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The last thirty years has seen dramatic progress in representation theory due
in part to the introduction of some remarkable bases, first for the group algebras
of Weyl groups, and second for the universal enveloping algebras of semisimple
Lie algebras. These bases are the Kazhdan-Lusztig bases from [7], and Lusztig’s
canonical bases originating in [10] (which are Kashiwara’s global crystal bases),
respectively. Their construction relies crucially on certain deformed versions of
the underlying algebras, namely, Iwahori-Hecke algebras of Weyl groups, and the
Drinfeld-Jimbo quantized enveloping algebras.

Iwahori-Hecke algebras and Kazhdan-Lusztig polynomials. Suppose we are
given a Dynkin diagram Γ with vertices labelled 1, . . . , n. Let W be the correspond-
ing Weyl group with simple reflections s1, . . . , sn. For example, if Γ is the Dynkin
diagram An then W is the symmetric group on (n+ 1) letters, and one can take si
to be the ith basic transposition (i i+1). The finite group W is a Coxeter group
generated by s1, . . . , sn subject only to the relations

s2i = 1, sisjsi · · ·︸ ︷︷ ︸
mij times

= sjsisj · · ·︸ ︷︷ ︸
mij times

(1)

where mij is 2, 3, 4 or 6 according to whether the ith and jth vertices in the Dynkin
diagram are joined by zero, one, two or three bonds. Any w ∈ W can be written
as a product w = si1 · · · sim of simple reflections; if m is minimal then si1 · · · sim is
a reduced expression for w and `(w) := m is the length of w.

Now let q > 1 be a prime power and Gq be the group of Fq-rational points in
some split reductive algebraic group with underlying Dynkin diagram Γ. Let Bq
be a Borel subgroup of Gq and set Xq := Gq/Bq. For example, if Γ = An as
before, we could take Gq = GLn+1(Fq), and Xq is the finite set of all full flags in
the vector space (Fq)n+1. We are interested in the permutation module CXq, the
module for the group algebra CGq that arises from the natural action of Gq on Xq.
Its endomorphism algebra is the Iwahori-Hecke algebra

Hq := EndCGq (CXq),

which plays a fundamental role in the character theory of the finite group Gq. It
was first described explicitly by Iwahori [5], who called it the “Hecke ring.”

An easy general result about endomorphism algebras of permutation modules
shows that Hq has a basis {[O]} indexed by the set of orbits O for the diagonal
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action of Gq on Xq ×Xq, where [O] denotes the endomorphism

[O](y) =
∑

(x,y)∈O

x

for any y ∈ Xq. The multiplication satisfies

[O′][O′′] =
∑
O
mOO′,O′′(q)[O],

where mOO′,O′′(q) := #{y ∈ Xq | (x, y) ∈ O′, (y, z) ∈ O′′} for any point (x, z) ∈ O.
For this to be useful, we need to understand the Gq-orbits on Xq × Xq, which is
equivalent to describing the Bq-orbits on Xq, or the (Bq, Bq)-double cosets in Gq.
This follows from the Bruhat decomposition, which asserts that such double cosets
are indexed canonically by the Weyl group W . We conclude that the Gq-orbits on
Xq × Xq are parametrized by the Weyl group W , so for each w ∈ W there is a
unique orbit Ow ⊆ Xq×Xq containing the point (wBq, Bq). Thus, our basis for Hq

is {[Ow] | w ∈ W}, the key point being that it is indexed now by the set W which
does not depend on the particular choice of q.

Iwahori’s work implies that there are unique polynomials mw
w′,w′′(t) in an inde-

terminate t which evaluate to the above structure constants mOO′,O′′(q) for every
prime power q and O = Ow,O′ = Ow′ ,O′′ = Ow′′ . This means it is possible to
define a generic version of the Iwahori-Hecke algebra over the polynomial ring Z[t]
from which all the algebras Hq above can be recovered by specializing at t = q.
This generic algebra can also be defined by generators and relations; at the same
time as doing this, we are going to renormalize the classical definition slightly, so
let v =

