
ON THE DEFINITION OF QUANTUM HEISENBERG CATEGORY

JONATHAN BRUNDAN, ALISTAIR SAVAGE, AND BEN WEBSTER

Abstract. We introduce a diagrammatic monoidal categoryHeisk(z, t) which we call the quan-
tum Heisenberg category; here, k ∈ Z is “central charge” and z and t are invertible parameters.
Special cases were known before: for central charge k = −1 and parameters z = q − q−1 and
t = −z−1 our quantum Heisenberg category may be obtained from the deformed version of
Khovanov’s Heisenberg category introduced by Licata and the second author by inverting its
polynomial generator, while Heis0(z, t) is the affinization of the HOMFLY-PT skein category.
We also prove a basis theorem for the morphism spaces inHeisk(z, t).

1. Introduction

Fix a commutative ground ring k and parameters z, t ∈ k×. This paper introduces a fam-
ily of pivotal monoidal categories Heisk(z, t), one for each central charge k ∈ Z. We refer
to these categories as quantum Heisenberg categories. The terminology is due to a connec-
tion to Khovanov’s Heisenberg category from [K]: our category for central charge k = −1
is a two parameter deformation of the category from loc. cit., and is closely related to the
one parameter deformation introduced already by Licata and the second author in [LS]. The
category Heis0(z, t) has also already appeared in the literature: it is the affine HOMFLY-PT
skein category from [B2, §4]. For more general central charges, our categories are new. They
were discovered by mimicking the approach of [B1], where the first author reformulated the
definition of the degenerate Heisenberg categories introduced in [MS].

In fact, we will give three different monoidal presentations of Heisk(z, t). They all start
from the affine Hecke algebra AHn associated to the symmetric group Sn. It is convenient to
assemble these algebras for all n ≥ 0 into a single monoidal category AH(z). By definition,
this is the strict k-linear monoidal category generated by one object ↑ and two morphisms
x :↑→↑ and τ :↑ ⊗ ↑→↑ ⊗ ↑, subject to the relations

τ ◦ (1↑ ⊗ x) ◦ τ = x ⊗ 1↑, (1.1)
τ ◦ τ = zτ + 1↑⊗↑, (1.2)

(τ ⊗ 1↑) ◦ (1↑ ⊗ τ) ◦ (τ ⊗ 1↑) = (1↑ ⊗ τ) ◦ (τ ⊗ 1↑) ◦ (1↑ ⊗ τ). (1.3)

The second relation here implies that τ is invertible. We also require that x is invertible, i.e.,
there is another generator x−1 such that

x ◦ x−1 = x−1 ◦ x = 1↑. (1.4)
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Adopting the usual string calculus for strict monoidal categories, we represent τ, τ−1, x, and
more generally x◦a for any a ∈ Z, by the diagrams

τ = , τ−1 = , x = •◦ , x◦a = •◦ a . (1.5)

Then the relations (1.1)–(1.3) are equivalent to the following diagrammatic relations:

•◦
=
•◦

,
•◦

=
•◦
, (1.6)

− = z , (1.7)

= = , = . (1.8)

The affine Hecke algebra AHn itself may be identified with EndAH(z)(↑⊗n), with its standard
generators xi and τ j coming from dot on the ith string and the positive crossing of the jth and
( j+1)th strings, respectively; our convention for this numbers strings 1, . . . , n from right to left.
It is often convenient to assume (passing to a quadratic extension if necessary) that k contains
a root q of the quadratic equation x2 − zx− 1 = 0, so that z = q− q−1. The quadratic relation in
AHn may then be written as (τ j − q)(τ j + q−1) = 0. Such a choice of parameter q is not needed
in sections 2–4, but is essential for the applications in sections 5–10.

To obtain the quantum Heisenberg category Heisk(z, t) from AH(z), we adjoin a right
dual ↓ to the object ↑, i.e., we add an additional generating object ↓ and additional generating
morphisms c = : 1→↓ ⊗ ↑ and d = : ↑ ⊗ ↓→ 1 subject to the relations

= , = . (1.9)

Then we add several more generating morphisms subject to relations which ensure that the
resulting monoidal category is strictly pivotal, and moreover that there is a distinguished iso-
morphism ↑ ⊗ ↓ � ↓ ⊗ ↑ ⊕ 1⊕k if k ≥ 0 or ↑ ⊗ ↓ ⊕ 1⊕(−k) � ↓ ⊗ ↑ if k ≤ 0. There are
various equivalent ways to accomplish this in practice; see sections 2–4. In these sections,
we establish the equivalence of the three approaches, and record many other useful relations
which follow from the defining ones, including the property already mentioned thatHeisk(z, t)
admits a strictly pivotal structure.

In this paragraph, we explain the approach from section 4 in the special case k = −1.
According to Definition 4.1 and (4.14), Heis−1(z, t) is the strict k-linear monoidal category

generated by objects ↑, ↓ and morphisms , , , , and subject to

(1.7)–(1.9), the relations

= , = + tz , = 0, = −t−1z−111,

and one more relation, which is equivalent to (1.4). We have not included the generating
morphism x since, due to a special feature of the k = −1 case, it can be recovered from the

other generators via the formula x = •◦ := t − t2 . The relations in Definition 4.1 which

involve x such as (1.6) are consequences of the other relations with one exception: we must
still impose that x is invertible, that is, the relation (1.4).
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The deformed Heisenberg category H(q2) introduced in [LS] is (the additive envelope of)
the strict k-linear monoidal category defined by the same presentation as in the previous para-
graph, with the parameters satisfying tz = −1, but without the relation (1.4). This follows easily
on comparing our presentation with the one in loc. cit., using also the fact that our category is
strictly pivotal. The Hecke algebra generator T = from [LS, Definition 2.1] is related to
our τ by T = qτ (so that the quadratic relation becomes (T j −q2)(T j + 1) = 0). The polynomial
generator X appearing just before [LS, Lemma 3.8] is our −x. In fact, the categoryH(q2) may
be identified with the monoidal subcategory of our category Heis−1(z,−z−1) consisting of all
objects and all morphisms which do not involve negative powers of x.

Motivation for the definition ofHeisk(z, t) comes from the fact that it acts on various other
well-known categories appearing in representation theory. If k = 0 and t = qn thenHeisk(z, t)
acts on representations of Uq(gln), with the generating objects ↑ and ↓ acting by tensoring with
the natural Uq(gln)-module and its dual, respectively; see section 5. This action is an exten-
sion of the monoidal functor from the HOMFLY-PT skein category to the category of finite-
dimensional Uq(gln)-modules constructed originally by Turaev [T]. If k , 0 then Heisk(z, t)
acts on representations of the cyclotomic Hecke algebras of level |k| from [AK], with ↑ and
↓ acting by induction and restriction functors if k < 0, or vice versa if k > 0; see section 6.
When k = −1, this specializes to the action of the deformed Heisenberg category on modules
over the usual (finite) Hecke algebras associated to the symmetric groups constructed already
in [LS]. The action ofHeis−l(z, t) on representations of cyclotomic Hecke algebras extends to
an action on category O over the rational Cherednik algebras of typeSn oZ/l for all n ≥ 0, with
↑ and ↓ acting by certain Bezrukavnikov-Etingof induction and restriction functors from [BE];
see section 7.

We also prove a basis theorem for the morphism spaces inHeisk(z, t); see section 10 for the
precise statement. In particular, our basis theorem implies that the center EndHeisk(z,t)(1) of the
quantum Heisenberg category is the tensor product Sym⊗Sym of two copies of the algebra of
symmetric functions. In the degenerate case studied in [B2], the basis theorem was proved by
treating the cases k = 0 and k , 0 separately, appealing to results from [BCNR] and [MS];
the proofs in loc. cit. ultimately exploited analogs of the categorical actions mentioned above,
on representations of degenerate cyclotomic Hecke algebras and representations of gln(C), re-
spectively. In the quantum case, it is still possible to prove the basis theorem when k = 0
by such an argument, but for non-zero k the approach from [MS] seems to be unmanageable
due to the larger center. Instead, we prove the basis theorem here by following the approach
developed in the degenerate case in [BSW1, Theorem 6.4] (and earlier, in the context of Kac-
Moody 2-categories, in [W2]). It depends crucially on the existence of an action ofHeisk(z, t)
on a “sufficiently large” module category, which is obtained by choosing l � 0 then taking
the tensor product of actions of Heis−l(z, t) and Heisk+l(z, 1) on representations of suitably
generic cyclotomic Hecke algebras of levels l and k + l, respectively.

The construction of this categorical tensor product involves a remarkable monoidal functor
from Heisk(z, t) to a certain localization of the symmetric product Heisl(z, u) � Heism(z, v)
for k = l + m and t = uv. This functor is defined in section 8 and is the quantum analog of
the categorical comultiplication from [BSW1, Theorem 5.3]. The particular tensor products
exploited to prove the basis theorem are generic examples of generalized cyclotomic quotients
ofHeisk(z, t); see section 9 for the general definition. In fact, these k-linear categories first ap-
peared in [W1, Proposition 5.6], but in a rather different form; the precise relationship between
the categories of loc. cit. and the ones here will be explained in [BSW2].

We have stopped short of proving any results about the decategorification of Heisk(z, t)
here, but let us make some remarks about this. There are two complementary points of view:

• One can consider the Grothendieck ring K0(Kar(Heisk(z, t))) of the additive Karoubi
envelope of Heisk(z, t). For generic z (i.e., when q is not a root of unity), we expect
that this is isomorphic to a Z-form for a central reduction of the universal enveloping
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algebra of the infinite-dimensional Heisenberg Lie algebra, just as was established in
the degenerate case in [BSW1, Theorem 1.1]. However, there is a significant obstruc-
tion to proving this result in the quantum case: we do not know how to show that the
split Grothendieck group K0(AHn) of the affine Hecke algebra is isomorphic to that of
the finite Hecke algebra.

• Alternatively, one can pass to the trace (or zeroth Hochschild homology). In [CLLSS],
this was computed already for the category H(q2) of [LS], revealing an interesting
connection to the elliptic Hall algebra. Using the basis theorem proved here, we expect
it should be possible to extend the calculations made in loc. cit. to give a description
of the trace of the full categoryHeisk(z, t) for all k ∈ Z.

In the main body of the article, proofs of all lemmas involving purely diagrammatic manip-
ulations have been omitted. However, we have attempted to give enough details for the reader
familiar with the analogous calculations in the degenerate case from [B2, §2] and [BSW1, §5]
to be able to reconstruct the proofs. The first two authors are currently preparing a sequel [BS]
in which we incorporate a (symmetric) Frobenius algebra into the definition of Heisk(z, t), in
a similar way to the Frobenius Heisenberg categories defined in the degenerate case in [Sa].
We will include full proofs of all of the diagrammatic lemmas in the more general Frobenius
setting in this sequel.

2. First approach

Before formulating our first definition ofHeisk(z, t), let us make some general remarks. We
refer to the relation (1.7) as the upward skein relation. Rotating it through ±90◦ or 180◦, one
obtains three more skein relations; for example, here is the leftward skein relation

− = z . (2.1)

At present, this has no meaning since we have not defined the leftward cups, caps or cross-
ings which it involves! However, already in the monoidal category obtained from AH(z) by
adjoining a right dual ↓ to ↑ as explained in the introduction, we can introduce the rightward
crossings:

:= , := , (2.2)

and then we see that the rightward skein relation holds from (1.7). Rotating the two right-
ward crossings once more by a similar procedure, we obtain positive and negative downward
crossings satisfying the downward skein relation. We also define the downward dot:

y = •◦ := •◦ . (2.3)

It is immediate from these definitions and (1.9) that dots and crossings slide past rightward
cups and caps:

•◦ = •◦ , •◦ = •◦ , (2.4)

= , = , = , = , (2.5)

= , = , = , = . (2.6)

Also, the following relations are easily deduced by attaching rightward cups and caps to the
relations in (1.8), then rotating the pictures using the definitions of the rightward/downward
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crossings:

= = , = , = , = , (2.7)

The following lemma will be used repeatedly (often without reference). There are analogous
dot slide relations for the rightward and downward crossings (obtained by rotation).

Lemma 2.1. The following relations hold for a ∈ Z:

•◦a
=



•◦a − z
∑

b+c=a
b,c>0

b•◦ •◦c if a > 0,

•◦a + z
∑

b+c=a
b,c≤0

b•◦ •◦c if a ≤ 0;
•◦a

=



•◦a − z
∑

b+c=a
b,c≥0

b•◦ •◦c if a ≥ 0,

•◦a + z
∑

b+c=a
b,c<0

b•◦ •◦c if a < 0;

(2.8)

•◦a
=



a•◦ + z
∑

b+c=a
b,c>0

b•◦ •◦c if a > 0,

•◦a
− z

∑
b+c=a
b,c≤0

b•◦ •◦c if a ≤ 0;
•◦a

=



a•◦ + z
∑

b+c=a
b,c≥0

b•◦ •◦c if a ≥ 0,

•◦a
− z

∑
b+c=a
b,c<0

b•◦ •◦c if a < 0.

(2.9)

Now we can explain the first way to complete the definition of the quantum Heisenberg
category following the scheme outlined in the introduction. The idea is to invert the morphism


•◦

...

k−1 •◦


:↑ ⊗ ↓→↓ ⊗ ↑ ⊕1⊕k if k ≥ 0,

[
•◦ · · · −k−1•◦

]
:↑ ⊗ ↓ ⊕1⊕(−k) →↓ ⊗ ↑ if k < 0,

(2.10)

in Add(Heisk(z, t)) (where Add denotes the additive envelope).

Definition 2.2. The quantum Heisenberg category Heisk(z, t) is the strict k-linear monoidal
category obtained fromAH(z) by adjoining a right dual ↓ to ↑ as explained in the introduction,
together with the matrix entries of the following morphism which we declare to be a two-sided
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inverse to the morphism (2.10):


0
q♦
· · ·

k−1
q♦

 :↓ ⊗ ↑ ⊕1⊕k →↑ ⊗ ↓ if k ≥ 0,



0
r♥

...
−k−1
r♥


:↓ ⊗ ↑→↑ ⊗ ↓ ⊕1⊕(−k) if k < 0.

(2.11)

We impose one more essential relation:

= tz−111 if k > 0, = (tz−1 − t−1z−1)11 if k = 0, •◦ −k = tz−111 if k < 0, (2.12)

where the leftward cups and caps are defined by the formulas:

:=



−t−1z−1
−1 •◦

k−1
q♦ if k > 0,

t if k = 0,

t−1
−k•◦ if k < 0;

:=


t k•◦ if k ≥ 0,

−t−1z−1
0
r♥ if k < 0.

(2.13)

To complete the definition, we introduce a few more shorthands for morphisms. We have
already introduced one of the two leftward crossings; define the other one so that the leftward
skein relation (2.1) holds. Also set

0
r♥

:=
0
q♦

+ z if k > 0,
a
r♥

:=
a
q♦

if 0 < a < k, (2.14)

0
q♦

:=
0
r♥

+ z if k < 0,
a
q♦

:=
a
r♥

if 0 < a < −k. (2.15)

Next, introduce the following plus-bubbles assuming a ≤ 0:

+ a :=


−tz−1 •◦k

−a
q♦ if a > −k,

tz−111 if a = −k,
0 if a < −k;

+a :=


t−1z−1

•◦−k

−a
q♦ if a > k,

−t−1z−111 if a = k,
0 if a < k.

