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Abstract. Let F be an algebraically closed field of characteristic p, and Σn be the sym-
metric group on n letters. In this paper we classify all pairs (G,D), where D is an irreducible
FΣn-module of dimension greater than 1 and G is a proper subgroup of Σn, such that the
restriction D↓G is irreducible, provided p > 3.

Introduction

Let F be an algebraically closed field of characteristic p ≥ 0, and Σn be the symmetric
group on n letters. The main result of this paper is a complete solution of the following
problem for the case p > 3:
Problem 0.1. Classify all pairs (G,D), where D is an irreducible FΣn-module of dimension
greater than 1 and G is a proper subgroup of Σn such that the restriction D↓G is irreducible.
Remark 0.2. (i) In the proof we use the classification of 2-transitive groups, which in turn
relies on the classification theorem of finite simple groups.

(ii) The case p = 0 was completely solved by Saxl [39]. His work greatly influenced this
paper.

(iii) The result in characteristic p is important for the problem of describing maximal
subgroups of finite classical groups, see [2], [26].

(iv) Of course, the case dimD = 1, excluded in Problem 0.1, is not interesting from the
representation theoretic point of view.

We consider some examples, which will be parts of our main theorem. In what follows
we denote by Dλ the irreducible FΣn-module corresponding to a p-regular partition λ =
(λ1, λ2, . . . ) of n. Moreover, 1 and sgn will stand for the trivial and the sign representations
of FΣn, respectively. These are the only 1-dimensional representations of Σn.
Example 0.3. Assume G is the alternating group An < Σn. We consider two cases.

(i) p > 2. Using Clifford theory one can easily prove that Dλ↓An is irreducible if and only
if Dλ⊗sgn 6∼= Dλ. In other words, Dλ↓An is irreducible if and only if λM 6= λ, where λ 7→ λM

is the Mullineux bijection. This bijection is known explicitly, see [30], [14], [4], and section 2
below.

(ii) p = 2. This case has been treated by Benson [3]. He proves that Dλ↓An is irreducible
if and only if there is j > 0 such that λ2j−1 − λ2j > 2 or λ2j−1 + λ2j ≡ 2 (mod 4).
Example 0.4. Assume G = Σn−1 embedded naturally as a subgroup of all permutations
in Σn fixing one point. Gather together the equal parts of λ to represent it in the form
λ = (la1

1 , . . . , l
ak
k ) for l1 > · · · > lk, ai > 0. We say λ is a Jantzen-Seitz partition if

li − li+1 + ai + ai+1 ≡ 0 (mod p) for all 1 ≤ i < k.

Then Dλ↓Σn−1
is irreducible if and only if λ is Jantzen-Seitz. This result was conjectured

and proved in one direction in [24]. It was first proved in full generality in [27], Theorem D.
Somewhat different proofs were found later in [13] and [28].
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Example 0.5. Assume G < Σn is 2-transitive, and D = D(n−1,1) is the irreducible core of the
natural permutation FΣn-module. We will call D(n−1,1) the natural irreducible FΣn-module.
This case was studied by Mortimer [35]. Note that (modulo the Classification Theorem) the
list of 2-transitive groups is known—it can be found for example in [25], see also section 5 of
this paper. Mortimer was able to settle all the cases with two little exceptions, one of which
(for Ree groups) was later settled by Brandl [7] and the other (for Co3) can be treated using
Gap. For brevity, we state Mortimer’s result only for the case p > 3, as follows. If G is
2-transitive and p > 3 then D(n−1,1)↓G is irreducible with the following exceptions:

(i) G ≤ AΓL(m, q), and p divides q;
(ii) G ≤ PΓL(m, q), m ≥ 3, and p divides q;
(iii) G ≤ Sz(q), and p divides q + 1 +m, where m2 = 2q;
(iv) G ≤ PΓU(3, q), and p divides q + 1;
(v) G ≤ Re(q), and p divides (q + 1)(q +m+ 1), where m2 = 3q.

Now we are able to formulate our main result.

Main Theorem. Let n be a positive integer, p > 3, Dλ be an irreducible FΣn-module of
dimension > 1, and G < Σn be a proper subgroup. Then Dλ↓G is irreducible if and only if
one of the following happens:

(i) λ 6= λM and G = An, see Example 0.3;
(ii) Dλ or Dλ⊗sgn is D(n−1,1), and G is a 2-transitive subgroup not in the list of exceptions

from Example 0.5.
(iii) Dλ or Dλ ⊗ sgn is D(n−2,2), and G is PGL(3, 2) (p = 5), PΓL(2, 8) (p 6= 7), M11

(p 6= 5), M12 (p 6= 5), M23 or M24 in their natural permutation representations of degrees
n = 7, 9, 11, 12, 23 or 24, respectively;

(iv) Dλ or Dλ⊗ sgn is D(n−2,12), and G is AGL(m, 2) (m ≥ 3), M11 (p 6= 11), M11, M12,
24.A7, M22, M22.2, M23 or M24 in their permutation representations of degrees n = 2m, 11,
12, 12, 16, 22, 22, 23 or 24, respectively;

(v) n = 8, p = 5, Dλ or Dλ ⊗ sgn is D(5,3), and G is AGL(3, 2) in its permutation
representation of degree 8;

(vi) Dλ or Dλ ⊗ sgn is D(21,2,1) or D(21,13), and G is M24 with n = 24;
(vii) λ is a Jantzen-Seitz partition, and G = Σn−1 embedded naturally, see Example 0.4;
(viii) λ is a Jantzen-Seitz partition such that λM 6= λ, and G = An−1;
(ix) n ≡ 0 (mod p), Dλ or Dλ ⊗ sgn is D(n−1,1), and G < Σn−1 < Σn is a 2-transitive

subgroup of Σn−1;
(x) Dλ or Dλ ⊗ sgn is D(n−2,2), G < Σn−1 < Σn, and the triple (G,n, p) is one of

(M11, 12, 5), (M12, 13, 11), (M23, 24, 11) or (M24, 25, 23);

(xi) Dλ or Dλ ⊗ sgn is D(n−2,12), G < Σn−1 < Σn, and the triple (G,n, p) is one
of (AGL(m, 2), 2m + 1, p) with p | (2m + 1), (M11, 13, 13), (M12, 13, 13), (24.A7, 17, 17),
(M22, 23, 23), (M22.2, 23, 23) or (M24, 25, 5);

(xii) n = 9, p = 5, Dλ or Dλ ⊗ sgn is D(6,3), and G is AGL(3, 2) embedded into Σ8 < Σ9

via its permutation representation of degree 8;
(xiii) Dλ or Dλ ⊗ sgn is D(22,13), and (G,n, p) = (M24, 25, 5).

Remark 0.6. (i) A nice description of the Jantzen-Seitz partitions λ with λM = λ in terms
of the Mullineux symbols was obtained in [5].

(ii) Unfortunately, we were unable to treat the cases p = 2 and 3 completely using our
methods. The main reduction to 2-transitive groups still works for p = 3 (see Theorem 0.7
below) or p = 2 and n odd (see [33]). In these cases there is hope for a complete solution
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given further analysis of the 2-transitive cases; however the case p = 2 and n even seems to
be difficult.

Note that the groups from (i)-(vi) in the theorem above are 2-transitive, while the groups
from (vii)-(xiii) are intransitive (even contained in Σn−1). In other words, if Dλ↓G is irre-
ducible for some Dλ then either G is 2-transitive or G ≤ Σn−1. This observation has a direct
proof. In characteristic 0 it can be deduced using the Littlewood-Richardson rule, see [39],
while in characteristic p it was proved in [33]:

Theorem 0.7. [33, Main Theorem] Let p > 2, n ≥ 4, and G be a subgroup of Σn. If there
exists an irreducible FΣn-module D, of dimension > 1, such that the restriction D↓G is
irreducible then either G ≤ Σn−1 or G is 2-transitive.

Now, we can explain the strategy of the proof of the Main Theorem. By Theorem 0.7, if
Dλ↓G is irreducible then either G ≤ Σn−1 or G is 2-transitive. Assume first that G ≤ Σn−1.
The case G = Σn−1 is covered by Example 0.4. Otherwise, either G is a 2-transitive subgroup
of Σn−1 or is contained in Σn−2. It turns out that Dλ↓Σn−2

is always reducible. So, as a
criterion for the irreducibility of Dλ↓Σn−1

is known, everything reduces to the case where
G < Σn is 2-transitive. The main tool which allows us to treat the 2-transitive groups is
Proposition 3.4 below, as well as some dimension bounds. We note that we used Gap [40] to
deal with the sporadic groups. We also appeal to some results on dimensions and characters
from the Atlas and modular Atlas [10, 23].

Acknowledgements. We benefited greatly from discussions with Jan Saxl, Gary Seitz, and
especially Bill Kantor. We also thank Martin Liebeck and Peter Cameron for some useful
remarks and Christine Bessenrodt for spotting a mistake in an earlier version of this paper.

1. Preliminary results

Throughout the paper F is an algebraically closed field of characteristic p > 0. Let G be
a group, and M be an FG-module. We denote by MG the space of G-invariants in M . If
D1, . . . , Dk are irreducible FG-modules then the notation M = D1| . . . |Dk means that M is a
uniserial FG-module with composition factors D1, . . . , Dk counted from bottom to top. Let
D1, . . . , Dk be pairwise non-isomorphic. Then M = a1D1 + · · ·+akDk means that D1, . . . , Dk

are the composition factors of M , with multiplicities a1, . . . , ak, respectively. Also, we write
M ∼= a1D1 ⊕ · · · ⊕ akDk if M is completely reducible, and D1, . . . , Dk are the composition
factors of M with multiplicities a1, . . . , ak, respectively. The trivial FG-module is denoted
by 1G or simply 1. It is well known that for any irreducible FG-module D,

dimD ≤
√
|G|. (1)

We refer the reader to [17, 19, 20] for the standard facts and notation of the representation
theory of the symmetric group Σn. (However we use the ‘left’ notation while James [17] uses
the ‘right’ one—for example, here (1, 2)(2, 3) = (1, 2, 3), and not (1, 3, 2) for the product of
transpositions.) In particular, we denote by Dλ the irreducible FΣn-module corresponding
to a p-regular partition λ of n. Given any partition µ of n, one associates to it the (standard)
Young subgroup Σµ, the Specht module Sµ and the permutation module Mµ = (1Σµ)↑Σn .
Sometimes we will need to consider the Specht modules over the field C of complex numbers.
To distinguish them from the Specht modules Sλ over F we will use the notation Sλ

C
. Let

sgnΣn or simply sgn be the 1-dimensional sign representation of FΣn. For FΣn-modules
V1, V2, we write V1 ∼ V2 if V1 and V2 belong to the same block of the algebra FΣn.

Let k ≤ n/2. Then a subgroup G < Σn is called k-homogeneous (resp. k-transitive) if
it acts transitively on the unordered (resp. ordered) k-element subsets of {1, 2, . . . , n}. The
following observation will be of great importance.
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Lemma 1.1. If G < Σn is a subgroup then the number of G-orbits on unordered k-element
subsets of {1, 2, . . . , n} is equal to the dimension of the G-invariants space (M (n−k,k))G.

Proof. Note that M (n−k,k)↓G is just the permutation module corresponding to the action of
G on the unordered k-element subsets. So it suffices to note that every orbit contributes
exactly a 1-dimensional space of invariants. �

Now we give various basic lemmas concerning the representation theory of Σn.
Lemma 1.2. A block component of a self-dual FΣµ-module is self-dual. In particular, if Dλ

is an irreducible FΣn-module then a block component of Dλ↓Σµ is self-dual.

Proof. This follows from the fact that irreducible FΣn-modules (and hence FΣµ-modules)
are self-dual, see [17], Theorem 11.5. �

Lemma 1.3. Let M be a self-dual FΣµ-module. Then M is irreducible if and only if
dim EndFΣµ(M) = 1.

Proof. In one direction the result follows from Schur’s lemma, and in the other direction it
follows from the fact that irreducible FΣµ-modules are self-dual. �

Lemma 1.4. Let λ and µ be p-regular partitions of n. Then dim HomFΣn(Sλ, (Sµ)∗) = δλµ.

Proof. The head of Sλ is isomorphic to Dλ and all other composition factors are of the form
Dν with ν � λ. Similarly, (Sµ)∗ has socle Dµ and all other composition factors are of the
form Dν with ν�µ. So if f : Sλ → (Sµ)∗ is a non-zero homomorphism we deduce that λ�µ
and µ� λ. Finally if λ = µ then f can only send the head of Sλ to the socle of (Sλ)∗. �

Lemma 1.5. Let p > 2, n ≥ 5, D be an irreducible FΣn-module of dimension > 1, and
c ∈ Σn be an involution. Then c has both eigenvalues 1 and −1 on D.

Proof. Let ρ : Σn → GL(D) be the corresponding representation. Then ρ is faithful, and
so c must have eigenvalue −1. On the other hand, if c does not have eigenvalue 1 then
ρ(c) = − id ∈ Z(ρ(Σn)), which is impossible as Σn has trivial center. �

Lemma 1.6. If p > k then any indecomposable F [Σn−k × Σk]-module is of the form I ⊗
Dµ, where I is an indecomposable FΣn−k-module and Dµ is an irreducible FΣk-module. In
particular, an F [Σn−k × Σk]-module is completely reducible if and only if its restriction to
Σn−k is completely reducible.

Proof. This follows from the fact that the group algebra FΣk is semisimple. �

The following well known fact can be deduced for example from [37], Proposition 2.

Lemma 1.7. Let 1 ≤ j ≤ n− 1. Then
∧j S(n−1,1) ∼= S(n−j,1j).

We will often use the following characteristic-free version of the Littlewood-Richardson
Rule. Let cλµν denote the classical Littlewood-Richardson coefficient.

Theorem 1.8. [22, 3.1,5.5] Let λ be a partition of m + n. Then the restriction Sλ↓Σm×Σn

has a filtration with factors of the form Sµ⊗Sν , with Sµ⊗Sν appearing precisely cλµν times.
We will also need the following results on decomposition numbers.

Lemma 1.9. [17, 24.1] Let p > 2, 1 ≤ k < p, and n > k + 1. Then S(n−k,1k) = D(n−k,1k) if
p does not divide n, and for p dividing n we have:

S(n−k,1k) = D(n−k,1k) +D(n−k+1,1k−1).

Lemma 1.10. [17, 24.15] Let r ≤ k and r < p. Then

[S(m,k) : D(m+r,k−r)] =

{
1 if p divides m− k + r + 1;
0 otherwise.
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We next record the following curious general result:
Lemma 1.11. Let µ and ν be p-regular partitions of m and n, respectively. Then µ + ν
(coordinate-wise sum) is a p-regular partition of m+n, and Dµ⊗Dν appears as a composition
factor of the restriction Dµ+ν↓Σm×Σn with multiplicity 1.

Proof. The fact that µ+ ν is p-regular is obvious. Moreover, it is proved in [8], Theorem D,
that the multiplicity [Dµ+ν↓Σm×Σn : Dµ⊗Dν ] is equal to the multiplicity of the tilting module
T (µ+ν) over GLm+n(F ) as an indecomposable summand of the tensor product T (µ)⊗T (ν).
But this multiplicity is 1 as µ+ ν is the highest weight of the module T (µ)⊗ T (ν), and the
corresponding weight space is 1-dimensional. �

Now we introduce some combinatorial notions concerning partitions. The dominance order
on partitions is denoted by �, see [17]. Fix an arbitrary partition λ = (λ1 ≥ λ2 ≥ . . . ) ` n.
The maximal number h with λh > 0 is called the height of λ and denoted by h(λ). We do
not distinguish between λ and its Young diagram

λ = {(i, j) ∈ Z>0 × Z>0 | j ≤ λi}.

Elements (i, j) ∈ Z>0×Z>0 are called nodes. The residue of a node A = (i, j), written resA,
is defined to be the residue class (j − i) (mod p). The residue content of the Young diagram
λ is defined to be the p-tuple

cont(λ) = (c0, c1, . . . , cp−1)

where
cα = #{nodes in λ of residue α}, α = 0, 1, . . . , p− 1.

The Nakayama Conjecture [20], Theorems 2.7.41, 6.1.21, claims that Dλ and Dµ are in the
same block (i.e. Dλ ∼ Dµ) if and only if cont(λ) = cont(µ).

A node (i, λi) ∈ λ is called removable if λi > λi+1. A node (i, λi + 1) is called addable if
i = 1 or i > 1 and λi < λi−1. If A = (i, λi) is a removable node then

λA := λ \ {A} = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

is a partition of n − 1 obtained from λ by removing A. We say a node (i, j) is above (resp.
below) (i′, j′) if i < i′ (resp. i > i′). A removable node A of λ is called normal if for every
addable node B above A with resB = resA there exists a removable node C(B) strictly
between A and B with resC(B) = resA, and B 6= B′ implies C(B) 6= C(B′). A removable
node is called good if it is the lowest among the normal nodes of a fixed residue. We remark
that there is at most one good node of each residue. The following branching theorem is one
of the main results of [29], Theorems 0.5, 0.6, and [32], Theorem 1.4.
Theorem 1.12. [29, 32] Let Dλ be an arbitrary irreducible FΣn-module.

