
MODULAR REPRESENTATIONS OF THE SUPERGROUP Q(n), I

JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

To Professor Steinberg with admiration

1. Introduction

The representation theory of the algebraic supergroup Q(n) has been studied
quite intensively over the complex numbers in recent years, especially by Penkov
and Serganova [18, 19, 20] culminating in their solution [21, 22] of the problem of
computing the characters of all irreducible finite dimensional representations ofQ(n).
The characters of one important family of irreducible representations, the so-called
polynomial representations, had been determined earlier by Sergeev [24], exploiting
an analogue of Schur-Weyl duality connecting polynomial representations of Q(n)
to the representation theory of the double covers Ŝn of the symmetric groups. In [2],
we used Sergeev’s ideas to classify for the first time the irreducible representations
of Ŝn over fields of positive characteristic p > 2. In the present article and its
sequel, we begin a systematic study of the representation theory of Q(n) in positive
characteristic, motivated by its close relationship to Ŝn.

Let us briefly summarize the main facts proved in this article by purely algebraic
techniques. Let G = Q(n) defined over an algebraically closed field k of character-
istic p 6= 2, see §§2-3 for the precise definition. In §4 we construct the superalgebra
Dist(G) of distributions on G by reduction modulo p from a Kostant Z-form for
the enveloping superalgebra of the Lie superalgebra q(n,C). This provides one of
the main tools in the remainder of the paper: there is an explicit equivalence be-
tween the category of representations of G and the category of “integrable” Dist(G)-
supermodules (see Corollary 5.7).

In §6, we classify the irreducible representations of G by highest weight theory.
They turn out to be parametrized by the set

X+
p (n) = {(λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn with λi = λi+1 only if p|λi}.

For λ ∈ X+
p (n), the corresponding irreducible representation is denoted L(λ), and

is constructed naturally as the simple socle of an induced representation

H0(λ) := indGBu(λ)

where B is a Borel subgroup of G and u(λ) is a certain irreducible representation of
B of dimension a power of 2. The main difficulty here is to show that H0(λ) 6= 0
for λ ∈ X+

p (n), which we prove by exploiting the main result of [2] classifying the
irreducible polynomial representations of G: so ultimately the proof that H0(λ) 6= 0
depends on a counting argument involving p-regular conjugacy classes in Ŝn.

Both authors partially supported by the NSF (grant nos DMS-9801442 and DMS-9900134).

1



2 JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

We then turn to considering extensions between irreducible representations. Un-
like for reductive algebraic groups, self-extensions are possible, arising from the fact
that representations of the “diagonal” subgroup H, which plays the role of maximal
torus, are not completely reducible. For example, see Lemma 7.7, there is an odd
extension between the trivial module and itself. There is a “linkage principle”, see
Theorem 8.10, involving the notion of residue content of a weight λ ∈ X+

p (T ) which
already appeared in work of Leclerc and Thibon [15]. Our proof of the linkage prin-
ciple is similar to the original Carter-Lusztig proof [3] of the linkage principle for
GL(n): there are enough explicitly known central elements in Dist(G) thanks to the
work of Sergeev [25].

There is also an analogue of the Steinberg tensor product theorem, see Theo-
rem 9.9. For this, we exploit the Frobenius morphism

F : Q(n)→ GL(n)

defined by raising matrix entries to the power p. Given any irreducible representation
L of GL(n), its Frobenius twist F ∗L gives an irreducible representation of G. We
show that any irreducible representation of G can be decomposed as a tensor product
of such an F ∗L and a restricted irreducible representation. Finally, the restricted
irreducible representations of G are precisely the L(λ) which remain irreducible over
the Lie superalgebra of G. They are parametrized by the set

X+
p (n)res = {(λ1, . . . , λn) ∈ X+

p (n) | λi − λi+1 ≤ p if p - λi,

λi − λi+1 < p if p | λi}.
In particular, the determinant representation det of GL(n) gives us a one dimen-

sional representation F ∗ det of G of highest weight (p, p, . . . , p). Thus in positive
characteristic G has many one dimensional representations, unlike over C when
there is only the trivial representation. If M is an arbitrary finite dimensional rep-
resentation of G, we can tensor M with a sufficiently large power of F ∗ det to obtain
a polynomial representation. So in positive characteristic, the category of polyno-
mial representations is just as hard to understand as the category of all “rational”
representations. To further clarify the connection between polynomial and rational
representations, we show in §10 that a representation of G is polynomial if and only
if it is polynomial over the diagonal subgroup H, following an argument due to
Jantzen [12]. For example the representations H0(λ) are polynomial whenever all
λi are non-negative.