(2.16)

Finally, define the plus-bubbles with label a > 0 to be the usual bubbles with a dots:

+ a := •◦ a , +a := •◦a . (2.17)

Then define minus-bubbles for all a ∈ Z by setting

− a := •◦ a − + a , −a := •◦a − +a . (2.18)

In the case k = 0, the assertion that (2.10) and (2.11) are two-sided inverses means that

= if k = 0, = if k = 0. (2.19)

In fact, the defining relations forHeis0(z, t) from Definition 2.2 are exactly the same as the ones
for the affine HOMFLY-PT skein category AOS(z, t) from [B2, Theorem 1.1 and §4]. Thus,
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Heis0(z, t) = AOS(z, t). Moreover, the leftward cup and cap introduced in Definition 2.2 are
the same as the ones from [B2, (2.5)], and the plus- and minus-bubbles are the same as the ones
from [B2, (4.13)–(4.14)]. In this case, most of the other relations that we need have already
been proved in loc. cit.. However, the arguments there exploit a theorem of Turaev [T, Lemma
I.3.3] to establish all of the relations that do not involve dots; the approach described below
reproves all of these relations in a way that is indendent of Turaev’s work.

When k > 0, the assertion that the morphisms (2.10) and (2.11) are two-sided inverses
implies the following relations:

= if k > 0, = −

k−1∑
a=0

a

•◦a

q♦ if k > 0, (2.20)

= 0 if k > 0, a•◦ = 0 if 0 ≤ a < k, •◦a = −δa,kt−1z−111 if 0 < a ≤ k. (2.21)

To derive these relations, we multiplied the matrices (2.10) and (2.11) in both orders, then
equated the result with the appropriate identity matrix. The following useful relation is an easy
exercise at this point; one needs to use (2.8), (2.12), (2.13) and (2.21):

a •◦ = δa,0 t for 0 ≤ a ≤ k. (2.22)

Finally, when k < 0, we will need the following relations which are deduced from (2.10)
and (2.11) by the same argument as explained in the previous paragraph:

= −

k−1∑
a=0 a

•◦a

r♥
if k < 0, = if k < 0, (2.23)

= 0 if k < 0, a•◦ = 0 if 0 ≤ a < −k, •◦ a = −δa,0t−1z−111 if 0 ≤ a < −k. (2.24)

Now we are going to consider the counterpart of the morphism (2.10) defined using the
negative instead of positive rightward crossing:


•◦

...

k−1 •◦


:↑ ⊗ ↓→↓ ⊗ ↑ ⊕1⊕k if k > 0,

[
•◦ · · · −k−1•◦

]
:↑ ⊗ ↓ ⊕1⊕(−k) →↓ ⊗ ↑ if k ≤ 0.

(2.25)
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Lemma 2.3. The morphism (2.25) is invertible with two-sided inverse


0
r♥
· · ·

k−1
r♥

 :↓ ⊗ ↑ ⊕1⊕k →↑ ⊗ ↓ if k > 0,



0
q♦

...
−k−1
q♦


:↓ ⊗ ↑→↑ ⊗ ↓ ⊕1⊕(−k) if k ≤ 0.

(2.26)

Moreover, we have that

•◦k = −t−1z−111 if k > 0, = (tz−1 − t−1z−1)11 if k = 0, = −t−1z−111 if k < 0,
(2.27)

=


tz−1

0
r♥ if k > 0,

t−1
−k•◦ if k ≤ 0,

=



t k•◦ if k > 0,

t−1 if k = 0,

tz−1
−k−1
q♦

−1•◦ if k < 0.

(2.28)

3. Second approach

Our second presentation forHeisk(z, t) is very similar to the first presentation, but we invert
the morphism (2.25) instead of (2.10).

Definition 3.1. The quantum Heisenberg category Heisk(z, t) is the strict k-linear monoidal
category obtained fromAH(z) by adjoining a right dual ↓ to ↑ as explained in the introduction,
together with the matrix entries of the morphism (2.26), which we declare to be a two-sided
inverse to (2.25). In addition, we impose the relation (2.27) for the leftward cups and caps
which are defined in this approach from (2.28). Define the other leftward crossing, i.e., the one
which does not appear in (2.26), so the leftward skein relation (2.1) holds. Also set

0
q♦

:=
0
r♥
− z if k > 0,

a
q♦

:=
a
r♥

if 0 < a < k, (3.1)

0
r♥

:=
0
q♦
− z if k < 0,

a
r♥

:=
a
q♦

if 0 < a < −k. (3.2)

Finally define the plus- and minus-bubbles from (2.16)–(2.18) as before.

Theorem 3.2. Definitions 2.2 and 3.1 give two different presentations for the same monoidal
category, with all of the named morphisms introduced in the two definitions being the same.
Moreover, there is a unique isomorphism of k-linear monoidal categories

Ωk : Heisk(z, t)→ Heis−k(z, t−1)op (3.3)

sending

•◦ 7→ •◦ , 7→ − , 7→ , 7→ .
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The effect of Ωk on the other morphisms is as follows:

•◦ 7→ •◦ , 7→ − , 7→ − , 7→ − ,

7→ − , 7→ − , 7→ − , 7→ − ,

a
q♦
7→

a
q♦
,

a
q♦
7→

a
q♦
,

a
r♥
7→

a
r♥

,

a
r♥
7→

a
r♥

,

7→ − , 7→ − , ± a 7→ − ±a , ±a 7→ − ± a .

Proof. To avoid confusion, denote the categoryHeisk(z, t) from Definition 2.2 byHeisold
k (z, t)

and the one from Definition 3.1 by Heisnew
k (z, t). The relations and other definitions for the

categoryHeisnew
k (z, t) in Definition 3.1 and the ones forHeisold

−k (z, t−1) from Definition 2.2 are
related by reflecting all diagrams in a horizontal plane and multiplying by (−1)x+y, where x
is the number of crossings and y is the number of leftward cups and caps (including leftward
cups and caps in plus- and minus-bubbles but not ones labelled by q♦ or r♥). It follows that there
are mutually inverse isomorphisms

Heisold
−k (z, t−1)

Ω−
�
Ω+

Heisnew
k (z, t)op

both defined in the same way as the functor Ωk in the statement of the theorem. Now we apply
Lemma 2.3 and Definition 3.1 to construct a strict k-linear monoidal functor

Θk : Heisnew
k (z, t)→ Heisold

k (z, t)

which is the identity on diagrams. This functor is an isomorphism because it has a two-sided
inverse, namely, Ω+◦Θ−k◦Ω−. Thus, using Θk, we may identifyHeisnew

k (z, t) andHeisold
k (z, t).

Finally, Ωk := Ω+ gives the required symmetry. �

In the remainder of the section, we record some further consequences of the defining rela-
tions, thereby showing that Heisk(z, t) is strictly pivotal. The first lemma explains how dots
slide past leftward cups, caps and crossings. Its generalization to dots with arbitrary multi-
plicities n ∈ Z may also be deduced using induction and the leftward skein relation like in
Lemma 2.1.

Lemma 3.3. The following relations hold:

•◦ = •◦ , •◦ = •◦ , (3.4)

•◦
=
•◦

,
•◦

=
•◦

. (3.5)

Let Sym be the algebra of symmetric functions over k. This is an infinite rank polyno-
mial algebra with two algebraically independent sets of generators, namely, the elementary
symmetric functions e1, e2, . . . and the complete symmetric functions h1, h2, . . . . Adopting the
convention that en = hn := δn,0 for n ≤ 0, the elementary and complete symmetric functions
are related by the following well-known identity [M, (I.2.6)]:∑

r+s=n

(−1)serhs = δn,0. (3.6)

The following lemma, which we may refer to as the infinite Grassmannian relation (following
Lauda), shows that there is a well-defined homomorphism

β : Sym⊗Sym→ EndHeisk(z,t)(1) (3.7)

such that

hn ⊗ 1 7→ (−1)n−1tz +n+k , 1 ⊗ hn 7→ (−1)nt−1z −−n , (3.8)
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en ⊗ 1 7→ t−1z + n−k , 1 ⊗ en 7→ −tz − −n . (3.9)

We will prove in Corollary 10.2 that β is actually an isomorphism.

Lemma 3.4. For any a ∈ Z, we have that∑
b,c∈Z
b+c=a

+ b +c =
∑
b,c∈Z
b+c=a

− b −c = −δa,0 z−211. (3.10)

Moreover:

+ a = δa,−ktz−111 if a ≤ −k, +a = −δa,kt−1z−111 if a ≤ k, (3.11)

−a = δa,0tz−111 if a ≥ 0, − a = −δa,0t−1z−111 if a ≥ 0. (3.12)

Corollary 3.5. For an indeterminate w, we have that

+ (w) + (w) = − (w) − (w) = −z−2, (3.13)

where

+ (w) :=
∑
n∈Z

+ n w−n ∈ tz−1wk11 + wk−1 EndHeisk(z,t)(1)~w−1�, (3.14)

+ (w) :=
∑
n∈Z

+n w−n ∈ −t−1z−1w−k11 + w−k−1 EndHeisk(z,t)(1)~w−1�, (3.15)

− (w) :=
∑
n∈Z

− n w−n ∈ −t−1z−111 + w EndHeisk(z,t)(1)~w�, (3.16)

− (w) :=
∑
n∈Z

−n w−n ∈ tz−111 + w EndHeisk(z,t)(1)~w�. (3.17)

Using the next relations plus (2.14) and (3.2), the leftward cups and caps decorated by q♦ or
r♥ can be eliminated from any diagram.

Lemma 3.6. The following relations hold:

a
q♦

= −z2
∑
b≥1

b•◦ + −a−b if 0 ≤ a < k, (3.18)

a
q♦

= −z2
∑
b≥1

b•◦ +−a−b if 0 ≤ a < −k. (3.19)

The next lemma shows that ↓ is left dual to ↑ (as well as being right dual by the original
construction). Thus, the monoidal categoryHeisk(z, t) is rigid.

Lemma 3.7. The following relations hold:

= , = . (3.20)

The final lemma together with (3.4) implies that Heisk(z, t) is strictly pivotal, with duality
functor

∗ : Heisk(z, t)
∼
→

(
Heisk(z, t)op)rev (3.21)

defined on morphisms by rotating diagrams through 180◦.

Lemma 3.8. The following relations hold:

= , = , = , = , (3.22)

= , = , = , = . (3.23)
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4. Third approach

Now we have enough relations in hand to formulate our third presentation for Heisk(z, t).
This presentation does not involve any leftward cups or caps decorated by q♦ or r♥; Lemma 3.6
showed already that these are redundant as generators.

Definition 4.1. The quantum Heisenberg category Heisk(z, t) is the strict k-linear monoidal
category obtained fromAH(z) by adjoining a right dual ↓ to ↑ as explained in the introduction,
plus two more generating morphisms and subject to the following additional
relations:

= − t−1z + z2
∑
a,b>0

a•◦

•◦b
+ −a−b , (4.1)

= + tz + z2
∑
a,b>0

+−a−b
b

•◦

•◦

a
, (4.2)

= δk,0t−1 if k ≥ 0, •◦a = (δa,0tz−1 − δa,kt−1z−1)11 if 0 ≤ a ≤ k, (4.3)

= δk,0t if k ≤ 0, •◦ a = (δa,−ktz−1 − δa,0t−1z−1)11 if 0 ≤ a ≤ −k. (4.4)

Here, we have used the leftward crossings which are defined in this approach by

:= , := , (4.5)

and the plus-bubbles which are defined for a ≤ 0 by

a+ := ta+k+1za+k−1 det
(

•◦k+i− j+1
)

i, j=1,...,a+k
, (4.6)

+a := −t−a+k−1za−k−1 det
(
− •◦−k+i− j+1

)
i, j=1,...,a−k

, (4.7)

interpreting the determinant of an n × n matrix as δn,0 in case n ≤ 0. Finally, define the plus-
bubbles with label a > 0 to be the usual bubbles with a dots as in (2.17), then define the
minus-bubbles for all a ∈ Z so that (2.18) holds.

Before proving the equivalence of this definition with the earlier ones, we make some re-
marks about the relations (4.1)–(4.7). If k ≤ 1, the relation (4.1) is equivalent to

= − t−1z . (4.8)

This follows immediately from the definition of the plus-bubbles from (4.6). Similarly, when
k ≥ −1, the relation (4.2) is equivalent to

= + tz . (4.9)

Here are some other useful consequences of these relations:

= δk,0t−1 if k ≥ 0, = t if k ≥ 0, (4.10)
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= δk,0t if k ≤ 0, = t−1 if k ≤ 0, (4.11)

= δk,0t−1 if k ≥ 0, = t if k ≥ 0, (4.12)

= δk,0t if k ≤ 0, = t−1 if k ≤ 0. (4.13)

These follow from (4.3)–(4.4) on expanding the definitions of the sideways crossings. Then,
using (4.13) and the leftward skein relation to convert the negative crossings in (4.8) to positive
ones, relation (4.8) can be further simplified in case that k < 0: it is equivalent to

= . (4.14)

Similarly, (4.9) is equivalent to the following when k > 0:

= . (4.15)

Finally, when k = 0, the relations (4.8)–(4.9) together are equivalent to the single assertion

=

( )−1

, (4.16)

i.e., both of the relations from (2.19).

Theorem 4.2. The category Heisk(z, t) defined by Definition 4.1 is the same as the one from
Definitions 2.2 and 3.1, with all morphisms introduced in the third definition being the same
as the ones from before.

Proof. To avoid confusion in the proof, we denote the category from the equivalent Defini-
tions 2.2 and 3.1 by Heisold

k (z, t), and the one from Definition 4.1 by Heisnew
k (z, t). From the

evident symmetry in the relations (4.1)–(4.7), it follows that there is an isomorphism

Ωk : Heisnew
k (z, t)→ Heisnew

−k (z, t−1)op

which reflects diagrams in a horizontal plane and multiplies by (−1)x+y where x is the number
of crossings and y is the number of leftward cups and caps. Combining this with (3.3), we are
reduced to proving the theorem under the assumption that k ≤ 0.