(i) The socle of Dλ↓Σn−1
is isomorphic to ⊕DλA, where the sum is over all good nodes

of λ. Moreover, Dλ↓Σn−1
is completely reducible (so equal to its socle) if and only if every

normal node of λ is good.
(ii) Let A be a removable node of λ such that λA is p-regular. Then DλA appears as a

composition factor of Dλ↓Σn−1
if and only if A is normal. In that case, the multiplicity

[Dλ↓Σn−1
: DλA ] is equal to the number of normal nodes C above A with resC = resA

(counting A itself).
Next we discuss completely splittable representations of Σn, which will play a role in several

different situations. The main reference will be [31] (these modules have also been studied in
[43, 34, 38] and several other papers).
Definition 1.13. [31] An irreducible FΣn-module D is called completely splittable if the
restriction D↓Σµ is completely reducible for any Young subgroup Σµ of Σn.
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For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λs > 0) define

χ(λ) := λ1 − λs + s.

The next theorem provides necessary and sufficient conditions for an irreducible module to
be completely splittable.
Theorem 1.14. [31] Let λ be a p-regular partition of n. Then Dλ is completely splittable if
and only if χ(λ) ≤ p.
Lemma 1.15. Let p > 2, n ≥ m ≥ p−1, Dλ be completely splittable, and λ satisfy h(λ) > 1.
Then 1Σm is not a composition factor of Dλ↓Σm.

Proof. We prove this by downward induction on m = n, n− 1, . . . , p− 1, the induction base
being obvious. Suppose m < n, and the result is known for m+ 1. Pick a composition factor
Dµ of Dλ↓Σm+1

. By induction, µ 6= (m + 1). Note that Dµ is completely splittable, so by
Theorem 1.12(i), Dµ↓Σm has D(m) as a composition factor only if µ = (m, 1). Moreover, if
µ = (m, 1) then χ(µ) = m + 1, so by Theorem 1.14 we also have that m ≤ p − 1 whence
m = p − 1. Finally, we have that D(p−1,1)↓Σp−1

∼= D(p−2,1) using Theorem 1.12(i). So in all
cases, Dµ ↓Σm does not have D(m) as a composition factor. �

In the special case p = 5, completely splittable modules were considered by Ryba [38].
Denote by fn the nth Fibonacci number, defined from f0 = 0, f1 = 1, fn = fn−1 + fn−2 for
n ≥ 2. It turns out that the dimensions of the non-trivial completely splittable modules are
given by the Fibonacci numbers. The following result deals with the case where h(λ) = 2.
However it is general enough, as in characteristic 5 the completely splittable Dµ with h(µ) = 3
are obtained as Dλ ⊗ sgn for some completely splittable Dλ with h(λ) = 2, and completely
splittable Dλ with h(λ) = 1 or 4 are 1-dimensional.
Theorem 1.16. [38] Let p = 5 and suppose that λ satisfies h(λ) = 2, χ(λ) ≤ p.

(i) If n = 2r+1 is odd then λ = (r+1, r) or (r+2, r−1), in which cases dimD(r+1,r) = fn
and dimD(r+2,r−1) = fn−1.

(ii) If n = 2r is even then λ = (r, r) or (r+ 1, r− 1), in which cases dimD(r,r) = fn−1 and
dimD(r+1,r−1) = fn.

We will need to use a well known expression for the Fibonacci numbers:
Lemma 1.17. For any n ≥ 0, we have

fn =
1√
5

(
1 +
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
.

The remainder of the section is to do with dimensions of the irreducible FΣn-modules.
Most of the results we need were obtained by James [18]. Following [18], set

Rn(j) := {Dλ, Dλ ⊗ sgn | λ = (λ1, λ2, . . . ) with λ1 ≥ n− j}. (2)

Lemma 1.18. [18, Theorem 7 and Table 1] Let p > 3, and Dλ be an irreducible FΣn-module.
Assume that n ≥ 9 if p > 5, and n ≥ 11 if p = 5. Then:

(i) either Dλ ∈ Rn(1) or dimDλ ≥ (n2 − 5n+ 2)/2;
(ii) either Dλ ∈ Rn(2) or dimDλ > (n2 − 3n+ 2)/2.
We need a further result in the spirit of Lemma 1.18. We follow the strategy of James [18]:

Lemma 1.19. [18, Lemma 4] Suppose that N and m are non-negative integers and that f(n)
is a function of n satisfying all the following conditions:

(a) 2f(n− 2) > f(n) for all n ≥ N + 2;
(b) for n = N and N + 1, every irreducible FΣn-module Dλ either belongs to Rn(m) or

has dimDλ > f(n);
(c) for all n ≥ N , if Dλ ∈ Rn(m+ 2) \Rn(m), then dimDλ > f(n).
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Then for all n ≥ N , every irreducible FΣn-module Dλ either belongs to Rn(m) or has
dimDλ > f(n).

Our extension of Lemma 1.18 is as follows.

Lemma 1.20. Let p > 3, n ≥ 13 and Dλ be an irreducible FΣn-module. Then, either
Dλ ∈ Rn(2) or dimDλ ≥ (n3 − 9n2 + 14n)/6.

Proof. We apply Lemma 1.19 with f(n) = (n3 − 9n2 + 14n)/6 − 1, m = 2, and N = 13.
Condition (a) of the lemma is easy to verify. To check the condition (b) we need to show that
the dimensions of irreducible modules over Σ13 (resp., Σ14) outside R13(2) (resp. R14(2)) are
greater than 142 (resp. 195). We employed the Gap package Specht to do this daunting
work. To check the condition (c), we need to prove that the lemma holds for the modules
from Rn(4) \Rn(2). But this follows from Lemma 1.21. �

Remark. The lower bound in Lemma 1.20 above is the best possible in the sense that
dimD(n−3,3) = (n3 − 9n2 + 14n)/6 for infinitely many values of n.

The next result computes the dimensions of irreducible modules Dλ ∈ Rn(4) \Rn(1).

Lemma 1.21. Let p > 3. Then:

(i) dimD(n−2,2) =


(n2 − 5n+ 2)/2 if n ≡ 2 (mod p);
(n2 − 3n− 2)/2 if n ≡ 1 (mod p);
(n2 − 3n)/2 otherwise.

(ii) dimD(n−2,12) =

{
(n2 − 5n+ 6)/2 if n ≡ 0 (mod p);
(n2 − 3n+ 2)/2 otherwise.

(iii) dimD(n−3,3) =


(n3 − 9n2 + 14n)/6 if n ≡ 4 (mod p);
(n3 − 6n2 − n+ 6)/6 if n ≡ 3 (mod p);
(n3 − 6n2 + 5n− 6)/6 if n ≡ 2 (mod p);
(n3 − 6n2 + 5n)/6 otherwise.

(iv) dimD(n−3,2,1) =


(2n3 − 15n2 + 25n− 6)/6 if n ≡ 3 (mod p);
(2n3 − 15n2 + 25n+ 6)/6 if n ≡ 1 (mod p);
(2n3 − 12n2 + 16n)/6 otherwise.

(v) dimD(n−3,13) =

{
(n3 − 9n2 + 26n− 24)/6 if n ≡ 0 (mod p);
(n3 − 6n2 + 11n− 6)/6 otherwise.

(vi) dimD(n−4,4) =



(n4 − 14n3 + 47n2 − 34n)/24 if n ≡ 6 (mod p);
(n4 − 10n3 + 11n2 + 22n)/24 if n ≡ 5 (mod p);
(n4 − 10n3 + 23n2 − 38n+ 24)/24 if n ≡ 4 (mod p);
(n4 − 10n3 + 23n2 − 14n− 24)/24 if n ≡ 3 (mod p);
(n4 − 10n3 + 23n2 − 14n)/24 otherwise.

(vii) dimD(n−4,3,1) =


(3n4 − 38n3 + 129n2 − 118n)/24 if n ≡ 5 (mod p);
(3n4 − 30n3 + 69n2 − 18n− 24)/24 if n ≡ 4 (mod p);
(3n4 − 34n3 + 105n2 − 74n+ 24)/24 if n ≡ 2 (mod p);
(3n4 − 30n3 + 81n2 − 54n)/24 otherwise.

(viii) dimD(n−4,22) =


(2n4 − 28n3 + 118n2 − 140n+ 24)/24 if n ≡ 3 (mod p);
(2n4 − 20n3 + 46n2 + 20n− 24)/24 if n ≡ 2 (mod p);
(2n4 − 20n3 + 58n2 − 40n)/24 otherwise.
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(ix) dimD(n−4,2,12) =


(3n4 − 38n3 + 153n2 − 190n− 24)/24 if n ≡ 1 (mod p);
(3n4 − 34n3 + 117n2 − 134n+ 24)/24 if n ≡ 4 (mod p);
(3n4 − 30n3 + 93n2 − 90n)/24 otherwise.

(x) dimD(n−4,14) =

{
(n4 − 14n3 + 71n2 − 154n+ 120)/24 if n ≡ 0 (mod p);
(n4 − 10n3 + 35n2 − 50n+ 24)/24 otherwise.

Proof. Parts (ii), (v), (x) follow from Lemma 1.9, and (i), (iii), (vi) follow from Lemma 1.10.
(iv) Let λ = (n − 3, 2, 1). We prove the result by induction on n = 5, 6, . . . . For the

induction base, the Nakayama Conjecture implies that D(2,2,1) = S(2,2,1) so its dimension
is known by the Hook Formula [17], Theorem 20.1. Let n > 5. If n 6≡ 1, 3 (mod p) then
Sλ is irreducible by the Nakayama Conjecture and we can apply the Hook Formula again.
The case n ≡ 3 (mod p) is considered in [18], Appendix. Finally, if n ≡ 1 (mod p) then
Dλ↓Σn−1

∼= D(n−4,2,1) ⊕ D(n−3,12) by Theorem 1.12(i), and the conclusion follows using (ii)
and the inductive hypothesis.

(vii) Let λ = (n − 4, 3, 1). Again, we use induction on n = 7, 8, . . . . If n = 7, the
formula follows from the Nakayama Conjecture and the Hook Formula, unless p = 5 which
is easily checked directly. So let n > 7. If n 6≡ 2, 4, 5 (mod p) then Sλ is irreducible by the
Nakayama Conjecture. For the case n ≡ 5 (mod p) see [18], Appendix. If n ≡ 4 (mod p)
then Dλ↓Σn−1

∼= D(n−5,3,1) ⊕ D(n−4,2,1) ⊕ D(n−4,3) by Theorem 1.12(i), and we apply (iii),
(v) and the inductive hypothesis. If n ≡ 2 (mod p) the result follows similarly since then
Dλ↓Σn−1

∼= D(n−5,3,1) ⊕D(n−4,2,1).
(viii) Let λ = (n − 4, 22). Use induction on n ≥ 6. The formula follows using the Hook

Formula as before unless n > 6 and n ≡ 2, 3 (mod p). For the case n ≡ 3 (mod p) see [18],
Appendix. If n ≡ 2 (mod p) use the fact that Dλ↓Σn−1

∼= D(n−5,22)⊕D(n−4,2,1), (v), and the
inductive hypothesis.

(ix) The proof is similar to that of (viii) and uses the decomposition D(n−4,2,12)↓Σn−1
∼=

D(n−5,2,12) ⊕D(n−4,2,1) for n ≡ 4 (mod p). �

Lemma 1.22. Let p > 3, and Dλ be an irreducible FΣn-module with Dλ 6∈ Rn(1).
(i) Let n = 5. Then dimDλ ≥ 5.
(ii) Let n = 6. Then dimDλ ≥ 8, except for

dimD(32) = dim(D(32) ⊗ sgn) = 5.

(iii) Let n = 7. Then dimDλ ≥ 10, except for

dimD(5,2) = dim(D(5,2) ⊗ sgn) = 8, if p = 5.

(iv) Let n = 8. Then dimDλ ≥ 19, except for

dimD(42) = dim(D(42) ⊗ sgn) =

{
14, if p > 5;
13, if p = 5;

(v) Let n = 9. Then dimDλ ≥ 27, except for

dimD(7,2) = dim(D(7,2) ⊗ sgn) = 19, if p = 7,

dimD(6,3) = dim(D(6,3) ⊗ sgn) = 21, if p = 5.
8



(vi) Let n = 10. Then dimDλ ≥ 42, except for

dimD(8,2) = dim(D(8,2) ⊗ sgn) = 35,

dimD(52) = dim(D(52) ⊗ sgn) = 34, if p = 5,

dimD(8,12) = dim(D(8,12) ⊗ sgn) =

{
36, if p > 5;
28, if p = 5.

(vii) Let n = 11. Then dimDλ ≥ 66, except for

dimD(7,4) = dim(D(7,4) ⊗ sgn) = 55, if p = 5,

dimD(9,2) = dim(D(9,2) ⊗ sgn) =

{
44, if p > 5;
43, if p = 5;

dimD(9,12) = dim(D(9,12) ⊗ sgn) =

{
36 if p = 11;
45 if p 6= 11;

(viii) Let n = 12. Then dimDλ ≥ 221, except for

dimD(7,5) = dim(D(7,5) ⊗ sgn) = 144, if p = 5,

dimD(10,2) = dim(D(10,2) ⊗ sgn) =


53, if p = 11;
43, if p = 5;
54, otherwise;

dimD(10,12) = dim(D(10,12) ⊗ sgn) = 55;

dimD(62) = dim(D(62) ⊗ sgn) =


89, if p = 5;
131, if p = 7;
132, otherwise;

dimD(9,3) = dim(D(9,3) ⊗ sgn) =

{
153, if p = 5;
154, otherwise;

dimD(9,13) = dim(D(9,13) ⊗ sgn) = 165.

Proof. This follows from [23, 10] and [17], Tables. The calculation was also checked on Gap,
using the package Specht by Andrew Mathas. �

The final lemma of the section will be needed when we consider the Mathieu groups.
Lemma 1.23. Let λ be a p-regular partition of n = 22, 23 or 24. Suppose that λ 6∈ Rn(4),
and dimDλ ≤ 10395. Then, p = 2, and λ = (12, 10), (12, 11), or (13, 11).

Proof. This is a calculation involving Gap. All dimensions of all Dλ are known (in the Gap

library) for n = 14. To obtain a lower bound of the dimension of Dλ for larger n, we simply
used the branching rule in Theorem 1.12(ii) recursively. �

2. Results involving the Mullineux bijection

For any p-regular λ, the module Dλ⊗ sgn is irreducible. The Mullineux bijection λ→ λM

on the p-regular partitions of n is defined from

Dλ ⊗ sgn ∼= DλM
.
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Recall that a partition is called a p-core if none of its hook lengths is divisible by p, see [20],
section 2.7. In the special case that λ is a p-core, it is easy to calculate λM using the following
well-known result:
Lemma 2.1. If λ is a p-core then λM = λ′ (the transpose partition).

Proof. It follows from the Nakayama Conjecture that Sλ = Dλ and Sλ
′

= Dλ′ . Now one can
use the isomorphism Sλ ⊗ sgn ∼= (Sλ

′
)∗, see [17], Theorem 8.15. �

For more general λ, Theorem 1.12(i) and the Nakayama Conjecture easily imply the fol-
lowing relation between the Mullineux bijection and good nodes:
Lemma 2.2. [30, 4.8] Let λ be a p-regular partition, and A be a good node for λ of residue
α. Then there exists a unique good node B for λM of residue −α such that (λA)M = (λM)B.

The lemma yields an explicit algorithm for computing the bijection λ 7→ λM in general.
However, it is often more convenient to use the description coming from the Mullineux con-
jecture [36], proved in [14] (see also [4]). To explain the Mullineux algorithm, we first recall
some definitions, referring the reader to [14, 4] for more details.

Fix a p-regular Young diagram λ. Its rim is defined to be the set of all nodes (i, j) ∈ λ such
that (i+ 1, j+ 1) 6∈ λ; in other words the rim of the Young diagram is its ‘south-east border’.
The p-rim (called the p-edge in [14]) is a certain subset of the rim, defined as the union of
the p-segments. The first p-segment is simply the first p nodes of the rim, reading along the
rim from ‘north-east’ to ‘south-west’. The next p-segment is then obtained by reading off the
next p nodes of the rim, but starting from the row immediately below the last node of the first
p-segment. The remaining p-segments are obtained by repeating this process. Of course, all
but the last p-segment contain exactly p nodes, while the last may contain less. For example,
let λ = (6, 42, 2, 1), p = 5. The nodes of the p-rim (which consists of two p-segments) are
coloured in black in the following picture.b b b r r rb b b rb b b rr rr

Set λ(1) = λ, and define λ(i) to be λ(i−1) \ {the p-rim of λ(i−1)}. Let m be the largest
number such that λ(m) 6= ∅. Then the Mullineux symbol of λ is defined to be the array

G(λ) =
(
a1 a2 . . . am
r1 r2 . . . rm

)
where ai is the number of the nodes of the p-rim of λ(i) and ri = h(λ(i)) is the height of λ(i).
The partition can be uniquely reconstructed from its Mullineux symbol, see [36, 14, 4]. For

1 ≤ i ≤ m, set Gi(λ) :=
(
ai
ri

)
to be the i-th column of the Mullineux symbol. Also, define

εi = 0 if p divides ai and εi = 1 otherwise.