√
t be another indeterminate. Then the generic Iwahori-Hecke algebra H is

the Z[v, v−1]-algebra with generators T1, . . . , Tn subject to the relations

T 2
i = (v − v−1)Ti + 1, TiTjTi · · ·︸ ︷︷ ︸

mij times

= TjTiTj · · ·︸ ︷︷ ︸
mij times

.(2)

The braid relations imply that there is a well-defined element Tw ∈ H for every
w ∈W , such that Tw = Ti1 · · ·Tim whenever w = si1 · · · sim is a reduced expression;
the elements {Tw |w ∈W} form a basis for H as a free Z[v, v−1]-module. The point
then is that the specialization of H at v =

√
q is isomorphic to the algebra Hq for

any prime power q, i.e. there is an isomorphism

H ⊗Z[v,v−1] C ∼→ Hq, v`(w)Tw ⊗ 1 7→ [Ow],

where C is viewed as a Z[v, v−1]-module via v 7→ √q. Note also by comparing the
relations (1) and (2) that the specialization of H at v = 1 is isomorphic to the
group algebra CW of the underlying Weyl group.

In their seminal 1979 paper, Kazhdan and Lusztig introduced another basis
{Cw |w ∈W} for H. To define it, we need the bar involution − : H → H, which is
the unique ring automorphism such that v = v−1 and Ti = T−1

i . Observe for any
w ∈ W that Tw = T−1

w−1 = Tw + (∗) where (∗) is a Z[v, v−1]-linear combination of
Tw′ ’s that are lower in the sense that `(w′) < `(w). More precisely, the Tw′ ’s that
appear with non-zero coefficients in the expansion of Tw all satisfy w′ ≤ w, where ≤
is the Bruhat order on W . Using this observation and a little inductive argument, it
follows for each w ∈W that there is a unique element Cw ∈ H such that Cw = Cw
and Cw ≡ Tw (mod H<0), where H<0 is the v−1Z[v−1]-span of the basis elements
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{Tw′ | w′ ∈W}. The elements {Cw | w ∈W} give the Kazhdan-Lusztig basis of H.
One can show moreover that there are polynomials Pw′,w(v2) ∈ Z[v2] such that

Cw =
∑
w′∈W

v`(w
′)−`(w)Pw′,w(v2)Tw′ .

These are the Kazhdan-Lusztig polynomials introduced originally in [7]. They satisfy
Pw,w(v2) = 1, and Pw′,w(v2) = 0 unless w′ ≤ w in the Bruhat order.

Many of the deepest results about Kazhdan-Lusztig polynomials rely on a geo-
metric interpretation explained in [8]. Let G be a complex reductive algebraic group
with underlying Dynkin diagram Γ, and let B be a Borel subgroup of G. The Weyl
group W can be identified with NG(T )/T , where T < B is a maximal torus. For
each w ∈ W , we consider the Schubert varieties X(w) := BwB/B in the flag vari-
ety X := G/B. Let ICw denote the Goresky-Macpherson middle extension of the
constant sheaf along the open embedding j : BwB/B ↪→ X(w), so that its coho-
mological shift ICw[`(w)] is a perverse sheaf. For w′ ≤ w, let Hi(ICw)w′ denote
the stalk of the ith cohomology sheaf of ICw at the point w′B ∈ X(w). Kazhdan
and Lusztig showed that

Pw′,w(v2) =
∑
i

dimHi(ICw)w′vi.

In particular, it follows that all the coefficients of Pw′,w(v2) are non-negative inte-
gers; there is still no purely combinatorial proof of this positivity property.

The most celebrated result obtained using the above geometric interpretation is
the Kazhdan-Lusztig conjecture proved by Beilinson and Bernstein [2] and Brylinski
and Kashiwara [3]. This conjecture, which was formulated already in [7], relates
Kazhdan-Lusztig polynomials to representation theory of the Lie algebra g of G.
Let t be the Lie algebra of the maximal torus T , so that the Weyl group W acts
naturally on t∗. Let ρ ∈ t∗ be the weight that is half the sum of the positive
roots defined by the choice of B. For each w ∈W , let L(w) denote the irreducible
highest weight module of highest weight −wρ− ρ. The module L(w) is the unique
irreducible quotient of the so-called Verma module M(w), the universal highest
weight module of this highest weight. The Kazhdan-Lusztig conjecture gives the
following explicit formula for the character of L(w) in terms of the easily-computed
characters of Verma modules:

chL(w) =
∑
w′≤w

(−1)`(w)−`(w′)Pw′,w(1) chM(w′).