We first check that all of the defining relations (4.1)–(4.7) of Heisnew
k (z, t) are satisfied in

Heisold
k (z, t), so that there is a strict k-linear monoidal functor

Θ : Heisnew
k (z, t)→ Heisold

k (z, t)

which is the identity on diagrams. For this, note to start with that (4.5) holds in Heisold
k (z, t)

as we have shown that the latter category is strictly pivotal. The relation (4.6) is almost triv-
ial when k ≤ 0 and holds thanks to (3.11). For (4.7), the identity holds if a − k ≤ 0 due
again to (3.11), so assume that a − k > 0. Then the desired identity is the image under the
homomorphism β from (3.7) of the identity

(−1)a−k−1t−1z−1ha−k ⊗ 1 = −za−k−1t−a+k−1 det
(
−tz−1ei− j+1 ⊗ 1

)
i, j=1,...,a−k

in Sym⊗Sym. This follows from the well-known identity hn = det
(
ei− j+1

)
i, j=1,...,n

; see [M,
Exercise I.2.8]. It remains to check the relations (4.1)–(4.4). For (4.1)–(4.2) when k = 0, we
just need to check the equivalent form (4.16), which follows by (2.19). For (4.1) when k < 0,
we check the equivalent form (4.14), which holds due to the second relation from (2.23). For
(4.2) when k < 0, we use the first relation from (2.23), expanding the leftward caps decorated
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by r♥ using (2.13) when a = 0 or (2.15) and (3.19) when a > 0. Finally, the relations (4.3)–(4.4)
follow easily from (2.24), (2.12)–(2.13) and (2.27)–(2.28).

Now we want to show that Θ is an isomorphism. We do this by using the presentation from
Definition 2.2 to construct a two-sided inverse

Φ : Heisold
k (z, t)→ Heisnew

k (z, t),

still assuming that k ≤ 0. We define Φ on morphisms by declaring that it takes the rightward
cup, the rightward cap, and all dots and crossings (with any orientation) to the corresponding
morphisms inHeisnew

k (z, t), and also

Φ
( 0

r♥
)

:= −tz if k < 0, Φ
( a

r♥
)

:= −z2
∑
b≥1

b•◦ +−a−b if 0 < a < −k.

To see that Φ is well defined, we must verify the relations from Definition 2.2. For (2.12), we
must check the following inHeisnew

k (z, t):

t = (tz−1 − t−1z−1)11 if k = 0, •◦ −k = tz−111 if k < 0.

These follow from (4.4) and (4.12). Then the main work is to show that the images under Φ

of the morphisms (2.10) and (2.11) are two-sided inverses in Heisnew
k (z, t). When k = 0, this

is immediate from (4.16), so suppose that k < 0. The images under Φ of the two equations in
(2.23) are precisely the known relations (4.2) and (4.14). We are left with checking that the
images under Φ of the relations

a•◦ = 0,

b
r♥

= 0,
b
r♥
•◦ a = δa,b11

hold in Heisnew
k (z, t) for 0 ≤ a, b < −k. The first of these when a = 0 follows by (4.13). To

see it for 0 < a < −k, we first apply the leftward skein relation, then slide the dots past the
crossing using the leftward analog of (2.9) which may be deduced from the definition (4.5),
and finally appeal to (4.4). The second and third relations follow from (4.11) and (4.4) in the
case that b = 0. To prove them when 0 < b < −k, we must show that∑

c≥1

c•◦
+−b−c = 0,

∑
c≥1

•◦ a+c +−b−c = −δa,b z−211

in Heisnew
k (z, t). For the first identity, it is zero if b ≥ −k as the plus-bubble vanishes by

(1.3). To see it for 0 < b < −k, use the skein relation, commute the dots past the crossing,
then appeal to (4.4) and (4.11). For the second identity, define a homomorphism γ : Sym →
EndHeisnew

k (z,t)(1) by sending en 7→ t−1z •◦ n−k for n ≥ 0. Using hn = det
(
ei− j+1

)
i, j=1,...,n

and

(4.7), it follows that γ sends hn 7→ (−1)n−1tz +n+k for n ≤ −k. Then the identity we are trying
to prove follows by applying γ to the identity

∑
c≥1(−1)−k−b−cek+a+ch−k−b−c = δa,b, which is

(3.6).
To complete the proof, we must show that Θ and Φ are indeed two-sided inverses. To check

that Θ ◦ Φ = Id, the only difficulty is to see that

Θ

(
Φ
( a

r♥
))

=

a
r♥
.

When a = 0, this is immediate from (2.13), while if 0 < a < −k it follows from (2.15) and
(3.19). To check that Φ ◦ Θ = Id, the only difficulty is to see that

Φ
( )

= , Φ
( )

= .

These follow from (2.13) and (4.12)–(4.13). �
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To conclude the section, we formulate three more important sets of relations. The first of
these explains how to expand curls. It is quite surprising that we have never needed to simplify
left curls when k > 0 (or right curls when k < 0) before this point.

Lemma 4.3. The following relations hold for any a ∈ Z:

a•◦ = z
∑
b≥0

+ a−b b•◦ − z
∑
b<0

− a−b b•◦ , (4.17)

a•◦ = z
∑
b>0

+ a−b b•◦ − z
∑
b≤0

− a−b b•◦ , (4.18)

a•◦ = z
∑
b≤0

b•◦ a−b − − z
∑
b>0

b•◦ a−b + , (4.19)

a•◦ = z
∑
b<0

b•◦ a−b − − z
∑
b≥0

b•◦ a−b + . (4.20)

The following lemma gives a braid relation for alternating crossings. All other variations
on the braid relation can be deduced from this plus the original braid relation from (1.8), by
arguments similar to the proof of the braid relations in (2.7).

Lemma 4.4. The following relation holds:

− = z3
∑
a,b≥0
c>0

+ −a−b−c
•◦a

•◦b

•◦c if k ≥ 0, (4.21)

− = z3
∑
a,b≥0
c>0

−a−b−c
•◦

+

a

•◦b

•◦c if k ≤ 0. (4.22)

Finally we have the bubble slides:

Lemma 4.5. The following relations hold for any a ∈ Z:

+a = +a − z2
∑
b≥0
c>0

b+c•◦ +a−b−c , (4.23)

+ a = + a − z2
∑
b≥0
c>0

+ a−b−c b+c•◦ , (4.24)

−a = −a − z2
∑
b≤0
c<0

b+c •◦ −a−b−c , (4.25)

− a = − a − z2
∑
b≤0
c<0

− a−b−c b+c•◦ . (4.26)

5. Action on representations of quantum GLn

In this section, we construct an action ofHeis0(z, t) on the category of modules over Uq(gln)
and use this action to produce a family of generators for the center of Uq(gln). These central
elements were introduced originally by Bracken, Gould and Zhang [BGZ]. We also determine
their images under the Harish-Chandra homomorphism, giving a new approach to some results
of Li [Li]. We work in the generic case over the field k := Q(q), setting z := q−q−1 and t := qn.
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In fact, the formulae which we derive are defined over Z[q, q−1], hence, they make sense over
any ground ring for any invertible q (including roots of unity).

For the precise definition of Uq(gln), we follow the conventions of [B2, §3], denoting its
standard generators by

{
ei, fi, d±1

j

∣∣∣ i = 1, . . . , n − 1, j = 1, . . . , n
}
. The usual diagonal genera-

tor ki of the subalgebra Uq(sln) is did−1
i+1. The subalgebras of Uq(gln) generated by the ei, fi

and d±j are Uq(gln)+, Uq(gln)− and Uq(gln)0, respectively. We also have the Borel subalgebras
Uq(gln)] := Uq(gln)0Uq(gln)+ and Uq(gln)[ := Uq(gln)0Uq(gln)−. We will often cite Lusztig’s
book [Lu], noting that our q and ki are Lusztig’s v−1 and K−1

i .
The natural module V+ and dual natural module V− are the left Uq(gln)-modules with bases{

v+
i

∣∣∣ 1 ≤ i ≤ n
}

and
{
v−i

∣∣∣ 1 ≤ i ≤ n
}
, respectively, on which the generators act by

fiv+
j = δi, jv+

i+1, eiv+
j = δi+1, jv+

i , div+
j = qδi, j v+

j , (5.1)

fiv−j = δi+1, jv−i , eiv−j = δi, jv−i+1, div−j = q−δi, j v−j . (5.2)

We denote the weight of v+
i by εi; then v−i is of weight −εi. Let Λ :=

⊕n
i=1 Zεi be the weight

lattice with inner product (·, ·) defined so that ε1, . . . , εn are orthonormal. The positive roots
are {εi−ε j |1 ≤ i < j ≤ n}. By a weight module we mean a Uq(gln)-module V that is the sum of
its weight spaces Vλ :=

{
v ∈ V

∣∣∣ div = q(λ,εi)v
}

for all λ ∈ Λ. The Weyl group is the symmetric
group Sn. It acts in obvious ways on Λ and on Uq(gln)0 = k[d±1

1 , . . . , d±1
n ], permuting the

generators. Denote the longest element of Sn by w0.
We work with the Hopf algebra structure on Uq(gln) whose comultiplication ∆ satisfies

∆(ei) = d−1
i di+1 ⊗ ei + ei ⊗ 1, ∆( fi) = 1 ⊗ fi + fi ⊗ did−1

i+1, ∆(d j) = d j ⊗ d j. (5.3)

We also need various (anti)automorphisms. First, we have the bar involution, which is the
antilinear automorphism − : Uq → Uq defined from ei := ei, fi := fi and di := d−1

i . Then there
are linear antiautomorphisms T and G defined from

T (ei) := fi, T ( fi) := ei, T (di) := di, (5.4)
G(ei) := en−i, G( fi) := fn−i, G(di) := dn+1−i. (5.5)

The maps −,T and G commute with each other. Finally, we have Lusztig’s braid group action,
under which the ith generator of the braid group acts by the automorphism Ti : Uq(gln) →
Uq(gln) (which is T ′′i,− from [Lu, §37.1.3]) defined for | j − i| > 1 and k , i, i + 1 by

Ti(ei) = − fidid−1
i+1, Ti(ei±1) = eiei±1 − q−1ei±1ei, Ti(e j) = e j,

Ti( fi) = −d−1
i di+1ei, Ti( fi±1) = fi±1 fi − q fi fi±1, Ti( f j) = f j,

Ti(di) = di+1, Ti(di+1) = di, Ti(dk) = dk.

A key role is played by the R-matrix. We recall its definition following the approach from
[Lu, §32.1]. Let Θ be the quasi-R-matrix from [Lu, §4.1]. This is an infinite sum of compo-
nents Θα ∈ Uq(gln)−−α ⊗ Uq(gln)+

α as α runs over the positive root lattice
⊕n−1

i=1 N(εi − εi+1). Let
P : V ⊗W → W ⊗V be the tensor flip. Assuming in addition that V and W are weight modules,
let Π : V ⊗W → V ⊗W be the diagonal map defined from

Π(v ⊗ w) := q(λ,µ)v ⊗ w

for v of weight λ and w of weight µ. Then, for finite-dimensional weight modules V and W,
the R-matrix

RV,W : V ⊗W
∼
→ W ⊗ V (5.6)

is the Uq(gln)-module isomorphism defined by the composition Θ ◦ P ◦ Π, which makes sense
since all but finitely many of the components Θα act as zero. For finite-dimensional weight
modules U,V and W, we have the hexagon property:

RU,W ⊗ idV ◦ idU ⊗ RV,W = RU⊗V,W , idV ⊗ RU,W ◦ RU,V ⊗ idW = RU,V⊗W . (5.7)
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In Lusztig’s treatment, this is proved in [Lu, Proposition 32.2.2] (our RV,W is Lusztig’s fRW,V

taking the function f from [Lu, §31.1.3] to be f (λ, µ) := −(λ, µ)).
In fact, to define the isomorphism RV,W , one only needs one of the modules V or W to be

a finite-dimensional weight module; the other can be an arbitrary Uq(gln)-module. To see this,
one just needs to observe that Π extends to a linear map V ⊗W → V ⊗W when just one of V
or W is a weight module on setting

Π(v ⊗ w) :=
{

(dλ ⊗ 1)(v ⊗ w) if w is a weight vector of weight λ,
(1 ⊗ dλ)(v ⊗ w) if v is a weight vector of weight λ,

where dλ := d(λ,ε1)
1 · · · d(λ,εn)

n . Then the same formula RV,W := Θ ◦ P ◦ Π makes sense when
only one of V or W is a finite-dimensional weight module. It still gives an isomorphism of
Uq(gln)-modules; the proof of this reduces to the case that both V and W are finite-dimensional
weight modules using the fact that the intersection of the annihilators of all finite-dimensional
weight modules is zero. Similarly, the hexagon property (5.7) remains true if only two of U,V
and W are finite-dimensional weight modules.

The goal now is to derive explicit formulae for RV±,M and RM,V± for any module M. Similar
formulae were established already in [BGZ, §III] following the older conventions of Drinfeld
and Jimbo. They involve the higher root elements defined as follows. Let

ei,i = fi,i := z−1, ei,i+1 := ei, fi,i+1 := fi. (5.8)

Then when j − i > 1 we recursively define

ei, j := ei,rer, j − q−1er, jei,r, fi, j := fr, j fi,r − q−1 fi,r fr, j, (5.9)

where r is any index chosen so that i < r < j. It is an induction exercise to see that these
elements are well-defined independent of the choice of r; see the proof of the following lemma
for a more conceptual explanation of this. Alternatively, ei, j and fi, j can be defined using the
braid group action: we have that

ei, j = T j−1 · · · Ti+1(ei), fi, j = T j−1 · · · Ti+1( fi).

Note that

T (ei, j) = fi, j, T ( fi, j) = ei, j, (5.10)
G(ei, j) = en+1− j,n+1−i, G( fi, j) = fn+1− j,n+1−i. (5.11)

However, the bar involution does not fix ei, j or fi, j (except when j = i + 1).

Lemma 5.1. For any i < j, the (εi − ε j)-component Θi, j of the quasi-R-matrix Θ satisfies

Θi, j =
∑
r≥1

i=i0<i1<···<ir= j

zr fir−1,ir · · · fi0,i1 ⊗ eir−1,ir · · · ei0,i1 =
∑
r≥1

i=i0<i1<···<ir= j

zr fi0,i1 · · · fir−1,ir ⊗ ei0,i1 · · · eir−1,ir .

Proof. It suffices to derive the first expression. Then the second follows using (5.10) and the
identitiy (T ⊗ T )(Θα) = P(Θα), which may easily be deduced from the characterization in [Lu,
Theorem 4.1.2(a)]. To prove the first expression, we appeal to further results of Lusztig from
[Lu]. Let f be Lusztig’s “half” quantum group with its standard generators θ1, . . . , θn−1; see
also [BKM, §2.1] which follows the same conventions as here. There are two isomorphisms

(−)+ : f
∼
→ Uq(gln)+, θ+

i := ei, (−)− : f
∼
→ Uq(gln)−, θ−i := fi.

Consider the convex ordering on the positive roots defined so that εi − ε j < εp − εq if either
i < p or (i = p and j < q); this is the “standard order” as in [BKM, Example A.1]. Let
θi, j be Lusztig’s higher root element associated to this ordering, which was denoted rεi−ε j in
[BKM, §2.4]. Noting that (εm − ε j, εi − εm) is a minimal pair for εi − ε j, [BKM, Theorem 4.2]
implies that these satisfy the following recursion: θi,i+1 = θi and θi, j = θi,rθr, j − qθr, jθi,r for any
i < r < j. Comparing with (5.9), it follows that θ+

i, j = ei, j and θ−i, j = (−q) j−i−1 fi, j; in particular,
these equalities justify the independence of r in (5.9). Then we appeal to [BKM, Theorem
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2.7] (which was extracted from [Lu]) to see that
{
θir−1,ir · · · θi0,i1

∣∣∣ r ≥ 1, i = i0 < · · · < ir = j
}

and
{
(1 − q2)rθir−1,ir · · · θi0,i1

∣∣∣ r ≥ 1, i = i0 < · · · < ir = j
}

are a pair of dual bases for fεi−ε j with
respect to Lusztig’s form. Finally the formula from [Lu, Theorem 4.1.2(b)] gives that

Θi, j =
∑
r≥1

i=i0<···<ir= j

(−q)i− j(1 − q2)rθ−ir−1,ir · · · θ
−
i0,i1 ⊗ θ

+
ir−1,ir · · · θ

+
i0,i1 .