Theorem 2.3. [14, 4] If G(λ) =
(
a1 a2 . . . am
r1 r2 . . . rm

)
then G(λM) =

(
a1 a2 . . . am
s1 s2 . . . sm

)
where si = ai + εi − ri.

A useful consequence of the Mullineux algorithm is the following simple formula for com-
puting the height of the partition λM:
Corollary 2.4. If a p-regular partition λ has a nodes in its p-rim then the height of λM is
a+ ε− h(λ), where ε = 0 if p divides a and ε = 1 otherwise.
Lemma 2.5. Let λ be a p-regular partition, h = h(λ), and A 6= (h, 1) be a normal node of
λ. If A is not the first node of a p-segment of λ then h((λA)M) = h(λM).
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Proof. In view of Corollary 2.4, we need to show that G1(λ) = G1(λA). If A is not the
first and not the last node of a p-segment the statement is clear. Let I1, I2, . . . , Il be the
p-segments of λ counted from top to bottom, and assume A is the last node of Ij . We will get
a contradiction to the assumption that A is normal. Note that the length of the p-segment
Ij is p, which is immediate for j < l, while if j = l it is ensured by the assumption that
A 6= (h, 1). Define 1 ≤ k ≤ j to be the maximal index such that Ik ∪ Ik+1 ∪ · · · ∪ Ij is a
connected subset of the rim. Let (x, y) be the first node of Ik. As Ik−1 is disconnected from
Ik, the node C := (x, y + 1) is addable (if k = 1 this is also true). Moreover it is easy to
see that resC = resA. It remains to observe that no removable node between A and C has
residue equal to resA, as it would contradict the connectedness of Ik ∪ Ik+1 ∪ · · · ∪ Ij . �

Lemma 2.6. For a p-regular partition λ, set µ := λM and h := h(µ).
(i) If λ = (sr) for some 1 ≤ s < r < p, then h ≤ s and µh ≥ r.
(ii) If λ = (sr, ut) for some 1 ≤ u < s < r with r + s− u+ t = p, then h ≤ s and µh ≥ r.

Proof. (i) If s + r − 1 < p then λ is a p-core. So λM = λ′ by Lemma 2.1, and the result

follows. Otherwise set x := r+ s− p. Then the first x columns of G(λ) are of the form
(
p
r

)
,

and λ(x) = ((s− x)(r−x)), which is a p-core. By Lemma 2.1, (λ(x))M = ((r− x)(s−x)). To get
λM we should ‘glue’ x p-rims to (λ(x))M, each consisting of p nodes in p − r = s − x rows,
see Theorem 2.3. It follows that h = s− x ≤ s, and µh ≥ (r − x) + x = r.

(ii) The proof is similar to that of (i). The first u columns of G(λ) have form
(

p
r + t

)
, and

λ(u) = ((s− u)(r−u)), which is a p-core. By Lemma 2.1, (λ(u))M = ((r− u)(s−u)). To get λM

we should ‘glue’ u p-rims to (λ(u))M, each consisting of p nodes in p− r − t = s− u rows. It
follows that h = s− u ≤ s, and µh ≥ (r − u) + u = r. �

Lemma 2.7. Let p > k ≥ 2, n > 2k, and λ = (r, 1s) be a p-regular hook partition of n such
that h(λ) ≥ k and h(λM) ≥ k. Then there exists a composition factor Dµ of Dλ↓Σn−1

with
h(µ) ≥ k and h(µM) ≥ k.

Proof. Let A and B be the bottom and the top removable nodes of λ, respectively. If r > p
then G1(λ) = G1(λB), and so h(λB), h((λB)M) ≥ k. Moreover, DλB is a composition factor of
Dλ↓Σn−1

by Theorem 1.12(ii), as the top removable node is always normal. Now assume r ≤ p.
Then the p-rim covers the whole of λ. Moreover, λ is p-regular, so s+ r ≤ p− 1 + p = 2p− 1.

If s + r 6= p, p + 1, then both A and B are good, and λ, λA, λB are all p-cores. So the
result follows from Lemma 2.1 and Theorem 1.12, as n ≥ 2k. Next, assume s+ r = p. Then
we have h(λ) = s+ 1 = h(λB), h(λM) = p− s− 1 = h((λB)M), which proves the result.

Finally, let r + s = p + 1. Then both A and B are normal, so DλA and DλB appear
in Dλ↓Σn−1

. Moreover, λM = (s + 1, 1r−1). Let C be the top removable node of λM, and
set ν := (λM)C , µ := νM. Then C is normal for λM, and so Dν appears in DλM↓Σn−1

,
whence Dµ appears in Dλ↓Σn−1

. Now, note that h(λ) = s + 1, h(λM) = r, h(λB) = s + 1,
h((λB)M) = r − 2, h(λA) = s, h((λA)M) = r − 1, h(µM) = h(ν) = r, and h(µ) = s − 1. By
assumption, s ≥ k−1, r ≥ k, and the result follows, using the assumption n = r+s > 2k. �

Now we can prove the main result of the section.
Theorem 2.8. Let p > k ≥ 2, n > 2k, and λ be a p-regular partition of n such that h(λ) ≥ k
and h(λM) ≥ k. Then there exists a composition factor Dµ of Dλ↓Σn−1

with h(µ) ≥ k and
h(µM) ≥ k.

Proof. Assume for a contradiction that for every composition factor Dµ of Dλ↓Σn−1
we have

h(µ) < k or h(µM) < k. At least one of h(λ) or h(λM) must actually equal k, for if both
are greater than k then for any good node A, DλA is a composition factor of Dλ ↓Σn−1 by
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Theorem 1.12(i) but h(λA), h((λA)M) ≥ k, using Lemma 2.2. Therefore, without loss of
generality, we may assume that h(λ) = k. Also by Lemma 2.7, λ is not a hook. We will
constantly use the following observation which follows using Theorem 1.12(ii) (observing that
λB is automatically p-regular since p > k = h(λ)) and Lemma 2.5.

(*) If B is a normal node of λ then either h(λB) < k or h((λB)M) < k. In particular,
G1(λB) 6= G1(λ).

Let I be the first p-segment of λ. Let A1, A2, . . . , Av be the removable nodes contained
in I other than the last node of I, counted from top to bottom. Since λ is p-regular and
not a hook, we certainly have that v ≥ 1. If A := Av is not the first node of I, then A is
normal, so by (*) we have G1(λA) 6= G1(λ), which contradicts Lemma 2.5. Hence, v = 1 and
A = A1 is the first node of I. Moreover, the last node of I is not removable, for otherwise
G1(λ) = G1(λA), as λ is not a hook. But this contradicts (*). We deduce in particular that
λ has more than one p-segment since it is not a hook. Observe also that the first and second
p-segments of λ are connected, for otherwise again G1(λ) = G1(λA), contradicting (*).

Now let J be the second p-segment of λ and let B1, . . . , Bw be the removable nodes con-
tained in J other than the last node of J , counted from top to bottom. Again, we have
w ≥ 1 as λ is p-regular and not a hook. Certainly, B := B1 is normal so G1(λ) 6= G1(λB)
by (*). Hence B must be the first node of J by virtue of Lemma 2.5. Now set µ = λB, so
that h(µ) = k and h(µM) < k in view of (*). The p-rim of µ is of length at least p+ |J | − 1,
and |J | > 1 as λ is not a hook. Hence, using Corollary 2.4, h(µM) ≥ p+ |J | − k. We deduce
that k > p + |J | − k, hence |J | < p as p ≥ k. So λ in fact has exactly two p-segments, the
p-rim of λ coincides with its rim, and has length exactly p + |J |. Also the p-rim of µ has
length exactly p + |J | − 1. By Corollary 2.4, h(λM) = p + |J | − k + 1. But h(λM) ≥ k and
k > p + |J | − k, so h(λM) = k. As the p-rim of λ coincides with its rim, it follows that the
p-rim of λ has length exactly 2k − 1. Applying (*) and Lemma 2.5 once more, we deduce
that none of B2, . . . , Bw are normal, so we must have in fact that w = 1 or 2 and λ has one
of the following three shapes:

(i) A

B

D

(ii) A

γ

B

C

D

(iii) A

γ

B

C

In all diagrams, A is the top node of the first p-segment, B is the top node of the second
p-segment. In diagrams (ii) and (iii), γ denotes an addable node having the same residue as
C, which ensures that C is not normal. In diagrams (i) and (ii), D is good.

Recall also that we have shown that h(λ) = h(λM) = k. So we can repeat the above
argument for λM instead of λ, to deduce that λM must also have one of the above shapes
(i)–(iii). The idea now is to show that if λ has any of the shapes (i)–(iii), then such λ does
not have Mullineux image of shapes (i)–(iii), giving a contradiction to complete the proof.
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Assume first that λ is of shape (i). In particular, λ has just three removable nodes A =
(1, k), B = (a, b), D = (k, 1), and k − b+ a− 1 = p. As p ≥ k, we get b < a. Moreover, the
partition λ(1) obtained from λ by removing the p-rim is λ(1) = ((b− 1)a−1). So we can apply
Lemma 2.6(i) to conclude that (λ(1))M = (µ1, . . . , µh) with h ≤ b− 1 and µh ≥ a− 1. Now,
to get λM one needs to adjoin to (λ(1))M two p-segments of lengths 2k − 1 − p and p in k
rows. It follows that either the p-rim of λM is disconnected or the top p-segment of λM has
nodes in the first column. Hence λM does not have any of the forms (i)–(iii).

Finally assume λ has shapes (ii) or (iii). In particular, λ has removable nodes A = (1, k),
B = (a, b), C := (c, d), together with D = (k, 1) in case (ii), and k − b + a − 1 = p. As
in the previous paragraph, we get b < a, and the partition λ(1) = ((b − 1)a−1, (d − 1)c−a)
satisfies the assumptions of Lemma 2.6(ii) (because C and γ have the same residue). So
(λ(1))M = (µ1, . . . , µh) with h ≤ b − 1 and µh ≥ a − 1. Now we repeat the argument from
the previous paragraph. �

3. Main technical results

In this section we will be interested in dimensions of the spaces of the form

HomFΣn(M (n−k,k),EndF (Dλ)),

where we regard EndF (Dλ)) as an FΣn-module in the usual way. This is important in view
of Proposition 3.4. Note that by Frobenius reciprocity we have

HomFΣn(M (n−k,k),EndF (Dλ)) ∼= EndF [Σn−k×Σk](D
λ↓Σn−k×Σk

). (3)

Recall that M (n−k,k) is a permutation module on the (unordered) k-element subsets I =
{i1, . . . , ik} ⊂ {1, . . . , n}. Define the FΣn-homomorphism

f : M (n−k,k) →M (n−k+1,k−1), {i1, . . . , ik} 7→
k∑
j=1

{i1, . . . , îj , . . . , ik} (4)

for {i1, . . . , ik} ⊂ {1, . . . , n}.
Lemma 3.1. Let p > k ≥ 1 and n ≥ 2k. Then f is surjective.

Proof. Let I be a (k−1)-element subset of {1, . . . , n}. We show that the corresponding basis
element {I} ∈M (n−k+1,k−1) belongs to im f . As n ≥ 2k, there exist a subset J ⊆ {1, . . . , n}\I
of order k. Put

v :=
∑

A⊆I, B⊆J, |A|+|B|=k

(−1)|B|
(
k − 1
k − |B|

)−1

{A ∪B}.

We claim that f(− 1
kv) = {I}. Indeed, if A ⊆ I, B ⊆ J , and |A| + |B| = k then the basis

element {I} appears in f({A ∪ B}) only if A = I and |B| = 1. So the coefficient of {I} in
f(v) is −k. On the other hand, if {K} appears in f(v) and {K} 6= {I} then {K} = {C ∪D}
where C $ I, D $ J, |C| + |D| = k − 1. Pick any such {K} = {C ∪ D} and set l = |C|.
Then {C ∪D} appears in f({A ∪B}) only if A = C ∪ {a} for some a ∈ I \C and B = D or
A = C and B = D ∪ {b} for some b ∈ J \D. So the coefficient of {K} in f(v) is

(k − 1− l)(−1)k−1−l
(

k − 1
k − (k − 1− l)

)−1

+ (k − (k − 1− l))(−1)k−l
(

k − 1
k − (k − l)

)−1

= 0.

�

We are now going to use the explicit construction of the Specht module Sλ as the submodule
of Mλ generated by the vector et = κt{t} ∈Mλ, see [17], section 4, for the precise definitions.
Lemma 3.2. Let p > k ≥ 1 and n ≥ 2k. Then ker f = S(n−k,k).
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Proof. By [17], Lemma 4.10, S(n−k,k) ⊆ ker f . So the result follows from the equality
dimM (n−k,k) = dimS(n−k,k) + dimM (n−k+1,k−1), see e.g. [17], Example 17.17. �

Lemma 3.3. Let p > k ≥ 1 and n ≥ 2k. Denote by Y (n−k,k) the block component of
M (n−k,k) containing S(n−k,k). If there exists r with 0 < r ≤ k and n ≡ 2k − 1 − r (mod p),
then S(n−k,k) = D(n−k+r,k−r)|D(n−k,k), Y (n−k,k) = D(n−k+r,k−r)|D(n−k,k)|D(n−k+r,k−r), and
Y (n−k,k)/D(n−k,k) ∼= (S(n−k,k))∗. Otherwise Y (n−k,k) = S(n−k,k) = D(n−k,k).

Proof. By [17], Example 17.17, the permutation module M (n−k,k) has a filtration with factors
S(n−k,k), S(n−k+1,k−1), . . . , S(n), with S(n−k,k) being a submodule. Hence Y (n−k,k) has a fil-
tration whose factors are all Specht modules S(n−j,j) with 0 ≤ j ≤ k and S(n−j,j) ∼ S(n−k,k).
If there is no r as in the assumption then it follows from the Nakayama Conjecture that
S(n−k,k) is the only such Specht module. Moreover, in this case S(n−k,k) ∼= D(n−k,k) thanks
to Lemma 1.10. So we may assume that there is r with 0 < r ≤ k and n ≡ 2k − 1 − r
(mod p). Then Y (n−k,k) has a filtration with factors S(n−k,k), S(n−k+r,k−r). By Lemma 1.10,
S(n−k,k) = D(n−k+r,k−r)|D(n−k,k) and S(n−k+r,k−r) ∼= D(n−k+r,k−r). Now the lemma follows
from the fact that Y (n−k,k) is self-dual, see Lemma 1.2. �

The following proposition will be a principal tool in the proof of the Main Theorem.
Proposition 3.4. Let p > k ≥ 1, n ≥ 2k, and Dλ be an irreducible FΣn-module such that

dim HomFΣn(M (n−k,k),EndF (Dλ)) > dim HomFΣn(M (n−k+1,k−1),EndF (Dλ)).

If G is a subgroup of Σn such that

dim (M (n−k,k))G > dim (M (n−k+1,k−1))G

then the restriction Dλ↓G is reducible.

Proof. By Lemmas 3.1 and 3.2, we have an exact sequence

0 −→ S(n−k,k) −→M (n−k,k) f−→M (n−k+1,k−1) −→ 0.

So dim (M (n−k,k))G > dim (M (n−k+1,k−1))G implies

(S(n−k,k))G 6= 0. (5)

By dualizing, we also have an exact sequence

0 −→ (M (n−k+1,k−1))∗ −→ (M (n−k,k))∗−→(S(n−k,k))∗ −→ 0,

so, using the fact that permutation modules Mλ are self-dual and the assumption, we have

((S(n−k,k))∗)G 6= 0. (6)

Moreover, it follows from the assumption that there exists a homomorphism θ from M (n−k,k)

to EndF (Dλ) which does not factor through f . In other words the restriction θ|S(n−k,k) is a
non-zero homomorphism.

Assume first that there does not exist r with 0 < r ≤ k and n ≡ 2k − 1 − r (mod p).
Then by Lemma 3.3, S(n−k,k) = D(n−k,k) is a direct summand of M (n−k,k). So θ induces an
embedding of S(n−k,k) into EndF (Dλ). As 1Σn is always a submodule of EndF (Dλ), we have
1Σn ⊕ S(n−k,k) ⊂ EndF (Dλ). Now it follows from (5) that

dim EndFG(Dλ↓G) = dim EndF (Dλ)G ≥ 2,

whence Dλ↓G is reducible.
Next, assume that n ≡ 2k − 1− r (mod p) for some r with 0 < r ≤ k. As in Lemma 3.3,

denote the block component of M (n−k,k) containing S(n−k,k) by Y (n−k,k), so that Y (n−k,k) =
D(n−k+r,k−r)|D(n−k,k)|D(n−k+r,k−r). If θ|Y (n−k,k) is not injective then, using the fact that
θ|S(n−k,k) is non-zero and Y (n−k,k) is uniserial, we see that θ induces an embedding of
(S(n−k,k))∗ ∼= Y (n−k,k)/D(n−k+r,k−r) into EndF (Dλ). As (S(n−k,k))∗ = D(n−k,k)|D(n−k+r,k−r),
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its socle is different from 1Σn , hence 1Σn ⊕ (S(n−k,k))∗ ⊂ EndF (Dλ). So (6) implies that
dim EndFG(Dλ↓G) ≥ 2 as above.