Acknowledgements. We would like to thank D. Nakano for pointing out [12] to
us.

2. Superschemes and supergroups

Let k be a fixed algebraically closed field of characteristic p 6= 2. All objects con-
sidered here (vector superspaces, superalgebras, superschemes, . . . ) will be defined
over k. By a commutative superalgebra, we mean a Z2-graded algebra A = A0̄ ⊕A1̄

such that ab = (−1)āb̄ba for all a, b ∈ A. Here, ā ∈ Z2 is our notation for the de-
gree of homogeneous a ∈ A, and the preceding formula is to be interpreted for not
necessarily homogeneous a, b by extending linearly from the homogeneous case. We
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will write salgk for the category of all commutative superalgebras and even homo-
morphisms. For more of the basic notions of superalgebra, we refer to [16, ch.I] and
[17, ch.3, §§1–2, ch.4, §1].

A superscheme X = (X,OX) means a superscheme over k in the sense of [17,
ch.4,§1.6]. Let sschk denote the category of all superschemes. In this article, we
will always adopt a functorial language for superschemes similar to the language of
Demazure and Gabriel [5, ch.I] or Jantzen [11]. Thus, we will identify a superscheme
X with its associated functor

Homsschk(Spec ?, X) : salgk → sets.

For example, the affine superscheme Am|n can be defined as

A
m|n := Spec k[x1, . . . , xm;x′1, . . . , x

′
n],

the latter denoting the prime spectrum of the free commutative superalgebra on
even generators xi and odd generators x′j . With the functorial language, we are
viewing Am|n instead as the functor defined on a commutative superalgebra A by
A
m|n(A) = A⊕m

0̄
⊕ A⊕n

1̄
and coordinatewise on morphisms. In general if X is an

affine superscheme we write k[X] for its coordinate ring, which we identify with the
superalgebra Mor(X,A1|1) of all natural transformations from the functor X to the
functor A1|1. Then, using functorial language, X = Homsalgk(k[X],−).

By a supergroup, we mean a functor G from the category salgk to the category
groups. We say that G is an algebraic supergroup if it is an affine superscheme (when
viewed as a functor to sets) whose coordinate ring k[G] is finitely generated as a k-
superalgebra. In that case, k[G] has a canonical structure of Hopf superalgebra,
with comultiplication ∆ : k[G]→ k[G]⊗ k[G], antipode S : k[G]→ k[G] and counit
E : k[G] → k defined as the comorphisms of the multiplication, the inverse and
the unit of G. The underlying purely even group Gev is the closed subgroup of G
corresponding to the Hopf superideal k[G]k[G]1̄ of the coordinate ring; as a functor,
we have that Gev(A) = G(A0̄) for all commutative superalgebras A.

For example, for any vector superspace M , we have the supergroup GL(M) with
GL(M,A) (for each commutative superalgebra A) equal to the group of all even A-
linear automorphisms of M ⊗ A. For finite dimensional M , GL(M) is an algebraic
supergroup, and the underlying even group is the algebraic groupGL(M0̄)×GL(M1̄).

A representation of an algebraic supergroup G means a natural transformation ρ :
G→ GL(M) for some vector superspace M . As usual, there is an equivalent module-
theoretic formulation: a G-supermodule M means a vector superspace equipped with
an even structure map ηM : M → M ⊗ k[G] making M into a right k[G]-comodule
in the usual sense. Given a G-supermodule M , one obtains a representation ρ : G→
GL(M) by defining the action of each G(A) on M ⊗A by g(m⊗1) =

∑
imi⊗fi(g),

if ηM (m) =
∑

imi ⊗ fi. Conversely, given a representation ρ : G → GL(M), one
lets ηM : M →M ⊗k[G] be the map m 7→ ρ(idk[G])(m⊗ 1k[G]), where idk[G] denotes
the element of G(k[G]) ∼= Homsalgk(k[G], k[G]) corresponding to the identity map.