This simplifies to the desired formula. �

For 1 ≤ i, j ≤ n let e+
i, j ∈ Endk(V+) (resp. e−i, j ∈ Endk(V−)) be the i j-matrix unit with respect

to the basis v+
1 , . . . , v

+
n (resp. v−1 , . . . , v

−
n ). Then for i < j and v± ∈ V± we have that

ei, jv+ = e+
i, jv

+, fi, jv+ = e+
j,iv

+, ei, jv− = (−q)i− j+1e−j,iv
−, fi, jv− = (−q)i− j+1e−i, jv

−, (5.12)

ei, jv+ = e+
i, jv

+, fi, jv+ = e+
j,iv

+, ei, jv− = (−q) j−i−1e−j,iv
−, fi, jv− = (−q) j−i−1e−i, jv

−. (5.13)

These follow easily by induction on j − i using (5.1)–(5.2) and (5.9). Also let

xi, j := z2
min(i, j)∑

r=1

er,idr fr, jd j, yi, j := z2
n∑

r=max(i, j)

di fi,rdre j,r (5.14)

for any 1 ≤ i, j ≤ n. Then for m ≥ 0 we set

x(m)
i, j :=

∑
i=i0,i1,...,im−1,im= j

xi0,i1 · · · xim−1,im , y(m)
i, j :=

∑
i=i0,i1,...,im−1,im= j

yi0,i1 · · · yim−1,im . (5.15)

In particular, x(0)
i, j = y(0)

i, j = δi, j. From (5.11), we get that

G
(
x(m)

i, j

)
= y(m)

n+1− j,n+1−i, G
(
y(m)

i, j

)
= x(m)

n+1− j,n+1−i. (5.16)

Lemma 5.2. For any Uq(gln)-module M, the endomorphisms RV±,M and RM,V± and their in-
verses are given explicitly by the following operators:

RV+,M = zP ◦
∑
i≤ j

e+
i, j ⊗ fi, jd j, R−1

V+,M = −zP ⊗
∑
i≤ j

di fi, j ⊗ e+
i, j,

RM,V+ = zP ◦
∑
i≤ j

ei, jdi ⊗ e+
j,i, R−1

M,V+ = −zP ◦
∑
i≤ j

e+
j,i ⊗ d jei, j,

RV−,M = −zP ◦
∑
i≤ j

(−q)i− je−j,i ⊗ di fi, j, R−1
V−,M = zP ◦

∑
i≤ j

(−q)i− j fi, jd j ⊗ e−j,i,

RM,V− = −zP ◦
∑
i≤ j

(−q)i− jd jei, j ⊗ e−i, j, R−1
M,V− = zP ◦

∑
i≤ j

(−q)i− je−i, j ⊗ ei, jdi.

Proof. These are all proved by similar calculations, so we just go through the argument for
RM,V− . Take v ⊗ v−j ∈ M ⊗ V−. By definition, RM,V− (v ⊗ v−j ) = Θ(v−j ⊗ d−1

j v). To compute the
action of Θ, we observe by weight considerations that only its weight components Θεi−ε j for
i ≤ j are non-zero on v−j ⊗ d−1

j v. Moreover, in the first expression for Θi, j from Lemma 5.1, all
of the monomials with r > 1 act on v−j as zero. We deduce that

RM,V− (v ⊗ v−j ) = v−j ⊗ d−1
j v + z

∑
i< j

fi, jv−j ⊗ ei, jd jv.

Then we use (5.12) to replace fi, j with (−q)i− j+1e−i, j, the relation ei, jd j = qd jei, j, and the defini-
tion e j, j = −z−1 to get

RM,V− (v ⊗ v−j ) = −ze−j, jv
−
j ⊗ d je j, jv − z

∑
i< j

(−q)i− je−i, jv
−
j ⊗ ei, jd jv.

Now observe that the expression on the right hand side of the formula we are trying to prove
acts on v ⊗ v−j in the same way. �
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Corollary 5.3. For any Uq(gln)-module M and m ∈ Z, we have that

(
RM,V+ ◦ RV+,M

)m
=



n∑
i, j=1

e+
i, j ⊗ x(m)

i, j if m ≥ 0,

n∑
i, j=1

e+
i, j ⊗ y(−m)

i, j if m ≤ 0.

Proof. This follows from Lemma 5.2 and the definitions (5.14)–(5.15). �

Now we return to the Heisenberg category Heis0(z, t) taking t := qn. Let OS(z, t) be the
HOMFLY-PT skein category as defined in the introduction of [B2], which is Turaev’s Hecke
category from [T]. By [B2, Theorem 1.1], OS(z, t) has a presentation by generators and rela-
tions which is very similar to the presentation ofHeis0(z, t) from Definition 2.2 but without the
morphism x. Consequently, there is a strict k-linear monoidal functor OS(z, t) → Heis0(z, t).
By [B2, Lemma 4.2], this functor is faithful, so we may use it to identify OS(z, t) with a sub-
category ofHeis0(z, t). Thus, OS(z, t) is the monoidal subcategory ofHeis0(z, t) consisting of
all objects and all morphisms which do not involve dots (i.e., x or y). In fact, as noted already
after Definition 2.2,Heis0(z, t) is the affine HOMFLY-PT skein category from [B2, §4].

Let Uq(gln)-mod be the category of all left Uq(gln)-modules. By [B2, Lemma 3.1] (although
the result is much older, e.g., it was exploited already in [T]), there is a monoidal functor

Ψ : OS(z, t)→ Uq(gln)-mod (5.17)

to the category of left Uq(gln)-modules. The functor Ψ sends the generating objects ↑ and ↓ to
V+ and V−, respectively. It maps the various generating morphisms to the following Uq(gln)-
module homomorphisms:

: v+
i ⊗ v+

j 7→


v+

j ⊗ v+
i

qv+
j ⊗ v+

i
v+

j ⊗ v+
i + zv+

i ⊗ v+
j

if i < j,
if i = j,
if i > j;

(5.18)

: v+
i ⊗ v−j 7→


v−j ⊗ v+

i

q−1v−j ⊗ v+
i − z

i−1∑
r=1

(−q)−rv−j−r ⊗ v+
i−r

if i , j,
if i = j; (5.19)

: v−i ⊗ v−j =


v−j ⊗ v−i
qv−j ⊗ v−i
v−j ⊗ v−i + zv−i ⊗ v−j

if i > j,
if i = j,
if i < j;

(5.20)

: v−i ⊗ v+
j 7→


v+

j ⊗ v−i

q−1v+
j ⊗ v−i − z

n−i∑
r=1

(−q)−rv+
j+r ⊗ v−i+r

if i , j,
if i = j; (5.21)

: v+
i ⊗ v+

j 7→


v+

j ⊗ v+
i

q−1v+
j ⊗ v+

i
v+

j ⊗ v+
i − zv+

i ⊗ v+
j

if i > j,
if i = j,
if i < j;

(5.22)

: v+
i ⊗ v−j 7→


v−j ⊗ v+

i

qv−j ⊗ v+
i + z

n−i∑
r=1

(−q)rv−j+r ⊗ v+
i+r

if i , j,
if i = j; (5.23)

: v−i ⊗ v−j =


v−j ⊗ v−i
q−1v−j ⊗ v−i
v−j ⊗ v−i − zv−i ⊗ v−j

if i < j,
if i = j,
if i > j;

(5.24)



QUANTUM HEISENBERG CATEGORY 19

: v−i ⊗ v+
j 7→


v+

j ⊗ v−i

qv+
j ⊗ v−i + z

i−1∑
r=1

(−q)rv+
j−r ⊗ v−i−r

if i , j,
if i = j; (5.25)

: 1 7→
n∑

j=1

(−1) jq jv−j ⊗ v+
j , : 1 7→

n∑
j=1

(−1) jqn+1− jv+
j ⊗ v−j , (5.26)

: v+
i ⊗ v−j 7→ (−1)iq−iδi, j, : v−i ⊗ v+

j 7→ (−1)iqi−n−1δi, j. (5.27)

These formulae are recorded in many places in the literature going back to the original work
[T], but one finds many different choices of normalization. For our choices, (5.18)–(5.21) and
(5.22)–(5.25) follow from the formulae for the R-matrix and its inverse from Lemma 5.2, while
the formulae (5.26)–(5.27) are explained in [B2, §3].

Theorem 5.4. Assuming t = qn and z = q − q−1, there is a monoidal functor

Ψ̂ : Heis0(z, t)→ End
(
Uq(gln)-mod

)
such that Ψ = Ev ◦Ψ̂

∣∣∣
OS(z,t), where Ev denotes evaluation on the trivial module. On objects, Ψ̂

takes X to the endofunctor Ψ(X) ⊗ −, e.g., Ψ̂(↑) = V+ ⊗ − and Ψ̂(↓) = V− ⊗ −. On morphisms,
Ψ̂ sends f ∈ HomOS(z,t)(X,Y) to the natural transformation Ψ( f ) ⊗ 1 : Ψ(X) ⊗ − → Ψ(Y) ⊗ −.
Finally, on the additional generating morphism x, it is defined by

Ψ̂(x)M := RM,V+ ◦ RV+,M :V+ ⊗ M → V+ ⊗ M, v+
j ⊗ m 7→

n∑
i=1

v+
i ⊗ xi, jm.

Proof. We just need to verify that the relations from Definition 2.2 are satisfied. All of the ones
that do not involve x follow immediately since they are already satisfied by the morphisms in
the image of the monoidal functor Ψ. Also RV+,M ◦ RM,V+ is invertible since each of these
R-matrices is invertible. It just remains to check the relation (1.6). In fact, this is a formal
consequence of the hexagon property; see e.g. [V, Proposition 3.1.1]. The argument goes as
follows. By (5.7), we have for any Uq(gln)-module M that

RV+⊗M,V+ ◦ RV+,V+⊗M = RV+,V+ ⊗ idM ◦ idV+ ⊗ RM,V+ ◦ idV+ ⊗ RV+,M ◦ RV+,V+ ⊗ idM .

This establishes that the image under Ψ̂ of the relation

•◦ = •◦

is satisfied, from which (1.6) easily follows. �

Let Zq(gln) be the center of Uq(gln). It is identified with the endomorphism algebra of the
identity functor IdUq(gln)-mod; indeed, evaluation on the identity element of the regular represen-
tation defines a canonical algebra isomorphism End

(
IdUq(gln)-mod

) ∼
→ Zq(gln). Dotted bubbles

are endomorphisms of the unit object of Heis0(z, t). Applying the monoidal functor Ψ̂ from
Theorem 5.4, we obtain natural transformations

Ψ̂
(
•◦m

)
: IdUq(gln)-mod → IdUq(gln)-mod, (5.28)

hence, central elements zm ∈ Z(Uq(gln)) for each m ∈ Z. A calculation using (5.26)–(5.27) and
Corollary 5.3 shows that

zm =



n∑
i=1

q2i−n−1x(m)
i,i if m ≥ 0,

n∑
i=1

q2i−n−1y(−m)
i,i if m ≤ 0.

(5.29)
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We have trivially that z0 = [n]q. The goal in the remainder of the section is to compute explicit
formulae for the images of all the others under the Harish-Chandra homomorphism.

Our argument uses the Harish-Chandra homomorphism in two different forms adapted to
the positive and negative Borel subalgebras, respectively. To review the definitions, let ρ+ :=
−ε2 − 2ε3 − · · · − (n− 1)εn and ρ− := −(n− 1)ε1 − · · · − 2εn−2 − εn−1, i.e., ρ− = w0(ρ+). For any
λ ∈ Λ, we have the shift automorphism

Sλ : Uq(gln)0 → Uq(gln)0, di 7→ q(λ,εi)di. (5.30)

For example, S−ρ+
(di) = qi−1di and S−ρ− (di) = qn−idi. Let Uq(gln)0 be the zero weight space

of Uq(gln), which is a subalgebra containing Uq(gln)0. Let I+ (resp. I−) be the intersection of
Uq(gln)0 with the left ideal of Uq(gln) generated by e1, . . . , en−1 (resp. f1, . . . , fn−1). Equiva-
lently, I+ (resp. I−) is the intersection of Uq(gln)0 with the right ideal generated by f1, . . . , fn−1
(resp. e1, . . . , en−1). It follows that I± is a two-sided ideal of Uq(gln)0. Let pr± : Uq(gln)0 →

Uq(gln)0 be the algebra homomorphism defined by projection along the direct sum decomposi-
tion Uq(gln)0 = Uq(gln)0 ⊕ I±. The two versions of the Harish-Chandra homomorphism are

HC± := S−ρ± ◦ pr± : Uq(gln)0 → Uq(gln)0. (5.31)

The following is an extension of the well-known description of Zq(sln) from e.g. [J, 6.25].

Lemma 5.5 ([Li, Lemma 2.1]). The restriction HC := HC+

∣∣∣
Zq(gln) defines an algebra isomor-

phism between Zq(gln) and the algebra k
[
(d1 · · · dn)−1, d2

1 , . . . , d
2
n
]Sn .

The following facts are also well known, but we could not find a suitable reference.

Lemma 5.6. Each braid group generator Ti : Uq(gln)→ Uq(gln) fixes Zq(gln) pointwise.

Proof. Take c ∈ Zq(gln). Let V be an integrable highest weight module. Since V is irreducible,
both c and Ti(c) act on V as scalars. These scalars are equal because there is an automorphism
Ti : V → V such that Ti(cv) = Ti(c)Ti(v); see [Lu, §37.1.1]. This shows that c − Ti(c) acts
as zero on every integrable highest weight module. The intersection of the annihilators of all
integrable highest weight modules is zero, so this proves that c = Ti(c). �

Lemma 5.7. The restriction HC = HC+

∣∣∣
Zq(gln) is equal also to the restriction HC−

∣∣∣
Zq(gln).

Proof. Let Tw0 be the product of simple braid group generators Ti taken in some order corre-
sponding to a reduced expression of w0. This is an automorphism of Uq(gln) which switches
Uq(gln)] and Uq(gln)[, and it sends di 7→ dn+1−i. It follows that

HC∓ ◦ Tw0 = Tw0 ◦ HC±. (5.32)

Clearly, Tw0 fixes k[(d1 · · · dn)−1, d±2
1 , . . . , d±2

n ]Sn pointwise. It also fixes Zq(gln) pointwise by
Lemma 5.6. Hence, HC−

∣∣∣
Zq(gln) = HC− ◦ Tw0

∣∣∣
Zq(gln) = Tw0 ◦ HC+

∣∣∣
Zq(gln) = HC+

∣∣∣
Zq(gln). �

Lemma 5.8. The antiautomorphism G fixes Zq(gln) pointwise.