Finally assume that θ|Y (n−k,k) is an embedding. If r 6= k then D(n−k+r,k−r) 6∼= 1Σn so we
have that 1Σn ⊕ S(n−k,k) ⊂ EndF (Dλ) and hence dim EndFG(Dλ↓G) ≥ 2. Now let k = r,
when Y (n−k,k) = 1Σn |D(n−k,k)|1Σn . Hence M (n−k,k)/Y (n−k,k) ∼= M (n−k+1,k−1)/1Σn . As 1Σn

is a summand of M (n−k+1,k−1),

dim (M (n−k,k)/Y (n−k,k))G < dim (M (n−k+1,k−1))G.

On the other hand, by assumption,

dim (M (n−k+1,k−1))G < dim (M (n−k,k))G = dim (M (n−k,k)/Y (n−k,k))G + dim (Y (n−k,k))G.

Therefore dim (Y (n−k,k))G ≥ 2. As the restriction θ|Y (n−k,k) is an embedding, it follows that
dim EndFG(Dλ↓G) ≥ 2. �

We turn next to the problem of verifying the conditions of the proposition above, when
Lemma 3.1 turns out to again be useful. Fix now an irreducible FΣn-module Dλ and define
the linear map

f∗ : HomFΣn(M (n−k+1,k−1),EndF (Dλ))→ HomFΣn(M (n−k,k),EndF (Dλ)), ψ 7→ ψ ◦ f.
By Lemma 3.1, we immediately have
Lemma 3.5. Let p > k ≥ 1 and n ≥ 2k. Then f∗ is injective.

We are going to prove that im f∗ is properly contained in HomFΣn(M (n−k,k),EndF (Dλ)),
by exhibiting a homomorphism ϕ which does not factor through f . For a subset I =
{i1, . . . , ik} ⊂ {1, . . . , n} we denote by ΣI = Σ{i1,...,ik} the subgroup of Σn which consists
of all permutations fixing the elements of {1, . . . , n} \ I. Clearly ΣI

∼= Σk. We define
ϕ ∈ HomFΣn(M (n−k,k),EndF (Dλ)) by setting for any {I} ∈M (n−k,k):

ϕ({I})(v) =
∑
g∈ΣI

gv. (7)

Denote by C = Ct the column stabilizer of the tableau

t = k + 1 k + 2 . . . 2k 2k + 1 . . . n
1 2 . . . k

.

This is a subgroup of Σn isomorphic to the elementary abelian group Z/2Z× · · · × Z/2Z︸ ︷︷ ︸
k

.

Henceforth we will use James’ notation {t} for the element {1, . . . , k} ∈M (n−k,k).
Proposition 3.6. Let p > k ≥ 1 and n ≥ 2k. Let Σk be embedded into Σn as Σ{1,...,k}.
Assume that ϕ ∈ im f∗. Then( ∑

g∈Σk, σ∈C
(sign σ)σgσ−1

)
Dλ = 0. (8)

Proof. By assumption, there is ψ ∈ HomFΣn(M (n−k+1,k−1),EndF (Dλ)) with ϕ = f∗(ψ) =
ψ ◦ f . Let

et =
∑
σ∈C

(sign σ)σ{t} ∈ S(n−k,k) ⊂M (n−k,k)

be the polytabloid corresponding to the tableau t defined above, see [17], Definition 4.3. By
[17], Lemma 4.10, f(et) = 0. Hence ϕ(et) = 0. On the other hand, we calculate ϕ(et) using
(7):

ϕ(et)(v) =
∑
σ∈C

(sign σ)
∑

g∈Σ{σ(1),...,σ(k)}

gv =
∑

g∈Σk, σ∈C
(sign σ)σgσ−1v.

So ϕ(et) ≡ 0 is equivalent to (8). �
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Lemma 3.7. Let p > k > 1, and Dλ be an irreducible FΣ2k-module. If the equation (8)
holds then h(λ) < k or h(λM) < k.

Proof. Set x :=
∑

g∈Σk, σ∈C(sign σ)σgσ−1 ∈ FΣn. Assume h(λ) ≥ k and h(λM) ≥ k. Denote
by a1 the length of the p-rim of λ, see section 1. Then h(λM) = a1 + ε1 − h(λ) ≥ k by
Corollary 2.4. Hence a1 ≥ 2k − 1, and so λ is one of the following three partitions: (k, 1k),
(k+ 1, 1k−1) = (k, 1k)t or (k, 2, 1k−2). Moreover, (k, 2, 1k−2) should be excluded if p = 2k− 1
(as then h(λM) = k − 1). In all these cases λ is a core partition so Dλ is projective by the
Nakayama conjecture, and Dλ = Sλ. So we have to prove that xSλ 6= 0.

We first prove that xS(k,2,1k−2) 6= 0. Define the tableau

s =

1 k + 1 k + 3 . . . 2k
2 k + 2
3
...
k

.

Let es = κs{s} ∈ S(k,2,1k−2) be the corresponding polytabloid. We claim that the coefficient
of {s} in xes is (−1)k−12(k − 1)!, which shows that xS(k,2,1k−2) 6= 0. Let σ ∈ C = Ct, where
C is the column stabilizer defined above. Note that (1 + (i, j))κs = 0 if i, j ∈ {1, 2, . . . , k}
or {i, j} = {k + 1, k + 2}, as in this case we have (i, j) ∈ Cs. So if any such (i, j) belongs to
σΣkσ

−1 we have
∑

g∈Σk
σgσ−1κs = 0. So we just need to consider σ =

∏k
i=2(i, k + i) and

σ = (1, k + 1)
∏k
i=3(i, k + i). In these cases we have sign σ = (−1)k−1. Moreover, if c ∈ Cs,

g ∈ Σk and σ is as above, then σgσ−1c{s} = {s} only if c = 1. Hence the coefficient of {s}
in xes is equal to the coefficient of {s} in

(−1)k−1
∑

g∈Σ{1,k+2,k+3,...,2k}

g{s} + (−1)k−1
∑

g∈Σ{k+1,2,k+3,...,2k}

g{s},

which is (−1)k−12(k − 1)!.
Next, we prove that xS(k,1k) 6= 0. Let

s =

1 k + 2 k + 3 . . . 2k
2
...

k + 1

.

As above, it suffices to prove that the coefficient of {s} in xes is non-zero. Let σ ∈ C. Note
that (1 + (i, j))κs = 0 if i, j ∈ {1, 2, . . . , k + 1}, as in this case we have (i, j) ∈ Cs. So if
any such (i, j) belongs to σΣkσ

−1 we have
∑

g∈Σk
σgσ−1κs = 0. So we just need to consider

σ =
∏k
i=1(i, k + i) and σ =

∏k
i=2(i, k + i). In these cases, if c ∈ Cs and g ∈ Σk, then

σgσ−1c{s} = {s} only if c = 1. Hence the coefficient of {s} in xes is equal to the coefficient
of {s} in

(−1)k
∑

g∈Σ{k+1,k+2,...,2k}

g{s} + (−1)k−1
∑

g∈Σ{1,k+2,k+3,...,2k}

g{s},

which is (−1)kk! + (−1)k−1(k − 1)! = (−1)k(k − 1)!(k − 1).
Finally, we prove that xS(k+1,1k−1) 6= 0. Let

s =

1 k + 1 k + 2 . . . 2k
2
...
k

.
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As above, it suffices to prove that the coefficient of {s} in xes is non-zero. Let σ ∈ C. Note
that (1 + (i, j))κs = 0 if i, j ∈ {1, 2, . . . , k}, as in this case we have (i, j) ∈ Cs. Hence if
any such (i, j) belongs to σΣkσ

−1 we have
∑

g∈Σk
σgσ−1κs = 0. So we just need to consider

σ =
∏k
i=1(i, k + i) and σ =

∏
i∈{1,...,j−1,j+1,...,k}(i, k + i) for j = 1, 2, . . . , k. In these cases, if

c ∈ Cs and g ∈ Σk, then σgσ−1c{s} = {s} only if c = 1. Hence the coefficient of {s} in xes
is equal to the coefficient of {s} in

(−1)k
∑

g∈Σ{k+1,k+2,...,2k}

g{s} +
k∑
j=1

(−1)k−1
∑

g∈Σ{k+1,...,k+j−1,j,k+j+1,...,2k}

g{s},

which is (−1)kk! + (−1)k−1k! + (k − 1)(−1)k−1(k − 1)! = (−1)k−1(k − 1)!(k − 1).
�

Proposition 3.8. Let p > k > 1, n ≥ 2k, and Dλ be an irreducible FΣn-module. If the
equation (8) holds then h(λ) < k or h(λM) < k.

Proof. Set x :=
∑

g∈Σk, σ∈C(sign σ)σgσ−1 ∈ FΣ2k < FΣn. Apply induction on n. For
n = 2k see Lemma 3.7. Let n > 2k. If xDλ = 0 then x annihilates every composition factor
of Dλ↓Σn−1

. Now use the inductive hypothesis and Theorem 2.8. �

Corollary 3.9. Let p > k > 1, n ≥ 2k, and Dλ be an irreducible FΣn-module with h(λ) ≥ k,
h(λM) ≥ k. Then

dim HomFΣn(M (n−k,k),EndF (Dλ)) > dim HomFΣn(M (n−k+1,k−1),EndF (Dλ)).

Proof. This follows from Propositions 3.6 and 3.8. �

Take k = 3 in Corollary 3.9. We see that f∗ is a proper injection unless the height of λ or
λM is ≤ 2. To get a more complete result for k = 3, we need to treat the 2-row partitions
separately.

4. Two-row partitions

Throughout this section we fix a 2-row partition λ = (m, k) of n. Let α ≡ k − 2 (mod p)
and β ≡ m− 1 (mod p). So α (resp. β if m > k) is the residue of the bottom (resp. the top)
removable node of λ. Set

dj := dim EndΣn−j×Σj (D
λ↓Σn−j×Σj ).

All composition factors of Dλ↓Σn−1
are known: for α 6= β, one can apply Theorem 1.12, and

for α = β see Sheth [42] (the result also follows from [15], Theorems 2.2,2.3, and [8], Theorem
D(iii)). We will need the following special case:
Lemma 4.1. [42] Let p > 2.

(i) If α 6= β then Dλ↓Σn−1
∼= (1− δmk)D(m−1,k) ⊕ (1− δα,β+1)D(m,k−1).

(ii) If α = β, then Dλ↓Σn−1
= D(m−1,k) + 2D(m,k−1) + (∗), where (∗) stands for terms of

the form D(m−1+pi,k−pi) with i > 0.
Corollary 4.2. Assume that p > 3 and k ≥ 2.

(i) If m− k ≥ 2 and α 6= β + 1, β + 2 then

Dλ↓Σn−2
= D(m−2,k) + (2 + δα,β−1)D(m−1,k−1) + (1 + δαβ)D(m,k−2) + (∗),

where (∗) stands for the terms of the form D(i,j) with (i, j) � (m, k − 2).
(ii) If m = k + 1 then Dλ↓Σn−2

∼= 2D(m−1,k−1) ⊕D(m,k−2).
(iii) If m = k then Dλ↓Σn−2

∼= D(m−1,k−1) ⊕D(m,k−2).
(iv) If α = β + 1 then Dλ↓Σn−2

∼= D(m−2,k) ⊕D(m−1,k−1).
17



(v) If α = β + 2 then Dλ↓Σn−2
∼= D(m−2,k) ⊕ 2D(m−1,k−1).

Corollary 4.3. Assume that p > 3, m ≥ 4, and k ≥ 2.
(i) If m− k ≥ 2 and α 6= β + 1, β + 2 then

Dλ↓Σn−3
= (1− δm,k+2)D(m−3,k) + (3 + δα,β−2)D(m−2,k−1)

+(3 + δα,β−1 + 3δα,β)D(m−1,k−2)

+(1− δk,2)(1 + δα,β − δα,β+3)D(m,k−3) + (∗),

where (∗) stands for the terms of the form D(i,j) with (i, j) � (m, k − 3).
(ii) If m = k + 1 then Dλ↓Σn−3

∼= 2D(m−2,k−1) ⊕ 3D(m−1,k−2) ⊕ (1− δp,5)D(m,k−3).
(iii) If m = k then Dλ↓Σn−3

∼= 2D(m−1,k−2) ⊕D(m,k−3).
(iv) If α = β + 1 then Dλ↓Σn−3

∼= D(m−3,k) ⊕ 2D(m−2,k−1).
(v) If α = β + 2 then Dλ↓Σn−3

∼= (1− δm−k,2)D(m−3,k) ⊕ 3D(m−2,k−1) ⊕ 2D(m−1,k−2).

Next we prove some results on restrictions Dλ↓Σn−2×Σ2
and Dλ↓Σn−3×Σ3

. We consider
Specht modules first.
Lemma 4.4. Let k ≥ 2. The restriction Sλ↓Σn−j×Σj has a Specht filtration with factors:

(i) (1− δm,k+1− δm,k)S(m−2,k)⊗1Σ2 , (1− δm,k)S(m−1,k−1)⊗1Σ2 , S
(m−1,k−1)⊗ sgnΣ2

, and
S(m,k−2) ⊗ 1Σ2 , if j = 2;

(ii) (1− δm,k+2 − δm,k+1 − δmk)S(m−3,k) ⊗ 1Σ3 , (1− δm,k+1 − δmk)S(m−2,k−1) ⊗ 1Σ3 ,

(1− δmk)S(m−2,k−1) ⊗ S(2,1), (1− δmk)S(m−1,k−2) ⊗ 1Σ3 , S
(m−1,k−2) ⊗ S(2,1), and

(1− δk,2)S(m,k−3) ⊗ 1Σ3, if j = 3.

Proof. Follows immediately from Theorem 1.8 and the Littlewood-Richardson Rule. �

Lemma 4.5. Let p > 3 and k ≥ 2.
(i) If m = k + 1 then

Dλ↓Σn−2×Σ2
∼= D(m−1,k−1) ⊗ 1Σ2 ⊕D(m−1,k−1) ⊗ sgnΣ2

⊕D(m,k−2) ⊗ 1Σ2 .

(ii) If m = k then

Dλ↓Σn−2×Σ2
∼= D(m−1,k−1) ⊗ sgnΣ2

⊕D(m,k−2) ⊗ 1Σ2 .

(iii) If α = β + 1 then

Dλ↓Σn−2×Σ2
∼= D(m−2,k) ⊗ 1Σ2 ⊕D(m−1,k−1) ⊗ sgnΣ2

.

(iv) If α = β + 2 then

Dλ↓Σn−2×Σ2
∼= D(m−2,k) ⊗ 1Σ2 ⊕D(m−1,k−1) ⊗ 1Σ2 ⊕D(m−1,k−1) ⊗ sgnΣ2

.

Proof. (i) Let m = k+1. By Lemma 4.4, Sλ↓Σn−2×Σ2
has a filtration with factors S(m−1,k−1)⊗

1Σ2 , S
(m−1,k−1) ⊗ sgnΣ2

, S(m,k−2) ⊗ 1Σ2 . Moreover, by Lemma 1.10, we have S(m−1,k−1) =
D(m−1,k−1) + (∗), S(m,k−2) = D(m,k−2) + (∗), where (∗) stands for irreducible modules Dµ

with µ� (m, k − 2). So

Sλ↓Σn−2×Σ2
= D(m−1,k−1) ⊗ 1Σ2 +D(m−1,k−1) ⊗ sgnΣ2

+D(m,k−2) ⊗ 1Σ2 + (∗),

where (∗) stands for terms of the form Dµ ⊗ Dν with µ � (m, k − 2). As Dλ↓Σn−2×Σ2
is a

quotient of Sλ↓Σn−2×Σ2
, it now follows from Corollary 4.2(ii) that

Dλ↓Σn−2×Σ2
= D(m−1,k−1) ⊗ 1Σ2 +D(m−1,k−1) ⊗ sgnΣ2

+D(m,k−2) ⊗ 1Σ2 .