We write modG for the category of all G-supermodules and arbitrary (not nec-
essarily homogeneous) homomorphisms. So the category modG is not an abelian
category. However the underlying even category consisting of the same objects and
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only even morphisms is abelian, which allows us to make use of all the usual ma-
chinery of homological algebra. We also have the parity change functor

Π : modG → modG

defined on objects by letting ΠM equal M as a k[G]-comodule, but with the opposite
Z2-grading.

In general, we write M ' N if G-supermodules M and N are isomorphic in the
underlying even category, and M ∼= N if they are isomorphic in modG itself. We
say that an irreducible G-supermodule M is of type Q if M ' ΠM and of type M
otherwise. By the superalgebra analogue of Schur’s lemma,

EndG(M) '
{
k if M is of type M,
k ⊕Πk if M is of type Q.

We have the right regular representation ofG on k[G] defined for each superalgebra
A by (gf)(h) = f(hg) for f ∈ k[G] ⊗ A = A[GA], g ∈ G(A) and h ∈ G(B) for all
A-superalgebras B. The structure map of the associated G-supermodule is just the
comultiplication ∆ : k[G] → k[G] ⊗ k[G]. Instead, the left regular representation is
defined by the formula (gf)(h) = f(g−1h).

3. The supergroup Q(n)

For the remainder of the article, G will denote the supergroup Q(n). Thus, G
is the functor from salgk to the category groups defined on a superalgebra A by
letting G(A) be the group of all invertible 2n × 2n matrices (under usual matrix
multiplication) of the form

g =
(

S S′

−S′ S

)
(3.1)

where S is an n×n matrix with entries in A0̄ and S′ is an n×n matrix with entries in
A1̄. On a morphism f : A→ B, G(f) : G(A)→ G(B) is the group homomorphism
that arises by applying f to each matrix entry. The underlying even group Gev is
isomorphic to GL(n), being the functor mapping a superalgebra A to the group of
all invertible matrices of the form (3.1) with S′ = 0.

To see that G is an algebraic supergroup, let Mat denote the functor from salgk
to sets defined for a superalgebra A so that Mat(A) is the set of all (not neces-
sarily invertible) matrices of the form (3.1). Then Mat is isomorphic to the affine
superscheme An

2|n2
, with coordinate ring k[Mat] being the free commutative super-

algebra on even generators si,j and odd generators s′i,j for 1 ≤ i, j ≤ n, these being
the natural transformations Mat → A

1|1 picking out the ij-entries of the matrices
S and S′ respectively when g ∈ Mat(A) is represented in the form (3.1). By [16,
I.7.2], a matrix g ∈ Mat(A) is invertible if and only if detS ∈ A×. Hence, G is
the principal open subset of Mat defined by det : g 7→ detS. In particular, the
coordinate ring k[G] is the localization of k[Mat] at the function det.
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The Hopf superalgebra structure on k[G] is given explicitly in this case by the
formulae

∆(si,j) =
n∑
k=1

(si,k ⊗ sk,j − s′i,k ⊗ s′k,j),

∆(s′i,j) =
n∑
k=1

(si,k ⊗ s′k,j + s′i,k ⊗ sk,j),

E(si,j) = δi,j , E(s′i,j) = 0

for 1 ≤ i, j ≤ n. Note k[Mat] is a subbialgebra of k[G], but is not invariant under
the antipode.

We have the natural G-supermodule V , namely the vector superspace kn|n with
canonical basis v1, . . . , vn, v

′
1, . . . , v

′
n, where v1, . . . , vn are even and v′1, . . . , v

′
n are

odd. Identify elements of V ⊗A with column vectors so that

n∑
i=1

(vi ⊗ ai + v′i ⊗ a′i)←→



a1
...
an
a′1
...
a′n


∈ An|n.

Then, the action of G(A) on V ⊗A is the obvious action on column vectors by left
multiplication. In particular, the comodule structure map η satisfies

η(vj) =
n∑
i=1

(vi ⊗ si,j − v′i ⊗ s′i,j), η(v′j) =
n∑
i=1

(v′i ⊗ si,j + vi ⊗ s′i,j)

for each j = 1, . . . , n. Note V is irreducible of type Q, since it possesses the odd
automorphism

J : V → V, vi 7→ v′i, v
′
i 7→ −vi. (3.2)

Let H denote the closed subgroup of G defined on a commutative superalgebra
A so that H(A) consists of all matrices of the form (3.1) such that S and S′ are
diagonal matrices. Let B (resp. B+) denote the subgroup with each B(A) (resp.
B+(A)) consisting of all matrices of the form (3.1) with S and S′ lower (resp. upper)
triangular. The supergroup H will play the role of “maximal torus”, while B is the
standard Borel subgroup.