Proof. We have that
HC∓ ◦G = G ◦ HC±. (5.33)

Combined with Lemma 5.7, it follows that HC+◦G
∣∣∣
Zq(gln) = G◦HC+

∣∣∣
Zq(gln). Also G clearly fixes

k[(d1 · · · dn)−1, d±2
1 , . . . , d±2

n ]Sn pointwise. Hence, HC+ ◦ G
∣∣∣
Zq(gln) = HC+

∣∣∣
Zq(gln), which implies

the result since HC+ is injective on Zq(gln). �
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In particular, this shows that G (zm) = zm, hence, on applying G to the right hand side of
(5.29) using (5.16), we obtain another formula for zm:

zm =



n∑
i=1

qn+1−2iy(m)
i,i if m ≥ 0,

n∑
i=1

qn+1−2ix(−m)
i,i if m ≤ 0.

(5.34)

Comparing with (5.29), it follows that

z−m = zm (5.35)

for every m ∈ Z. From now on, we only consider zm for m ≥ 1.
Finally, consider the modified complete symmetric polynomials

h̃m(x1, . . . , xn) :=
∑

1≤i1≤···≤im≤n

(
q−1z

)#{i1,...,im}−1
xi1 · · · xim . (5.36)

We will use these for all values of n ≥ 0 (not just the n fixed above for gln). We have that
h̃m(x1, . . . , xn) = qz−1 if m = 0, and h̃m(x1, . . . , xn) = 0 if m > 0 but n = 0. These elements
obviously satisfy the recurrence relation

h̃m(x1, . . . , xn) = h̃m(x1, . . . , xn−1) + q−1z
m∑

r=1

h̃m−r(x1, . . . , xn−1)xr
n (5.37)

for n > 0.

Lemma 5.9. h̃m(x1, . . . , xn) = h̃m(x1, . . . , xn−1) + h̃m−1(x1, . . . , xn)xn − q−2h̃m−1(x1, . . . , xn−1)xn.

Proof. By (5.37) with m replaced by m − 1, we have that

h̃m−1(x1, . . . , xn)xn = h̃m−1(x1, . . . , xn−1)xn + q−1z
m−1∑
r=1

h̃m−r−1(x1, . . . , xn−1)xr+1
n

= h̃m−1(x1, . . . , xn−1)xn + q−1z
m∑

r=2

h̃m−r(x1, . . . , xn−1)xr
n

= q−2h̃m−1(x1, . . . , xn−1)xn + q−1z
m∑

r=1

h̃m−r(x1, . . . , xn−1)xr
n.

Given this, it is easy to see that the right hand side of the identity we are trying to prove is
equal to the right hand side of (5.37). �

Theorem 5.10. For any m ≥ 1 we have that HC (zm) = qn−1h̃m

(
d2

1 , . . . , d
2
n

)
.

Proof. Noting that q1−nzm =
∑n

i=1 q2i−2nx(m)
i,i according to (5.29), this follows from the follow-

ing claim: for any m ≥ 1 and i = 1, . . . , n, we have that

HC+

(
x(m)

i,i

)
= h̃m

(
d2

1 , . . . , d
2
i

)
− q−2h̃m

(
d2

1 , . . . , d
2
i−1

)
. (5.38)

To prove (5.38), we proceed by induction on m+n. The result is easy to check when n = 1. Now
assume that n > 1. The Harish-Chandra homomorphism HC+ is compatible with the usual “top
left corner” embedding of Uq(gln−1) into Uq(gln). This follows because the restriction of ρ+ for
gln is the weight ρ+ for gln−1. Also the elements x(m)

1,1 , . . . , x
(m)
n−1,n−1 of Uq(gln−1) are the same as

these elements in Uq(gln). Thus we get (5.38) for each i < n from the induction hypothesis. It
remains to prove (5.38) when i = n. We have that

q1−nHC− (zm) =

n∑
i=1

q2i−2n
∑

j1,..., jm

HC−
(
z2me j1,id j1 f j1, j2 d j2 · · · e jm, jm−1 d jm f jm,idi

)
.
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By the definition of HC−, the terms in this expansion are zero if either j1 < i or jm < i. Thus,
the sum simplifies to give

q1−nHC− (zm) =

n∑
i=1

q2i−2nHC−
(
y(m−1)

i,i d2
i

)
=

n∑
i=1

HC−
(
y(m−1)

i,i

)
d2

i .

Now we apply G, using Lemma 5.8, (5.33) and (5.11), to see that

q1−nHC+ (zm) =

n∑
i=1

HC+

(
x(m−1)

i,i

)
d2

i .

Remembering (5.29), we have now proved that
n∑

i=1

q2i−2nHC+

(
x(m)

i,i

)
=

n∑
i=1

HC+

(
x(m−1)

i,i

)
d2

i . (5.39)

The same identity with n replaced by (n − 1) gives
n−1∑
i=1

q2i−2(n−1)HC+

(
x(m)

i,i

)
=

n−1∑
i=1

HC+

(
x(m−1)

i,i

)
d2

i . (5.40)

By the induction hypothesis, the left hand side of (5.40) is equal to h̃m

(
d2

1 , . . . , d
2
n−1

)
. Hence,

(5.39) can be rewritten to obtain

HC+

(
x(m)

n,n

)
+ q−2h̃m

(
d2

1 , . . . , d
2
n−1

)
= HC+

(
x(m−1)

n,n

)
d2

n + h̃m

(
d2

1 , . . . , d
2
n−1

)
= h̃m

(
d2

1 , . . . , d
2
n−1

)
+ h̃m−1

(
d2

1 , . . . , d
2
n

)
d2

n − q−2h̃m−1

(
d2

1 , . . . , d
2
n−1

)
d2

n ,

where we have used the induction hypothesis again to establish the second equality. This is
equal to h̃m

(
d2

1 , . . . , d
2
n

)
thanks to Lemma 5.9. The conclusion follows. �

Corollary 5.11 ([Li, Theorem 4.1]). Zq(gln) is generated by z1, . . . , zn and (d1 · · · dn)−1.

Proof. This follows from Lemma 5.5 and Theorem 5.10 since k[x1, . . . , xn]Sn is generated by
the modified complete symmetric functions h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn). �

6. Action on modules over cyclotomic Hecke algebras

Throughout the section, we assume that we are given a polynomial

f (w) = f0wl + f1wl−1 + · · · + fl ∈ k[w] (6.1)

of degree l ≥ 0 such that f0 fl = 1. Recall from the introduction that the affine Hecke algebra
AHn with its standard generators x1, . . . , xn, τ1, . . . , τn−1 is identified with the endomorphism
algebra EndAH(z)(↑⊗n) so that and xi is the dot on the ith string and τ j is the positive crossing
of the jth and ( j + 1)th strings (numbering strings 1, . . . , n from right to left). The cyclotomic
Hecke algebra H f

n of level l associated to the polynomial f (w) is the quotient of AHn by the
two-sided ideal generated by f (x1). We also include the possibility n = 0 with the convention
that H f

0 = k.
The basis theorem proved in [AK, Theorem 3.10] shows that the following gives a basis for

H f
n as a free k-module: {

xr1
1 · · · x

rn
n τg

∣∣∣ 0 ≤ r1, . . . , rn < l, g ∈ Sn

}
, (6.2)

where τg denotes the element of the finite Hecke algebra defined from a reduced expression
for the permutation g. By the basis theorem, the obvious homomorphism H f

n → H f
n+1 sending

the generators xi and τ j to the elements of H f
n+1 with the same names is injective. So we may

identify H f
n with a subalgebra of H f

n+1. We denote the induction and restriction functors by

indn+1
n := H f

n+1 ⊗H f
n
− : H f

n -mod→ H f
n+1-mod, (6.3)
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resn+1
n : H f

n+1-mod→ H f
n -mod . (6.4)

We are going to make the Abelian category
⊕

n≥0 H f
n -mod into a left Heis−l(z, f −1

0 )-module
category, with ↑ and ↓ acting as induction and restriction, respectively. In order to do this, we
need the Mackey theorem for H f

n : there is an isomorphism of functors

indn
n−1 ◦ resn

n−1 ⊕ Id⊕l ∼→ resn+1
n ◦ indn+1

n . (6.5)

The standard proof shows that the map

H f
n ⊗H f

n−1
H f

n ⊕

l−1⊕
r=0

H f
n → H f

n+1, (u ⊗ v,w0, . . . ,wl−1) 7→ uτnv +

l−1∑
r=0

wr xr
n+1 (6.6)

is an isomorphism of (H f
n ,H

f
n )-bimodules. This implies that there is a unique (H f

n ,H
f
n )-

bimodule homomorphism
tr f

n : H f
n+1 → H f

n (6.7)

such that tr f
n (τn) = 0 and tr f

n (xr
n+1) = δr,0 for 0 ≤ r < l.

Lemma 6.1. For any n ≥ 0, we have that tr f
n ( f (xn+1)) = 0.

Proof. For u, v ∈ H f
n+1, write u ≡n v as shorthand for u = v in case n = 0, or u − v ∈ H f

n τnH f
n

in case n > 0. We first show by induction on n = 0, 1, . . . that

τn · · · τ1xa
1τ1 · · · τn ≡n



∑
b+c1+···+cn=a
b>0,c1,...,cn≥0

 ∏
i with ci,0

(−z2ci)

 xb
n+1xcn

n · · · x
c1
1 if a > 0,

∑
b+c1+···+cn=a
b≤0,c1,...,cn≤0

 ∏
i with ci,0

(z2ci)

 xb
n+1xcn

n · · · x
c1
1 if a ≤ 0.

(6.8)

We just explain this in detail in the case a > 0, since the case a ≤ 0 is similar. The base case is
trivial. For the induction step, we have that

τnxa
nτn = τnτ

−1
n xa

n+1 − z
∑

b+c=a
b,c>0

τnxb
n+1xc

n = xa
n+1 − z

∑
b+c=a
b,c>0

τ−1
n xb

n+1xc
n − z2

∑
b+c=a
b,c>0

xb
n+1xc

n

≡n xa
n+1 − z2

∑
b+c+d=a
b,c,d>0

xb
n+1xc+d

n − z2
∑

b+c=a
b,c>0

xb
n+1xc

n = xa
n+1 − z2

∑
b+c=a
b,c>0

cxb
n+1xc

n.

Now take the expression for τn−1 · · · τ1xa
1τ1 · · · τn−1 given by the induction hypothesis, multiply

on left and right by τn, and use the above identity plus the observation

τn

(
H f

n−1τn−1H f
n−1

)
τn = H f

n−1τnτn−1τnH f
n−1 = H f

n−1τn−1τnτn−1H f
n−1 ⊆ H f

n τnH f
n .

Finally, to deduce the lemma, we multiply (6.8) by fl−a and sum over a = 0, 1, . . . , l to show

τn · · · τ1 f (x1)τ1 · · · τn ≡n fl +

l∑
a=1

fl−a

∑
b+c1+···+cn=a
b>0,c1,...,cn≥0

 ∏
i with ci,0

(−z2ci)

 xb
n+1xcn

n · · · x
c1
1 .

The left hand side is zero by the cyclotomic relation in H f
n+1. The right hand side is equal to

f (xn+1) plus terms in the kernel of tr f
n . �

Theorem 6.2. There is a unique strict k-linear monoidal functor

Ψ f : Heis−l(z, f −1
0 )→ End

⊕
n≥0

H f
n -mod
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sending the generating object ↑ (resp. ↓) to the additive endofunctor that takes an H f
n -module

M to indn+1
n M (resp. resn

n−1 M), and the generating morphisms x, τ, c and d to the natural
transformations defined on the H f

n -module M as follows:
• Ψ f (x)M : H f

n+1 ⊗H f
n

M → H f
n+1 ⊗H f

n
M, u ⊗ v 7→ uxn+1 ⊗ v;

• Ψ f (τ)M : H f
n+2 ⊗H f

n
M → H f

n+2 ⊗H f
n

M, u ⊗ v 7→ uτn+1 ⊗ v (where we have identified
indn+2

n+1 ◦ indn+1
n with indn+2

n in the obvious way);
• Ψ f (c)M : M → resn+1

n

(
H f

n+1 ⊗H f
n

M
)
, v 7→ 1 ⊗ v, i.e., it is the unit of the canonical

adjunction making (indn+1
n , resn+1

n ) into an adjoint pair of functors;
• Ψ f (d)M : H f

n ⊗H f
n−1

(resn
n−1 M) → M, u ⊗ v 7→ uv, i.e., it is the counit of the canonical

adjunction making (indn
n−1, resn

n−1) into an adjoint pair of functors.

Proof. We use the presentation for Heis−l(z, f −1
0 ) from Definition 2.2. Let us first treat the

degenerate case l = 0. In this case,
⊕

n≥0 H f
n -mod is the category of left k-modules, and all

of the induction and restriction functors are zero. Consequently, almost of the relations are
trivially true. The only one that requires any thought is the relation = ( f −1

0 z−1 − f0z−1)11
from (2.12). To see that this holds, one needs to observe that the scalar on the right hand side
is zero, which follows from the assumption that f 2

0 = 1.
Henceforth, we assume that l > 0. Then Heis−l(z, f −1

0 ) is generated by the objects ↑ and ↓
and morphisms x, τ, c and d subject to the relations (1.6)–(1.9), plus two more relations:

(1)
[

•◦ · · · l−1•◦

]
is invertible where σ := is defined by (2.2);

(2) •◦l = f −1
0 z−111 where γ := is defined by (2.13), i.e., it is − f0z−1 times the

(2, 1)-entry of the inverse of the matrix in (1).
The relations (1.6)–(1.9) are straightforward to check. On H f

n -modules, Ψ f (σ) comes from
the (H f

n ,H
f
n )-bimodule homomorphism H f

n ⊗H f
n−1

H f
n → H f

n+1, u ⊗ v 7→ uτnv. So we get the
relation (1) since (6.6) is invertible by the proof of the Mackey theorem. Moreover, we see
from (6.6) and the definition that Ψ f (γ) comes from the (H f

n ,H
f
n )-bimodule homomorphisms

− f0z−1 tr f
n : H f

n+1 → H f
n for all n ≥ 0. So for (2) we must show that − f0z−1 tr f

n

(
x`n+1

)
= f −1

0 z−1.

This follows from Lemma 6.1 and the definition of tr f
n , remembering that fl = f −1

0 . �

If we switch the roles of induction and restriction, we can reformulate Theorem 6.2 in
terms of Heisenberg categories of positive central charge. We prefer for this to replace the
induction functor indn+1

n from before (which is the canonical left adjoint to restriction) with the
coinduction functor

coindn+1
n := HomH f

n
(H f

n+1,−) : H f
n -mod→ H f

n+1-mod (6.9)

which is its canonical right adjoint.

