these
modules are also the indecomposable prinjective modules (as in [KSX] or [MS])
and the indecomposable projective tilting modules (as in [S2]).

Theorem 4.8. For A ∈ Colc(λ), the following are equivalent:
(i) A ∈ Stdc(λ);
(ii) P (A) is self-dual, i.e. P (A)# ∼= P (A);
(iii) K(A) is isomorphic to a submodule of N(B) for some B ∈ Colc(λ).
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Proof. (i)⇒(ii). Replacing c by c − r1 = (c1 − r, . . . , cl − r) for some r ≥ 0 if
necessary, we may assume that A ∈ Coldc(λ) for some d ≥ 0. Note that Pc⊗V ⊗d is
a self-dual projective module. By Corollary 4.6, P (A) is a summand of Pc ⊗ V ⊗d.
Hence P (A) is itself self-dual; see [I, Lemma 4.2].

(ii)⇒(iii). If P (A) is self-dual, then K(A) is a submodule of it. But P (A) has
a parabolic Verma flag, hence K(A) is also a submodule of some N(B).

(iii)⇒(i). If K(A) is a submodule of some parabolic Verma module, then by
Corollary 4.4 it is also a submodule of ei1 · · · eirK(B) for some B ∈ Stdc(λ) and
i1, . . . , ir ∈ C. Hence by adjointness, the irreducible module K(B) appears in the
cosocle of fir · · · fi1K(A). This implies that A ∈ Stdc(λ) by Lemma 4.7. �

Corollary 4.9. If K(A) is a quotient of Pc ⊗ V ⊗d then A ∈ Stddc(λ).

Proof. By Lemma 4.2, we may assume that A ∈ Colc(λ) and need to prove that
A ∈ Stdc(λ). Since K(A) is a quotient of Pc ⊗ V ⊗d, P (A) is a summand of it.
Since Pc ⊗ V ⊗d is a self-dual projective module, this implies that P (A) is too.
Hence A ∈ Stdc(λ) by Theorem 4.8. �

4.5. Divided power modules

Finally we introduce certain divided power modules in Odc(λ). For 1 ≤ j ≤ l, let
Vj denote the p-submodule of V spanned by {vi | col(i) ≤ j}. Given a tableau
A ∈ Tabd(λ) with γ(A) = (a1, . . . , aN ), set

ZA(V ) = Za1
(
Vcol(1)

)
⊗ · · · ⊗ ZaN

(
Vcol(N)

)
, (4.6)

where we write Zd(E) for the dth divided power of a vector space E, i.e. the
subspace of E⊗d consisting of all symmetric tensors. Clearly this is a p-submodule
of the tensor space V ⊗d. Let ZAc (V ) denote the p-submodule of V ⊗dc obtained from
ZA(V ) by twisting the action by the automorphism ηc. By the tensor identity, the
induced g-module

Z(A, c) = U(g)⊗U(p) (C−ρ ⊗ ZAc (V )) (4.7)

is a submodule of Pc ⊗ V ⊗d, so it belongs to the category Odc(λ). As usual, in the
most interesting case c = 0, we denote this simply by Z(A).

To formulate next lemma, we need certain generalized Kostka numbers. Take
A ∈ Tabd(λ) and B ∈ Coldc(λ). Define an l-tuple of partitions (µ(1), . . . , µ(l)) so
that the parts of µ(j) are the entries in the jth column of (B − Ac). Letting
γ(A) = (a1, . . . , aN ), define KB,A to be the number of tuples (T (1), . . . , T (l)) such
that

(a) for each j = 1, . . . , l, T (j) is a standard µ(j)-tableau with (not necessarily
distinct) entries chosen from the set {i ∈ I | col(i) ≥ j};

(b) for each i ∈ I, the total number of entries equal to i in all of T (1), . . . , T (l) is
equal to ai.
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Lemma 4.10. For any A ∈ Tabd(λ), there is an isomorphism of h-modules

ZAc (V ) ∼=
⊕

B∈Coldc(λ)

V (B)⊕KB,A .

Hence, Z(A, c) has a parabolic Verma flag in which the parabolic Verma module
N(B) appears with multiplicity KB,A for each B ∈ Coldc(λ), arranged in any order
refining the Bruhat ordering on Coldc(λ) (most dominant at the bottom).

Proof. The first statement is a consequence of the Littlewood-Richardson rule.
Hence, as a p-module, ZAc (V ) has a filtration with sections of the form V (B) for
B ∈ Coldc(λ), each V (B) appearing with multiplicity KB,A. Now apply the exact
functor U(g)⊗U(p) (C−ρ⊗?) and use the definition (4.2) and (4.4). �

The goal in the remainder of the section is to prove by induction on level that
Z(A, c) is a projective module in Odc(λ). Let us set up some convenient notation
for the proof. Suppose N = N ′+N ′′, let g′ = glN ′(C), g′′ = glN ′′(C), and identify
g′⊕g′′ with a standard Levi subalgebra of g in the usual way. Given a g′-moduleM ′

and a g′-module M ′′, we will write M ′�M ′′ for the g′⊕g′′-module obtained from
their (outer) tensor product. Let q be the standard (upper triangular) parabolic
subalgebra of g with Levi subalgebra g′ ⊕ g′′ and nilradical r. Let β be the weight

β = (0, . . . , 0︸ ︷︷ ︸
N ′ times

, N ′, . . . , N ′︸ ︷︷ ︸
N ′′ times

)

and Cβ be the corresponding one dimensional g′ ⊕ g′′-module. Define a functor

R : g′ ⊕ g′′-mod→ g-mod, M 7→ U(g)⊗U(q) (Cβ ⊗M),

where Cβ ⊗M is viewed as a q-module via the natural projection q � g′ ⊕ g′′.
Thus, R is the usual Harish-Chandra induction functor, but shifted by β as that
makes subsequent notation tidier. Note the exact functor R has a right adjoint

T : g-mod→ g′ ⊕ g′′-mod, M 7→ C−β ⊗M r

arising by taking r-invariants.
Now assume in addition that l = l′ + l′′ and that λ′ resp. λ′′ is the partition

of N ′ resp. N ′′ whose Young diagram consists of the l′ leftmost resp. l′′ rightmost
columns of the Young diagram of λ. Let c′ = (c1, . . . , cl′) and c′′ = (cl′+1, . . . , cl).
Given any A ∈ Colc(λ) we let A′ resp. A′′ denote the element of Colc′(λ′) resp.
Colc′′(λ′′) consisting of the l′ leftmost resp. l′′ rightmost columns of the tableau
A. For any d ≥ 0, this defines a bijection

Coldc(λ) −→
⋃̇

d′+d′′=d

Cold
′

c′(λ
′)× Cold

′′

c′′(λ
′′), A 7→ (A′, A′′).

Consider parabolic categoryO for g′⊕g′′ relative to the standard parabolic subalge-
bra having Levi subalgebra h. Let Od′c′ (λ

′)�Od′′c′′ (λ
′′) denotes the Serre subcategory

generated by the modules {K(A′) �K(A′′) | A′ ∈ Cold
′

c′(λ
′), A′′ ∈ Cold

′′

c′′(λ
′′)}. By

Lemma 4.1, this is a sum of blocks of the full parabolic category O. Moreover, the
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parabolic Verma modules in Od′c′ (λ
′) �Od′′c′′ (λ

′′) are the modules N(A′) �N(A′′),
and the projective cover of K(A′)�K(A′′) in Od′c′ (λ

′)�Od′′c′′ (λ
′′) is P (A′)�P (A′′),

for each A′ ∈ Cold
′

c′(λ
′), A′′ ∈ Cold

′′

c′′(λ
′′). The following well known lemma implies

in particular that the functors R and T restrict to give well-defined functors⊕
d′+d′′=d

Od
′

c′ (λ
′) �Od

′′

c′′ (λ
′′) Odc(λ).

R−→←−
T

(4.8)

Lemma 4.11. Let A,B ∈ Coldc(λ) be tableaux such that A′, B′ ∈ Cold
′

c′(λ
′) and

A′′, B′′ ∈ Cold
′′

c′′(λ
′′) for some d′ + d′′ = d. Then

(i) R(N(A′) �N(A′′)) ∼= N(A);
(ii) T (N(A)#) ∼= N(A′)# �N(A′′)#;
(iii) T (K(A)) ∼= K(A′) �K(A′′);
(iv) [N(A) : K(B)] = [N(A′) : K(B′)][N(A′′) : K(B′′)].

Corollary 4.12. Let A ∈ Coldc(λ) such that A′ ∈ Cold
′

c′(λ
′) and A′′ ∈ Cold

′′

c′′(λ
′′) for

some d′ + d′′ = d.
(i) If A is minimal in the sense that every A ≥ B ∈ Coldc(λ) also has B′ ∈

Cold
′

c′(λ
′) and B′′ ∈ Cold

′′

c′′(λ
′′) then R(K(A′) �K(A′′)) ∼= K(A).

(ii) If A is maximal in the sense that every A ≤ B ∈ Coldc(λ) also has B′ ∈
Cold

′

c′(λ
′) and B′′ ∈ Cold

′′

c′′(λ
′′) then R(P (A′) � P (A′′)) ∼= P (A).

Proof. (i) By Lemma 4.11(iv) and the minimality assumption on A, we have for
every B ≤ A that [N(A) : K(B)] = [N(A′) : K(B′)][N(A′′) : K(B′′)]. Hence in
the Grothendieck group, we can write

[N(A′) �N(A′′)] =
∑
B≤A

[N(A) : K(B)][K(B′) �K(B′′)].

The functor R is exact, so we get by Lemma 4.11(i) that

[N(A)] =
∑
B≤A

[N(A) : K(B)][R(K(B′) �K(B′′))] =
∑
B≤A

[N(A) : K(B)][K(B)].

Since R(K(B′) � K(B′′)) certainly contains at least one composition factor iso-
morphic to K(B), the last equality here implies that for all B ≤ A we must have
that R(K(B′) �K(B′′)) ∼= K(B).

(ii) By adjointness of R and T and Lemma 4.11(iii), R(P (A′) � P (A′′)) has
irreducible cosocle isomorphic to K(A). Hence there is a surjective homomorphism
P (A) � R(P (A′) � P (A′′)). To prove that this is an isomorphism, observe by
Lemma 4.11(i) that R(P (A′) � P (A′′)) has a parabolic Verma flag, so it suffices
to check that

(P (A) : N(B)) = (R(P (A′) � P (A′′)) : N(B))
for all B ∈ Coldc(λ). By (4.3), the left hand side is equal to [N(B) : K(A)], which is
zero unless A ≤ B. Hence by the maximality assumption, the left hand side is zero
unless B′ ∈ Cold

′

c′(λ
′) and B′′ ∈ Cold

′′

c′′(λ
′′), in which case by Lemma 4.11(iv) it is
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equal to [N(B′) : K(A′)][N(B′′) : K(A′′)]. On the other hand, by Lemma 4.11(ii),
we have that

(R(P (A′) � P (A′′)) :N(B)) = dim Homg(R(P (A′) � P (A′′)), N(B)#)

= dim Homg′⊕g′′(P (A′) � P (A′′), N(B′)# �N(B′′)#)

= [N(B′) : K(A′)][N(B′′) : K(A′′)].

This completes the proof. �

Corollary 4.13. Assume that no entry of c′ = (c1, . . . , cl′) lies in the same coset of
C modulo Z as an entry of c′′ = (cl′+1, . . . , cl). Then, the category Odc(λ) decom-
poses as

Odc(λ) =
⊕

d′+d′′=d

Od
′,d′′

c (λ),

where Od′,d′′c (λ) denote the Serre subcategory of Odc(λ) generated by the irreducible
modules {K(A) | A ∈ Coldc(λ) such that A′ ∈ Cold

′

c′(λ
′), A′′ ∈ Cold

′′

c′′(λ
′′)}. More-

over, the functors R and T from (4.8) are mutually inverse equivalences of cate-
gories.