This theorem is also a key ingredient in the completion of the proof of another major
result from the early 1980s, the classification of primitive ideals in the universal
enveloping algebra U(g). At the time of [7], fundamental work of Duflo, Jantzen,
Joseph, Barbasch, Vogan and others had essentially reduced the classification of
primitive ideals to the question of determining exactly when the irreducible modules
L(w) and L(w′) have the same annihilators in U(g), for w,w′ ∈W .

Kazhdan and Lusztig explained how to define left cells in Weyl groups in terms of
certain leading coefficients of Kazhdan-Lusztig polynomials, and observed (modulo
the proof of the Kazhdan-Lusztig conjecture) that L(w) and L(w′) have the same
annihilators in U(g) if and only if w and w′ belong to the same left cell. To
formulate the definition of left cell precisely, write w ←L w

′ if there exists a simple
reflection s such that CsCw′ has non-zero Cw-coefficient when expanded in terms
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of the Kazhdan-Lusztig basis. Extend this to a pre-order ≤L on W , so w ≤L w′

if there exists w = w0, . . . , wm = w′ such that wi−1 ←L wi for each i = 1, . . . ,m.
Finally let ∼L be the smallest equivalence relation on W such that ≤L induces a
well-defined partial order on the quotient W/ ∼, and write w <L w

′ if w ≤L w′ but
w 6∼L w′. The left cells in W are then the ∼L-equivalence classes. Given any left
cell γ, there is a corresponding left cell module

S(γ) :=
⊕

w′≤Lw

Z[v, v−1]Cw′
/ ⊕

w′<Lw

Z[v, v−1]Cw′ ,

where w is any fixed element of γ. It is easy to see from the above definitions that
S(γ) is a quotient of two left ideals in H, so that it is a left H-module.

In the most well-behaved case Γ = An, the combinatorics of left cells and left cell
modules can be understood explicitly in terms of a certain map P from W = Sn+1

to the set of standard tableaux of size (n + 1), i.e. Young diagrams filled with
the integers 1, . . . , (n+ 1) so that they are strictly increasing along rows and down
columns. This map is half of the classical Robinson-Schensted correspondence. Very
briefly, given w ∈W , the tableau P (w) is computed starting from the empty tableau
by successively inserting w(1), w(2), . . . , w(n + 1) into the first row using the rule
that a smaller entry bumps the next biggest entry in a row into the next row down,
so that after each insertion one still has a standard tableau. For example, if w is
the permutation

w =
(

1 2 3 4 5
4 3 1 5 2

)
then we need to insert the numbers 4, 3, 1, 5, 2 in order, so 3 bumps 4 down then 1
bumps 3 down which bumps 4 further down, and finally 2 bumps 5 down, to obtain

P (w) =
1 2
3 5
4

It is then an important theorem that w ∼L w′ if and only if P (w−1) = P ((w′)−1).
Moreover, given a left cell γ, the restriction of the map P defines a bijection between
the elements of γ and the set of all standard λ-tableaux, where λ is the partition
of (n + 1) that gives the shape of the tableau P (w−1) for w ∈ γ. Kazhdan and
Lusztig observed that the left cell module S(γ) actually depends up to canonical
isomorphism only on the partition λ, so we can denote S(γ) instead by S(λ). It has
a basis parametrized by standard λ-tableaux, arising from the images of {Cw |w ∈
γ}. Moreover the specialization of S(λ) to a CW -module is actually irreducible
(something which is false for other Γ), and all irreducible CW -modules arise in this
way. Thus, in type An, the Kazhdan-Lusztig theory also produces a special basis
for each irreducible CW -module.