Theorem 6.3. There is a unique strict k-linear monoidal functor

Ψ∨f : Heisl(z, f0)→ End

⊕
n≥0

H f
n -mod


sending the generating object ↑ (resp. ↓) to the additive endofunctor that takes an H f

n -module
M to resn

n−1 M (resp. coindn+1
n M), and the generating morphisms x, τ, c and d to the natural

transformations defined on the H f
n -module M as follows:

• Ψ∨f (x)M : resn
n−1 M → resn

n−1 M, v 7→ xnv;
• Ψ∨f (τ)M : resn

n−2 M → resn
n−2 M, v 7→ −τ−1

n−1v;

• Ψ∨f (c)M : M → HomH f
n−1

(H f
n , resn

n−1 M), v 7→ (u 7→ uv), i.e., it is the unit of the
canonical adjunction making (resn

n−1, coindn
n−1) into an adjoint pair of functors;
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• Ψ∨f (d)M : resn+1
n

(
HomH f

n
(H f

n+1,M)
)
→ M, θ 7→ θ(1), i.e., it is the counit of the canon-

ical adjunction making (resn+1
n , coindn+1

n ) into an adjoint pair of functors.

Proof. This may be proved directly in a similar way to the proof of Theorem 6.2. One uses the
presentation forHeisl(z, f0) from Definition 3.1 instead of the one from Definition 2.2, plus the
Mackey isomorphism (6.6) and Lemma 6.1 as before. We leave the details to the reader. �

In fact, we have that indn+1
n � coindn+1

n . This follows by the uniqueness of adjoints, since
Lemma 3.7 and Theorem 6.2 (resp. Theorem 6.3) implies that indn+1

n is right adjoint to restric-
tion as well as being left adjoint (resp. coindn+1

n is left adjoint to restriction as well as being
right adjoint). It follows that all three functors (induction, coinduction and restriction) send
finitely generated projective modules to finitely generated projective modules. Hence:

Lemma 6.4. The restrictions of the functors Ψ f and Ψ∨f constructed in Theorems 6.2–6.3 give
strict k-linear monoidal functors

Ψ f : Heis−l(z, f −1
0 )→ End

⊕
n≥0

H f
n -pmod

 , Ψ∨f : Heisl(z, f0)→ End

⊕
n≥0

H f
n -pmod

 ,
where H f

n -pmod denotes the category of finitely generated projective left H f
n -modules.

7. Action on category O for rational Cherednik algebras

The Heisenberg action on
⊕

n≥0 H f
n -mod from Theorem 6.2 can also be extended to an

action on the category O for rational Cherednik algebras, following an argument of Shan. To
explain this in more detail, assume that k = C, and consider the complex reflection group
G(l, 1, n) � Sn o Z/lZ for l ≥ 1, with reflection representation kn defined as in [Sh, §3.1].
Defining a rational Cherednik algebra requires a choice of parameters, for which there are a
bewildering number of different parameterizations. We have:

• a single parameter κ ∈ k, which is the parameter kH,1 in [GGOR, Remark 3.2] for a
reflecting hyperplane H on which the difference of two coordinates vanish;

• an l-tuple (κ1, . . . , κl) ∈ kl of parameters, which corresponds to the family {kH,i}0≤i≤l

of parameters in [GGOR, Remark 3.2] associated to a reflecting hyperplane H on
which a single coordinate vanishes so that κi = kH,i. In loc. cit., it is assumed that
kH,0 = kH,l = 0, but adding a constant to all kH,i leaves the algebra unchanged. It is
useful for us to incorporate an additional degree of freedom, so we drop the vanishing
condition here: our parameter κl may be non-zero.

Let Hn be the rational Cherednik algebra attached to these parameters as in [GGOR, §3].
Let q := exp(

√
−1πκ) and qi := exp(

√
−1π(κi − i/`)) for i = 1, . . . , l. One can relate these

to the parameters in [Sh] by choosing integers e ≥ 2 and (s1, . . . , sl) then letting κ := 1
e and

κi := κsi + i/`, so qi = qsi , for i = 1, . . . , l; note that the parameter q in loc. cit. is our q2. Let
O = Oκ;κ1,...,κl :=

⊕
n≥0 On where On is the category of Hn-modules introduced in [GGOR, §3].

Also define

f (w) :=
l∏

i=1

(
q−1

i w + qi

)
, t := q1 . . . ql.

By [GGOR, Theorem 5.16], there is an exact functor

KZ : O →
⊕
n≥0

H f
n -mod . (7.1)

Matching with the formulae in [GGOR, Sh] requires using the isomorphism from the cy-
clotomic Hecke algebra in [Sh, §3.1] to ours that sends the generators T0,T1, . . . ,Tn−1 to
−x1, qτ1, . . . , qτn−1. The Hecke algebra generators Ti (i = 1, . . . , n − 1) in [Sh] are of the
form −T for Hecke algebra generators T from [GGOR, §5.2.5] associated to reflections in the
first type of hyperplane above. Also, T0 is a scalar multiple (depending on the choice of κl)
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of the Hecke algebra generator T in [GGOR, §5.2.5] associated to a reflection of the second
type. The key point in all of this is that the minimal polynomials for x1 and τi (i = 1, . . . , n− 1)
arising from the key formula in [GGOR, §5.2.5] are f (w) and (w − q)(w + q−1) (up to scalars),
i.e., we do indeed get defining relations of H f

n .
The functor KZ is fully faithful on projectives [GGOR, Theorem 5.16]. Moreover, it inter-

twines the Bezrukavnikov-Etingof induction and restriction functors denoted indbn+1 and resbn+1

in [Sh, §3.2] with the functors indn+1
n and resn+1

n thanks to [Sh, Theorem 2.1].

Theorem 7.1. There is a strict k-linear monoidal functor

Ψ̂ f : Heis−l(z, t)→ End (O) . (7.2)

that makes O into a module category overHeis−l(z, t), with ↑ and ↓ acting as Bezrukavnikov-
Etingof induction and restriction functors, respectively. This can be done in such a way that KZ
is a morphism ofHeis−l(z, t)-module categories, viewing

⊕
n≥0 H f

n -mod as a module category
via the functor Ψ f from Theorem 6.2.

Proof. Our argument is exactly as in the proof of [Sh, Theorem 5.1] using [Sh, Lemma 2.4].
We need to show that there are certain natural transformations of functors satisfying specific
relations. Theorem 6.2 allows us to define these on the image of the functor KZ via the action
of Heis−l(z, t). The fully-faithfulness of KZ allows us to transfer this to an action on the
full subcategory of projectives in O, and this action can extended to an arbitrary object X by
presenting X as the cokernel of a map between projectives. �

Remark 7.2. This quantum Heisenberg action is in many ways more convenient for work-
ing with category O over Cherednik algebras than a Kac-Moody 2-category action, since the
Heisenberg action requires no special assumptions on parameters. In fact, this action is still
well defined if k is replaced by a complete local ring, so one can extend the Heisenberg action
to deformed category O.

8. Categorical comultiplication

In this section, we construct the quantum analog of the categorical comultiplication from
[BSW1, Theorem 5.3]. As well as the quantum Heisenberg categoryHeisk(z, t), we will work
withHeisl(z, u) andHeism(z, v) for l,m ∈ Z and u, v ∈ k× chosen so that

k = l + m, t = uv. (8.1)

To avoid confusion between these different categories, the reader will want to view the material
in this section in color. Let Heisl(z, u) � Heism(z, v) be the symmetric product of Heisl(z, u)
and Heism(z, v). As in [BSW1, §3], this is the strict k-linear monoidal category obtained by
first taking the free productHeisl(z, u)~Heism(z, v) in the category of strict k-linear monoidal
categories, then adjoining isomorphisms σX,Y : X ⊗ Y

∼
→ Y ⊗ X for each pair of objects

X ∈ Heisl(z, u) and Y ∈ Heism(z, v), subject to the relations

σX1⊗X2,Y = (σX1,Y ⊗ 1X2 ) ◦ (1X1 ⊗ σX2,Y ), σX2,Y ◦ ( f ⊗ 1Y ) = (1Y ⊗ f ) ◦ σX1,Y ,

σX,Y1⊗Y2 = (1Y1 ⊗ σX,Y2 ) ◦ (σX,Y1 ⊗ 1Y2 ), σX,Y2 ◦ (1X ⊗ g) = (g ⊗ 1X) ◦ σX,Y1

for all X, X1, X2 ∈ Heisl(z, u),Y,Y1,Y2 ∈ Heism(z, v) and f : X1 → X2, g : Y1 → Y2. Mor-
phisms inHeisl(z, u)�Heism(z, v) are linear combinations of diagrams colored both blue and
red. In these diagrams, as well as the generating morphisms ofHeisl(z, u) andHeism(z, v), we
have the additional two-color crossings

, , ,

which represent the isomorphisms σX,Y for X ∈ {↑, ↓} and Y ∈ {↑, ↓}, and their inverses

, , , .
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Definition 8.1. Given a diagram D representing a morphism in Heisl(z, u) � Heism(z, v) and
two generic points in this diagram, one on a red string and the other on a blue string, we will
denote the morphism represented by

(D with an extra dot at the red point) − (D with an extra dot at the blue point)

by labelling the points with dots joined by a dotted line. For example:

•◦•◦ := •◦ − •◦ . (8.2)

Let Heisl(z, u) � Heism(z, v) be the strict k-linear monoidal category obtained by localizing
at •◦•◦ . This means that we adjoin a two-sided inverse to this morphism, which we denote
as a dumbbell

•◦•◦ :=
(

•◦•◦

)−1

. (8.3)

Just as explained in the degenerate case in [BSW1, §§4–5], all morphisms whose string dia-
gram is that of an identity morphism with a horizontal dotted line joining two points of different
colors are also automatically invertible in the localized category. We also denote the inverses
of such morphisms by using a solid dumbbell in place of the dotted one. For instance:

•◦•◦ = •◦ •◦ =

 •◦ •◦


−1

=

(
•◦•◦

)−1

.

We also need the following morphisms, which we refer to as internal bubbles:

:= z
∑
a≥0

+ •◦ a−a + z •◦•◦
•◦ , := z

∑
a≥0

+•◦a −a + z •◦ •◦•◦ , (8.4)

:= z
∑
a≥0

+ •◦ a−a − z •◦•◦
•◦ , := z

∑
a≥0

+•◦a −a − z •◦ •◦•◦ . (8.5)

The category Heisl(z, u) � Heism(z, v) possesses various symmetries which are often use-
ful. Derived from (3.3), we have the strict k-linear monoidal isomorphism

Ωl|m : Heisl(z, u) � Heism(z, v)
∼
→

(
Heis−l(z, u−1) � Heis−m(z, v−1)

)op
, (8.6)

which takes a diagram to its mirror image in a horizontal plane multiplied by (−1)x+y where x is
the number of one-colored crossings and y is the number of leftward cups and caps (including
ones in +-, −- and internal bubbles). Also, we have

η : Heisl(z, u) � Heism(z, v)
∼
→ Heism(z, v) � Heisl(z, u) (8.7)

defined on diagrams by switching the colors blue and red then multiplying by (−1)z where z
is the total number of dumbbells (both solid and dotted) in the picture. Finally, the category
Heisl(z, u) � Heism(z, v) is strictly pivotal, with duality functor

∗ : Heisl(z, u) � Heism(z, v)
∼
→

((
Heisl(z, u) � Heism(z, v)

)op)rev
(8.8)

defined by rotating diagrams through 180◦ just like in (3.21).
We denote the duals of the internal bubbles (8.4)–(8.5) by

, , , .
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This definition ensures that internal bubbles commute past cups and caps in all possible con-
figurations. For example:

= , = .

Again as in [BSW1, §§4–5], there are many other obvious commuting relations, such as

= , = , = ,

•◦•◦
•◦ = •◦•◦

•◦ , •◦•◦
•◦ = •◦•◦

•◦ , •◦•◦
•◦ •◦ = •◦ •◦

•◦•◦ ,

•◦•◦
= •◦•◦ , •◦ •◦ =

•◦ •◦
, •◦ •◦ =

•◦ •◦
,

•◦
=
•◦
, •◦ •◦ = •◦ •◦ , •◦•◦ = •◦ •◦ ,

as well as the mirror images of these under the symmetries Ωl|m, η and ∗. We will appeal to all
such relations below without further mention.

Here are some more interesting relations. The first shows how to “teleport” dots across
dumbbells (plus a correction term):

•◦•◦
•◦a = •◦•◦

•◦a +
∑

b+c=a−1
b,c≥0

•◦b •◦c −
∑

b+c=a−1
b,c<0

•◦b •◦c (8.9)

for any a ∈ Z. We also have the following relations to commute dumbbells past one-color
crossings:

•◦ •◦ =
•◦ •◦

+ z •◦ •◦
•◦ •◦ •◦

,
•◦ •◦

= •◦ •◦ + z •◦ •◦
•◦ •◦ •◦

, (8.10)

•◦ •◦
= •◦ •◦ + z •◦ •◦•◦

•◦ •◦
, •◦ •◦ =

•◦ •◦
+ z •◦ •◦•◦
•◦ •◦

, (8.11)

•◦ •◦ =
•◦ •◦

+ z •◦ •◦•◦
•◦ •◦

,
•◦ •◦

= •◦ •◦ + z •◦ •◦•◦
•◦ •◦

, (8.12)

•◦ •◦
= •◦ •◦ + z •◦ •◦

•◦•◦ •◦
, •◦ •◦ =

•◦ •◦
+ z •◦ •◦

•◦•◦ •◦
. (8.13)

These are all straightforward to prove: one first cancels the solid dumbbells by composing on
the top and bottom with their inverses then uses the affine Hecke algebra relations (1.6)–(1.7)
to commute dots past crossings in the result.

The following seven lemmas are the quantum analogs of [BSW1, Lemmas 5.5–5.11]. Their
proofs are quite similar to the degenerate case.

Lemma 8.2. We have that = −

 −1

.

Lemma 8.3. For any a ∈ Z, we have that
•◦a

+
•◦a

= z
∑
b∈Z

b<a or b>0

+b

+a−b
−z

∑
0≤b≤a

−b

−a−b
.

Lemma 8.4. The following relations hold:

(i) = + z2 •◦•◦ •◦•◦
•◦•◦

− z2
∑
a>0
b≥0

+
−a−b

•◦b•◦a .
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(ii) = + z2 •◦•◦ •◦•◦
•◦ •◦

− z2
∑
a≥0
b>0

+
−a−b

•◦b•◦a .

Lemma 8.5. We have that = z •◦•◦

•◦
− z2

∑
a≥0
b∈Z

•◦a
+b

+−a−b
.

Lemma 8.6. We have that = − tz − z2

•◦

•◦

•◦

•◦

•◦

•◦

+ z3
∑
a,b>0
c∈Z

+−b−c

+−a+c b•◦

•◦a
.

Lemma 8.7. We have that •◦ •◦
•◦
−

•◦•◦
•◦

= z2
∑
a,b>0
c∈Z

•◦a
+
−a−c

+
−b+c

•◦ b − t .

Lemma 8.8. We have that = + z2 •◦•◦ •◦•◦
•◦•◦ .