The complete reducibility follows from the fact that the restriction Dλ↓Σn−2
is completely

reducible (by Corollary 4.2(ii)) and Lemma 1.6.
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(iii) If α = β+ 1, it follows from the assumption p > 3 that m− k ≥ 3. So, by Lemma 4.4,
Sλ↓Σn−2×Σ2

has a filtration with factors S(m−2,k) ⊗ 1Σ2 , S
(m−1,k−1) ⊗ 1Σ2 , S

(m−1,k−1) ⊗
sgnΣ2

, S(m,k−2) ⊗ 1Σ2 . By Lemma 1.10, we have S(m−2,k) = D(m−2,k) + (∗), S(m−1,k−1) =
D(m−1,k−1) + D(m,k−2) + (∗), S(m,k−2) = D(m,k−2) + (∗), where (∗) stands for irreducible
modules Dµ with µ� (m, k − 2). So

Sλ↓Σn−2×Σ2
= D(m−2,k) ⊗ 1Σ2 +D(m−1,k−1) ⊗ 1Σ2 +D(m−1,k−1) ⊗ sgnΣ2

+2D(m,k−2) ⊗ 1Σ2 +D(m,k−2) ⊗ sgnΣ2
+ (∗),

where (∗) stands for terms of the form Dµ ⊗ Dν with µ � (m, k − 2). As Dλ↓Σn−2×Σ2
is a

quotient of Sλ↓Σn−2×Σ2
, it now follows from Corollary 4.2(iv) and Lemma 1.5 that

Dλ↓Σn−2×Σ2
= D(m−2,k) ⊗ 1Σ2 +D(m−1,k−1) ⊗ sgnΣ2

.

The complete reducibility follows from the fact that the restriction Dλ↓Σn−2
is completely

reducible and Lemma 1.6.
The remaining parts of the lemma are proved similarly. �

Lemma 4.6. Let p > 3, k ≥ 2. Then d2 ≤ 4. Moreover,
(i) d2 = 2 if α = β + 1 or m = k;
(ii) d2 = 3 if α = β + 2 or m = k + 1;
(iii) d2 = 4 if m = 4, k = 2, and p > 5.

Proof. By Lemma 4.4, the restriction Sλ↓Σn−2×Σ2
has a filtration with factors

S(m−2,k) ⊗ 1Σ2 , S
(m−1,k−1) ⊗ 1Σ2 , S

(m−1,k−1) ⊗ sgnΣ2
, S(m,k−2) ⊗ 1Σ2 ,

each appearing at most once. Now, since dim HomFΣm(Sλ, (Sµ)∗) = δλµ for any p-regular
partitions λ and µ of m by Lemma 1.4, we conclude that

dim HomF [Σn−2×Σ2](S
λ↓Σn−2×Σ2

, (Sλ↓Σn−2×Σ2
)∗) ≤ 4.

But Dλ↓Σn−2×Σ2
is a quotient of Sλ↓Σn−2×Σ2

and a submodule of (Sλ↓Σn−2×Σ2
)∗, so the first

claim follows. Finally, (i) and (ii) follow from Lemma 4.5, and (iii) follows from Lemma 4.4(i)
as in this case the group algebra FΣ6 is semisimple. �

Lemma 4.7. Let p > 3, m ≥ 4, and k ≥ 2.
(i) If m− k ≥ 2 and α 6= β + 1, β + 2 then

Dλ↓Σn−3×Σ3
= (1− δm,k+2)D(m−3,k) ⊗ 1Σ3

+ (1 + δα,β−2)D(m−2,k−1) ⊗ 1Σ3 +D(m−2,k−1) ⊗D(2,1)

+ (1 + δα,β−1 + δαβ)D(m−1,k−2) ⊗ 1Σ3

+ (1 + δαβ)D(m−1,k−2) ⊗D(2,1)

+ (1− δk,2)(1 + δαβ − δα,β+3)D(m,k−3) ⊗ 1Σ3 + (∗),

where (∗) stands for terms of the form Dµ ⊗Dν with µ� (m, k − 3).
(ii) If m = k + 1 then

Dλ↓Σn−3×Σ3
∼= D(m−2,k−1) ⊗D(2,1) ⊕ D(m−1,k−2) ⊗ 1Σ3

⊕ D(m−1,k−2) ⊗D(2,1) ⊕ (1− δp,5)D(m,k−3) ⊗ 1Σ3 .

(iii) If m = k then Dλ↓Σn−3×Σ3
∼= D(m−1,k−2) ⊗D(2,1) ⊕ D(m,k−3) ⊗ 1Σ3 .

(iv) If α = β + 1 then Dλ↓Σn−3×Σ3
∼= D(m−3,k) ⊗ 1Σ3 ⊕ D(m−2,k−1) ⊗D(2,1).
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(v) If α = β + 2 then

Dλ↓Σn−3×Σ3
∼= (1− δm,k+2)D(m−3,k) ⊗ 1Σ3 ⊕ D(m−2,k−1) ⊗ 1Σ3

⊕ D(m−2,k−1) ⊗D(2,1) ⊕ D(m−1,k−2) ⊗D(2,1).

Proof. (i) By Lemma 4.4, Sλ↓Σn−3×Σ3
has a filtration with factors

(1− δm,k+2)S(m−3,k) ⊗ 1Σ3 , S
(m−2,k−1) ⊗ 1Σ3 , S

(m−2,k−1) ⊗D(2,1),

S(m−1,k−2) ⊗ 1Σ3 , S
(m−1,k−2) ⊗D(2,1), (1− δk,2)S(m,k−3) ⊗ 1Σ3 .

Moreover, by Lemma 1.10,

S(m−3,k) = D(m−3,k) + δα,β−2D
(m−2,k−1) + δα,β−1D

(m−1,k−2)

+ (1− δk,2)δαβD(m,k−3) + (∗),
S(m−2,k−1) = D(m−2,k−1) + δαβD

(m−1,k−2) + (∗),
S(m−1,k−2) = D(m−1,k−2) + (∗),
S(m,k−3) = D(m,k−3) + (∗),

where (∗) stands for irreducible modules Dµ with µ� (m, k − 3). So

Sλ↓Σn−3×Σ3
= (1− δm,k+2)D(m−3,k) ⊗ 1Σ3 + (1 + δα,β−2)D(m−2,k−1) ⊗ 1Σ3

+D(m−2,k−1) ⊗D(2,1) + (1 + δα,β−1 + δα,β)D(m−1,k−2) ⊗ 1Σ3

+(1 + δα,β)D(m−1,k−2) ⊗D(2,1)

+(1− δk,2)(1 + δα,β)D(m,k−3) ⊗ 1Σ3 + (∗),
where (∗) stands for terms of the form Dµ ⊗Dν with µ � (m, k − 3). Now (i) follows from
Corollary 4.3(i) as Dλ↓Σn−3×Σ3

is a quotient of Sλ↓Σn−3×Σ3
.

(iv) If α = β + 1 then m − k ≥ 3, and, by Corollary 4.3(iv), Dλ↓Σn−3
∼= D(m−3,k) ⊕

2D(m−2,k−1). Now the result follows from Lemmas 4.4, 1.10, and 1.6 similarly to the corre-
sponding case in Lemma 4.5.

The remaining parts of the lemma are proved similarly. �

Lemma 4.8. Let p > 3, m ≥ 4, and k ≥ 2. Then d3 > 4, except in the following situations:
(1) m = k + 1, in which case d3 = 4− δp,5; (2) m = k, in which case d3 = 2; (3) α = β + 1,
in which case d3 = 2; (4) α = β + 2, in which case d3 = 4 − δm,k+2; and (5) p > 5, m = 4,
k = 2, when d4 = 4.

Proof. In the exceptional cases (1)-(4) the result follows from Lemma 4.7(ii)-(v). For (5), FΣ6

is semisimple, and so we may use Lemma 4.4. So assume that α 6= β + 1, β + 2, m − k ≥ 2
and n > 6. As the group algebra FΣ3 is semisimple, the modules 1Σ3 and D(2,1) are in
different blocks. Moreover, assume α 6= β, β − 1, β − 2. Then by the Nakayama Conjecture,
all modules in

∆ := {D(m−3,k), D(m−2,k−1), D(m−1,k−2), D(m,k−3)}
are in different blocks (if m − k = 2, disregard the first module, and if k = 2, disregard the
last one). Now, by Lemma 4.7(i), the restriction Dλ↓Σn−3×Σ3

has composition factors in at
least 5 different blocks. Hence it has at least 5 indecomposable components, whence d3 ≥ 5.

Let α = β. Then m − k ≥ 4 as p ≥ 5. Moreover, D(m−3,k) ∼ D(m,k−3) 6∼ D(m−2,k−1) ∼
D(m−1,k−2), with D(m,k−3) omitted if k = 2. By Lemma 4.7(i), the restriction Dλ↓Σn−3×Σ3

has at least 3 blocks components, at least 2 of which are reducible. Now, by Lemmas 1.2 and
1.3, we have d3 ≥ 5.

If α = β − 1, we have m − k ≥ 5. If k > 2 then the modules of ∆ belong to 3 different
blocks, with D(m−3,k) ∼ D(m−1,k−2). Then, by Lemma 4.7(i), Dλ↓Σn−3×Σ3

has at least 5
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blocks components, whence d3 ≥ 5. If k = 2, we get at least 4 block components, but at least
one of them is reducible, so we may apply Lemmas 1.2 and 1.3.

Finally, let α = β−2. As p ≥ 5 and m−k > 1, we have m−k ≥ 6. If k > 2, the modules of
∆ belong to 3 different blocks, with D(m−3,k) ∼ D(m−2,k−1). By Lemma 4.7(i), Dλ↓Σn−3×Σ3

has at least 5 blocks components, unless k = 2 or p = 5 (in which case β − 2 = β + 3). If
k = 2 or p = 5, we get at least 4 block components, but at least one of them is reducible, so
we may apply Lemmas 1.2 and 1.3 again. �

Corollary 4.9. Let p > 3, m ≥ 4, and k ≥ 2. Then d3 > d2, except in the following cases:
(1) α = β + 1 or m = k, in which case d2 = d3 = 2; (2) p = 5 and m = k + 1 or k + 2, in
which case d2 = d3 = 3; (3) p > 5, m = 4, k = 2 in which case d2 = d3 = 4.

Proof. Follows from Lemmas 4.8 and 4.6. �

For the exceptional case (1) above we will need to consider d4.
Lemma 4.10. Let p > 3, k ≥ 2, and α = β + 1. Then d4 = 3 unless p = 5 and m = k + 3.

Proof. Note that α = β + 1 implies m − k ≥ p − 2 ≥ 3. It follows from Corollary 4.3 and
Lemma 4.1 that

Dλ↓Σn−4
∼= (1− δm,k+3)D(m−4,k) ⊕ 3D(m−3,k−1) ⊕ 2D(m−2,k−2).

By Theorem 1.8 and Lemma 1.10,

Sλ↓Σn−4×Σ4
= (1− δm,k+3)D(m−4,k) ⊗ 1Σ4 +D(m−3,k−1) ⊗ 1Σ4 +D(m−3,k−1) ⊗D(3,1)

+D(m−2,k−2) ⊗ 1Σ4 +D(m−2,k−2) ⊗D(3,1) +D(m−2,k−2) ⊗D(2,2) + (∗),

where (∗) stands for the composition factors of the form Dλ⊗Dµ with λ� (m− 2, k− 2). As
dimD(3,1) = 3 and dimD(2,2) = 2, it follows from above and Lemma 1.6 that Dλ↓Σn−4×Σ4

is
semisimple with at least 3 composition factors, unless m − k = 3, which is only possible if
p = 5. The result follows. �

Lemma 4.11. Let p > 3 and m = k > 3. Then d4 = 3 unless p = 5.

Proof. The argument as in the proof of Lemma 4.10 shows that

Dλ↓Σn−4×Σ4
∼= D(m−2,k−2) ⊗D(2,2) ⊕D(m−1,k−3) ⊗D(3,1) ⊕ (1− δp,5)D(m,k−4) ⊗ 1Σ4 ,

which implies the desired result. �

In the following corollary we gather the most important information obtained in this sec-
tion.
Corollary 4.12. Let n ≥ 7, and λ = (m, k) be a two row partition with k ≥ 2.

(i) Let p > 5. If m 6≡ k − 2 (mod p) and m 6= k then

dim HomFΣn(M (n−3,3),EndF (Dλ)) > dim HomFΣn(M (n−2,2),EndF (Dλ)).

(ii) Let p > 5. If m ≡ k − 2 (mod p) or m = k then

dim HomFΣn(M (n−4,4),EndF (Dλ)) > dim HomFΣn(M (n−3,3),EndF (Dλ)).

(iii) Let p = 5. If m 6≡ k − 2 (mod p) and m− k > 3 then

dim HomFΣn(M (n−3,3),EndF (Dλ)) > dim HomFΣn(M (n−2,2),EndF (Dλ)).

(iv) Let p = 5. If m ≡ k − 2 (mod p) and m− k > 3 then

dim HomFΣn(M (n−4,4),EndF (Dλ)) > dim HomFΣn(M (n−3,3),EndF (Dλ)).

Proof. This follows from (3), Corollary 4.9, and Lemmas 4.10, 4.11. �
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5. Proof of the Main Theorem

Let G < Σn be a proper subgroup, and Dλ be an irreducible FΣn-module which is irre-
ducible over G. In view of Theorem 0.7, the main thing is to consider the 2-transitive groups.
Furthermore, the case where G is 2-transitive and Dλ ∈ Rn(1) (see (2)) has been studied by
Mortimer, see Example 0.5. To deal with 2-transitive groups on all other modules we will
use Proposition 5.1 below and some ad hoc methods.

We denote by rk the number of G-orbits on the (unordered) k-element subsets of {1, . . . , n}.
If G is 2-transitive, it is 2-homogeneous, and so we will always have r2 = 1.
Proposition 5.1. Let n ≥ 8, G < Σn be a 2-homogeneous subgroup, and Dλ be an irreducible
FΣn-module with Dλ 6∈ Rn(1).

(i) Assume that p > 5 and G is not 3-homogeneous. Then Dλ↓G is reducible, except
possibly in the cases where Dλ ∼= D(m,k) or D(m,k) ⊗ sgn and m ≡ k − 2 (mod p) or m = k.
If, additionally, r4 > r3 then Dλ↓G is reducible in the exceptional cases too.

(ii) Assume that p = 5 and G is not 3-homogeneous. Then Dλ↓G is reducible, except
possibly in the cases where Dλ ∼= D(m,k) or D(m,k)⊗sgn and m ≡ k−2 (mod p) or m−k ≤ 3.
If, additionally, r4 > r3 then Dλ↓G is reducible in the exceptional cases too, unless m−k ≤ 3.

(iii) Assume that p > 3 and G is 3-homogeneous but not 4-homogeneous. Then Dλ↓G is
reducible, except possibly in the cases where h(λ) ≤ 3 or h(λM) ≤ 3.

Proof. (i), (ii). If neither Dλ nor Dλ⊗sgn is isomorphic to D(m,k) for some two row partition
(m, k), then the result follows from Lemma 1.1, Corollary 3.9, and Proposition 3.4. Otherwise
we use Corollary 4.12 and Lemma 1.1, Proposition 3.4 again.

(iii) This follows from Lemma 1.1, Corollary 3.9, and Proposition 3.4. �

Now let p > 3, as in the Main Theorem. If n < 5 then FΣn is semisimple, and the result
follows e.g. from [39]. So from now on we assume that n ≥ 5. First, we suppose that
Dλ 6∈ Rn(1) unless otherwise stated, and go through the list of 2-transitive groups from [25].
After that we will complete the proof by considering the case G < Σn−1.

Alternating groups. This case has been considered in Example 0.3.

Groups with a regular normal subgroup. A group G in this class is always a subgroup
of the group AΓL(m, q) of all non-degenerate semilinear affine transformations of the affine
space V = F

m
q acting naturally on the qm points of V . We have n = qm, and |AΓL(m, q)| =

fqm(m+1)/2(qm − 1)(qm−1 − 1) . . . (q − 1), if q = `f for a prime `.
Assume first that m = 1. Then q = n ≥ 5. We have |G| ≤ |AΓL(1, q)| = fq(q − 1), where

q = `f for a prime `. By (1), if Dλ is irreducible over G then dimDλ ≤
√
fq(q − 1). If p > 5,

this contradicts Lemma 1.18(i) when q ≥ 9 and Lemma 1.22(i)–(iv) otherwise. If p = 5 we
can use Lemma 1.18(i) when q ≥ 11, and Lemma 1.22(i)–(v) otherwise. So from now on we
assume that m ≥ 2.

If p = 5, q > 2, and Dλ is D(r,s) or D(r,s) ⊗ sgn for r − s ≤ 3, then it follows from
Theorem 1.16 that dimDλ = fn or fn−1. By (1), we must have

fn−1 ≤
√
|G| ≤

(
fqm(m+1)/2(qm − 1)(qm−1 − 1) . . . (q − 1)

)1/2
.

But an elementary argument using Lemma 1.17 shows that this is impossible. So from now
on we exclude the case where p = 5, q > 2, and Dλ is D(r,s) or D(r,s) ⊗ sgn with r − s ≤ 3.