Proof. Fix d′+d′′ = d. GivenA ∈ Coldc(λ) with A′ ∈ Cold
′

c′(λ
′) and A′′ ∈ Cold

′′

c′′(λ
′′),

the assumption on c ensures that any other B ∈ Coldc(λ) with θ(A) = θ(B) also
has B′ ∈ Cold

′

c′(λ
′) and B′′ ∈ Cold

′′

c′′(λ
′′). Hence, Od′,d′′c (λ) is a sum of blocks of

Odc(λ), proving the first statement. Moreover, by Lemma 4.11, the functors R and
T restrict to well-defined functors

Od
′

c′ (λ
′) �Od

′′

c′′ (λ
′′) Od

′,d′′

c (λ).
R−→←−
T

To prove the second statement, it suffices to show that these restricted functors
are mutually inverse equivalences of categories.

We claim to start with that the functor T is exact. Since it is automatically
left exact, we just need to check given any epimorphism M � Q in Od′,d′′c (λ) that
every r-invariant in Q lifts to an r-invariant in M . The proof of this easily reduces
to the case that Q is irreducible. In that case, by Lemma 4.11(iii), it is enough
to show that the highest weight vector v ∈ Q lifts to an r-invariant in M . To see
that, let v̄ ∈ M be any weight vector that is a pre-image of v, then observe by
weight considerations that v̄ is automatically an r-invariant.

Now we can show that the unit and the counit of any adjunction between R
and T are both isomorphisms, to complete the proof. Since both functors are exact,
it suffices to check that the unit and counit give isomorphisms on every irreducible
module, which follows easily from Lemma 4.11(iii) and Corollary 4.12(i). �

Now we can prove the desired projectivity of the modules Z(A, c) from (4.7).
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Theorem 4.14. Let A ∈ Tabd(λ) and define B to be the unique tableau in Coldc(λ)
such that (B −Ac) and A have the same entries in each column. Then,

Z(A, c) ∼=
⊕

C∈Coldc(λ)

nB,CP (C)

for nB,C ∈ N with nB,B = 1 and nB,C = 0 unless γ(C) ≥ γ(B) in the domi-
nance ordering. In particular,

⊕
A∈Tabd(λ) Z(A, c) is a projective generator for the

category Odc(λ).

Proof. By Lemma 4.10, Z(A, c) has a parabolic Verma flag involving N(B) with
multiplicity one and various other N(C)’s for C ∈ Coldc(λ) with γ(C) ≥ γ(B). This
reduces the proof of the theorem simply to showing that Z(A, c) is a projective
module in Odc(λ). For that, we proceed by induction on the level l, the case l = 1
being immediate.

For the induction step, take any A ∈ Tabd(λ). Let l′ = l − 1, l′′ = 1 and
define λ′, λ′′, g′ and g′′ as above. Let c′ = (c1, . . . , cl−1) and write Ccl+ql−n for the
one dimensional g′′-module on which each diagonal matrix unit acts as the scalar
cl + ql − n. Let A′ be the tableau obtained from A by removing the rightmost
column. By the tensor identity, we have that

Z(A, c) ∼= R(Z(A′, c′) � Ccl+ql−n)⊗ ZaN−ql+1(V )⊗ · · · ⊗ ZaN (V ).

By induction, Z(A′, c′) is a direct sum of modules of the form P (B′) for various
B′ ∈ Cold

′

c′(λ
′) and 0 ≤ d′ ≤ d. Therefore, since tensoring with the finite dimen-

sional g-module ZaN−ql+1(V ) ⊗ · · · ⊗ ZaN (V ) sends projectives to projectives, it
suffices to show that R(P (B′) � Ccl+ql−n) is a projective module in Od′c (λ) for
each B′ ∈ Cold

′

c′(λ
′) and d′ ≥ 0. This follows by Corollary 4.12(ii) applied to the

(maximal) λ-tableau obtained from B′ by adding one more column with entries
cl + ql − n, . . . , cl + 1− n from top to bottom. �

5. Whittaker functor

Now we return to the representations of the finite dimensional quotients Wd(λ, c)
of W (λ) from section 3, still assuming that c satisfies (4.1). We are going to study
the Whittaker functor from [BK3, §8.5], which will be viewed here as a functor
from the parabolic category O(λ) to modules over the finite W -algebra W (λ).
The definition of Whittaker functor in a more general setting originates in work
of Kostant [Ko] and Lynch [Ly].

5.1. Polynomial and rational representations of W (λ)

For d ≥ 0, let Rdc(λ) denote the category of all finite dimensional left Wd(λ, c)-
modules, viewed as a full subcategory of the category of all left W (λ)-modules.
For r ∈ Z, let detr denote the rth power of the one dimensional determinant
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representation of g. Recalling the functor ? ~ X from §3, let Rc(λ) denote the
category of all W (λ)-modules M with the property that

M ~ detr ∼= M1 ⊕ · · · ⊕Mk

for some r, k, d1, . . . , dk ≥ 0 and finite dimensional Wdi
(λ, c)-modules Mi. Clearly,

Rc(λ) is an abelian category closed under taking submodules, quotients and finite
direct sums. In particular, taking c = 0, we call the categoriesRd0(λ) andR0(λ) the
categories of polynomial representations of degree d and rational representations
of W (λ), respectively.

Lemma 5.1. A W (λ)-module belongs to the category Rdc(λ) if and only if it is
isomorphic to a subquotient of a direct sum of finitely many copies of V ⊗dc . Hence,

(i) the functor (? ~ V ) maps objects in Rdc(λ) to objects in Rd+1
c (λ);

(ii) the functor (? ~ E) maps objects in Rc(λ) to objects in Rc(λ), for any g-
module arising from a finite dimensional rational representation E of G.

Proof. The first statement is a consequence of the fact that V ⊗dc is a faithful
Wd(λ, c)-module. To deduce (i), recall that V ⊗dc ~V ∼= V

⊗(d+1)
c . Finally (ii) follows

from (i) and associativity, because every irreducible rational representation of G
is a summand of a tensor product of some copies of V and det−1. �

Corollary 5.2. For r ∈ N, Rdc(λ) ⊆ Rd+rNc−r1 (λ) and Rc(λ) = Rc−r1(λ).

Proof. Observe that V ⊗dc
∼= V ⊗dc−r1⊗detr. The latter is isomorphic to a submodule

of V ⊗(d+rN)
c−r1 , since detr is isomorphic to a submodule of V ⊗rN . �

Next we wish to classify the irreducible modules in the categories Rdc(λ) and
Rc(λ). By [BK3, Theorem 7.9], there is a finite dimensional irreducible W (λ)-
module denoted L(A) for each A ∈ Stdc(λ). Letting ai,1, . . . , ai,pi denote the
entries on the ith row of A, the irreducible module L(A) is characterized uniquely
up to isomorphism by the property that there is a vector 0 6= v+ ∈ L(A) such that

(a) T (r)
i,j v+ = 0 for all 1 ≤ i < j ≤ n and r > pj − pi;

(b) T (r)
i,i v+ = er(ai,1 + i− 1, . . . , ai,pi

+ i− 1) for all 1 ≤ i ≤ n and r > 0, where
er(x1, . . . , xm) denotes the rth elementary symmetric function in x1, . . . , xm.

Such a vector v+ is called a highest weight vector of type A, and a module generated
by a highest weight vector is a highest weight module. By [BK3, Lemma 6.13], two
irreducible modules L(A) and L(B) for A,B ∈ Stdc(λ) have the same central
character if and only if θ(A) = θ(B).

Recall also the finite dimensional U(p)-modules V (A) for each column strict
A ∈ Colc(λ) defined in the paragraph preceeding (4.2). Often we view V (A) as
a W (λ)-module by restriction. The W (λ)-modules {V (A) | A ∈ Colc(λ)} are
called standard modules; see [BK3, (7.1)]. We warn the reader that the terminology
“standard modules” being used here has nothing to do with notion of a standard
module in a highest weight category. If A is a standard tableau rather than merely
being column strict, then [BK3, Theorem 7.13] shows that V (A) is a highest weight
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module generated by a highest weight vector of type A; hence it has a unique
irreducible quotient, which is isomorphic to L(A). By [BK3, Lemma 6.9], for any
A ∈ Colc(λ), every element z ∈ Z(W (λ)) acts on the standard module V (A) as
a scalar, i.e. standard modules have central characters. Again, it is the case that
two standard modules V (A) and V (B) for A,B ∈ Colc(λ) have the same central
character if and only if θ(A) = θ(B).

Lemma 5.3. For any A ∈ Coldc(λ), V (A) belongs to the category Rdc(λ). The mod-
ules {L(A) | A ∈ Stddc(λ)} form a complete set of irreducible modules in Rdc(λ).

Proof. As noted in the proof of Lemma 4.2, V ⊗dc has a filtration as a p-module,
hence also as a W (λ)-module, with sections of the form V (A) for A ∈ Coldc(λ),
and each such V (A) appears at least once. Hence by Lemma 5.1, each standard
module V (A) for A ∈ Coldc(λ) and each irreducible module L(A) for A ∈ Stddc(λ)
belongs to Rdc(λ). Conversely, we have already observed that every composition
factor of N(A) for A ∈ Coldc(λ) is of the form K(B) for B ∈ Coldc(λ). By [BK3,
Lemma 8.20] and [BK3, Corollary 8.24], it follows that every composition factor
of V (A) for A ∈ Coldc(λ) is of the form L(B) for B ∈ Stddc(λ). Since V ⊗dc has a
filtration with sections of the form V (A) for A ∈ Coldc(λ), we deduce that all its
composition factors are indeed of the form L(B) for B ∈ Stddc(λ). So these are all
of the irreducible objects in Rdc(λ). �

Corollary 5.4. For any A ∈ Colc(λ), V (A) belongs to the category Rc(λ). The
modules {L(A) | A ∈ Stdc(λ)} form a complete set of irreducible modules in
Rc(λ).

Proof. If A ∈ Colc(λ), then A ∈ Coldc−r1(λ) for some r, d ≥ 0. Hence V (A) belongs
to the category Rc(λ) = Rc−r1(λ) by Lemma 5.3 and Corollary 5.2. It remains
to show that every irreducible module L ∈ Rc(λ) is isomorphic to L(A) for some
A ∈ Stdc(λ). By Lemma 5.3 and the definition of the category, L ~ detr ∼= L(A)
for some r, d ≥ 0 and A ∈ Stddc(λ). Now observe that L ∼= L(A) ~ det−r ∼= L(B)
where B is obtained from A by subtracting r from all of its entries. �

5.2. Axiomatic approach to the Whittaker functor

Assume from now on that we are given an exact functor V : Oc(λ)→ W (λ)-mod
and an isomorphism of functors ν : V ◦ (?⊗ V )→ (? ~ V ) ◦ V such that

(V1) for each A ∈ Colc(λ) we have that V(K(A)) ∼= L(A) if A is standard and
V(K(A)) = 0 otherwise;

(V2) the following diagrams commute for all M ∈ Oc(λ):

V(M ⊗ V ) νM−−−−→ V(M) ~ V

V(xM )

y yxV(M)

V(M ⊗ V ) −−−−→
νM

V(M) ~ V,
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V(M ⊗ V ⊗ V )
νM⊗V−−−−→ V(M ⊗ V ) ~ V

νM ~idV−−−−−→ (V(M) ~ V ) ~ V

V(sM )

y ysV(M)

V(M ⊗ V ⊗ V ) −−−−→
νM⊗V

V(M ⊗ V ) ~ V −−−−−→
νM ~idV

(V(M) ~ V ) ~ V.

Here x and s are the endomorphisms of (? ⊗ V ) and (? ⊗ V ) ⊗ V defined in
(3.10)–(3.11), and their analogues for (? ~ V ) and (? ~ V ) ~ V . The existence of
such a pair (V, ν) is established in [BK3, §8.5]: for V one can take the Whittaker
functor from [BK3, Lemma 8.20] and for ν one can take the isomorphism from
[BK3, Lemma 8.18]. For these choices, property (V1) is [BK3, Theorem 8.21], and
property (V2) is checked in the proof of [BK3, Lemma 8.19]. In fact, as we will
explain precisely in Theorem 5.17 below, the above properties determine (V, ν)
uniquely up to isomorphism.