Using these, we can prove the main theorem of the section:

Theorem 8.9. For k = l + m and t = uv, there is a unique strict k-linear monoidal functor

∆l|m : Heisk(z, t)→ Add
(
Heisl(z, u) � Heism(z, v)

)
such that ↑7→ ↑ ⊕ ↑, ↓7→ ↓ ⊕ ↓, and on morphisms

•◦ 7→ •◦ + •◦ , (8.14)

7→ + + q + q − z
•◦•◦

•◦ + z
•◦•◦

•◦ − z •◦•◦
•◦ + z •◦•◦

•◦ , (8.15)

7→ + + q−1 + q−1 − z
•◦•◦

•◦ + z
•◦•◦

•◦ − z •◦•◦
•◦ + z •◦•◦

•◦ , (8.16)

7→ + , 7→ + , (8.17)

7→ + , 7→ − − . (8.18)

Moreover, the following hold for all a ∈ Z:

∆l|m

(
+ a

)
= z

∑
b∈Z

+ b

+ a−b
, ∆l|m

(
a +

)
= −z

∑
b∈Z

+b

+a−b
, (8.19)

∆l|m

(
− a

)
= −z

∑
b∈Z

− b

− a−b
, ∆l|m

(
a −

)
= z

∑
b∈Z

−b

−a−b
. (8.20)

Equivalently, in terms of the generating functions (3.14)–(3.17) and their analogs inHeisl(z, u)
andHeism(z, v):

∆l|m

(
+ (w)

)
= z + (w) + (w), ∆l|m

(
+ (w)

)
= −z + (w) + (w), (8.21)

∆l|m

(
− (w)

)
= −z − (w) − (w), ∆l|m

(
− (w)

)
= z − (w) − (w). (8.22)

Remark 8.10. For the proof, it is helpful to notice that η ◦ ∆l|m = ∆m|l (on extending η to
the additive envelopes in the obvious way). However, ∆l|m does not commute with either of
the other symmetries Ω or ∗. In fact, the map Ω−l|−m ◦ ∆−l|−m ◦ Ωk would be an equally good
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alternative choice for the categorical comultiplication map. The only change to the above
formulae if one uses this alternative is that one needs to replace q with −q−1 in (8.15)–(8.16);
this is the “Galois symmetry” in the choice of the root q of the equation x2 − zx − 1 = 0.

Proof. Using the presentation from Definition 4.1, we need to check that the images under
∆l|m of the relations (1.6)–(1.9) and (4.1)–(4.4) are valid in Add

(
Heisl(z, u) � Heism(z, v)

)
,

plus we must also check (8.19)–(8.20). The details are sufficiently similar to the degenerate
case from the proof of [BSW1, Theorem 5.3] that we only sketch the steps needed below.

First one checks (1.6)–(1.8). For example, to check the skein relation, the image under ∆l|m

of − is A + η(A) where

A :=
(

−

)
+ z

(
•◦•◦
•◦ − •◦•◦

•◦

)
+ z

(
+

•◦•◦

•◦ −
•◦•◦

•◦
)
.

Using the skein relation inHeisl(z, u) plus (8.9), A simplifies to B := z + z . This is what

is required since the image under ∆l|m of z is B + η(B). The other relations here are checked
by similarly explicit calculations. The one for the braid relation is rather long.

The relation (1.9) is easy.
To check (8.19)–(8.20), we assume to start with that k ≥ 0. Consider the clockwise plus-

bubble +a . When a ≤ 0, this is just a scalar (usually zero) due to (3.11) and the assumption

k ≥ 0, and the relation to be checked is trivial. So assume that a > 0. Then +a = a•◦ ,

hence, its image under ∆l|m is − •◦a − •◦a , which is indeed equal to −z
∑

b∈Z +b +a−b

by Lemma 8.3. This establishes the left hand identity in (8.19), hence, the left hand identity
in (8.21). The right hand identity in (8.21) then follows using (3.13), thereby establishing the
right hand identity in (8.19) as well. Next, consider the clockwise minus-bubble −a . This
time the relation to be checked is trivial when a ≥ 0, so assume that a < 0. Then, using
the assumption k ≥ 0 again, we have that −a = a•◦ , hence, its image under ∆l|m is

− •◦
a

− •◦a , which is equal to z
∑

b∈Z −b −a−b by Lemma 8.3 (noting when a < 0 ≤ k

that the term involving plus-bubbles is zero). Then we complete the proof of (8.20) using the
equivalent form (8.22) and (3.13) once again. It remains to treat k ≤ 0. This follows by similar
arguments; one starts by considering the counterclockwise plus- and minus-bubbles using the
identities obtained by applying Ωl|m to Lemma 8.3, then gets the clockwise ones using (3.13).

Consider (4.3)–(4.4). The relations involving bubbles follow easily from (8.19)–(8.20).
Next consider the right curl relation in (4.3), so k ≥ 0. Applying ∆l|m to the relation reveals
that we must show that A + η(A) = B + η(B) where

A := z •◦•◦
•◦
− , B := δk,0t−1 .

This follows from Lemma 8.5, noting that the only non-zero term in the summation on the
right hand side of that identity is the one with a = b = 0 due to the assumption that k ≥ 0. The
argument for the left curl in (4.4) is entirely similiar; it uses the identity obtained by applying
∗ ◦Ωl|m to Lemma 8.5.

Finally, one must check (4.1)–(4.2). This is a calculation just like in the final paragraph of
the proof of [BSW1, Theorem 5.3]; ultimately one uses Lemmas 8.6–8.8. �

9. Generalized cyclotomic quotients

In this section, we define some k-linear categories, namely, the generalized cyclotomic
quotients ofHeisk(z, t). Recall that x = •◦ and y = •◦ .
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Definition 9.1. Suppose we are given polynomials

f (w) = f0wl + f1wl−1 + · · · + fl ∈ k[w], (9.1)

g(w) = g0wm + g1wm−1 + · · · + gm ∈ k[w] (9.2)

of degrees l,m ≥ 0, respectively, such that f0 fl = 1 = g0gm. Let k := m − l and t := g0 f −1
0 .

Define series A±(w) =
∑

n∈Z A±n w−n and B±(w) =
∑

n∈Z B±n w−n by

A+(w) := z−1g(w)/ f (w) ∈ tz−1wk + wk−1k~w−1�, (9.3)

B+(w) := −z−1 f (w)/g(w) ∈ −t−1z−1w−k + w−k−1k~w−1�, (9.4)

A−(w) := −z−1g(w)/ f (w) ∈ −t−1z−1 + wk~w�, (9.5)

B−(w) := z−1 f (w)/g(w) ∈ tz−1 + wk~w�; (9.6)

cf. (3.14)–(3.17). Let I( f |g) be the left tensor ideal generated by the morphisms{
f (x), + n − A+

n1
∣∣∣∣ − k < n < l

}
. (9.7)

The generalized cyclotomic quotient associated to the polynomials f (w) and g(w) is the quo-
tient category

H( f |g) := Heisk(z, t)
/
I( f |g). (9.8)

It is a module category overHeisk(z, t).

The following is the quantum analog of [B1, Lemma 1.8]; see also [BD, Lemma 4.14] for
the analog in the setting of Kac-Moody 2-categories.

Lemma 9.2. In the setup of Definition 9.1, I( f |g) may be defined equivalently as the left tensor
ideal generated by {

g(y), n + − B+
n1

∣∣∣∣ k < n < m
}
. (9.9)

Moreover, it contains + n − A+
n1, − n − A−n1, n + − B+

n1 and n − − B−n1 for all n ∈ Z.

Proof. For morphisms θ, φ : X → Y , we will write θ ≡ φ as shorthand for θ − φ ∈ I( f |g). By
(3.11)–(3.12), we have automatically that + n ≡ A+

n1 when n ≤ −k, n + ≡ B+
n1 when n ≤ k,

− n ≡ A−n1 when n ≥ 0, and n − ≡ B−n1 when n ≥ 0.
In this paragraph, we use ascending induction on n to show that + n ≡ A+

n1 for all n ∈ Z.
This is immediate from (9.7) if n < l, so assume that n ≥ l. The fact that f (x) ≡ 0 implies that∑l

a=0 fa + n−a+
∑l

a=0 fa − n−a =
∑l

a=0 fa •◦ n−a ≡ 0.On the left hand side of this, the only non-
zero minus-bubble arises when n = a = l, so it shows that

∑l
a=0 fa + n−a ≡ δl,n flz−1t−11. Using

the induction hypothesis, we deduce that f0 + n +
∑l

a=1 faA+
n−a1 ≡ δl,nz−1g−1

0 1. Equating wl−n-
coefficients in f (w)A+(w) = z−1g(w), we get that

∑l
a=0 faA+

n−a = δl,nz−1g−1
0 . Hence, + n ≡ A+

n1

as claimed.
Next, we show by descending induction on n that − n ≡ A−n1 for all n ∈ Z. We may assume

that n < 0. Equating w−n-coefficients in f (w)A+(w) = − f (w)A−(w) gives that
∑l

a=0 fl−aA+
a+n =

−
∑l

a=0 fl−aA−a+n. Using the induction hypothesis plus the previous paragraph, we deduce
that

∑l
a=0 fl−a + a+n + flA−n +

∑l
a=1 fl−a − a+n ≡ 0. But also from f (x) ≡ 0 we get that∑l

a=0 fl−a + a+n +
∑l

a=0 fl−a − a+n =
∑l

a=0 fl−a •◦ a+n ≡ 0. Combining these two identities
establishes the induction step.

Using the notation of (3.14)–(3.17), we have now shown that ± (w) ≡ A±(w)1. Taking
inverses using (3.13), we deduce that ± (w) ≡ B±(w)1. Hence, n ± ≡ B±n1 for all n ∈ Z. So
we have established the last assertion from the lemma.

Equating wb-coefficients in g(w) = z f (w)A+(w) shows that gm−b = z
∑l

a=0 fl−aA+
a−b. Hence:

g(y) =

m∑
b=0

gm−byb ≡ z
m∑

b=0

l∑
a=0

fl−ayb + a−b =

l∑
a=0

fl−a

z ∑
b≥0

b•◦ + a−b

 (4.17)
=

l∑
a=0

fl−a a•◦ ≡ 0.
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We have now shown that I( f |g), the left tensor ideal generated by (9.7), contains (9.9). Simi-
larly, the left tensor ideal generated by (9.9) contains (9.7). This completes the proof. �

We assume for the the rest of the section that k is a field. The following is well known.

Lemma 9.3. Let V be a finite-dimensional AH2-module. All eigenvalues of x2 on V are of the
form λ, q2λ or q−2λ for eigenvalues λ of x1 on V.

Proof. Suppose that v ∈ V is a simultaneous eigenvector for the commuting operators x1 and
x2 of eigenvalues λ1 and λ2, respectively. If τ1v = qv (resp. τ1v = −q−1v) then λ2 = q2λ1 (resp.
λ2 = q−2λ1), as follows easily from the relation x2(τ1 − z)v = τ1x1v. Otherwise, v and τ1v are
linearly independent, in which case the matrix describing the action of x1 on the subspace with

basis {v, τ1v} is
(
λ1 −zλ2
0 λ2

)
. So λ2 is another eigenvalue of x1 on V . �

For f (w) and g(w) as in Definition 9.1, let V( f ) and V(g)∨ denote
⊕

n≥0 H f
n -pmod and⊕

n≥0 Hg
n-pmod viewed as a module categories over Heis−l(z, f −1

0 ) and Heism(z, g0) via the
monoidal functors Ψ f and Ψ∨g from Lemma 6.4. Let

V( f |g) := V( f ) �V(g)∨ (9.10)

be their linearized Cartesian product, i.e., the k-linear category with objects that are pairs (X,Y)
for X ∈ V( f ),Y ∈ V(g)∨, and morphisms

HomV( f |g)((X,Y), (U,V)) := HomV( f )(X,U) ⊗ HomV(g)∨ (Y,V)

with the obvious composition law. There is an equivalence of categories

V( f |g)→
⊕
r,s≥0

(
H f

r ⊗ Hg
s

)
-pmod,

hence, V( f |g) is additive Karoubian. Moreover, V( f |g) is a module category over the sym-
metric productHeis−l(z, f −1

0 ) �Heism(z, g0).

Lemma 9.4. Suppose that k is a field over which both f (w) and g(w) factor as products
of linear factors, and that λµ−1 <

{
q2i

∣∣∣ i ∈ Z
}

for all roots λ of f (w) and µ of g(w). Then
the categorical action of Heis−l(z, f −1

0 ) � Heism(z, g0) on V( f |g) extends to an action of the
localizationHeis−l(z, f −1

0 ) � Heism(z, g0) from Definition 8.1.

Proof. Lemma 9.3 implies that the eigenvalues of x1, . . . , xn on any finite-dimensional H f
n -

module are of the form q2iλ for i ∈ Z and a root λ of f (w). Consequently, the commuting
endomorphisms defined by evaluating •◦ and •◦ on an object ofV( f |g) have eigenvalues
contained in the sets

{
q2iλ

∣∣∣ i ∈ Z, λ a root of f (w)
}

and
{
q2 jµ

∣∣∣ j ∈ Z, µ a root of g(w)
}
, respec-

tively. By the genericity assumption, these sets are disjoint, hence, all eigenvalues of the
endomorphism defined by •◦•◦ = •◦ − •◦ lie in k×. Consequently, this endomorphism
is invertible. �

Lemma 9.4 shows for suitably generic f (w), g(w) that there is a strict k-linear monoidal
functor Ψ f � Ψ∨g : Heis−l(z, f −1

0 ) � Heism(z, g0) → End(V( f |g). Composing this functor
with the functor from Theorem 8.9, we obtain a strict k-linear monoidal functor

Ψ f |g := ∆−l|m ◦ Ψ f � Ψ∨g : Heisk(z, t)→ End (V( f |g)) , (9.11)

where t := g0 f −1
0 and k := m− l as in Definition 9.1. Thus, we have madeV( f |g) into a module

category overHeisk(z, t).

Theorem 9.5. Assume that k is a field and f (w), g(w) satisfy the genericity assumption from
Lemma 9.4. Let Ev : End (V( f |g))→ V( f |g) be the k-linear functor defined by evaluation on
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S := (H f
0 ,H

g
0) ∈ V( f |g). The composition Ev ◦Ψ f |g factors through the generalized cyclotomic

quotientH( f |g) to induce an equivalence ofHeisk(z, t)-module categories

ψ f |g : Kar (H( f |g))→V( f |g).