Assume now that G = AΓL(m, q) and q > 2. In this case G is not 3-homogeneous. Indeed,
it can not move 3 points lying on an affine line to 3 points in a general position. Bearing in
mind Proposition 5.1, we want to prove that r4 > r3. It is well known that G is transitive
on the triples of points in general position. So r3 = 1 + s, where s is the number of orbits
of G on the triples {a, b, c} such that a, b, c lie on an affine line. Similarly, G is transitive
on 4-tuples of points in general position. Note that 4 points in general position exist only if
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m ≥ 3. Set t = 1 if m ≥ 3 and t = 0 if m = 2. Also denote by u (resp. v, resp. w) the
number of G-orbits on 4-tuples {a, b, c, d} such that a, b, c, d lie in the same affine plane, but
no 3 of them lie on a line (resp., exactly 3 of the points a, b, c, d lie on a line, resp. all four of
the points lie on a line). Then we can write r4=t+u+v+w. Note that w > 0 if and only if
q > 3. Moreover, assume that {a1, b1, c1, d1} and {a2, b2, c2, d2} are in the same G-orbit, and
that exactly three points in each of these 4-tuples belong to a line. Assume without loss of
generality that ai, bi, and ci lie on the same line (i = 1, 2). Then {a1, b1, c1} and {a2, b2, c2}
must be in the same G-orbit (on triples). This implies that v ≥ s. As u > 0, we conclude
that r4 > r3 unless G = AΓL(2, 3). In all the other cases we may use Proposition 5.1.

Now let G = AΓL(2, 3). Then |G| = 432, and so every irreducible FG-module has dimen-
sion ≤ 20, thanks to (1). By Lemma 1.22(v), we may assume that p = 7 and dimDλ = 19.
But G = V o GL(2, 3). As Dλ is faithful and (p, q) = 1, it follows from [41], section 8.2,
Proposition 25 that Dλ↓G is induced from a certain proper subgroup of G containing V . As
19 is prime, this implies that G has a subgroup of index 19, which is absurd.

Thus, if m = 1, or if m ≥ 2 and q > 2, then the restriction of Dλ to AΓL(m, q), and hence
to any of its subgroups, is reducible. It just remains to treat the case G ≤ AΓL(m, 2). This
is rather harder than the others so we consider it as a separate case as follows.

Groups G with G ≤ AΓL(m, 2). Note m ≥ 3, as we have assumed n ≥ 5. First,
let G = AΓL(m, 2) = AGL(m, 2). Then G is 3-homogeneous but not 4-homogeneous. By
Proposition 5.1(iii), we may assume that h(λ) ≤ 3. We will prove that Dλ↓G is irreducible if
and only if Dλ or Dλ ⊗ sgn is 1, D(n−1,1), D(n−2,12), or D(5,3) (p = 5).

SetMl = {D(l), D(l−1,1), D(l−2,1,1)}. We prove the following intermediate fact on branching.
Lemma 5.2. Let l ≥ 6, and Dγ be an irreducible FΣl-module. If every composition factor
of the restriction Dγ↓Σl−1

belongs to Ml−1, then Dγ ∈Ml.

Proof. At least one of the modules D(l−1), D(l−2,1), D(l−3,1,1) must be in the socle of Dγ↓Σl−1
.

If this is D(l−1), then γ = (l) or (l − 1, 1) by Theorem 1.12(i). If this is D(l−2,1) then by
Theorem 1.12(i), γ = (l−1, 1), (l−2, 1, 1) or (l−2, 2). But by Theorem 1.12(ii), D(l−2,2)↓Σl−1

contains D(l−3,2) as a composition factor, which leads to a contradiction. Finally, if D(l−3,1,1)

appears in the socle of Dγ↓Σl−1
then again by Theorem 1.12(i), γ = (l−2, 1, 1), (l−3, 2, 1) or

(l−3, 1, 1, 1). But D(l−3,2,1)↓Σl−1
contains D(l−4,2,1) and D(l−3,1,1,1)↓Σl−1

contains D(l−4,1,1,1),
in view of Theorem 1.12(ii). This leads to a contradiction again. �

We now develop a technical result on restrictions from Σ2m to Σ2m−1 × Σ2m−1 , which will
turn out to be precisely what is needed in the later argument.
Lemma 5.3. Let m ≥ 3, p > 3, n = 2m and λ be a p-regular partition of n with h(λ) ≤ 3.
Set k = n/2. Assume that every composition factor of Dλ ↓Σk×Σk has one of the following
forms:

(1) Dµ ⊗Dµ with µ ∈ {(k), (k − 1, 1), (2, 1, 1)}.
(2) Dµ⊗Dν or Dν⊗Dµ for µ ∈ {(k−1, 1), (k−2, 12), (3, 3, 2), (5, 3)} and ν ∈ {(k), (2, 2)}.

Then, λ ∈ {(n), (n− 1, 1), (n− 2, 12), (3, 3, 2), (5, 3)}.

Proof. If m > 4, it follows from the assumption that any composition factor of Dλ↓Σk belongs
to Mk. So Dλ ∈Mn by Lemma 5.2.

Now, let m = 4. If Dλ is as in the assumption then all composition factors of the restriction
Dλ↓Σ8

belong to M8 ∪ {D(5,3), D(3,3,2)}. We will deduce from this that Dλ ∈ M16. In view
of Lemma 5.2, it suffices to prove that every composition factor of Dλ↓Σ10

belongs to M10.
To verify that, we first prove that every composition factor of Dλ↓Σ9

belongs to M9 ∪
{D(3,3,3), D(6,3)}, with D(6,3) only needed if p = 5. Indeed, let Dβ be a composition factor
of Dλ↓Σ9

. Then all composition factors of Dβ↓Σ8
belong to M8 ∪ {D(5,3), D(3,3,2)}. If an
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element of M8 appears in the socle of Dβ↓Σ8
then arguing as in the proof of Lemma 5.2,

we conclude that Dβ ∈ M9. Assume that D(5,3) appears in the socle. By Theorem 1.12(i),
β ∈ {(6, 3), (5, 4), (5, 3, 1)}. But by Theorem 1.12(ii), D(6,3)↓Σ8

has a composition factor
D(6,2), unless p = 5, which leads to a contradiction. Similarly we get a contradiction in
the remaining two cases, as D(5,4)↓Σ8

has a composition factor D(4,4), and D(5,3,1)↓Σ8
has a

composition factor D(4,3,1). Finally, if D(3,3,2) appears in the socle of Dβ↓Σ8
, then a similar

argument implies that β = (3, 3, 3).
Now, let Dγ be a composition factor of Dλ↓Σ10

. By the previous paragraph, the composi-
tion factors of Dγ↓Σ9

belong to M9 ∪ {D(3,3,3), D(6,3)}, with D(6,3) omitted unless p = 5. If
an element of M9 appears in the socle of Dγ↓Σ9

then we argue as in the proof of Lemma 5.2
to conclude that Dγ ∈ M10. If p = 5 and D(6,3) appears in the socle of Dγ↓Σ9

then by
Theorem 1.12(i), γ ∈ {(7, 3), (6, 4), (6, 3, 1)}. All of these lead to a contradiction because, in
view of Theorem 1.12(ii), D(7,3)↓Σ9

contains D(7,2), D(6,4)↓Σ9
contains D(5,4), and D(6,3,1)↓Σ9

contains D(5,3,1), as composition factors. The case where D(3,3,3) appears in the socle of
Dγ↓Σ9

is considered similarly.
Finally, let m = 3. In this case it suffices to show that a composition factor from the

set {D(4) ⊗ D(2,2), D(2,2) ⊗ D(2,2), D(3,1) ⊗ D(2,1,1)} appears in the restriction Dλ↓Σ4×Σ4
for

every λ ∈ {(6, 2), (4, 4), (5, 2, 1), (4, 2, 2), (4, 3, 1)}. For the first three λ’s this follows from
Lemma 1.11. If λ = (4, 3, 1) or λ = (4, 2, 2) and p > 5 then λ is a p-core, and the required
fact follows from the Littlewood-Richardson rule. Finally, if λ = (4, 2, 2) and p = 5, we have
λM = (4, 4), and the result is obtained by tensoring with sgn. �

Write G = Vm.Gm, where Gm = GL(m, 2) and Vm = F
m
2 is its natural module. Let

{e1, e2, . . . , em} be a basis of Vm. Then any element of Vm can be written in the form
a1e1 + · · ·+ amem where ai = 0 or 1. A formal expression of the form χ = b1ε1 + · · ·+ bmεm,
with bi = 0 or 1, will be identified with the linear character

χ : Vm → F ∗, (a1e1 + · · ·+ amem) 7→ (−1)a1b1+···+ambm .

Any irreducible representation of Vm over F looks like this, and we denote the set of all
irreducible FVm-modules by IrrVm. Note that χ ⊗ χ ∼= 1Vm for any χ ∈ IrrVm. Write
0̄ = 0ε1 + · · ·+ 0εm for the trivial representation 1Vm . The group G acts on IrrVm via

g · χ(a) = χ(g−1ag), g ∈ G, a ∈ Vm, χ ∈ IrrVm.

Under this action G has two orbits on IrrG: {0̄} and IrrG \ {0̄}. We denote the stabilizer
of χ ∈ IrrVm in G by Gχ. Note that Gεm ∼= Vm.AGL(m − 1, 2). Now we explain how
the irreducible FG-modules can be parametrized by the irreducible FGi-modules for all
0 ≤ i ≤ m (where G0 is the trivial group), see [9], section 5.1, or [44], section 13, for more
details. Let L be any irreducible FG-module. Consider the restriction L↓Vm . If Vm acts
trivially on L, the action of G factors through the surjection G→ Gm to give an irreducible
Gm-module. If this module is X, we denote L by L(X; 0). Next, assume that Vm does not
act trivially on L. Then it is not hard to see that

L↓Vm ∼=
⊕

χ∈IrrVm\{0̄}

Lχ,

where Lχ is the χ-isotypic component of L↓Vm . Moreover, Lχ is an (irreducible) FGχ-module
in a natural way, and L ∼= (Lχ)↑GVmGχ for any χ ∈ IrrVm \ {0̄}. Taking χ to be εm, we see in
particular that Lεm is an irreducible F [Vm.AGL(m− 1, 2)]-module, which factors through to
give an irreducible F [AGL(m − 1, 2)]-module. Now, AGL(m − 1, 2) = Vm−1.Gm−1. If Vm−1

acts trivially on Lεm , this module factors through to give an irreducible FGm−1-module,
say X. In this case we denote our L by L(X; 1). Otherwise iterate by taking (Lεm)εm−1 ,
etc. In this way the module L will be labelled by L(X; j), where 0 ≤ j ≤ m − 1 and X
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is an irreducible FGm−j-module. Note that Vm does not have non-trivial fixed points on
L(X; j), unless j = 0, when Vm in fact acts trivially on the whole module. In particular, the
construction implies that dimL(X; j) = dimX(2m − 1)(2m−1 − 1) . . . (2m−j+1 − 1).

Now let n = 2m and embed G = Vm.Gm into Σn via the natural permutation represen-
tation. First, we show that D(n−1,1) and D(n−2,12) are irreducible over G. In fact, we show
more:
Lemma 5.4. D(n−1,1) ↓G∼= L(1Gm−1 ; 1) and D(n−2,12) ↓G∼= L(1Gm−2 ; 2).

Proof. By Lemma 1.9, we have S(n−1,1) = D(n−1,1) and S(n−2,12) = D(n−2,12). Hence the
dimensions of the modules are n− 1 = 2m − 1 and (n− 1)(n− 2)/2 = (2m − 1)(2m−1 − 1).

Consider the natural permutation module M (n−1,1). Its elements are the formal F -linear
combinations of the form

∑
v∈Vm fvv. As p does not divide n = 2m, we have M (n−1,1) ∼=

S(n−1,1) ⊕ 1. As Vm acts regularly on M (n−1,1), we conclude that

S(n−1,1) ↓Vm∼=
⊕

χ∈IrrVm\{0̄}

S(n−1,1)
χ ,

where each S(n−1,1)
χ is 1-dimensional. So now to prove that S(n−1,1)↓G ∼= L(1Gm−1 ; 1) we just

need to check that Gm−1 acts trivially on S
(n−1,1)
εm . To prove this it is enough to show that

Gm−1 acts trivially on M
(n−1,1)
εm . Note that for any χ, M (n−1,1)

χ is spanned by the vector

xχ :=
∑
v∈Vm

χ(v)v.

As εm(b1e1 + · · ·+ bmem) = (−1)bm , one can easily see that Gm−1 fixes xεm .
To prove that S(n−2,12)↓G ∼= L(1Gm−2 ; 2), we show that (S(n−2,12)

εm )εm−1 contains a vector
fixed by Gm−2. This will imply that S(n−2,12)↓G ⊇ L(1Gm−2 ; 2), whence the two are equal
by dimension. By Lemma 1.7, S(n−2,12) ∼=

∧2 S(n−1,1). Note that M (n−1,1) ∼= S(n−1,1) ⊕ 1
implies

∧2M (n−1,1) ∼=
∧2 S(n−1,1) ⊕ S(n−1,1). As we already know that (S(n−1,1)

εm )εm−1 = 0,
it suffices to observe that ((

∧2M (n−1,1))εm)εm−1 contains a Gm−2-fixed vector, namely, the
vector xεm−1+εm ∧ xεm−1 . �

Lemma 5.5. Let m ≥ 2, p > 3 and λ be a p-regular partition of n. Then, (Dλ)Vm = Dλ if
and only if Dλ is one of 1Σn , sgnΣn or D(2,2).

Proof. If m > 2 then Dλ is a faithful representation of Σn unless Dλ = 1Σn or sgnΣn , so
only these two cases arise. For m = 2, the natural module D(3,1) clearly has points moved by
Vm, so D(2,12) = D(3,1) ⊗ sgn does too. It just remains to observe that all of D(2,2) is fixed
by Vm. Indeed, dimD(2,2) = 2, while IrrVm contains three non-trivial characters permuted
transitively by Gm, so none of these can arise as constituents of D(2,2) ↓Vm . �

Lemma 5.6. Let m ≥ 2, p > 3 and λ be a p-regular partition of n with h(λ) ≤ 3. Then,
(Dλ)Vm = 0 if and only if Dλ is one of D(n−1,1), D(n−2,12), D(5,3) or D(3,3,2).

Proof. (⇐). Lemma 5.4 gives that (Dλ)Vm = 0 for λ = (n− 1, 1) or (n− 2, 12). For D(3,3,2),
it suffices (since p - |V3|) to prove that S(3,3,2) does not have V3-fixed points, which in turn
will follow from (S(3,3,2)

C
)V3 = 0. Note that G < A8 < Σ8, the module S(3,3,2)

C
splits into

two irreducible CAn-modules S+ and S− under the restriction to An, and those modules
remain irreducible over G by [39, Theorem 2(iv)]. By faithfulness of the A8-modules, we now
conclude that Vm does not have fixed points on S+ and S−, and hence on S

(3,3,2)
C

. Finally,
to prove that D(5,3) does not have V3-invariants, it suffices to prove the same for S(5,3).
Moreover, it is enough to prove that (S(5,3))V3 = 0 in any fixed characteristic different from
2, for example in characteristic 5. But in characteristic 5 we have S(5,3) = D(5,3) + D(7,1)
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by virtue of Lemma 1.10. Moreover, (D(7,1))V3 = 0, and D(5,3) ∼= D(3,3,2) ⊗ sgn, whence
(D(5,3))V3 = 0, and so (S(5,3))V3 = 0.

(⇒). Denote our embedding Vm ↪→ Σn by ϕm. Note that Vm = Y tZ, where Y (resp. Z)
is the set of all vectors in Vm whose em-coordinate is 0 (resp. 1). Then Y is a subgroup of Vm,
isomorphic to Vm−1. Let us identify Vm−1 with Y . Note that Vm−1 acts regularly on both Y
and Z. Denote the symmetric groups on the sets Y and Z by Σ(Y ) and Σ(Z), respectively.
Of course, Σ(Y ) ∼= Σ(Z) ∼= Σn/2. Moreover H := Σ(Y ) × Σ(Z) ∼= Σn/2 × Σn/2 is a Young
subgroup of Σn in a natural way, and Vm−1 is embedded into H diagonally via ϕm−1×ϕm−1.
Set c = ϕm(em). Then c is an element of order 2 which permutes Y and Z. Let C = {1, c} <
Σn be the subgroup of order 2 generated by c. Then Vm = Vm−1.C < H.C ∼= Σn/2 wrC.

We next describe the irreducible representations ofH.C. Let µ and ν be p-regular partitions
of n/2. For any FH-module of the formDµ⊗Dν define a map τ : Dµ⊗Dν → Dν⊗Dµ, d⊗f 7→
f ⊗ d (for d ∈ Dµ, f ∈ Dν). For µ 6= ν, we consider an FH-module Dµ⊗Dν ⊕Dν ⊗Dµ. Let
c act on it via c · (x+ y) = τ(y) + τ(x) (for x ∈ Dµ ⊗Dν , y ∈ Dν ⊗Dµ). One can easily see
that this defines an irreducible F [H.C]-module, which we denote by D(µ, ν). Also consider
an FH-module Dµ⊗Dµ. Let c act on it via c ·x = τ(x) (resp. c ·x = −τ(x)). This defines an
irreducible F [H.C]-module, which we denote by D(µ,+1) (resp. D(µ,−1)). It follows from
the Clifford theory (see e.g. [12], section III.2) that any F [H.C]-module looks like D(µ,±1)
or D(µ, ν) ∼= D(ν, µ) for µ 6= ν.