Property (V1) implies in particular that V(Pc) is isomorphic to the W (λ)-
module Cc. We fix such an isomorphism i0 : V(Pc)

∼→ Cc. Recursively define
an isomorphism id : V(Pc ⊗ V ⊗d)

∼→ Cc ~ V ~d for each d ≥ 1 by setting id =
(id−1 ~ idV )◦νPc⊗V ⊗(d−1) . Composing with the isomorphism µd from (3.7), we get
an isomorphism

jd : V(Pc ⊗ V ⊗d)
∼−→ V ⊗dc , jd = µd ◦ id (5.1)

of W (λ)-modules. Recall that V ⊗dc is a (W (λ),Hd)-bimodule; the right action of
Hd was defined via (3.13) and (3.7). Using (3.12), we also make Pc ⊗ V ⊗d into
a (U(g),Hd)-bimodule. By functoriality, we get an induced (W (λ),Hd)-bimodule
structure on V(Pc ⊗ V ⊗d) too. The following lemma is a consequence of (V2) and
the definitions.

Lemma 5.5. jd : V(Pc⊗V ⊗d)→ V ⊗dc is an isomorphism of (W (λ),Hd)-bimodules.

5.3. Proof of Theorems A and B

To prove Theorems A and B from the introduction, there is just one more impor-
tant ingredient, provided by the next lemma. We postpone the proof of this until
Theorem 6.2 in the next section, preferring first to describe the consequences.

Lemma 5.6. Cc is a projective module in Rc(λ).

We let Q(A) = V(P (A)) for each A ∈ Stdc(λ).

Lemma 5.7. The category Rc(λ) has enough projectives. More precisely, for A ∈
Stdc(λ), Q(A) is the projective cover of L(A) in the category Rc(λ). Moreover,
if A ∈ Stddc(λ) for some d ≥ 0, then Q(A) belongs to Rdc(λ), so it is also the
projective cover of L(A) in the category Rdc(λ).

Proof. We show by induction on d that Q(A) belongs to Rdc(λ) and that it is the
projective cover of L(A) in Rc(λ), for every A ∈ Stddc(λ). In view of Corollary 5.2
and the observation that every A ∈ Stdc(λ) lies in Stddc−r1(λ) for some r, d ≥ 0,
this is good enough to prove the lemma. For the base case d = 0, we have that
Q(A) ∼= Cc so are done by Lemma 5.6.
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Now suppose that d > 0 and we are given A ∈ Stddc(λ). By Lemma 4.5 we can
write A as f̃iB for some i ∈ C and B ∈ Stdd−1

c (λ). By the induction hypothesis,
Q(B) belongs to Rd−1

c (λ) and is the projective cover of L(B) in Rc(λ). By [BK3,
Theorem 4.5], K(A) is a quotient of K(B) ⊗ V so, since P (B) ⊗ V is projective,
P (A) is a summand of P (B) ⊗ V . Applying V, we get that Q(A) is a summand
of V(P (B) ⊗ V ) ∼= Q(B) ~ V . Applying Lemma 5.1(i), this shows to start with
that Q(A) belongs to Rdc(λ). Recalling that V ∗ is the dual g-module to V , there
is a canonical adjunction between the functors (? ~ V ) and (? ~ V ∗); see [BK3,
(8.11)–(8.12)]. Since (? ~ V ∗) is exact and maps objects in Rc(λ) to objects in
Rc(λ) by Lemma 5.1(ii), we deduce that (?~V ) maps projective objects in Rc(λ)
to projective objects in Rc(λ). Hence, Q(A) is a projective object in Rc(λ).

It just remains to show that dim HomW (λ)(Q(A), L(D)) = δA,D for all D ∈
Stdc(λ). Since P (B) ⊗ V is a self-dual projective module, Theorem 4.8 implies
that P (B) ⊗ V ∼=

⊕
C∈Stdc(λ) P (C)⊕mC for some integers mC ≥ 0 with mA 6= 0.

Applying V, we get that Q(B) ~ V ∼=
⊕

C∈Stdc(λ)Q(C)⊕mC too. We now proceed
to show for each C,D ∈ Stdc(λ) with mC 6= 0 that dim HomW (λ)(Q(C), L(D)) =
δC,D. By (V1) and exactness, we have that dim HomW (λ)(Q(C), L(D)) ≥ δC,D.
Hence, dim HomW (λ)(Q(B) ~ V,L(D)) ≥ mD, and moreover equality holds if and
only if dim HomW (λ)(Q(C), L(D)) = δC,D whenever mC 6= 0. Now we calculate
using the induction hypothesis:

dim HomW (λ)(Q(B) ~ V,L(D)) = dim HomW (λ)(Q(B), L(D) ~ V ∗)

= [L(D) ~ V ∗ : L(B)] = [K(D)⊗ V ∗ : K(B)]

= dim Homg(P (B),K(D)⊗ V ∗)
= dim Homg(P (B)⊗ V,K(D)) = mD.

This completes the proof. �

Corollary 5.8. The category Rdc(λ) is a sum of blocks of Rc(λ). Conversely, every
block of Rc(λ) is a block of Rdc−r1(λ) for some r, d ≥ 0.

Proof. Recalling Lemma 4.1, the first statement follows from Lemma 5.7, the clas-
sification of irreducible modules and central character considerations. The second
statement follows using Corollary 5.2 too, because every A ∈ Stdc(λ) belongs to
Stddc−r1(λ) for some r, d ≥ 0. �

Corollary 5.9. The functor V maps objects in Oc(λ) to objects in Rc(λ) and objects
in Odc(λ) to objects in Rdc(λ), i.e. to Wd(λ, c)-modules.

Proof. We prove the first statement, the second being similar. It is enough to show
that V(P (A)) belongs to Rc(λ) for each A ∈ Colc(λ). We already checked this for
A ∈ Stdc(λ) in Lemma 5.7. In general, let I be the injective hull of P (A) in Oc(λ).
Since P (A) has a parabolic Verma flag, Theorem 4.8 implies that I is a direct sum
of P (B)’s for B ∈ Stdc(λ). Hence V(I) belongs to Rc(λ). By exactness of V this
implies that V(P (A)) does too. �
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Recall from Theorem 3.7 that the algebra Hd(λ, c), i.e. the image of the map
(3.14), coincides with the endomorphism algebra EndW (λ)(V ⊗dc )op. Taking c = 0,
the following theorem completes the proof of Theorem A from the introduction.

Theorem 5.10. For each d ≥ 0, V ⊗dc is a projective generator for Rdc(λ). Hence,
the functor

HomW (λ)(V ⊗dc , ?) : Wd(λ, c)-mod→ Hd(λ, c)-mod

is an equivalence of categories.

Proof. By Corollaries 4.6, 4.9 and Theorem 4.8, Pc ⊗ V ⊗d is isomorphic to a
direct sum of the modules P (A) for A ∈ Stddc(λ), with each of them appearing
at least once. Since V(Pc ⊗ V ⊗d) ∼= V ⊗dc , it follows easily from Lemma 5.7 and
the classification of irreducible modules that V ⊗dc is a projective generator. The
second statement is a well known consequence. �

For Theorem B, we just need to combine Theorem 3.7 instead with the bi-
module isomorphism jd from (5.1), recalling Lemma 5.5.

Lemma 5.11. There is an isomorphism

γ : Homg(Pc ⊗ V ⊗d, ?)
∼−→ HomW (λ)(V ⊗dc , ?) ◦ V

of functors from Odc(λ) to Hd-mod.

Proof. For M ∈ Odc(λ), define

γM : Homg(Pc ⊗ V ⊗d,M)→ HomW (λ)(V ⊗dc ,V(M))

to be the map f 7→ V(f)◦j−1
d . This is anHd-module homomorphism by Lemma 5.5,

so defines a natural transformation γ between the functors Homg(Pc⊗V ⊗d, ?) and
HomW (λ)(V ⊗dc , ?) ◦ V. These are both exact functors from Odc(λ) to Hd-mod, so
to see that γ is actually an isomorphism, it suffices to check that it gives an
isomorphism on each irreducible module in Odc(λ), i.e. we need to show that γK(B)

is an isomorphism for each B ∈ Coldc(λ). This follows from Lemma 5.5 if we can
show that the map

Homg(Pc ⊗ V ⊗d,K(B))→ HomW (λ)(V(Pc ⊗ V ⊗d),V(K(B))), f 7→ V(f)

is an isomorphism for each B ∈ Coldc(λ). By Corollary 4.9, the indecomposable
summands of Pc ⊗ V ⊗d are of the form P (A) for A ∈ Stddc(λ). Therefore it is
enough to show that the map

Homg(P (A),K(B))→ HomW (λ)(V(P (A)),V(K(B))), f 7→ V(f)

is an isomorphism for each A ∈ Stddc(λ) and B ∈ Coldc(λ). The left hand side is
zero unless A = B, when it is one dimensional. The same is true for the right hand
side, applying (V1) and the fact from Lemma 5.7 that V(P (A)) is the projective
cover of L(A). So if A 6= B both sides are non-zero and the conclusion is clear.
Finally if A = B, let f : P (A) � K(A) be any non-zero (hence surjective) map.
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Then V(f) : V(P (A)) � V(K(A)) is non-zero too as V is exact and V(K(A)) ∼=
L(A) 6= 0. As both sides are one dimensional this is all we need to complete the
proof in this case too. �

Corollary 5.12. The action of Hd on Pc⊗V ⊗d factors through the quotient Hd(Λ),
making Pc ⊗ V ⊗d into a right Hd(Λ)-module. Moreover, letting

ρd : Hd(Λ)→ EndC(Pc ⊗ V ⊗d)op (5.2)

be the resulting homomorphism, the following diagram commutes:

Hd(Λ)

Endg(Pc ⊗ V ⊗d)
∼−−−−→
kd

EndW (λ)(V ⊗dc )
↙
ρd

�
�

↘@
@ Ψd

where the bottom algebra isomorphism kd is the map f 7→ jd ◦ V(f) ◦ j−1
d .

Proof. This follows by applying Lemma 5.11 to M = Pc ⊗ V ⊗d and noting that
for each x ∈ Hd, the endomorphism of Pc ⊗ V ⊗d defined by right multiplication
by x is equal to x idM . �

Using the commutative diagram from Corollary 5.12, we can identify the al-
gebra Hd(λ, c) = Ψd(Hd(Λ)) = EndW (λ)(V ⊗dc )op instead with the image of the
homomorphism ρd : Hd(Λ) → EndC(Pc ⊗ V ⊗d)op. The following theorem, which
in the special case c = 0 proves Theorem B from the introduction, follows imme-
diately.

Theorem 5.13. Endg(Pc ⊗ V ⊗d)op = Hd(λ, c).

5.4. Unicity of Whittaker functors

We wish to formulate some further results characterizing the functor V and the
category Rc(λ). The following theorem shows that V is a quotient functor in the
general sense of [Gab, §III.1].

Theorem 5.14. The functor V : Oc(λ) → Rc(λ) satisfies the following universal
property: given any abelian category C and any exact functor F : Oc(λ)→ C such
that F (K(A)) = 0 for all A ∈ Colc(λ) \ Stdc(λ), there exists an exact functor
G : Rc(λ)→ C such that F ∼= G ◦ V.

Proof. In view of Corollary 5.8 and the corresponding statement for Oc(λ) ex-
plained after (4.5), it suffices to prove that the restriction V : Odc(λ)→ Rdc(λ) sat-
isfies the analogous universal property with Colc(λ)\Stdc(λ) replaced by Coldc(λ)\
Stddc(λ). Since Pc ⊗ V ⊗d is projective, Corollaries 4.6 and 4.9 together with some
well known general theory imply that the functor Homg(Pc ⊗ V ⊗d, ?) possesses
exactly this universal property. Hence so does the restriction of V, thanks to
Lemma 5.11 and Theorem 5.10. �
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Corollary 5.15. There is an equivalence of categories between Rc(λ) and the quo-
tient category Oc(λ)/J , where J is the Serre subcategory of Oc(λ) generated by
the irreducible modules {K(A) | A ∈ Colc(λ) \ Stdc(λ)}.