We have limited our discussion above just to the case of Weyl groups, but most
of the definitions – though not the geometric and representation theoretic inter-
pretations – make sense more generally for Hecke algebras associated to arbitrary
Coxeter groups; see [12] for a detailed account and many open problems. The case
of affine Weyl groups is particularly rich, as there is again a geometric interpre-
tation, and Lusztig’s work has revealed an intimate relationship between cells in
affine Weyl groups and the geometry of the nilpotent cone. There is also a variation
on Kazhdan-Lusztig polynomials adapted to the representation theory of real Lie
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groups, called Kazhdan-Lusztig-Vogan polynomials; it is these polynomials which
were recently computed for E8 in a computational project initiated by Vogan.

Quantized enveloping algebras, Ringel-Hall algebras and canonical bases.
There is a close analogy between the story just told and some more recent devel-
opments in the theory of quantum groups. For simplicity, let us assume from now
on that the Dynkin diagram Γ is simply-laced, so type An, Dn or En only. Fix also
an orientation on the edges of Γ, so that the edges become arrows, and the graph
Γ becomes a rather special sort of quiver Q.

Let F be a fixed ground field. A representation V of the quiver Q means an
assignment of finite dimensional F -vector spaces V1, . . . , Vn to the vertices and
linear maps fi→j : Vi → Vj to the arrows. Given another such representation V ′,
a morphism θ : V → V ′ is a collection of linear maps θi : Vi → V ′i such that
θj ◦ fi→j = f ′i→j ◦ θi for every arrow. This defines an abelian category Rep(Q).

Of course the category Rep(Q) can be defined for an arbitrary quiver, not just
one arising from a simply-laced Dynkin diagram. By a classic theorem due to
Gabriel [4], the quivers coming from Dynkin diagrams are exactly the ones for
which Rep(Q) is of finite representation type, that is, there are only finitely many
isomorphism classes of indecomposable objects. Moreover, if we let g be the finite
dimensional simple Lie algebra over C of type Γ and fix a choice α1, . . . , αn of simple
roots in the corresponding root system, then the map

V 7→
∑
i

(dimVi)αi

gives a bijection between the isomorphism classes of indecomposable objects in
Rep(Q) and the set R+ of positive roots in the root system of g. From this, we get
a bijection from the set of isomorphism classes of arbitrary objects V ∈ Rep(Q) to
the set of functions λ : R+ → Z≥0, such that [V ] 7→ λ if the indecomposable module
parametrized by α ∈ R+ appears as a summand of V with multiplicity λ(α); we
say simply that V is of type λ if this is the case.

Gabriel’s theorem is the first of long line of remarkable results relating repre-
sentations of quivers to the structure of Kac-Moody Lie algebras. We are going to
focus on just one of these, namely, Ringel’s Hall algebra construction of the positive
part of the quantized enveloping algebra of g. Suppose for this that the ground field
F used to define the category Rep(Q) is the finite field Fq for some q. The Hall
algebra Hq of the category Rep(Q) is the free Z-algebra with basis {[V ]} indexed
by the isomorphism classes of objects in Rep(Q), and multiplication defined by the
formula

[V ′][V ′′] =
∑
[V ]

hVV ′,V ′′(q)[V ]

where hVV ′,V ′′(q) := #{subobjects U ≤ V such that V/U ∼= V ′ and U ∼= V ′′}. It is
an easy exercise to see that Hq is associative and unital. This definition is a special
case of a very general notion of Hall algebra originating in classical works of Steinitz
and Hall, who considered this algebra for the Kronecker quiver.

Ringel showed for any λ, λ′, λ′′ : R+ → Z≥0 that there exist polynomials hλλ′,λ′′(t)
in an indeterminate t that evaluate to the structure constants hVV ′,V ′′(q) in the
algebra Hq for every prime power q and V, V ′, V ′′ ∈ Rep(Q) of types λ, λ′, λ′′,
respectively. These are Ringel’s Hall polynomials. Using them, it is possible to
define a generic version of the Hall algebra. Actually, we skip this and pass directly
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to the definition of the Ringel-Hall algebra H , in which there is an additional twist
in the multiplication. By definition, H is the free Z[v, v−1]-algebra with basis
{Eλ | λ : R+ → Z≥0} and multiplication defined by the rule

Eλ′Eλ′′ = v−〈λ
′′,λ′〉

∑
λ

hλλ′,λ′′(v
2)Eλ,

where 〈λ′′, λ′〉 denotes the integer dim Hom(V ′′, V ′)−dim Ext1(V ′′, V ′) for V ′, V ′′ ∈
Rep(Q) of types λ′, λ′′, respectively. It is important to note here that this integer
is itself independent of q, which is established by showing that

〈λ′′, λ′〉 =
∑
i

(dimV ′′i )(dimV ′i )−
∑
i→j

(dimV ′′i )(dimV ′j ).