For m ≥ 2 and any p-regular partitions µ, ν of n/2, we claim that
(a) D(µ,+1)Vm 6= 0;
(b) D(µ,−1)Vm 6= 0, unless Dµ ∈ Rn/2(1) = {1, sgn, D(n/2−1,1), D(n/2−1,1) ⊗ sgn};
(c) D(µ, ν)Vm 6= 0 unless (Dµ)Vm−1 = 0, (Dν)Vm−1 = Dν or (Dµ)Vm−1 = Dµ, (Dν)Vm−1 = 0.

Indeed, for (a), pick any non-zero vector v ∈ Dµ
χ for any χ ∈ IrrVm−1. Then, as χ⊗χ ∼= 1Vm−1 ,

v ⊗ v ∈ D(µ,+1) is a non-trivial Vm-invariant. For (b), assume that dimDµ
χ ≥ 2 for some

χ ∈ IrrVm−1. Pick a pair f, d of linearly independent vectors in Dµ
χ. Then, as χ⊗χ ∼= 1Vm−1 ,

f ⊗d−d⊗f ∈ D(µ,−1) is a non-trivial Vm-invariant. The only problem arises if dimDµ
χ ≤ 1

for all χ ∈ IrrVm−1. But this implies that the irreducible FΣn/2-module Dµ has dimDµ ≤
2m−1 = n/2. It follows from Lemmas 1.18 and 1.22 that Dµ ∈ Rn/2(1), as required. For
(c), under the assumption there, we can find χ ∈ IrrVm−1 such that both Dµ

χ and Dν
χ are

non-zero. Let d ∈ Dµ
χ, f ∈ Dν

χ be non-zero vectors. Then, this time, d⊗ f + f ⊗ d ∈ D(µ, ν)
is a non-trivial Vm-invariant.

Now we can complete the proof of the lemma by induction on m = 2, 3, . . . , the conclusion
being immediate for m = 2 by Lemma 5.5. So suppose that m > 2 and that we have proved
the result for all smaller m. Take λ with (Dλ)Vm = 0. Then, using the fact that p - |Vm|, we
must have that DVm = 0 for all composition factors D of (Dλ) ↓H.C . Combining this with
(a)–(c) above, we deduce that all composition factors of Dλ ↓H.C have one of the following
forms:

(1) D(µ,−1), with Dµ ∈ Rn/2(1);
(2) D(µ, ν) with (Dµ)Vm−1 = 0, (Dν)Vm−1 = Dν .

Also note by a Specht module argument that all composition factors of Dλ ↓H must be of
the form Dµ ⊗ Dν with h(µ), h(ν) ≤ h(λ) ≤ 3. So, applying Lemma 5.5 and the induc-
tion hypothesis, all composition factors of Dλ ↓H are of the form Dµ ⊗ Dν or Dν ⊗ Dµ

with either µ = ν ∈ {(k), (k − 1, 1), (2, 1, 1)} or µ ∈ {(k), (2, 2)} and ν ∈ {(k − 1, 1), (k −
2, 1, 1), (5, 3), (3, 3, 2)}, where k = n/2. We conclude from Lemma 5.3 that λ ∈ {(n), (n −
1, 1), (n− 2, 1, 1), (5, 3), (3, 3, 2)}. But λ = (n) clearly has (Dλ)Vm 6= 0 so does not arise. �

Now we can complete the analysis in this case. Suppose that Dλ is an irreducible FΣn-module
of dimension > 1, with h(λ) ≤ 3, and that Dλ ↓G is irreducible. As n ≥ 5, Dλ is faithful, so
Vm cannot fix all of the module Dλ. Hence, Dλ ↓G contains a composition factor of the form
L(X; j) for j > 0, so by the irreducibility Dλ ↓G∼= L(X; j) for j > 0. This shows that in
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fact Vm has no non-trivial fixed points on Dλ. So by Lemma 5.6, Dλ is D(n−1,1), D(n−2,12),
D(5,3) or D(3,3,2). It just remains to consider the modules D(3,3,2), D(5,3), and D(n−2,12) on
the 2-transitive subgroups G with G ≤ AGL(m, 2) < Σn.

Note that AGL(3, 2) < A8 < Σ8, andD(3,3,2) ∼= D(3,3,2)⊗sgn if p > 5, so in this case already
the restriction D(3,3,2)↓A8

is reducible. As for D(5,3) in characteristic p > 5, it has dimension
28, and so if D(5,3)↓AGL(3,2) was irreducible then GL(2, 2) would have an irreducible module
of dimension 4, which is false. Let p = 5. Note that (3, 3, 2)M = (5, 3). By Theorem 1.16,
dimD(3,3,2) = dimD(5,3) = 21. It follows by dimensions that the Specht module S(3,3,2) has
exactly two composition factors: D(3,3,2) and D(5,3). It follows from [39, Theorem 2(iv)] that
the restriction S(3,3,2)

C
↓AGL(3,2) has only two composition factors, and since 5 does not divide

|AGL(3, 2)|, the reductions of these modules modulo 5 are irreducible. It follows that the
restrictions of D(3,3,2) and D(5,3) to AGL(3, 2) are also irreducible. Finally, by (1), no proper
subgroup of AGL(3, 2) can be irreducible on these modules.

Now, we consider D(n−2,12). By Lemma 1.9, D(n−2,12) is an irreducible reduction modulo
p of the corresponding Specht module S(n−2,12)

C
. By [39], the only subgroup of AGL(m, 2) for

which the restriction S
(n−2,12)
C

↓G is irreducible is V4.A7 < AGL(4, 2). So in characteristic p
this is the only possibility, too. We saw above that dimD(14,12) = 105, and

D(n−2,12)↓V4
∼= ⊕χ∈IrrV4\{0̄}7χ

(where 7χ stands for χ⊕ · · · ⊕ χ︸ ︷︷ ︸
7 times

). A similar decomposition holds for S(n−2,12)
C

↓V4
. As we

know (from [39]) that the restriction S
(n−2,12)
C

↓V4.A7
is irreducible, it follows that A7 acts

transitively on IrrV4 \ {0̄}. The stabilizer H in A7 of a non-zero weight χ is then a subgroup
of index 15. ¿From the description of the maximal subgroups of A7 (see e.g. [10], p. 10),
H ∼= GL(2, 7) ∼= GL(3, 2). Moreover, by [41], section 8.2, Proposition 25,

S
(n−2,12)
C

↓V4.A7
∼= (S(n−2,12)

C
)χ↑V4.A7

V4.H
,

and (S(n−2,12)
C

)χ is irreducible as a CH-module. But the only irreducible 7-dimensional
CGL(3, 2)-module remains irreducible under reduction modulo p > 2, see [10], p. 3, and
[23], p. 3. Let L be the reduction. As induction commutes with reduction modulo p, we see
that D(n−2,12)↓V4.A7

, which is reduction modulo p of S(n−2,12)
C

↓V4.A7
, is isomorphic to L↑V4.A7

V4.H
,

which is irreducible by [41], section 8.2, Proposition 25.

Groups G with PSL(m, q) ≤ G ≤ PΓL(m, q), m ≥ 2. Recall that PΓL(m, q) is the
projective semi-linear group. In view of the Fundamental Theorem of Projective Geometry
[1], Theorem 2.26, this group is isomorphic to the automorphism group of the projective
geometry PGm−1(Fq), provided m ≥ 3. In any case, PΓL(m, q) is generated by PGL(m, q)
and automorphisms

P
m−1(Fq)→ P

m−1(Fq), [x1 : x2 : · · · : xm] 7→ [xσ1 : xσ2 : · · · : xσm]

where σ is a field automorphism of Fq. The group PΓL(m, q) acts naturally on the points of
P
m−1(Fq) (which we call lines), yielding a permutation representation of degree n = (qm −

1)/(q− 1). If we twist this permutation representation with an outer automorphism of G, we
get another permutation representation, non-equivalent to the first one. However, in both
cases we get the same subgroup of Σn, and for the problem we are considering we may assume
without loss of generality that the action is natural.

We consider the case m = 2 first, when n = q+1. We have |G| ≤ |PΓL(2, q)| = fq(q2−1),
where q = `f for a prime `. Using (1) and Lemma 1.18(i) as above, we may assume that
q = 16 or q ≤ 9.
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If q = 16 then PΓL(2, 16) ∼= PSL(2, 16).4, and irreducible F PSL(2, 16)-modules have
dimensions at most 17, see [10], p. 12, [23], p. 20. It follows that dimensions of irreducible
F PΓL(2, 16)-modules do not exceed 17 · 4. Now, if Dλ is irreducible over PΓL(2, 16), we
get a contradiction to Lemma 1.18(i), which claims that the dimension of an irreducible
FΣ17-module outside of Rn(1) is at least 103.

If q = 9 we have PΓL(2, 9) ∼= PSL(2, 9) .22, see [10]. By [10, 23], the dimensions of
irreducible F PSL(2, 9)-modules are among 1, 5, 8, 9, 10. It follows that the dimensions of
irreducible F PΓL(2, 9)-modules, exceeding 27, can only be 4·10 = 40, 4·9 = 36 and 4·8 = 32.
By Lemma 1.22(vi), it remains to consider the restriction D(8,12)↓G if p > 5. But D(8,12) is a
reduction modulo p of S(8,12)

C
. By [39], S(8,12)

C
↓G is reducible, hence D(8,12)↓G is.

If q = 8, we may assume that p = 5 or 7 as otherwise we are in the ‘characteristic 0’ situ-
ation: both FΣn and FG are semisimple, and the result follows from [39]. Assume first that
p = 5. As 5 does not divide |PΓL(2, 8)|, reduction modulo 5 of any irreducible F PΓL(2, 8)-
module is irreducible. We know from [39] that S(n−2,2)

C
is irreducible over PΓL(2, 8), whence

D(n−2,2)↓PΓL(2,8) is also irreducible in characteristic 5. Moreover, it follows from [10] that
irreducible F PΓL(2, 8)-modules have dimensions 1, 7, 8, 21, and 27. By Lemma 1.22(v), it re-
mains to consider the module D(6,3) of dimension 21. By Lemma 1.10, S(6,3) = D(6,3) +D(7,2).
As we already know that D(7,2)↓PΓL(2,8) is irreducible and dimS(6,3) = 48, D(6,3)↓PΓL(2,8) can

be irreducible only if S(6,3)
C
↓PΓL(2,8) has two composition factors of dimensions 21 and 27.

However, the group PΓL(2, 8) is 2-homogeneous but not 3-homogeneous, henceM (6,3)
C
↓PΓL(2,8)

has more invariants than M (7,2)
C
↓PΓL(2,8) by Lemma 1.1. So in view of [17], Exa! mple 17.17,

we see that S(6,3)
C
↓PΓL(2,8) has non-trivial invariants. Now, let p = 7. In this case the irre-

ducible F PΓL(2, 8)-modules have dimensions 1, 7, 8, 21, see [23]. Now, if Dλ is irreducible
over PΓL(2, 8), we get a contradiction with Lemma 1.22(v), which claims that the dimension
of an irreducible FΣ9-module in characteristic 7 is either 19 or at least 27.

Let q = 7. Then dimensions of irreducible F PΓL(2, 7)-modules do not exceed 8, see [10],
p. 3, and [23], p. 3. Now we can apply Lemma 1.22(iv).

Let q = 5. We only need to consider the case p = 5 as otherwise we are in the ‘characteristic
0’ situation. By Lemma 1.22(ii) and [23], p. 2, we only have to worry about D(32)↓PΓL(2,5).
But D(32) = D(32) by Lemma 1.10, so the result follows from [39] again. Finally, the case
q = 4 does not arise as PΓL(2, 4) = Σ5.

¿From now on we assume that m ≥ 3. Let m = 3 and q = 2. The irreducible modules over
PΓL(3, 2) ∼= GL3(2) have dimension at most 8, [10, 23], and we can apply Lemma 1.22(iii)
to deduce that Dλ↓G is reducible if p > 5. If p = 5 we just need to consider the restriction
of D(5,2). A character calculation using [10], pp. 10, 3, shows that S(5,2)

C
↓GL3(2) is a sum of

two irreducible modules of dimensions 8 and 6. On the other hand a reduction modulo 5
of S(5,2) has composition factors D(5,2) and D(6,1) of dimensions 8 and 6, respectively. As
reduction modulo p commutes with restriction to a subgroup, and 5 does not divide |GL3(2)|,
we conclude that D(5,2)↓GL3(2) is irreducible. From now on we assume that (m, q) 6= (3, 2).

If p = 5, and Dλ is D(r,s) or D(r,s) ⊗ sgn for r − s ≤ 3, then it follows from Theorem 1.16
that dimDλ = fn or fn−1. By (1), we must have

fn−1 ≤
√
|G| ≤

(
fqm(m−1)/2(qm − 1)(qm−1 − 1) . . . (q2 − 1)

)1/2
.

But an elementary argument using Lemma 1.17 shows that this is impossible (as we already
have m ≥ 3, and (m, q) 6= (3, 2)). So in what follows we exclude the case where p = 5 and
Dλ is D(r,s) or D(r,s) ⊗ sgn for r − s ≤ 3.

Under the assumptions which we have now made, the group G = PΓL(m, q) is not 3-
homogeneous, as it cannot move three lines in a general position to three lines in one plane.
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In view of Proposition 5.1, it remains to prove that r4 > r3. It is well known that G is
transitive on the triples of lines in general position. Moreover, it is not difficult to see that
it is also transitive on the triples of lines lying in one plane. Thus r3 = 2. For the 4-tuples
of lines, we have an orbit of lines in general position (if m ≥ 4), an orbit of lines such that
no three of them lie in one plane, an orbit of lines such that exactly three of them lie in one
plane, and an orbit of lines all four of which lie in one plane (if q ≥ 3). Thus r4 > r3 (as we
already have (m, q) 6= (3, 2)).

Groups G with PSU(3, q) ≤ G ≤ PΓU(3, q), q > 2. The group PΓU(3, q) is isomor-
phic to Aut(PSU(3, q)) ∼= PSU(3, q).H, where H is of order (3, q+1)f if q2 = `f for a prime `.
Thus |G| ≤ |PΓU(3, q)| = fq3(q2− 1)(q3 + 1). The group G has a 2-transitive representation
of degree n = q3 + 1. If Dλ is irreducible over G, we get from (1) and Lemma 1.18(i) that√

fq3(q2 − 1)(q3 + 1) ≥ ((q3 + 1)2 − 5(q3 + 1) + 2)/2,

which is impossible.

Groups G with Sz(q) ≤ G ≤ Aut(Sz(q)), q > 2. We have q = 2f for an odd f , and
|G| ≤ |Aut(Sz(q))| = fq2(q2 + 1)(q − 1). The group G has a 2-transitive representation of
degree n = q2 + 1. So we get from (1) and Lemmas 1.18(i), 1.22(vi) that√

fq2(q2 + 1)(q − 1) ≥ ((q2 + 1)2 − 5(q2 + 1) + 2)/2,

which is impossible.

Groups G with Re(q)′ ≤ G ≤ Aut(Re(q)′). We have q = 3f for an odd f , and
|G| ≤ |Aut(Re(q))| = fq3(q3 + 1)(q − 1). The group G has a 2-transitive representation of
degree n = q3 + 1. So as above we get√

fq3(q3 + 1)(q − 1) ≥ ((q3 + 1)2 − 5(q3 + 1) + 2)/2,

which is impossible.

The group G = Sp(2m, 2), m ≥ 3. In this case G has two 2-transitive representations
Ω0 and Ω1 of degrees 2m−1(2m + 1) and 2m−1(2m − 1), respectively.

If p = 5, and Dλ is D(m,k) or D(m,k) ⊗ sgn for m− k ≤ 3, then by Theorem 1.16 and (1),
we must have

fn−1 ≤
√
|G| =

(
2m

2
(22m − 1)(22(m−1) − 1) . . . (22 − 1)

)1/2
.

But an elementary argument using Lemma 1.17 shows that this is impossible. So from now
on we exclude the case where p = 5 and Dλ is D(m,k) or D(m,k) ⊗ sgn for m− k ≤ 3.

We shortly describe the construction of the representations Ω0 and Ω1 referring the reader,
for example, to [11], section 7.7, for more details. Let V be a 2m-dimensional F2-vector
space endowed with a non-degenerate symplectic form (·, ·), and {e1, . . . , en, f1, . . . , fn} be a
corresponding symplectic basis of V . For a ∈ V and ε ∈ F2 set

L(a, ε) := {v ∈ V | (a, v) = ε}.

We consider the quadratic form Q0 on V defined by

Q0

( m∑
i=1

(aiei + bifi)
)

:=
m∑
i=1

aibi.

The following technical results on Q0 will be of importance:
Lemma 5.7. [11, Lemma 7.7B] Let ε, δ ∈ F2, and a, b be distinct vectors of V . Then Q0 is
not constant on L(a, ε) ∩ L(b, δ).
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Lemma 5.8. [11, section 7.7] For every a, b ∈ V we have

Q0(a+ b)−Q0(a)−Q0(b) = (a, b). (9)

Moreover, if Q is another quadratic form such that Q(a + b) − Q(a) − Q(b) = (a, b) for all
a, b ∈ V , then Q(−) = Q0(−) + (c,−) for some c ∈ V .