Next we turn our attention to the unicity of the functor V. There is an
obvious embedding ιd : Hd(Λ) ↪→ Hd+1(Λ) under which the elements xi and sj
of Hd(Λ) map to the elements of Hd+1(Λ) with the same name; it is easy to see
using the basis from Lemma 3.5 that this map is indeed injective. Recalling (3.8)
and Corollary 5.12, we observe that the following diagram commutes:

Endg(Pc ⊗ V ⊗d)op
λd−−−−→ Endg(Pc ⊗ V ⊗(d+1))op

ρd

x xρd+1

Hd(Λ) ιd−−−−→ Hd+1(Λ)

Ψd

y yΨd+1

EndW (λ)(V ⊗dc )op −−−−→
κd

EndW (λ)(V
⊗(d+1)
c )op

'

&

$

%
kd kd+1

←→

Here, λd is f 7→ f ⊗ idV and κd is f 7→ µV ⊗d
c ,V ◦ (f ~ idV ) ◦ µ−1

V ⊗d
c ,V

. Obviously,
the map λd is injective, hence so too is κd. So:

• all three horizontal maps λd, ιd and κd in the diagram are injections;
• the outside maps kd and kd+1 are isomorphisms;
• the remaining vertical maps ρd, ρd+1,Ψd and Ψd+1 are surjections.

The commutativity of the diagram implies that the embedding ιd factors through
the quotients to induce an embedding Hd(λ, c) ↪→ Hd+1(λ, c). The next lemma
connects the resulting induction functor indd+1

d = (Hd+1(λ, c)⊗Hd(λ,c)?) and the
functors (?⊗ V ) and (? ~ V ).

Lemma 5.16. There are isomorphisms

σ : indd+1
d ◦HomW (λ)(V ⊗dc , ?) ∼−→HomW (λ)(V ⊗(d+1)

c , ?) ◦ (? ~ V ),

τ : indd+1
d ◦Homg(Pc ⊗ V ⊗d, ?)

∼−→Homg(Pc ⊗ V ⊗(d+1), ?) ◦ (?⊗ V )

of functors from Rdc(λ) to Hd+1(λ, c)-mod and from Odc(λ) to Hd+1(λ, c)-mod,
respectively, such that the following diagram commutes:

indd+1
d ◦Homg(Pc ⊗ V ⊗d, ?)

1γ−−−−→ indd+1
d ◦HomW (λ)(V ⊗dc , ?) ◦ Vyσ1

HomW (λ)(V
⊗(d+1)
c , ?) ◦ (? ~ V ) ◦ Vy x1ν

Homg(Pc ⊗ V ⊗(d+1), ?) ◦ (?⊗ V ) −−−−→
γ1

HomW (λ)(V
⊗(d+1)
c , ?) ◦ V ◦ (?⊗ V ).

τ



Schur-Weyl duality 37

In particular, the functor indd+1
d is exact. Moreover, the definition of τ does not

depend on the choices of V or ν.

Proof. Let us first define the natural transformation σ. For a Wd(λ, c)-module M ,
there is a natural Hd(λ, c)-module homomorphism

HomW (λ)(V ⊗dc ,M)→ HomW (λ)(V ⊗(d+1)
c ,M ~ V ), f 7→ (f ~ idV ) ◦ µ−1

V ⊗d
c ,V

.

By adjointness of tensor and hom, this induces a natural Hd+1(λ, c)-module ho-
momorphism

σM : Hd+1(λ, c)⊗Hd(λ,c) HomW (λ)(V ⊗dc ,M)→ HomW (λ)(V ⊗(d+1)
c ,M ~ V ).

In this way, we have defined a natural transformation σ between the functors
indd+1

d ◦HomW (λ)(V ⊗dc , ?) and HomW (λ)(V
⊗(d+1)
c , ?) ◦ (? ~ V ).

Next we prove that σ is an isomorphism. We observe to start with that
σ gives an isomorphism when evaluated on the module M = V ⊗dc . This fol-
lows because in that case, µV ⊗d

c ,V ◦ σM is the canonical isomorphism between
Hd+1(λ, c)⊗Hd(λ,c) Hd(λ, c) and Hd+1(λ, c). As V ⊗dc is a projective generator for
Rdc(λ) by Theorem 5.10, we deduce by naturality that σ gives an isomorphism
when evaluated on an arbitrary projective module in Rdc(λ). Finally let M be any
module inRdc(λ) and let P2 → P1 →M → 0 be an exact sequence where P1 and P2

are projective. Since indd+1
d ◦HomW (λ)(V ⊗dc , ?) and HomW (λ)(V

⊗(d+1)
c , ?)◦(?~V )

are both right exact, we get a commutative diagram with exact rows (we abbreviate
H = HomW (λ)):

indd+1
d (H(V ⊗dc , P2))−→ indd+1

d (H(V ⊗dc , P1))−→ indd+1
d (H(V ⊗dc ,M)) −→ 0

σP2

y σP1

y yσM

H(V ⊗(d+1)
c , P2 ~ V )−→H(V ⊗(d+1)

c , P1 ~ V )−→H(V ⊗(d+1)
c ,M ~ V ) −→ 0

We have already shown that the first two vertical maps are isomorphisms, hence
get that the third map σM is an isomorphism by the five lemma. This com-
pletes the proof that σ is an isomorphism of functors. In particular we deduce
at this point that indd+1

d is exact, since ? ~ V is exact and HomW (λ)(V ⊗dc , ?) and
HomW (λ)(V

⊗(d+1)
c , ?) are equivalences by Theorem 5.10.

Finally we define the natural transformation τ . For each M ∈ Odc(λ), the
map

Homg(Pc ⊗ V ⊗d,M)→ Homg(Pc ⊗ V ⊗(d+1),M ⊗ V ), f 7→ f ⊗ idV
is a natural Hd(λ, c)-module homomorphism. So by adjointness of tensor and hom
once again, we get induced a natural Hd+1(λ, c)-module homomorphism

τM : Hd+1(λ, c)⊗Hd(λ,c) Homg(Pc ⊗ V ⊗d,M)→ Homg(Pc ⊗ V ⊗(d+1),M ⊗ V ).

This definition does not involve V or ν in any way. Now we check that the given
diagram commutes. In particular, this implies that τ is an isomorphism, since we
already know that the other four maps are. Take any f ∈ Homg(Pc ⊗ V ⊗d,M).
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The image of 1⊗ f in HomW (λ)(V
⊗(d+1)
c ,V(M) ~ V ) going clockwise around the

diagram is (V(f) ~ idV ) ◦ (j−1
d ~ idV ) ◦µ−1

V ⊗d
c ,V

. The image going counterclockwise

is νM ◦ V(f ⊗ idV ) ◦ j−1
d+1. By naturality of ν, we have that νM ◦ V(f ⊗ idV ) =

(V(f) ~ idV ) ◦ νPc⊗V ⊗d . Also, j−1
d+1 = i−1

d+1 ◦ µ
−1
d+1, i

−1
d+1 = ν−1

Pc⊗V ⊗d ◦ (i−1
d ~ idV )

and µ−1
d+1 = (µ−1

d ~ idV )◦µ−1

V ⊗d
c ,V

by (5.1) and (3.8). Putting these things together
completes the proof. �

Now we can prove the desired characterization of the Whittaker functor V.
This is quite useful: for instance, using this theorem one can prove that V commutes
with duality in an appropriate sense.

Theorem 5.17. Given another exact functor V′ : Oc(λ) → W (λ)-mod and an
isomorphism of functors ν′ : V′ ◦ (? ⊗ V ) → (? ~ V ) ◦ V′ satisfying properties
analogous to (V1)–(V2) above, there is a unique (up to a scalar) isomorphism of
functors ϕ : V→ V′ such that the natural transformations 1ϕ ◦ ν and ν′ ◦ϕ1 from
V ◦ (?⊗ V ) to (? ~ V ) ◦ V′ are equal, i.e. the following diagram commutes

V(M ⊗ V ) νM−−−−→ V(M) ~ V

ϕM⊗V

y yϕM ~idV

V′(M ⊗ V )
ν′M−−−−→ V′(M) ~ V

for all M ∈ Oc(λ).

Proof. Fix the choice of scalar by choosing an isomorphism i′0 : V′(Pc)
∼→ Cc.

From this, we get a (W (λ),Hd)-bimodule isomorphism j′d : V′(Pc ⊗ V ⊗d)→ V ⊗dc

in exactly the same way as (5.1). Then we rerun all the above arguments with V
replaced by V′ to get analogues of Lemmas 5.11 and 5.16; we denote the resulting
isomorphisms of functors by γ′, σ′ and τ ′.

We claim that there exists a unique isomorphism ϕ̄ : V → V′ between the
restrictions of the functors V,V′ to the full subcategory

⊕
d≥0Odc(λ) of Oc(λ),

such that i0 = i′0 ◦ ϕ̄Pc and 1ϕ̄ ◦ ν = ν′ ◦ ϕ̄1. The theorem exactly as stated can
be deduced from this claim as follows. For any r ≥ 0, the claim with c replaced by
c − r1 implies that there exists a unique isomorphism of functors ϕ(r) : V → V′
between the restrictions of V,V′ to the full subcategory

⊕
d≥0Odc−r1(λ) of Oc(λ),

such that the restriction of ϕ(r) to
⊕

d≥0Odc(λ) equals ϕ̄ and 1ϕ(r) ◦ν = ν′ ◦ϕ(r)1.
Then, to construct ϕ : V→ V′ in general, take any module M ∈ Oc(λ) and define
ϕM : V(M)→ V′(M) to be the map ϕ(r)

M , for any r ≥ 0 chosen so that M belongs
to the subcategory

⊕
d≥0Odc−r1(λ).

To prove the claim, let us first construct ϕ̄. It suffices by additivity to de-
fine it on M ∈ Odc(λ) for each d ≥ 0. The composite map γ′M ◦ γ

−1
M is an iso-

morphism between HomW (λ)(V ⊗dc ,V(M)) and HomW (λ)(V ⊗dc ,V′(M)). Let ϕ̄M :
V(M) → V′(M) be the isomorphism obtained from this by first applying the
functor V ⊗dc ⊗Hd(Λ)? and then pushing through the isomorphism V ⊗dc ⊗Hd(Λ)
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HomW (λ)(V ⊗dc , ?) → Id arising from the canonical adjunction between tensor
and hom. This certainly satisfies the property that i0 = i′0 ◦ ϕ̄Pc . To check that
1ϕ̄ ◦ ν = ν′ ◦ ϕ̄1 it suffices to show that the top square in the following diagram
commutes:

Homg(Pc ⊗ V ⊗(d+1), ?) ◦ (?⊗ V )

HomW (λ)(V
⊗(d+1)
c , ?) ◦ V ◦ (?⊗ V )

1ϕ̄1−−−−→ HomW (λ)(V
⊗(d+1)
c , ?) ◦ V′ ◦ (?⊗ V )

1ν

y y1ν′

HomW (λ)(V
⊗(d+1)
c , ?) ◦ (? ~ V ) ◦ V 11ϕ̄−−−−→ HomW (λ)(V

⊗(d+1)
c , ?) ◦ (? ~ V ) ◦ V′

σ1

x xσ1
indd+1

d ◦HomW (λ)(V ⊗dc , ?) ◦ V 11ϕ̄−−−−→ indd+1
d ◦HomW (λ)(V ⊗dc , ?) ◦ V′

indd+1
d ◦Homg(Pc ⊗ V ⊗d, ?)

↗
1γ′��

↘
γ′1

@@
↙
γ1

��

↖
1γ@@

↑
τ

This follows because the top and bottom triangles commute by definition of ϕ̄, the
left and right hand pentagons commute by Lemma 5.16, and the bottom square
commutes by naturality of σ.

It just remains to prove that ϕ̄ is unique. Taking M = Pc ⊗ V ⊗d, the defi-
nitions force ϕ̄M : V(M) → V′(M) to be the composite (j′d)

−1 ◦ jd. As we noted
in the proof of Corollary 5.9, any injective module in Odc(λ) embeds into a direct
sum of copies of M , so this is good enough. �

For use in the next section, we record one more useful fact about V.

Lemma 5.18. For any finite dimensional p-module M , there is a natural W (λ)-
module isomorphism between V(U(g) ⊗U(p) (C−ρ ⊗M)) and the restriction of M
from U(p) to W (λ). In particular, for A ∈ Coldc(λ), there is a W (λ)-module iso-
morphism V(N(A)) ∼= V (A).