In [13], Ringel uncovered a remarkable connection between the algebra H and
the quantized enveloping algebra of the Lie algebra g, which was introduced already
by Drinfeld and Jimbo in the mid-1980s. We just need the positive part of this
algebra, which is the Q(v)-algebra U+ on generators E1, . . . , En subject only to the
relations
E2
i Ej + EjE

2
i = (v + v−1)EiEjEi if i and j are connected by an edge in Γ,

EiEj = EjEi otherwise.

Ringel’s work implies that there is an isomorphism between H and the Z[v, v−1]-
subalgebra of U+ generated by the divided powers E(r)

i := Eri /[r]! for all i and
r ≥ 1, where [r]! :=

∏r
s=1

vs−v−s

v−v−1 . The isomorphism is uniquely determined by the

property that it maps Eλ to E(r)
i if λ : R+ → Z≥0 is the function taking value r

on αi and zero on all other positive roots. Henceforth, we will identify H with a
subalgebra of U+ via this map. In particular, the defining basis {Eλ|λ : R+ → Z≥0}
for H becomes a basis for U+. While the algebra U+ itself depends only on the
underlying Dynkin diagram Γ, not on the choice of Q, this basis for U+ definitely
does depend on Q. The bases arising in this way are special instances of the PBW-
type bases constructed subsequently by Lusztig via a braid group action; see [11].

Ringel’s theorem was the starting point for Lusztig’s definition in [10] of the
canonical basis of the algebra U+. Introduce the bar involution − : U+ → U+, the
unique Q-algebra automorphism such that v = v−1 and Ei = Ei. Lusztig showed
that there was a certain partial order ≤ on the set of all functions λ : R+ → Z≥0

such that Eλ = Eλ + (∗) where (∗) is a Z[v, v−1]-linear combination of Eµ’s for
µ < λ. The original proof of this statement explained in [10, §7] is purely algebraic
in nature, but depends essentially on facts about the representation theory of Q, in
particular, the partial order ≤ is related to the underlying Auslander-Reiten quiver.
Using this triangularity result and making the same inductive argument as in the
definition of the Kazhdan-Lusztig basis for Iwahori-Hecke algebras, it follows that
there is a unique element Bλ ∈ U+ such that Bλ = Bλ and Bλ ≡ Eλ (mod U+

<0),
where U+

<0 is the v−1Z[v−1]-span of the PBW-type basis. In this way, we obtain
the canonical basis {Bλ | λ : R+ → Z≥0} for U+. Unlike the PBW-type basis, this
basis depends only on Γ, not on the quiver Q. For example, for the (deceptively
simple) case Γ = A2, the canonical basis consists of the elements

{E(b)
1 E

(b+c)
2 E

(a)
1 | c ≥ a} ∪ {E(c)

2 E
(a+b)
1 E

(b)
2 | c < a}.

In the second half of the paper [10], Lusztig went on to explain a geometric interpre-
tation of the canonical basis using the theory of perverse sheaves, which produces
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some remarkable positivity properties. Subsequently Lusztig extended his geomet-
ric construction to symmetrizable Kac-Moody Lie algebras; see [11].

Another key feature of the canonical basis of U+ is that it induces canonical
bases in every finite dimensional irreducible representation of g. More precisely, if
we fix a lowest weight vector v− in such a representation, the non-zero vectors in
the set {Bλv− | λ : R+ → Z≥0} give a basis for the representation. As in the case
of Iwahori-Hecke algebras, it again makes sense to specialize at v = 1. On doing
this one obtains a canonical basis for the positive part of U(g) and for all the finite
dimensional irreducible representations of the underlying semisimple Lie algebra g.