Proof. We first show that Ψ f |g

(
+ (w)

)
S
∈ wk End(S )~w−1� equals A+(w)1S . Recalling that

A+(w) is the expansion at w = ∞ of the rational function z−1g(w)/ f (w), this follows because

Ψ f |g

(
+ (w)

)
S

= z Ψ f

(
+ (w)

)
H f

0
⊗ Ψ∨g

(
+ (w)

)
Hg

0

thanks to (8.21), and also Ψ f

(
+ (w)

)
H f

0
= z−1/ f (w) and Ψ∨g

(
+ (w)

)
Hg

0
= z−1g(w). To see

the last two assertions, we first apply Lemma 9.2 to see that I( f |1), the left tensor ideal of
Heis−l(z, f −1

0 ) generated by f (x), contains all coefficients of the series + (w)− z−1/ f (w)1; all
elements of this ideal act as zero on H f

0 since its generator f (x) acts as zero. Then we apply
Lemma 9.2 again to see that I(1|g), the left tensor ideal of Heism(z, g0) generated by g(y),
contains all coefficients of + (w) − z−1g(w)1; all elements of this act as zero on Hg

0 .
The previous paragraph shows that + n − A+

n1 acts as zero on S for all n ∈ Z. Also it is
obvious that f (x) acts as zero on S . So the left tensor ideal I( f |g) acts as zero on S , which
proves that Ev ◦Ψ f |g factors through the quotient H( f |g) = Heisk(z, t)

/
I( f |g) to induce a k-

linear functor H( f |g) → V( f ) �V(g)∨. Since V( f |g) is additive Karoubian, this extends to
the Karoubi envelope to induce the functor ψ f |g from the statement of the theorem. Moreover,
it is automatic from the definition that ψ f |g is a morphism of Heisk(z, t)-module categories. It
just remains to show that ψ f |g is an equivalence, which we do by showing that it is full, faithful
and dense.

First we show that ψ f |g is full and faithful. It suffices to check this on objects X = Xr⊗· · ·⊗X1
and Y = Ys ⊗ · · · ⊗ Y1 that are words in ↑ and ↓. We assume moreover that k ≥ 0; a similar
argument with the roles of ↑ and ↓ interchanged does the job when k ≤ 0 too. Let X∗ =

X∗1⊗· · ·⊗X∗r be the dual object (here, ↑∗=↓, ↓∗=↑). By rigidity, we have a canonical isomorphism
HomH( f |g)(X,Y) � HomH( f |g)(1, X∗ ⊗ Y), from which we get a commuting diagram

HomH( f |g) (X,Y)
∼

−−−−−−→ HomH( f |g) (1, X∗ ⊗ Y)

ψ f |g

y yψ f |g

HomV( f |g) (X ⊗ S ,Y ⊗ S )
∼

−−−−−−→ HomV( f |g) (S , X∗ ⊗ Y ⊗ S ) .
The left hand vertical map in this diagram is an isomorphism if and only if the right hand
vertical map is one. Also the left hand vertical map is an isomorphism when X = Y =↑⊗n.
Proof: the canonical homomorphism AHn → EndHeisk(z,t)

(
↑⊗n) induces a homomorphism

H f
n → EndV( f |g)

(
↑⊗n) which is obviously surjective since bubbles on the right hand edge

are scalars in the generalized cyclotomic quotient; on the other hand, EndV( f |g)
(
↑⊗n ⊗S

)
=

EndH f
n

(
H f

n

)
= H f

n . Hence, the right hand vertical map is an isomorphism when X∗ ⊗ Y =↓⊗n

⊗ ↑⊗n. Using this, we can show that the right hand vertical map is an isomorphism in general.
All of the morphism spaces are zero unless X∗ ⊗ Y has the same number of ↑’s as ↓’s. If all ↓’s
are to the left of all ↑’s, we are done already, so we may assume that X∗ ⊗ Y involves ↑ ⊗ ↓ as
a subword. Let U be X∗ ⊗ Y with the two letters in this subword interchanged and V be X∗ ⊗ Y
with these two letters deleted. Using the isomorphism ↑ ⊗ ↓� ↓ ⊗ ↑ ⊕1⊕k from (2.10), we get
a commuting diagram

HomH( f |g) (1, X∗ ⊗ Y)
∼

−−−−−−→ HomH( f |g)

(
1,U ⊕ V⊕k

)
ψ f |g

y yψ f |g

HomV( f |g) (S , X∗ ⊗ Y ⊗ S )
∼

−−−−−−→ HomV( f |g)

(
S ,U ⊗ S ⊕ V ⊗ S ⊕k

)
.

By induction, the right hand vertical map is an isomorphism, hence, so too is the left hand one.
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Finally, we explain why ψ f |g is dense. Let Q be an indecomposable object in V( f |g).
We have that ↓⊗m ⊗ ↑⊗n ⊗ S =↓⊗m ⊗ (H f

n ,H
g
0) = (H f

n ,H
g
m) ⊕ M where M is a direct sum of

summands of (H f
n′ ,H

g
m′ ) with n′ < n and m′ < m. It follows that Q is isomorphic to the image of

some idempotent in EndV( f |g)
(
↓⊗m ⊗ ↑⊗n ⊗S

)
for some m, n ≥ 0. Since we have shown already

that ψ f |g is full and faithful, there is a corresponding idempotent in EndH( f |g)
(
↓⊗m ⊗ ↑⊗n). The

latter idempotent defines an object P of Kar (H( f |g)) such that ψ f |g(P) � Q. �

Remark 9.6. If g(w) = 1 the genericity assumption is vacuous, so Theorem 9.5 gives us
an equivalence of categories ψ f |1 : Kar (H( f |1)) → V( f ). In other words, the generalized
cyclotomic quotientH( f |1) is Morita equivalent to the “usual” cyclotomic quotient defined by
the cyclotomic Hecke algebras H f

n for all n ≥ 0. This statement is the quantum analog of [B1,
Theorem 1.7]; see also [R, Theorem 4.25] for the analogous result in the setting of Kac-Moody
2-categories.

10. Basis theorem

Finally, we prove a basis theorem for the morphism spaces in Heisk(z, t). Our proof of
this is very similar to the argument in the degenerate case from [BSW1, Theorem 6.4]. Let
X = Xr ⊗ · · · ⊗ X1 and Y = Ys ⊗ · · · ⊗ Y1 be objects of Heisk(z, t) for Xi,Y j ∈ {↑, ↓}. An
(X,Y)-matching is a bijection between {i | Xi =↑} t { j | Y j =↓} and {i | Xi =↓} t { j | Y j =↑}. A
reduced lift of an (X,Y)-matching means a diagram representing a morphism X → Y such that

• the endpoints of each string are points which correspond under the given matching;
• there are no floating bubbles and no dots on any string;
• there are no self-intersections of strings and no two strings cross each other more than

once.
Fix a set B(X,Y) consisting of a choice of reduced lift for each of the (X,Y)-matchings. Let
B◦(X,Y) be the set of all morphisms that can be obtained from the elements of B(X,Y) by
adding dots labelled with integer multiplicities near to the terminus of each string. Also recall
the homomorphism β : Sym⊗Sym → EndHeisk(z,t)(1) from (3.7). Using it, we can make the
morphism space HomHeisk(z,t)(X,Y) into a right Sym⊗Sym-module: φθ := φ ⊗ β(θ).

Theorem 10.1. For any ground ring k, parameters z, t ∈ k×, and objects X,Y ∈ Heisk(z, t),
the morphism space HomHeisk(z,t)(X,Y) is a free right Sym⊗Sym-module with basis B◦(X,Y).

Proof. We just prove this when k ≤ 0; the result for k ≥ 0 then follows by applying Ωk. Let
X = Xr ⊗ · · · ⊗ X1 and Y = Ys ⊗ · · · ⊗ Y1 be two objects.

We first observe that B◦(X,Y) spans HomHeisk(z,t)(X,Y) as a right Sym⊗Sym-module. The
defining relations and the additional relations derived in sections 2, 3 and 4 give Reidemeister-
type relations modulo terms with fewer crossings, plus a skein relation and bubble and dot
sliding relations. These relations allow diagrams for morphisms in Heisk(z, t) to be trans-
formed in a similar way to the way oriented tangles are simplified in skein categories, modulo
diagrams with fewer crossings. Hence, there a straightening algorithm to rewrite any diagram
representing a morphism X → Y as a linear combination of the ones in B◦(X,Y).

It remains to prove the linear independence. We say φ ∈ B◦(X,Y) is positive if it only
involves non-negative powers of dots. It suffices to show just that the positive morphisms in
B◦(X,Y) are linearly independent. Indeed, given any linear relation of the form

∑N
i=1 φi⊗β(θi) =

0 for morphisms φi ∈ B◦(X,Y) and coefficients θi ∈ Sym⊗Sym, we can “clear denominators”
by multiplying the termini of the strings by sufficiently large positive powers of dots to reduce
to the positive case.

The main step now is to prove the linear independence in the special case that X = Y =↑⊗n.
To do this, we need to allow the ground ring k to change, so we will add a subscript to our nota-
tion, denotingHeisk(z, t),V( f |g),Sym⊗Sym, . . . by kHeisk(z, t), kV( f |g), kSym⊗k kSym, . . .
to avoid any confusion. It suffices to prove the linear independence of positive elements of
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B◦(X,Y) in the special case that k = Z[z±1, t±1]; one can then use the canonical k-linear
monoidal functor kHeisk(z, t) → k ⊗Z[z±1,t±1] Z[z±1,t±1]Heisk(z, t) to deduce the linear indepen-
dence over an arbitrary ground ring k and for arbitrary parameters.

So assume now that k = Z[z±1, t±1] and take a linear relation
∑N

i=1 φi ⊗ β(θi) = 0 for positive
φi ∈ B◦(X,Y). Choose a so that the multiplicities of dots in all φi arising in this linear relation
are ≤ a. Also choose b, c ≥ 0 so that all of the symmetric functions θi ∈ kSym⊗k kSym are
polynomials in the elementary symmetric functions e1 ⊗ 1, . . . , eb ⊗ 1 and 1 ⊗ e1, . . . , 1 ⊗ ec.
Then choose l,m so that a < l, b + c < m and k = m − l. Note that l ≥ m due to our standing
assumption that k ≤ 0. Let u1, . . . , ub and v1, . . . , vc be indeterminates and K be the algebraic
closure of the field Q(z, t, u1, . . . , ub, v1, . . . , vc). Pick q ∈ K× so that z = q − q−1 and consider
the cyclotomic Hecke algebras KH f

n and KHg
n over K associated to the polynomials

f (w) := t−1wl + t, g(w) = wm + u1wm−1 + · · · + ubwm−b + vcwc + · · · + v1w + 1.

Note the formula for g(w) makes sense because b + c < m. Consider the KHeisk(z, t)-module
category KV( f |g) from (9.11). Since k ↪→ K, there is a canonical k-linear monoidal functor
kHeisk(z, t) → KHeisk(z, t), allowing us to view KV( f |g) also as a module category over
kHeisk(z, t). Then we evaluate the relation

∑
φi ⊗ β(θi) = 0 on KS := (KH f

0 , KHg
0) to obtain

a relation in KH f
n . By the basis theorem for KH f

n from (6.2) and the assumption that a <

l, the images of φ1, . . . , φN in KH f
n are linearly independent over K, so we deduce that the

image of β(θi) in K is zero for each i. To deduce from this that θi = 0, recall that θi is a
polynomial in e1 ⊗ 1, . . . , eb ⊗ 1, 1 ⊗ e1, . . . , 1 ⊗ ec. So we need to show that the images of
β(e1 ⊗ 1), . . . , β(eb ⊗ 1), β(1 ⊗ e1), . . . , β(1 ⊗ ec) in K are algebraically independent. In fact, we
claim that these images are the indeterminates u1, . . . , ub, v1, . . . , vc, respectively. To prove the
claim, we use the definition (3.9) and Lemma 9.2 to see that the image of β(en ⊗ 1) is t−1zA+

n−k
and the image of β(1 ⊗ en) is −tzA−n . Then we compute the low degree terms of A±(w):

t−1zA+(w) = t−1g(w)/ f (w) = wk + u1wk−1 + · · · + ubwk−b + · · · ∈ wkK~w−1�,

−tzA−(w) = tg(w)/ f (w) = 1 + v1w + · · · + vcwc + · · · ∈ K~w�,

so indeed β(en ⊗ 1) = un for n = 1, . . . , b and β(1 ⊗ en) = vn for n = 1, . . . , c.
We have now proved the linear independence when X = Y =↑⊗n. Returning to the general

case, we can use the canonical isomorphism HomHeisk(z,t)(X,Y) � HomHeisk(z,t)(1, X∗ ⊗Y) aris-
ing from the rigidity so see that the Sym⊗Sym-linear independence of the positive morphisms
in B◦(X,Y) is equivalent to the Sym⊗Sym-linear independence of the positive morphisms in
B◦(1, X∗ ⊗ Y). Thus, we are reduced to the case that X = 1. Assume this from now on.
The set B◦(1,Y) is empty unless Y has the same number n of ↑’s as ↓’s. Also we have al-
ready proved the linear independence in the case Y =↓⊗n ⊗ ↑⊗n. So we may assume that Y
has a subword ↑ ⊗ ↓. Let Z be Y with the two letters in the subword interchanged. By in-
duction, we may assume the linear independence has already been established for B◦(1,Z).
Consider a linear relation

∑N
i=1 φi ⊗ β(θi) for positive φi ∈ B◦(1,Y). Recalling the isomorphism

↑ ⊗ ↓ ⊕ 1⊕(−k) ∼
→ ↓ ⊗ ↑ from (2.25), multiplying the subword ↑ ⊗ ↓ on top by the sideways

crossing defines a Sym⊗Sym-linear map s : HomHeisk(z,t)(1,Y) ↪→ HomHeisk(z,t)(1,Z).
Unfortunately, s does not send B◦(1,Y) into B◦(1,Z). However, the image of B◦(1,Y) is re-
lated to B◦(1,Z) in a triangular way, which is good enough to complete the argument. The full
explanation of this is almost exactly the same as in the degenerate case, so we refer the reader
to the last paragraph of the proof of [BSW1, Theorem 6.4] for the details. �

Corollary 10.2. EndHeisk(z,t)(1) � Sym⊗Sym.
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Supér. 44 (2011), 147–182.
[T] V. Turaev, Operator invariants of tangles, and R-matrices, Math. USSR Izvestiya 35 (1990), 411–444.
[V] R. Virk, Derived equivalences and sl2-categorifications for Uq(gln), J. Algebra 346 (2011), 82–100.
[W1] B. Webster, Canonical bases and higher representation theory, Compositio Math. 151 (2015), 121–166.
[W2] , Unfurling Khovanov-Lauda-Rouquier algebras; arXiv:1603.06311.

Department ofMathematics, University of Oregon, Eugene, OR 97403, USA
E-mail address: brundan@uoregon.edu

Department ofMathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
URL: alistairsavage.ca, ORCiD: orcid.org/0000-0002-2859-0239
E-mail address: alistair.savage@uottawa.ca

Department of Pure Mathematics, University of Waterloo & Perimeter Institute for Theoretical Physics,
Waterloo, ON, Canada

E-mail address: ben.webster@uwaterloo.ca

http://arxiv.org/abs/1603.06311
http://alistairsavage.ca
https://orcid.org/0000-0002-2859-0239

	1. Introduction
	2. First approach
	3. Second approach
	4. Third approach
	5. Action on representations of quantum GLn
	6. Action on modules over cyclotomic Hecke algebras
	7. Action on category O for rational Cherednik algebras
	8. Categorical comultiplication
	9. Generalized cyclotomic quotients
	10. Basis theorem
	References