Proof. This is proved in [BK3, Lemmas 8.16–8.17] for one particular choice of the
functor V. It follows for all other choices by Theorem 5.17. �

5.5. Degenerate analogue of the Dipper-Mathas equivalence

We give one application of Theorem 5.13 to recover the degenerate analogue of a
theorem of Dipper and Mathas [DM]. This theorem reduces most questions about
the algebras Hd(Λ) to the case that Λ is an integral weight as in the introduction.

Theorem 5.19. Suppose l = l′ + l′′ and λ′ = (p′1, . . . , p
′
n) resp. λ′′ = (p′′1 , . . . , p

′′
n) is

the partition whose diagram consists of the leftmost l′ resp. rightmost l′′ columns
of λ. Let c′ = (c1, . . . , cl′) and c′′ = (cl′+1, . . . , cl), and assume that no entry of c′
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lies in the same coset of C modulo Z as an entry of c′′. Then there is an algebra
isomorphism

Hd(λ, c) ∼=
⊕

d′+d′′=d

M( d
d′) (Hd′(λ′, c′)⊗Hd′′(λ′′, c′′)) ,

i.e. Hd(λ, c) is isomorphic to a direct sum of matrix algebras over tensor products
of degenerate cyclotomic Hecke defined relative to c′ and c′′.

Proof. Let g′ = glq1+···+ql′
(C), g′′ = glql′+1+···+ql

(C), and take all other notation
from Corollary 4.13. Note that Pc

∼= R(Pc′ � Pc′′). Let V = V ′ ⊕ V ′′ be the
obvious decomposition of the natural g-module V as the direct sum of the natural
g′-module V ′ and the natural g′′-module V ′′. Observe as a q-module that V ⊗d

has a filtration whose sections are isomorphic to a direct sum of
(
d
d′

)
copies of

V ′
⊗d′ � V ′′

⊗d′′ , one such for each decomposition d = d′ + d′′. So by the tensor
identity, we deduce that Pc ⊗ V ⊗d has a filtration whose sections are isomorphic
to a direct sum of

(
d
d′

)
copies of

R
(
Pc′ ⊗ V ′

⊗d′
� Pc′′ ⊗ V ′′

⊗d′′
)
,

one such for each decomposition d = d′ + d′′. Recalling the block decomposi-
tion from Corollary 4.13, the latter module belongs to the subcategory Od′,d′′c (λ).
Hence, the filtration splits and we have proved that

Pc ⊗ V ⊗d ∼= R

( ⊕
d′+d′′=d

(
d

d′

)
Pc′ ⊗ V ′

⊗d′
� Pc′′ ⊗ V ′′

⊗d′′
)
.

Computing the endomorphism algebra of the right hand side using the fact from
Corollary 4.13 that R is an equivalence of categories, we get from this that

Endg(Pc ⊗ V ⊗d) ∼=⊕
d′+d′′=d

M( d
d′)
(
Endg′

(
Pc′ ⊗ V ′

⊗d′
)
⊗ Endg′′

(
Pc′′ ⊗ V ′′

⊗d′′
))

.

Combining this with Theorem 5.13 completes the proof. �

Corollary 5.20. Suppose Λ = Λ′ + Λ′′, where Λ′ = Λa1 + · · · + Λak
and Λ′′ =

Λb1 + · · · + Λbl
for some a1, . . . , ak, b1, . . . , bl ∈ C such that no element from the

set {a1, . . . , ak} lies in the same coset of C modulo Z as an element from the set
{b1, . . . , bl}. Then

Hd(Λ) ∼=
⊕

d′+d′′=d

M( d
d′) (Hd′(Λ′)⊗Hd′′(Λ′′)) .
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6. Permutation modules and Specht modules

Continue to assume that the origin c = (c1, . . . , cl) ∈ Cl satisfies (4.1). The im-
mediate goal is to prove Lemma 5.6. To do this, we are going to exploit some
weight idempotents belonging to the algebra Wd(λ, c) like in [G, ch. 3]. Then we
use similar techniques to deduce the relationship between various natural families
of modules in Odc(λ) and Hd(λ, c)-mod.

6.1. Proof of Lemma 5.6

Recall that Tabd(λ) denotes the set of all λ-tableaux with non-negative integer
entries summing to d. For A ∈ Tabd(λ) with column reading γ(A) = (a1, . . . , aN ),
let

i(A) = (1, . . . , 1︸ ︷︷ ︸
a1 times

, 2, . . . , 2︸ ︷︷ ︸
a2 times

, . . . , N, . . . , N︸ ︷︷ ︸
aN times

) ∈ Id.

If all entries of A except the rightmost entries in each row are zero, i.e. we have
that ai 6= 0 ⇒ R(i) = ∅ for each i = 1, . . . , N , then we call A an idempotent
tableau. Let Idemd(λ) denote the set of all idempotent tableaux in Tabd(λ). For
A ∈ Idemd(λ), the pair (i(A), i(A)) belongs to Jd, so it makes sense to define

eA = Ξi(A),i(A) ∈Wd(λ, c),

recalling Theorem 3.9. In terms of matrix units, Lemma 3.8 implies that

eA =
∑
i∈Id

row(i)∼row(i(A))

ei,i. (6.1)

It follows immediately that the elements {eA | A ∈ Idemd(λ)} are mutually or-
thogonal idempotents summing to 1. For any left Wd(λ, c)-module M , we therefore
have a vector space decomposition

M =
⊕

A∈Idemd(λ)

eAM. (6.2)

(We remark that this decomposition is precisely the weight space decomposition
of M in the sense of [BK3, (5.1)].) Similarly, we have that

Wd(λ, c) =
⊕

A∈Idemd(λ)

Wd(λ, c)eA, (6.3)

so each Wd(λ, c)eA is a projective left Wd(λ, c)-module.
For the next lemma, recall the U(p)-modules ZAc (V ) from (4.6), for each

A ∈ Tabd(λ). We will from now on view these as W (λ)-modules by restriction.
Since ZAc (V ) is a submodule of V ⊗dc , the W (λ)-module ZAc (V ) belongs to the
category Rdc(λ), i.e. it is the inflation of a Wd(λ, c)-module.

Lemma 6.1. For A ∈ Idemd(λ), the map

Wd(λ, c)eA → ZAc (V ), xeA 7→ xvi(A)

is an isomorphism of left Wd(λ, c)-modules.
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Proof. Note first that vi(A) ∈ eAV ⊗dc does indeed belong to the submodule ZAc (V ),
so this is a well-defined homomorphism. Letting dj be the sum of the entries on the
jth row of A, the stabilizer of i(A) in Sd is the parabolic subgroup Sd1 ×· · ·×Sdn .
Pick a set I(A) of representatives for the orbits of Sd1 × · · · × Sdn

on the set
{i ∈ Id | (i, i(A)) ∈ Jd}. Then by Theorem 3.9, the vectors {Ξi,i(A) | i ∈ I(A)}
form a basis for Wd(λ, c)eA. Moreover, the definition of Ξi,i(A) gives that

Ξi,i(A)vi(A) =
∑

(j,i(A))∼(i,i(A))

vj .

These vectors for all i ∈ I(A) form a basis for ZAc (V ). �

Theorem 6.2. For any r ≥ 0 and d = Nr, Cc ~ detr is a projective Wd(λ, c)-
module.

Proof. Note that Cc ~ detr ∼= Cc ⊗ detr ∼= Cc+r1 is the irreducible Wd(λ, c)-
module L(Ac+r1). No other tableau in Coldc(λ) has the same content as Ac+r1,
as follows easily on recalling the explicit definition of Ac from §4. This means
that L(Ac+r1) is the only irreducible module in its block, so we just need to
show that L(Ac+r1) appears with multiplicity one as a composition factor of the
regular module Wd(λ, c). Moreover, it shows that V (Ac+r1) ∼= L(Ac+r1), and for
Ac+r1 6= B ∈ Coldc(λ) the standard module V (B) does not even have L(Ac+r1) as
a composition factor.

The first part of Lemma 4.10 shows that ZAc (V ) has a filtration as a p-
module with sections of the form V (B) for B ∈ Coldc(λ), each V (B) appearing with
multiplicity KB,A. Hence it also has such a filtration when viewed as a Wd(λ, c)-
module. Therefore, by Lemma 6.1 and (6.3), the regular module Wd(λ, c) has a
filtration with sections of the form V (B) for B ∈ Coldc(λ), each V (B) appearing
with multiplicity

∑
A∈Idemd(λ)KB,A.

Combining the conclusions of the previous two paragraphs, it just remains to
show that KAc+r1,A is zero for all but one A ∈ Idemd(λ), and for that A it is equal
to one. This is an easy combinatorial exercise starting from the definition of the
generalized Kostka numbers before the statement of Lemma 4.10; the only A ∈
Idemd(λ) for which KAc+r1,A is non-zero is the one whose jth row has rightmost
entry rpj for each j with pj > 0. �

Lemma 5.6 from the previous section follows immediately from Theorem 6.2
and the definition of the category Rc(λ), so we have now completed the proofs of
Theorems A and B from the introduction.

6.2. The row removal trick

The next goal is to prove that Hd(λ, c) is a sum of blocks of Hd(Λ), as remarked
in the introduction. Pick n̄ ≤ n and let

λ̄ = (p1, . . . , pn̄) (6.4)
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be the partition obtained by removing the largest (n − n̄) parts from our fixed
partition λ. Let N̄ = N − pn̄+1 − · · · − pn, Ī = {1, . . . , N̄} and ḡ = glN̄ (C) with
natural module V̄ . Working from the diagram of λ̄, we define a grading on ḡ, hence
subalgebras m̄, h̄ and p̄, as usual. The finite W -algebra W (λ̄) is then a subalgebra
of U(p̄). We denote the analogue of tensor space for W (λ̄) by V̄ ⊗dc , with basis
{vi | i ∈ Īd}. Let Φ̄d,c : W (λ̄)→ EndC(V̄ ⊗dc ) be the resulting representation, with
image Wd(λ̄, c). The same degenerate cyclotomic Hecke algebra Hd(Λ) that acts
on the right on V ⊗dc also acts on the right on V̄ ⊗dc according to the formula from
Lemma 3.3. Let Ψ̄d : Hd(Λ) → EndC(V̄ ⊗dc )op be the resulting homomorphism,
with image Hd(λ̄, c).

Define an embedding Īd ↪→ Id under which i ∈ Īd maps to the unique element
î ∈ Id such that row(î) and col(î) (computed from the diagram of λ) are equal to
row(i) and col(i) (computed from the diagram of λ̄). Let e denote the idempotent

e =
∑
i∈Īd

eî,î ∈ EndC(V ⊗dc ). (6.5)

In the notation of (6.1), we have that e =
∑
A eA summing over all A ∈ Idemd(λ)

such that all entries on rows n̄+ 1, . . . , n of A are zero. This shows that e belongs
to the subalgebra Wd(λ, c), so it is an Hd(Λ)-equivariant projection and eV ⊗dc is
an Hd(Λ)-submodule of V ⊗dc . It is obvious from Lemma 3.3 that the map

α : V̄ ⊗dc
∼−→ eV ⊗dc , vi 7→ vî (6.6)

is an isomorphism of right Hd(Λ)-modules. Hence, there is a unique surjective
algebra homomorphism

π : Hd(λ, c) � Hd(λ̄, c) (6.7)
such that π ◦Ψd = Ψ̄d. Let

β : EndC(V̄ ⊗dc ) ∼−→ EndC(eV ⊗dc ) = eEndC(V ⊗dc )e, ei,j 7→ eî,ĵ (6.8)

be the natural algebra isomorphism induced by α.

Lemma 6.3. The restriction of the map β to the subalgebra Wd(λ̄, c) gives an
algebra isomorphism β : Wd(λ̄, c)→ eWd(λ, c)e with β(Ξi,j) = Ξî,ĵ .