Independently and at the same time as Lusztig’s work, Kashiwara introduced the
theory of crystal bases for quantized enveloping algebras and their integrable rep-
resentations; see [6]. In a precise sense, these are bases at v =∞. This uncovered
a tremendously rich structure which has revolutionized the combinatorial repre-
sentation theory of semisimple Lie algebras. Furthermore, Kashiwara explained
how to lift crystal bases to obtain a global crystal basis for U+ itself, which was
subsequently shown by Grojnowski and Lusztig to coincide with Lusztig’s canoni-
cal basis. We stress that Kashiwara’s approach does not rely on any geometry or
representation theory of quivers.

To round off this brief survey, we wish to mention one much more recent break-
through which provides an elementary representation theoretic interpretation of the
canonical basis. This involves some remarkable new algebras discovered indepen-
dently by Khovanov and Lauda [9] and Rouquier [14], which may be called quiver
Hecke algebras. These algebras resemble affine Hecke algebras in some respects,
and carry a natural Z-grading. Khovanov and Lauda formulated a precise conjec-
ture relating the representation theory of quiver Hecke algebras to the canonical
basis of U+. Roughly, the canonical basis plays the same role in the Khovanov-
Lauda conjecture for quiver Hecke algebras as the Kazhdan-Lusztig basis plays
in the Kazhdan-Lusztig conjecture for semisimple Lie algebras. For simply-laced
types, the Khovanov-Lauda conjecture has already been proved by Varagnolo and
Vasserot [15], exploiting Lusztig’s geometric approach to the canonical basis.

The book. Like this review, the book by Deng, Du, Parshall and Wang covers a
tremendous amount of ground. It is concerned primarily with the algebraic and
combinatorial aspects of the theories mentioned above. It does not attempt to treat
the more geometric aspects, nor is it concerned with the striking applications to
representation theory such as the Kazhdan-Lusztig conjectures; these matters are
mentioned only very briefly in notes at the end of various chapters.

It covers in detail the Kazhdan-Lusztig theory for Iwahori-Hecke algebras, with
special emphasis on the combinatorics of cells and cell modules in type An. It also
covers in detail the connection between the Ringel-Hall algebra of a quiver and
the positive part of the corresponding quantized enveloping algebra, both in finite
type, and also affine type where a theorem of Green becomes essential. A particular
strength of the book is the careful treatment of quivers with automorphisms, which
are needed to extend the constructions mentioned above in simply-laced types to
the twisted types Bn, Cn, F4 and G2. It also includes a great deal of background
from the representation theory of finite dimensional algebras, including the neces-
sary results from Auslander-Reiten theory. This culminates in the construction,
essentially following Lusztig’s first approach from [10, §7], of the canonical basis.
Lusztig’s paper [10] only considers the simply-laced types, and his subsequent work
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uses only the geometric approach, so substantial parts of this development in the
twisted cases cannot be found elsewhere in the literature.

A third major part of the book is concerned with the bridge between the Kazhdan-
Lusztig and canonical bases in type An. This is based in part on the article of
Beilinson, Lusztig and Macpherson [1], which gives a geometric realization of the
quantum Schur algebra Sq. This algebra appeared previously in works of Jimbo and
Dipper-James, and can be constructed as the endomorphism algebra of a permuta-
tion module arising from the natural action of GLn+1(Fq) on certain partial flag va-
rieties. The definition of the Kazhdan-Lusztig basis and the associated theory of left
cells extends very naturally from the Iwahori-Hecke algebra to the quantum Schur
algebra; at the level of combinatorics, the Robinson-Schensted correspondence gets
replaced by the more general Robinson-Schensted-Knuth correspondence. From
there, it is possible to lift the Kazhdan-Lusztig basis for the quantum Schur al-
gebra to obtain a basis for a modified version of the entire quantized enveloping
algebra in type An, part of which is known to recover the canonical basis. Thus in
type An, the theories of Kazhdan-Lusztig bases and canonical bases are intimately
related.

This book is a welcome addition to the literature in this subject. The exposi-
tion is very clear and comprehensive, and does not assume much beyond a basic
knowledge of semisimple Lie algebras. The book should be of particular value to
graduate students seeking to acquire the broad background knowledge needed to
become successful researchers in this vibrant area.
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