For any c ∈ V define the quadratic form Qc by setting

Qc(−) := Q0(−) + (c,−).

Set Ω := {Qc | c ∈ V }. Then, in view of Lemma 5.8, G acts on Ω by (g · Q)(v) := Q(g−1 ·
v), Q ∈ Ω, v ∈ V . For a vector b ∈ V define the transvection tb ∈ G as the map

tb : v 7→ v + (v, b)b (v ∈ V ).

Lemma 5.9. [11, Lemma 7.7A] Let a, b ∈ V . Then

tb ·Qa =

{
Qa, if Qa(b) = 1;
Qa+b if Qa(b) = 0.

For ε = 0 or 1 we set Ωε := {Qc | Q0(c) = ε}.
Lemma 5.10. [11, Theorem 7.7A] Ω0 and Ω1 are the orbits of G on Ω. Moreover, G is
2-transitive on each of them and |Ω0| = 2m−1(2m + 1), |Ω1| = 2m−1(2m − 1).

We prove that for both Ω0 and Ω1 one has r3 = 2 and r4 > 2. Then Proposition 5.1 will
show that Dλ↓G is reducible.

Fix ε ∈ F2. For δ ∈ F2, we denote by Γδ the set of all 3-element subsets {Qa, Qb, Qc} of
Ωε such that (a, b) + (a, c) + (b, c) = δ.
Lemma 5.11. Γ0 and Γ1 are the orbits of G on 3-element subsets of Ωε. In particular,
r3 = 2.

Proof. First, we prove that Γδ is G-invariant. Let {Qa, Qb, Qc} ∈ Γδ . As G is generated by
transvections, it is enough to prove that {tx · Qa, tx · Qb, tx · Qc} ∈ Γδ for every x ∈ V . By
Lemma 5.9, we have tx ·Qd = Qd+(1−Qd(x))x for any d, x ∈ V . Now,

(a+ (1−Qa(x))x, b+ (1−Qb(x))x)
+(a+ (1−Qa(x))x, c+ (1−Qc(x))x)
+(b+ (1−Qb(x))x, c+ (1−Qc(x))x)

= (a, b) + (1−Qb(x))(a, x) + (1−Qa(x))(b, x)
+(a, c) + (1−Qc(x))(a, x) + (1−Qa(x))(c, x)
+(b, c) + (1−Qc(x))(b, x) + (1−Qb(x))(c, x)

= (a, b) + (a, c) + (b, c)− (Qb(x) +Qc(x))(a, x)
−(Qa(x) +Qc(x))(b, x)− (Qa(x) +Qb(x))(c, x)

= (a, b) + (a, c) + (b, c)− (Q0(x) + (b, x) +Q0(x) + (c, x))(a, x)
−(Q0(x) + (a, x) +Q0(x) + (c, x))(b, x)− (Q0(x) + (a, x) +Q0(x) + (b, x))(c, x)

= (a, b) + (a, c) + (b, c) = δ,

which proves that Γδ is G-invariant.
It remains to prove that G is transitive on Γδ. As G is 2-transitive, it is enough to prove

that for {Qa, Qb, Qc}, {Qa, Qb, Qd} ∈ Γδ with c 6= d, there exists g ∈ G with g · Qa = Qa,
g ·Qb = Qb, and g ·Qc = Qd.

First of all, for a triple {Qa, Qb, Qy} ∈ Γδ we find a condition for

tc+y ·Qa = Qa, tc+y ·Qb = Qb, tc+y ·Qc = Qy. (10)
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In view of Lemma 5.9 and (9), the conditions (10) are equivalent to

Q0(y) = ε, (a+ c, y) = 1 + (a, c), (b+ c, y) = 1 + (b, c). (11)

The equality (a, b) + (a, c) + (b, c) = (a, b) + (a, y) + (b, y) implies that (a+ c, y) = 1 + (a, c)
is equivalent to (b+ c, y) = 1 + (b, c). Thus, (11) is equivalent to

Q0(y) = ε, (a+ c, y) = 1 + (a, c).

So if we have (a + c, d) = 1 + (a, c) then the transvection tc+d will move {Qa, Qb, Qc} to
{Qa, Qb, Qd}. Otherwise, we have (a+ c, d) = (a, c). In this case we wish to use the product
ty+dtc+y for some choice of y. By the previous paragraph, this product will move {Qa, Qb, Qc}
to {Qa, Qb, Qd}, providing y satisfies

Q0(y) = ε, (a+ c, y) = 1 + (a, c), (a+ y, d) = 1 + (a, y),

which is equivalent to

Q0(y) = ε, (a+ c, y) = 1 + (a, c), (a+ d, y) = 1 + (a, d).

By Lemma 5.7, there always exists y satisfying these conditions. �

Lemma 5.12. Let ε ∈ F2. For the action of G on Ωε we have r4 > 2.

Proof. Let {e1, . . . , em, f1, . . . , fm} be a symplectic basis in V . We claim that

{Qe1 , Qf1 , Qe1+f1+e2 , Qe1+f1+f2}, {Qe1+e2+e3 , Qf1 , Qf2 , Qf3}, and {Qe1 , Qf1 , Qf1+e2 , Qe3}
belong to distinct G-orbits on 4-element sets. Indeed, it follows from Lemma 5.11 that
{Qa1 , Qb1 , Qc1 , Qd1} and {Qa2 , Qb2 , Qc2 , Qd2} are in the same orbit only if the sets

{(a1, b1) + (a1, c1) + (b1, c1), (a1, b1) + (a1, d1) + (b1, d1),
(a1, c1) + (a1, d1) + (c1, d1), (b1, c1) + (b1, d1) + (c1, d1)}

and

{(a2, b2) + (a2, c2) + (b2, c2), (a2, b2) + (a2, d2) + (b2, d2),
(a2, c2) + (a2, d2) + (c2, d2), (b2, c2) + (b2, d2) + (c2, d2)}

are the same. But the corresponding sets for the 4-tuples above are {1, 1, 1, 1}, {0, 0, 0, 0},
and {0, 1, 1, 0}. �

The group PSL(2, 11) in representations of degree 11. By [10, 23], dimensions of the
irreducible modules over PSL(2, 11) do not exceed 12, and one can use Lemma 1.22(vii).

The group M11 in representations of degrees 11 and 12. The Mathieu group M11 has
a 4-transitive representation of degree 11 and a 3-transitive representation of degree 12. We
only have to consider the cases p = 11, 7, and 5, because otherwise we are in the ‘characteristic
0’ situation.

If p = 11 it follows from [16] or [23], p. 34, that the irreducible modules over M11 have
dimensions 1, 9, 10, 11, 16, 44, 55. In view of Lemmas 1.22(vii),(viii), only the modules D(9,2),
D(9,2) ⊗ sgn and D(10,12), D(10,12) ⊗ sgn over Σ11 and Σ12, respectively, may be irreducible
over M11. We will work with modules D(9,2) and D(10,12) only, as the result for Dλ ⊗ sgn
follows from that for Dλ. In characteristic 0 the corresponding Specht modules S(9,2)

C
and

S
(10,12)
C

are irreducible over M11, see [39]. Moreover, by Lemmas 1.10, 1.9 and the character
information available from [10, 23], we conclude that reductions modulo 11 of these modules
are irreducible for both Σ11 and M11. This shows that the restrictions are irreducible in
characteristic 11, too.

Let p = 7. Then the irreducible modules over M11 have dimensions 1, 10, 11, 16, 44, 45, 55.
By Lemma 1.22(vii),(viii), we have to consider the restrictions

D(9,2)↓M11
, D(9,12)↓M11

, and D(10,12)↓M11
.
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By [39], the corresponding Specht modules in characteristic 0 are irreducible over M11. More-
over, by Lemma 1.9 their reductions modulo 7 are irreducible. Finally, because 7 does not
divide |M11|, their restrictions to M11 are irreducible.

Let p = 5. Then the irreducible modules over M11 have dimensions 1, 10, 11, 16, 45, 55. By
Lemma 1.22(vii),(viii), we have to consider the restrictions

D(7,4)↓M11
, D(9,12)↓M11

and D(10,12)↓M11
.

By [39], the restrictions S(9,12)
C

↓M11
and S

(10,12)
C

↓M11
are irreducible over M11. Moreover, by

Lemma 1.9 their reductions modulo 5 for Σ11 and Σ12 are irreducible. By [10], p. 18, M11

has only one complex representation of dimension 45, and only one complex representation
of dimension 55, and these representations remain irreducible modulo 5, thanks to [10], p. 18,
and [23], p. 34. This implies that D(9,12)↓M11

and D(10,12)↓M11
are irreducible. Finally, it

follows from the character information contained in [10, 23] that D(7,4)↓M11
is reducible (in

fact it has composition factors of dimensions 10 and 45).

The group M12. This group has two 5-transitive representation of degree 12. We only have
to consider the cases p = 11, 7, and 5.

If p = 11 it follows from [16] or [23], p. 77, that the irreducible modules over M12 have
dimensions 1, 11, 16, 29, 53, 55, 66, 91, 99, 176. In view of Lemma 1.22(viii), only the modules
D(10,2), D(10,12) (and the corresponding Dλ ⊗ sgn) may be irreducible over M11. In fact, in
characteristic 0 the corresponding Specht modules S(10,2)

C
and S(10,12)

C
are irreducible overM12,

see [39]. Moreover, by Lemma 1.9 and the character information available from [10, 23], we
conclude that the reduction modulo 11 of the module S(10,12) is irreducible for both Σ11 and
M11. This shows that the restriction D(10,12)↓M11

is irreducible in characteristic 11. Now we
consider the module D(10,2). By Lemma 1.10, for the corresponding Specht module we have
S(10,2) = D(10,2) +1. Moreover, by a character calculation using [10, 23], S(10,2)↓M11

= L+1,
where L is a 53-dimensional irreducible FM11-module. It follows that D(10,2)↓M11

= L.
Let p = 7. Then the irreducible modules over M12 have dimensions 1, 11, 16, 45, 54, 55,

66, 99, 120, 144, 176. In view of Lemma 1.22(viii), only the modules D(10,2) and D(10,12)

need to be considered. The corresponding Specht modules S(10,2)
C

and S(10,12)
C

are irreducible
over M12, see [39]. Moreover, by Lemmas 1.10, 1.9 and because 7 does not divide |M12|, we
conclude that reductions modulo 7 of these Specht modules are irreducible for both Σ12 and
M12. This shows that the restrictions to M12 are irreducible in characteristic 7, too.

Finally, let p = 5. Then the irreducible modules over M12 have dimensions 1, 11, 16,
45, 55, 66, 78, 98, 120. In view of Lemma 1.22(viii), only the module D(10,12) needs to be
considered, which is done as for other characteristics above.

The case M22 ≤ G ≤M22.2. Such a group has a 3-transitive representation of degree 22.
By comparing dimensions with the use of [10], p. 40, [23], pp. 96–100, and Lemmas 1.23, 1.21,
we only have to worry about the restriction of D(20,12). By [39], S(20,12)

C
↓G is irreducible. If

p 6= 11, it follows from Lemma 1.9 and [10, 23], that reductions modulo p of the module S(20,12)
C

are irreducible for both Σ22 and G. This shows that the restriction D(20,12)↓G is irreducible in
characteristic p. Let p = 11. By Lemma 1.9 and [10, 23], we have S(20,12) = D(20,12) +D(21,1),
and S(20,12)↓G = L1 + L2 where dimL1 = dimD(20,12) = 190 and dimL2 = dimD(21,1) = 20.
So D(20,12)↓G is irreducible in characteristic 11.

The group M23. This group has a 4-transitive representation of degree 23. By [10], p. 71,
[23], pp. 178–179, and Lemmas 1.23, 1.21, we only have to consider the restrictions of D(21,12)

and D(21,2). In characteristic 0, the restrictions of the corresponding Specht modules are
irreducible over M23 by [39].
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Let λ = (21, 2). Assume first that p 6= 7, 11. Then reductions modulo p of the Specht
module Sλ

C
are irreducible, thanks to Lemma 1.10. To prove that Dλ is irreducible over M23,

we have to show that the reduction modulo p of Sλ
C
↓M23

is also irreducible. If p 6= 5, 23 this
follows from the fact that p does not divide |M23|. Let p = 5 or 23. Note that dimSλ

C
= 230.

So the restriction Sλ
C
↓M23

is an irreducible module of dimension 230. But M23 has only one
irreducible module of dimension 230 in characteristic 0. Now one can use the information on
characters available in [10, 23] to deduce that the reduction modulo p of Sλ

C
↓M23

is irreducible.
Let p = 11. Then by Lemma 1.10, Sλ = Dλ + 1. Moreover, Sλ↓M23

has composition factors
of dimensions 229 and 1, thanks to [10, 23]. This implies that Dλ↓M23

is irreducible. The
case p = 7 is similar to the case p = 11.

Let λ = (21, 12). Then dimSλ = 231. Assume first that p = 23. Then by Lemma 1.9,
Sλ = Dλ +D(22,1). This implies that Sλ↓M23

is reducible. But, by [10, 23], the only ordinary
irreducible character of M23 of dimension 231, which is reducible modulo 23, is χ6 (in the
notation of [10]), and the reduction has composition factors of dimensions 210 and 21. As
dimD(22,1) = 21, we conclude that Dλ is irreducible over M23. Now let p 6= 23. Then the
reduction modulo p of the Specht module Sλ

C
is irreducible, thanks to Lemma 1.9. To prove

that Dλ is irreducible over M23, it remains to note that the reduction modulo p of χ6 is
irreducible, see [10, 23].

The group M24. This group has a 5-transitive representation of degree 24. By [10], p. 96,
[23], pp. 268–271, Lemmas 1.23, 1.21, we only have to consider the restrictions of D(22,12),
D(22,2), D(21,2,1), and D(21,13). Note that in characteristic 0, the restrictions of the correspond-
ing Specht modules are irreducible over M24 by [39]. All four cases are treated similarly, so
we consider only one of them (the hardest).

Let λ = (21, 2, 1). Assume first that p 6= 7, 23. Then the reduction modulo p of the Specht
module Sλ

C
is irreducible, thanks to Lemma 1.21(iv). To prove that Dλ is irreducible over

M24, we have to show that the reduction modulo p of Sλ
C
↓M24

is also irreducible, which follows
from [10, 23]. Let p = 23. Then it is easy to deduce from [32], Theorem 1.10, and Lemma 1.21
that Sλ = Dλ +D(n−2,2). Moreover, Sλ↓M24

has composition factors of dimensions 3269 and
251, thanks to [10, 23]. This implies that Dλ↓M24

is irreducible. The case p = 7 is similar.

The group A7 in representations of degree 15. This case is considered using (1) and
Lemma 1.18(i).

The Higman-Sims group HS in representations of degree 176. This case is considered
using (1) and Lemma 1.18(i).

The Conway group Co3 in representation of degree 276. By Lemmas 1.20,1.21, The-
orem 1.16 and (1), we only have to consider the modules D(274,2) and D(274,12). Moreover,
by Lemma 1.21(i),(ii), we have

dimD(274,2) =


37399, if p = 137;
37673, if p = 11 or 5;
37674, otherwise;

dimD(274,12) =

{
37401, if p = 23;
37675, otherwise.

Using the Gap library, we find that Co3 does not have irreducible modules with such dimen-
sions.
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Completion of the proof. We have now completed the analysis of the 2-transitive groups.
Now we can finish the proof of the main theorem by considering the case G < Σn−1 < Σn.

In view of Example 0.4, we may assume that λ is a Jantzen-Seitz partition. In this case
Theorem 1.12 implies that Dλ↓Σn−1

= DλA , where A is the top removable node of λ. By
Theorem 0.7, we need to consider the cases where G ≤ Σn−2 or G is 2-transitive (as a
subgroup of Σn−1). It follows easily from Theorem 1.12 that Dλ↓Σn−2

is reducible, so we
only need to worry about the latter case. By what has already been proved in this section,
we need to consider the cases where λA 6= (λA)M or λA = (n − 2, 1), (n − 3, 2), (n − 3, 12),
(5, 3) for p = 5, (21, 2, 1), (21, 13) (for example, the first case will give irreducible restrictions
if G = An−1 and the last two are only needed for the case G = M24). By [6], Theorem 5.10,
if λ is a Jantzen-Seitz partition with λ 6= λM, then λA 6= (λA)M, which yields the case (vii)
of the Main Theorem. On the other hand, if λ = λM then already the restriction Dλ↓An
is reducible. For the other cases, we just need to observe that (n − 1, 1) (resp. (n − 2, 2),
(n−2, 12), (22, 13), (6, 3)) is Jantzen-Seitz if and only if n ≡ 0 (mod p) (resp. n ≡ 2 (mod p),
n ≡ 0 (mod p), p = 5, p = 5), and (22, 2, 1) is not Jantzen-Seitz. Thus, for example in the
case (ix), the exceptions from Example 0.5 do not appear because for the exceptions (i),
(iii)-(v) from 0.5 we would need to have p|(n−1), and for the exception (ii) to appear p must
be 2.
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