Proof. Using Theorem 3.7, β maps the subalgebra Wd(λ̄, c) = EndHd(Λ)(V̄ ⊗dc ) to
eEndHd(Λ)(V ⊗dc )e = eWd(λ, c)e. The fact that β maps the basis element Ξi,j of
Wd(λ̄, c) to the element Ξî,ĵ is now clear from Theorem 3.9. �

There are also algebra embeddings

γ : W (λ̄) ↪→W (λ), T
(r)
i,j 7→ T

(r)
i,j , (6.9)

δ : U(p̄) ↪→ U(p), ei,j 7→ eî,ĵ . (6.10)

For a proof that the first of these is well-defined, see the first paragraph of [BK3,
§6.5]. We stress that γ is definitely not the same as the restriction of δ: that usually
does not even mapW (λ̄) intoW (λ). Nevertheless, we still have the following result.
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Lemma 6.4. Viewing the p-module V ⊗dc as a p̄-module via the embedding δ, the
subspace eV ⊗dc is a p̄-submodule and the map α : V̄ ⊗dc → eV ⊗dc is a p̄-module
isomorphism. Viewing the W (λ)-module V ⊗dc as a W (λ̄)-module via the embedding
γ, the subspace eV ⊗dc is a W (λ̄)-submodule and α is a W (λ̄)-module isomorphism.
Moreover, the following diagram commutes:

W (λ̄)
Φ̄d,c−−−−→ Wd(λ̄, c) ↪→ EndC(V̄ ⊗dc ) ←−−−− U(p̄)

β

y yβ
Wd(λ, c)e ↪→ EndC(V ⊗dc )ey ε

x xε y
W (λ) −−−−→

Φd,c

Wd(λ, c) ↪→ EndC(V ⊗dc ) ←−−−− U(p).

γ δ

Here, ε : EndC(V ⊗dc ) → EndC(V ⊗dc )e = HomC(eV ⊗dc , V ⊗dc ) denotes the natural
restriction map.

Proof. The first statement is obvious. To prove the second statement (which is
actually never used elsewhere in the article), one needs to use the explicit definition
of the generators [BK3, (3.15)–(3.17)] ofW (λ̄); the key point is that for 1 ≤ i, j ≤ n̄
and x < n̄, all monomials ei1,j1 · · · eis,js in the expansion of the elements T (r)

i,j;x from
[BK3, (3.11)] that have row(it) > n̄ for some t necessarily act as zero on eV ⊗dc .
Now let us verify the commutativity of the left hand pentagon. Take x ∈ W (λ̄)
and v ∈ V̄ ⊗dc . We just need to check that Φd,c(γ(x)) and β(Φ̄d,c(x)) act in the
same way on α(v) ∈ eV ⊗dc :

β(Φ̄d,c(x))α(v) = α(Φ̄d,c(x)v) = α(xv) = γ(x)α(v) = Φd,c(γ(x))α(v).

The proof that the right hand pentagon commutes is similar, using the first state-
ment. The middle two squares commute by definition. �

Let us call A ∈ Coldc(λ) contractible if the entry in the ith row and jth
column is equal to (cj + 1 − i) (the same entry as in Ac) for all i = n̄ + 1, . . . , n
and j = 1, . . . , pi. In that case, we define Ā ∈ Coldc(λ̄) to be the tableau obtained
from A by removing the rows numbered n̄+ 1, . . . , n.

Lemma 6.5. Identifying Wd(λ̄, c) with eWd(λ, c)e via the isomorphism β from
Lemma 6.3, there are Wd(λ̄, c)-module isomorphisms

eV (A) ∼=
{
V (Ā) if A is contractible,
0 otherwise

for all A ∈ Coldc(λ) and

eL(A) ∼=
{
L(Ā) if A is contractible,
0 otherwise
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for all A ∈ Stddc(λ). Moreover, given A,B ∈ Coldc(λ) such that A is contractible
and B is not, we have that θ(A) 6= θ(B).

Proof. Using the right hand part of the commutative diagram from Lemma 6.4,
it suffices to prove the first isomorphism at the level of p̄-modules: viewing the
irreducible p-module V (A) as a p̄-module via the embedding δ, we need to show
that the p̄-submodule eV (A) is either isomorphic to V (Ā) or is zero according
to whether A is contractible or not. Since eV (A) is just a sum of certain weight
spaces of V (A), this follows from a well known result at the level of h-modules.

To deduce the second isomorphism, recall that if A ∈ Stddc(λ) then L(A) is
the unique irreducible quotient of V (A) (viewed now as a W (λ)-module). Hence
eL(A) is zero if A is not contractible. If it is contractible, then the highest weight
vector of V (A) lies in the subspace eV (A), so eL(A) is not zero. Moreover, it is
irreducible by a well known result [G, (6.2b)], and it is a quotient of eV (A) ∼= V (Ā).
This implies that eL(A) ∼= L(Ā) as required.

For the last statement, suppose that A is contractible and θ(A) = θ(B). The
nth row of A contains the entries c1 + 1 − n, . . . , cl + 1 − n. Since θ(B) = θ(A),
B must contain these entries somewhere, hence, because of (4.1), B must contain
these entries in its nth row too. Now remove the nth row and repeat the argument
to deduce that B is contractible. �

Theorem 6.6. There is a central idempotent f ∈ Hd(λ, c) such that the restriction
of the map π from (6.7) defines an algebra isomorphism

π : fHd(λ, c)f ∼−→ Hd(λ̄, c).

Moreover, identifying Hd(λ̄, c) with fHd(λ, c)f in this way, there is a natural
Hd(λ̄, c)-module isomorphism

HomW (λ̄)(V̄
⊗d
c , eM) ∼= f HomW (λ)(V ⊗dc ,M)

for any left Wd(λ, c)-module M .

Proof. By Lemma 6.5, given A,B ∈ Stddc(λ) such that A is contractible and B
is not, the corresponding irreducible Wd(λ, c)-modules L(A), L(B) have different
central characters. Hence, there is a central idempotent f ∈Wd(λ, c) such that

fL(A) =
{
L(A) if A is contractible,
0 otherwise, (6.11)

for every A ∈ Stddc(λ). Moreover, identifying Wd(λ̄, c) with eWd(λ, c)e via the
isomorphism β from Lemma 6.3, well known general theory implies that the
functor M 7→ eM arising from the idempotent e = ef = fe defines an equiva-
lence between the categories fWd(λ, c)f -mod and Wd(λ̄, c)-mod. Since the en-
domorphism f of V ⊗dc centralizes Wd(λ, c), it is also a central idempotent in
Hd(λ, c) = EndW (λ)(V ⊗dc )op, and we have that

fHd(λ, c)f = EndWd(λ,c)(fV ⊗dc )op ∼= EndeWd(λ,c)e(eV ⊗dc )op

∼= EndWd(λ̄,c)(V̄
⊗d
c )op = Hd(λ̄, c).
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The composite isomorphism is simply the restriction of π, hence that is an isomor-
phism as claimed. Moreover, for any Wd(λ, c)-module M , we have that

f HomWd(λ,c)(V ⊗dc ,M) = HomWd(λ,c)(V ⊗dc , fM) = HomWd(λ,c)(fV ⊗dc , fM)
∼= HomeWd(λ,c)e(eV ⊗dc , eM) ∼= HomWd(λ̄,c)(V̄

⊗d
c , eM)

as Hd(λ̄, c)-modules. �

Corollary 6.7. Hd(λ, c) ∼= fHd(Λ)f for some central idempotent f ∈ Hd(Λ).

Proof. If at least d parts of λ are equal to l, then Hd(λ, c) ∼= Hd(Λ) by Lemma 3.5.
So the theorem shows in particular that Hd(λ̄, c) ∼= fHd(Λ)f for some central
idempotent f ∈ Hd(Λ). �

6.3. Divided power modules and permutation modules

Call S ∈ Idemd(λ) a special tableau if all its entries are ≤ 1 and all its non-zero
entries appear in column l. Such tableaux exist if and only if at least d parts of λ
are equal to l. In that case, the functor HomW (λ)(V ⊗dc , ?) is particularly easy to
understand, because by the following lemma it just amounts to projecting onto a
certain weight space. Moreover, using Theorem 6.6, it is usually possible to reduce
computations involving the functor HomW (λ)(V ⊗dc , ?) in general to this special
case.

Lemma 6.8. Let S ∈ Idemd(λ) be a special tableau. Then there is an algebra iso-
morphism

h : Hd(Λ)→ eSWd(λ, c)eS

under which x ∈ Hd(Λ) maps to the unique element h(x) ∈ eSWd(λ, c)eS with
h(x)vi(S) = vi(S)x. Moreover, identifying Hd(Λ) with eSWd(λ, c)eS in this way,
there is a natural left Hd(Λ)-module isomorphism

HomW (λ)(V ⊗dc ,M) ∼−→ eSM, θ 7→ θ(vi(S))

for any left Wd(λ, c)-module M .

Proof. By Lemma 6.1 we have that V ⊗dc
∼= Wd(λ, c)eS . Hence, using Theorem 3.7

and Lemma 3.5 too, we get isomorphisms

eSWd(λ, c)eS ∼= EndWd(λ,c)(Wd(λ, c)eS)op ∼= EndW (λ)(V ⊗dc )op ∼= Hd(Λ).

This is the isomorphism h. Moreover, we have that

HomW (λ)(V ⊗dc ,M) ∼= HomWd(λ,c)(Wd(λ, c)eS ,M) ∼= eSM

which proves the second statement. �

As a first application of this lemma, we can compute the image of the divided
power modules Z(A, c) under the functor Homg(Pc ⊗ V ⊗d, ?). For A ∈ Tabd(λ)
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with γ(A) = (a1, . . . , aN ), introduce the following elements of Hd(λ, c):

wA =
∑

w∈Sa1×···×SaN

w, (6.12)

xA =
N∏
i=1

ai∏
j=1

l∏
k=col(i)+1

(xa1+···+ai−1+j − (ck + qk − n)). (6.13)

Note these elements commute, indeed, xA centralizes all elements of the subgroup
Sa1 × · · · × SaN

. The corresponding permutation module is the following left ideal
of Hd(λ, c):

M(A, c) = Hd(λ, c)xAwA. (6.14)

When c = 0, we denote this module simply by M(A).

Theorem 6.9. For A ∈ Tabd(λ), we have that

M(A, c) ∼= HomW (λ)(V ⊗dc , ZAc (V )) ∼= Homg(Pc ⊗ V ⊗d, Z(A, c)).

Let γ(A) = (a1, . . . , aN ), col(i(A)) = (n1, . . . , nd) and Sd/Sa1 × · · ·×SaN
be some

choice of coset representatives. Then, in the special case that at least d parts of λ
are equal to l, the vectors{

wxr11 · · ·x
rd

d xAwA
∣∣ 0 ≤ ri < ni, w ∈ Sd/Sa1 × · · · × SaN

}
give a basis for M(A, c) and

dimM(A, c) =
d!

a1! · · · aN !
col(1)a1 · · · col(N)aN .

Proof. Note by Lemma 5.18 that V(Z(A, c)) ∼= ZAc (V ). Given this, the second
isomorphism follows by Lemma 5.11. Now consider the first isomorphism in the
special case that at least d parts of λ are equal to l. Let S ∈ Idemd(λ) be a special
tableau. Identifying Hd(Λ) with eSWd(λ, c)eS and Wd(λ, c)eS with V ⊗dc according
to the first part of Lemma 6.8 and Lemma 6.1, the map

Hd(Λ)→ eSV
⊗d
c , x 7→ vi(S)x = h(x)vi(S) (6.15)

is a bimodule isomorphism. It maps the left ideal Hd(Λ)xAwA isomorphically onto
the left eSWd(λ, c)eS-submodule of eSV ⊗dc generated by the vector vi(S)xAwA. We
just need to show this submodule is equal to eSZAc (V ), since that is isomorphic
to HomW (λ)(V ⊗dc , ZAc (V )) by the last part of Lemma 6.8.

Define j ∈ Id so that col(j) = col(i(A)) and row(j) = row(i(S)). The key
observation is that

vi(S)xA = vj . (6.16)
To see this, use Lemma 3.3 to apply the elements from the product on the right
hand side of (6.13) in order starting with the one involving x1. In particular,
this shows that vi(S)xAwA = vjwA; the latter vector clearly lies in eSZ

A
c (V ).

Hence, the eSWd(λ, c)eS-submodule of eSV ⊗dc generated by the vector vi(S)xAwA
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is contained in eSZ
A
c (V ). Now take 0 ≤ ri < ni and w ∈ Sd. Define j(w) ∈ Id so

that col(j(w)) = col(i(A)) and row(j(w)) = row(i(S) · w). Then we have that

vi(S)wx
r1
1 · · ·x

rd

d xAwA = vLr1
1 ◦···◦Lrd

d (j(w))wA + (∗)

where (∗) is a sum of vectors of eSV ⊗dc of strictly smaller degree in the natural
grading. The vectors{

vLr1
1 ◦···◦Lrd

d (j(w))wA

∣∣∣∣ 0 ≤ ri < ni, w ∈ Sd/Sa1 × · · · × SaN

}
give the obvious basis for the weight space eSZAc (V ). Since we know already that

vi(S)wx
r1
1 · · ·x

rd

d xAwA = h(wxr11 · · ·x
rd

d )vi(S)xAwA

lies in eSZ
A
c (V ), it follows that the lower terms (∗) all belong to eSZAc (V ), and

by a triangular change of basis argument the vectors{
vi(S)wx

r1
1 · · ·x

rd

d xAwA
∣∣ 0 ≤ ri < ni, w ∈ Sd/Sa1 × · · · × SaN

}
form a basis for eSZAc (V ). This proves that the eSWd(λ, c)eS-submodule of eSV ⊗dc

generated by the vector vi(S)xAwA is equal to eSZ
A
c (V ), and at the same time

shows that the vectors from in the statement of the theorem form a basis for
M(A, c).

Finally, to deduce the existence of the first isomorphism in general from this
special case, assume that λ̄ is obtained by removing parts from λ like in (6.4).
Take A ∈ Tabd(λ) such that all entries in rows n̄ + 1, . . . , n of A are zero, and
let Ā ∈ Tabd(λ̄) be the tableau obtained by removing these rows. Let e be the
idempotent from (6.5). Identifying eWd(λ, c)e withWd(λ̄, c) via the isomorphism β

from Lemma 6.3, we obviously have that eZAc (V ) ∼= ZĀc (V̄ ) as W (λ̄)-modules. We
have shown already that HomW (λ)(V ⊗dc , ZAc (V )) ∼= M(A, c). So now Theorem 6.6
implies that HomW (λ̄)(V̄ ⊗dc , ZĀc (V̄ )) ∼= Ψd(M(A, c)) as Hd(λ̄, c)-modules. It just
remains to observe that Ψd(xA) = xĀ, so Ψd(M(A, c)) = M(Ā, c). �

6.4. Cyclotomic Schur algebras and the proof of Theorem C

Now we let Sd(λ, c) denote the finite dimensional algebra

Sd(λ, c) = EndHd(Λ)

( ⊕
A∈Tabd(λ)

M(A, c)
)op

∼= EndW (λ)

( ⊕
A∈Tabd(λ)

ZAc (V )
)op

,

the second isomorphism being a consequence of Theorems 5.10 and 6.9. As usual, if
c = 0, we denote this algebra simply by Sd(λ) and (for reasons explained shortly)
call it the cyclotomic Schur algebra. The first part of the following theorem is
due to Stroppel [S1, Theorem 10.1], and can be viewed as a parabolic analogue of
Soergel’s Struktursatz.
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Theorem 6.10. The functor Homg(Pc ⊗ V ⊗d, ?) : Odc(λ) → Hd(λ, c)-mod is fully
faithful on projective modules. In particular, it induces an algebra isomorphism

Endg

( ⊕
A∈Tabd(λ)

Z(A, c)
)op

∼−→ Sd(λ, c).

Hence the category Odc(λ) is equivalent to the category of all finite dimensional left
Sd(λ, c)-modules.

Proof. By Theorem 4.8 and Corollaries 4.9 and 4.6, Pc ⊗ V ⊗d is a direct sum
of all the self-dual projective indecomposable modules in Odc(λ), each appearing
with some non-zero multiplicity. Applying [KSX, Theorem 2.10] as in the proof
of [KSX, Theorem 3.2], the proof of the first statement reduces to checking that
there exists an exact sequence 0 → P0 → P1 → P2 in Odc(λ) such that P0 is a
projective generator and P1, P2 are self-dual projectives. To see this, there is for
A ∈ Tabd(λ) a short exact sequence of p-modules 0 → ZAc (V ) → V ⊗dc → K → 0
for some finite dimensional p-module K. Inducing, we get a short exact sequence
0→ Z(A, c)→ Pc ⊗ V ⊗d → L→ 0 where L ∈ Odc(λ) has a parabolic Verma flag.
By Theorem 4.8, the injective hull I of L is a self-dual projective module and we
have constructed an exact sequence

0→ Z(A, c)→ Pc ⊗ V ⊗d → I.

By Theorem 4.14, the module
⊕

A∈Tabd(λ) Z(A, c) is a projective generator for
Odc(λ), so it just remains to take the direct sum of these exact sequences over all
A ∈ Tabd(λ). Moreover, the image of the projective generator

⊕
A∈Tabd(λ) Z(A, c)

under the functor Homg(Pc ⊗ V ⊗d, ?) is isomorphic to
⊕

A∈Tabd(λ)M(A, c) by
Theorem 6.9. So the second statement now follows from the first, and then the
final statement follows by well known general theory. �

To deduce Theorem C, it just remains to explain the relationship between the
algebra Sd(λ, c) and the degenerate analogue of the cyclotomic q-Schur algebra of
Dipper, James and Mathas from [DJM]; see also [AMR, §6] where the degenerate
case is considered explicitly. The key observation is that if at least d parts of
λ are equal to l (when Hd(λ, c) = Hd(Λ)) our permutation module M(A, c) is
essentially the same as the permutation module Mµ of Dipper, James and Mathas,
for the parameters Q1, . . . , Ql defined from Qi = ci + qi − n and the l-tuple of
compositions µ = (µ(1), . . . , µ(l)) defined so that the parts of µ(i) are the entries
in the ith column of A. More precisely, the permutation module of Dipper, James
and Mathas is exactly the right ideal wAxAHd(Λ), which is isomorphic to our left
module M(A, c) viewed as a right module via the antiautomorphism

∗ : Hd → Hd xi 7→ xi, sj 7→ sj . (6.17)

Since the degenerate analogue of the cyclotomic q-Schur algebra of Dipper, James
and Mathas is the endomorphism algebra of a certain direct sum of their per-
mutation modules, this implies that Sd(λ, c) is at least Morita equivalent to their
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algebra. Hence, Theorem C from the introduction is a special case of Theorem 6.10.
The following lemma further clarifies the relationship between permutation mod-
ules and the tensor space V ⊗dc , recalling (6.2).

Lemma 6.11. Assume that A ∈ Idemd(λ). Then the following are isomorphic as
right Hd(Λ)-modules:

(i) the weight space eAV ⊗dc ;
(ii) the right ideal wAxAHd(Λ) of Hd(Λ);
(iii) the right ideal wAxAHd(λ, c) of Hd(λ, c);
(iv) the permutation module M(A, c) viewed as a right module via ∗.

Proof. Assume to start with that at least d parts of λ are equal to l, so that a
special tableau S ∈ Idemd(λ) exists and Hd(λ, c) = Hd(Λ). Using (6.17), it follows
that the dimension of wAxAHd(Λ) is the same as the dimension of M(A, c), which
we computed in Theorem 6.9. This agrees with the dimension of the weight space
eAV

⊗d
c . The bimodule isomorphism from (6.15) identifies wAxAHd(Λ) with the

right Hd(Λ)-submodule of eSV ⊗dc generated by the vector vi(S)wAxA. Let j ∈ Id
satisfy col(j) = col(i(A)) and row(j) = row(i(S)). Left multiplication by Ξj,i(A)

clearly defines a right Hd(Λ)-module homomorphism

θ : eAV ⊗dc → eSV
⊗d
c .

By the definition of Ξj,i(A) from Theorem 3.9, and using (6.16) for the penultimate
equality, we have that

θ(vi(A)) = Ξj,i(A)vi(A) =
∑

w∈Sa1×···×SaN

vj·w = vjwA = vi(S)xAwA = vi(S)wAxA.

Hence, the image of θ contains the copy vi(S)wAxAHd(Λ) of wAxAHd(Λ). We
have already observed that dim eAV

⊗d
c = dimwAxAHd(Λ), so we now get that θ

is injective and its image is isomorphic to wAxAHd(Λ). This proves the modules
(i) and (ii) are isomorphic in this special case.

Now assume that λ̄ is obtained by removing parts from λ, like in (6.4). Take
A ∈ Tabd(λ) such that all entries in rows n̄ + 1, . . . , n of A are zero, and let Ā ∈
Tabd(λ̄) be the tableau obtained by removing these rows. Let e be the idempotent
from (6.5). By the previous paragraph, eAV ⊗dc is isomorphic to wAxAHd(Λ) as
a right Hd(Λ)-module. On the other hand, recalling Lemma 6.3, we have that
eA = β(eĀ) = eAe, so

eAV
⊗d
c = eAeV

⊗d
c = β(eĀ)α(V̄ ⊗dc ) = α(eĀV̄

⊗d
c ),

which is isomorphic to eĀV̄
⊗d
c as a right Hd(Λ)-module. This proves that the

modules (i) and (ii) are isomorphic in general.
To deduce the remaining statements in the lemma, note the module (i) is

an Hd(λ, c)-module, so by the isomorphism between (i) and (ii) we see that the
module (ii) is the inflation of an Hd(λ, c)-module too. Recalling Theorem 6.6, this
easily implies that (ii) and (iii) are isomorphic, and it is obvious from (6.14) that
(iii) and (iv) are isomorphic. �
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6.5. Parabolic Verma modules and Specht modules

The final task is to give an intrinsic description of the Hd(Λ)-modules which cor-
respond to parabolic Verma modules and standard modules under the functors
Homg(Pc ⊗ V ⊗d, ?) and HomW (λ)(V ⊗dc , ?), respectively. For a partition µ of d,
let S(µ) denote the usual (irreducible) Specht module for the group algebra CSd
parametrized by the partition µ. Given a ∈ C, there is the evaluation homomor-
phism

eva : Hd � CSd, x1 7→ a, sj 7→ sj . (6.18)
We denote the lift of the Specht module S(µ) to Hd through this map by ev∗a(S(µ))
and also refer to it as a Specht module.

Let A ∈ Coldc(λ). Define an l-tuple of partitions µ = (µ(1), . . . , µ(l)) by letting
the parts of µ(i) be the entries in the ith column of (A−Ac). Say µ(i) is a partition
of di for each i = 1, . . . , l. We view H(d1,...,dl) = Hd1 ⊗ · · · ⊗Hdl

as a subalgebra
of Hd in the obvious way; see e.g. [K, §3.4]. The (outer) tensor product

ev∗c1+q1−n(S(µ(1))) � · · ·� ev∗cl+ql−n(S(µ(l))) (6.19)

is a left H(d1,...,dl)-module. Define the Specht module S(A) by setting

S(A) = Hd ⊗H(d1,...,dl)

(
ev∗c1+q1−n(S(µ(1))) � · · ·� ev∗cl+ql−n(S(µ(l)))

)
. (6.20)

By [K, 3.2.2], Hd is a free right H(d1,...,dl)-module with basis given by any set of
Sd/Sd1 × · · · × Sdl

-coset representatives, which implies that

dimS(A) =
d!

d1! · · · dl!
× dimS(µ(1))× · · · × dimS(µ(l)). (6.21)

It is quite easy to see directly from the definition (6.20) that the action of Hd on
S(A) factors through to the quotient Hd(Λ), so S(A) can be viewed as an Hd(Λ)-
module. This also follows from the following theorem, which shows moreover that
S(A) is an Hd(λ, c)-module.

Theorem 6.12. For A ∈ Coldc(λ), we have that

S(A) ∼= HomW (λ)(V ⊗dc , V (A)) ∼= Homg(Pc ⊗ V ⊗d, N(A))

as left Hd-modules.

Proof. The second isomorphism follows from Lemmas 5.11 and 5.18. To prove the
first isomorphism, assume to start with that at least d parts of λ are equal to l, and
let S be a special tableau. Let γ(A − Ac) = (a1, . . . , aN ) and µ = (µ(1), . . . , µ(l))
be the l-tuple of partitions so that µ(i) is the partition of di whose parts are
the entries in the ith column of A − Ac. Let Z = ZA−Ac

c (V ). The grading on
V ⊗dc induces a grading Z =

⊕
i≥b Zi on the subspace Z; the bottom degree is

b =
∑N
i=1 ai(l− col(i)). The subspace Z>b =

⊕
i>b Zi is stable under the action of

p, and clearly the quotient p-module Z/Z>b is isomorphic to the inflation of the
h-module Zb. Letting V(j) denote the span of all {vi | col(i) = j}, we have that

Zb = Zµ
(1)

c1

(
V(1)

)
� · · ·� Zµ

(l)

cl

(
V(l)

)
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as an h-module, where for a composition µ = (µ1, . . . , µr) and a vector space E we
write Zµ(E) = Zµ1(E)⊗ · · · ⊗Zµr (E). Hence, by the well known classical theory,
there is an Sd1 × · · · × Sdl

-module isomorphism

Homh(V ⊗dc , Zb) ∼= M(µ(1)) � · · ·�M(µ(l)),

where for a composition µ = (µ1, . . . , µr) of d we write M(µ) for the usual per-
mutation module for the symmetric group Sd, i.e. the module induced from the
trivial repesentation of the parabolic subgroup Sµ1 × · · · × Sµr . Composing the
natural maps

Homh(V ⊗dc , Zb) ∼= Homp(V ⊗dc , Z/Z>b) ↪→ HomW (λ)(V ⊗dc , Z/Z>b),

we have constructed an embedding

f : M(µ(1)) � · · ·�M(µ(l)) ↪→ HomW (λ)(V ⊗dc , Z/Z>b)

at the level of Sd1 × · · · ×Sdl
-modules. Let us describe the image of f explicitly in

coordinates. Identify Hd(Λ) with eSWd(λ, c)eS and HomW (λ)(V ⊗dc , Z/Z>b) with
eSZ/eSZ>b according to Lemma 6.8. Let j ∈ Id satisfy row(j) = row(i(S)) and
col(j) = col(i(A − Ac)). Then the image of f is identified with the span of the
vectors {vjwwA−Ac

+ eSZ>b | w ∈ Sd1 × · · · × Sdl
}. Moreover, by (6.16), we know

that vjwwA−Ac
= vi(S)xA−Ac

wwA−Ac
. Hence, for any i = 1, . . . , l, we have that

h(xd1+···+di−1+1)vjwwA−Ac
= vi(S)xd1+···+di−1+1xA−Ac

wwA−Ac

= vi(S)xA−Ac
xd1+···+di−1+1wwA−Ac

= vjxd1+···+di−1+1wwA−Ac

≡ (ci + qi − n)vjwwA−Ac
(mod eSZ>b),

the final congruence following by an explicit calculation using Lemma 3.3. For a
composition µ of d, let us now write ev∗a(M(µ)) for theHd-module arising by lifting
the permutation module M(µ) from CSd to Hd via the evaluation homomorphism
(6.18). Then ev∗c1+q1−n(M(µ(1))) � · · · � ev∗cl+ql−n(M(µ(l))) is the unique lift of
M(µ(1)) � · · ·�M(µ(l)) to H(d1,...,dl) such that xd1+···+di−1+1 acts as (ci + qi− n)
for each i = 1, . . . , l. So the calculation we just made establishes that the map f
is actually an embedding

f : ev∗c1+q1−n(M(µ(1))) � · · ·� ev∗cl+ql−n(M(µ(l)))

↪→ HomW (λ)(V ⊗dc , Z/Z>b) ∼= eSZ/eSZ>b

at the level of H(d1,...,dl)-modules. Moreover, the image of f contains the vector
vjwA−Ac

+ eSZ>b which is a generator of eSZ/eSZ>b as an Hd-module.
Now, as an h-module, V (A) can be viewed as the (outer) tensor product

V (A) = V (A1) � · · ·� V (Al),

where Ai is the ith column of A and V (Ai) is the corresponding irreducible glqi
(C)-

module. It is well known that there is a surjective glqi
(C)-module homomorphism

Zµ
(i)

ci

(
V(i)

)
� V (Ai). So there is a surjective h-module homomorphism Zb � V (A),
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hence a surjective p-module homomorphism Z/Z>b � V (A). Moreover, by the
classical theory again,

Homh(V ⊗dc , V (A)) ∼= S(µ(1)) � · · ·� S(µ(l))

as an Sd1 × · · · × Sdl
-module. Combining this with the conclusion of the previous

paragraph, we have constructed a commutative square

ev∗c1+q1−n(M(µ(1))) � · · ·� ev∗cl+ql−n(M(µ(l)))

‖
Homp(V ⊗dc , Z/Z>b) ↪→ HomW (λ)(V ⊗dc , Z/Z>b)y y
Homp(V ⊗dc , V (A)) ↪→ HomW (λ)(V ⊗dc , V (A))

‖

S(µ(1)) � · · ·� S(µ(l))

where the vertical maps are surjections arising from the map Z/Z>b � V (A). This
shows that there is an H(d1,...,dl)-module homomorphism

ev∗c1+q1−n(S(µ(1))) � · · ·� ev∗cl+ql−n(S(µ(l))) ↪→ HomW (λ)(V ⊗dc , V (A))

whose image generates HomW (λ)(V ⊗dc , V (A)) as an Hd-module. Applying adjoint-
ness of tensor and hom, we get from this a surjective Hd-module homomorphism
S(A) � HomW (λ)(V ⊗dc , V (A)). In view of (6.21) and another dimension calcula-
tion for the right hand side, this is in fact an isomorphism, and we are done in the
special case.

Now for the general case, let λ̄ be obtained from λ by removing rows as usual.
Take A ∈ Coldc(λ) and assume A is contractible, so Ā ∈ Coldc(λ̄) is defined. By
Lemma 6.5, we know that eV (A) ∼= V (Ā). Hence, by the last part of Theorem 6.6,
we have that HomW (λ̄)(V̄ ⊗dc , V (Ā)) ∼= f HomW (λ)(V ⊗dc , V (A)). It remains to ob-
serve using the last statement from Lemma 6.5 that all composition factors of
V (A) are of the form L(B) with B contractible. Hence, recalling (6.11), we have
that fV (A) = V (A). So, we deduce that

f HomW (λ)(V ⊗dc , V (A)) = HomW (λ)(V ⊗dc , fV (A))

= HomW (λ)(V ⊗dc , V (A)) ∼= S(A)

as Hd(Λ)-modules. �

Corollary 6.13. For A ∈ Tabd(λ), the permutation module M(A, c) has a Specht
flag in which the Specht module S(B) appears with multiplicity KB,A for each
B ∈ Coldc(λ), arranged in any order refining the Bruhat ordering on Coldc(λ) (most
dominant at the bottom).

Proof. Immediate from Theorems 6.12, 6.9 and Lemma 4.10. �
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Remark 6.14. The Specht module S(A) from (6.20) is isomorphic to the degen-
erate analogue of the cell module Sµ of Dipper, James and Mathas. An explicit
construction of a filtration like in Corollary 6.13 can be deduced from [AMR,
Theorem 6.3] using the formalism of cellular algebras.

For A ∈ Stddc(λ), we let

D(A) = Homg(Pc ⊗ V ⊗d,K(A)) ∼= HomW (λ)(V ⊗dc , L(A)). (6.22)

By Theorem 5.10 and Lemma 5.3, the modules {D(A) | A ∈ Stddc(λ)} form a
complete set of pairwise non-isomorphic irreducible Hd(λ, c)-modules.

Theorem 6.15. For A ∈ Stddc(λ), the Specht module S(A) has an irreducible cosocle
isomorphic to D(A). Moreover, for A ∈ Coldc(λ) and B ∈ Stddc(λ), we have that

[S(A) : D(B)] = [N(A) : K(B)],

so the composition multiplicities of Specht modules can be computed in terms of
Kazhdan-Lusztig polynomials.

Proof. Apply Theorem 6.12 and exactness of the functor Homg(Pc ⊗ V ⊗d, ?). �

Remark 6.16. In the case c = 0, an explicit formula for the composition multi-
plicity [N(A) : K(B)] in terms of Kazhdan-Lusztig polynomials is recorded in the
formula [BK3, (4.8)]: the expression in parentheses there is exactly [N(A) : K(B)]
by [BK3, Theorem 4.5]. We refer the reader to [BK3, §8.5] for further combinato-
rial results about the representation theory of Wd(λ, c), all of which can easily be
translated into analogous (but mostly already known) results about the representa-
tion theory of Hd(λ, c) using Theorem 5.10 and Lemma 5.16. We point out finally
by [AMR, Theorem 6.11] that Hd(λ, c), hence also the higher level Schur algebra
Wd(λ, c), is a semisimple algebra if and only if d ≤ qi − qj for all 1 ≤ i < j ≤ l
with ci = cj .

Appendix A. Symmetric algebras

In this appendix we include a short proof of the fact that the degenerate cyclotomic
Hecke algebra Hd(Λ) is a symmetric algebra. The q-analogue of this result is due to
Malle and Mathas [MM]. The degenerate case is actually much easier and, in view
of Theorem 5.13, is closely related to a general theorem of Mazorchuk and Stroppel
[MS, Theorem 4.6]. We will continue to work over the ground field C as above,
but note that the same argument works over an arbitrary commutative ground
ring R. Recall that a finite dimensional algebra A is symmetric if it possesses a
symmetrizing form, i.e. a linear map τ : A → C such that τ(ab) = τ(ba) for
all a, b ∈ A and whose kernel contains no non-zero left or right ideal of A. The
following lemma is an easy exercise.
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Lemma A.1. Let τ : Cl[x1, . . . , xd] o©CSd → C be the linear map sending the
monomial xr11 · · ·x

rd

d w to 1 if r1 = · · · = rd = l − 1 and w = 1, or to 0 other-
wise, for all r1, . . . , rd ≥ 0 and w ∈ Sd. Then τ is a symmetrizing form, hence
Cl[x1, . . . , xd] o©CSd is a symmetric algebra.

Now let t = (l− 1)d. Recall from Lemma 3.5 that Hd(Λ) is a filtered algebra
with filtration

CSd = F0Hd(Λ) ⊆ F1Hd(Λ) ⊆ · · · ⊆ FtHd(Λ) = Hd(Λ).

The associated graded algebra grHd(Λ) is identified with the twisted tensor prod-
uct Cl[x1, . . . , xd] o©CSd. For any 0 ≤ s ≤ t, let

grs : FsHd(Λ)→ Cl[x1, . . . , xd] o©CSd
be the map sending an element to its degree s graded component.

Theorem A.2. Let τ̂ : Hd(Λ) → C be the linear map sending xr11 · · ·x
rd

d w to 1 if
r1 = · · · = rd = l − 1 and w = 1, or to 0 otherwise, for all 0 ≤ r1, . . . , rd < l and
w ∈ Sd. Then τ̂ is a symmetrizing form, hence Hd(Λ) is a symmetric algebra.

Proof. The key observation is that τ̂ = τ ◦ grt where τ is symmetrizing form
from Lemma A.1. To prove that τ̂ is symmetric, observe for 0 ≤ s ≤ t and any
x ∈ FsHd(Λ) and y ∈ Ft−sHd(Λ) that

τ̂(xy) = τ(grt(xy)) = τ(grs(x) grt−s(y))

= τ(grt−s(y) grs(x)) = τ(grt(yx)) = τ̂(yx).

In particular, this shows that τ̂(xw) = τ̂(wx) for all x ∈ Hd(Λ) and w ∈ Sd. It
just remains to show that τ̂(xiy) = τ̂(yxi) for any i = 1, . . . , d and y ∈ Hd(Λ). We
are already done if y ∈ Ft−1Hd(Λ), so we may assume that y = xl−1

1 · · ·xl−1
d w for

some w ∈ Sd. But then

τ̂(xiy) = τ̂(xixl−1
1 · · ·xl−1

d w) = τ̂(wxixl−1
1 · · ·xl−1

d )

= τ̂(wxl−1
1 · · ·xl−1

d xi) = τ̂(xl−1
1 · · ·xl−1

d wxi) = τ̂(yxi),

using the fact that xl−1
1 · · ·xl−1

d is central in Hd(Λ). Now suppose that I is a left
or right ideal of Hd(Λ) such that τ̂(I) = 0. Define a filtration on I by setting
Fs I = I ∩ FsHd(Λ). Then gr I is a left or right ideal in Cl[x1, . . . , xd] o©CSd such
that τ(gr I) = 0. Hence gr I = 0, so I = 0 too. �
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