There are supergroup epimorphisms

pr : B → H, pr+ : B+ → H (3.3)

defined for each commutative superalgebra A to be the projection of a matrix onto
its diagonal part. We set U := ker pr and U+ = ker pr+, respectively. Note B (resp.
B+) is the semidirect product of U (resp. U+) by H, in the sense of [11, I.2.6].
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We call an algebraic supergroup U unipotent if the fixed point space

MU := {m ∈M | ηM (m) = m⊗ 1k[U ]}
= {m ∈M | u(m⊗ 1A) = m⊗ 1A for all

superalgebras A and all u ∈ U(A)}
is non-zero for all non-zero U -supermodules M .

Lemma 3.4. The algebraic supergroups U and U+ are unipotent.

Proof. One easily constructs a chain of closed normal subgroups

1 = U0 < U1 < · · · < Un(n−1) = U

and closed subgroups Qi < U such that for each i, Ui is the semidirect product
of Ui−1 by Qi, with each Qi isomorphic to one of the additive supergroups A1|0 or
A

0|1. Now let M be any non-zero U -supermodule; we need to show that MU 6= 0.
Proceeding by induction on i and using that MUi = (MUi−1)Qi , it suffices to prove
that the supergroups A1|0 and A0|1 are unipotent. That is well-known for A1|0, and
obvious for A0|1 since its regular representation has precisely two composition factors
(namely, k and Πk) both of which are trivial. �

We have the inflation functor

pr∗ : modH → modB

coming from the surjection pr of (3.3); we will generally regard H-supermodules as
B-supermodules by inflation in this way without further comment. Taking U -fixed
points defines a right adjoint to inflation. Using this and Lemma 3.4 shows that
every irreducible B-supermodule is the inflation of an irreducible H-supermodule,
and similarly for B+.

Let T = Hev. Observe that T is precisely the usual n-dimensional torus of Gev
∼=

GL(n) consisting of the diagonal matrices. We denote the character group of T
by X(T ); it is the free abelian group on generators ε1, . . . , εn, where εi : T → Gm

picks out the ith diagonal entry. We have the root system of GL(n), namely, R =
R+ ∪ −(R+) where

R+ = {εi − εj | 1 ≤ i < j ≤ n}.
We partially order X(T ) by the usual dominance order, so λ ≤ µ if and only if µ−λ
is a sum of positive roots. The xλ := xλ1

1 . . . xλnn for λ =
∑n

i=1 λiεi ∈ X(T ) form
a basis for the algebra Q[x±1

1 , . . . , x±nn ]. Given any finite dimensional T -module M
and λ ∈ X(T ), we denote by Mλ the corresponding weight space, and the character
of M is defined as

chM :=
∑

λ∈X(T )

(dimMλ)xλ ∈ Q[x±1
1 , . . . , x±nn ].

Let W denote the symmetric group Sn, viewed (for each commutative superalge-
bra A) as the subgroup of G(A) consisting of matrices of the form (3.1) with S being
a permutation matrix and S′ being zero. The longest element of W will be denoted
w0 as usual. There is a natural left action of W on X(T ), hence on Q[x±1

1 , . . . , x±1
n ]

by permuting the xi. Obviously, if M is a finite dimensional G-supermodule then
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its character is W -invariant, so lies in the algebra Q[x±1
1 , . . . , x±nn ]W of symmetric

functions.
Finally, we describe the “big cell” in this setting. For 1 ≤ m ≤ n, define detm to

be the determinant of the m×m matrix (si,j)1≤i,j≤m. We will denote the principal
open subset of Mat defined by det1 det2 . . .detn by Ω; so Ω is an affine superscheme
with coordinate ring k[Ω] being the localization of k[Mat] at det1 det2 . . .detn.

Theorem 3.5. Multiplication defines an isomorphism of affine superschemes be-
tween B × U+ and Ω.

Proof. We need to show that for every commutative superalgebra A, matrix multi-
plication B(A)×U+(A)→ G(A) maps B(A)×U+(A) bijectively onto Ω(A), namely,
the set of all g ∈ Mat(A) for which det1(g) det2(g) . . .detn(g) is a unit in A. This
can be proved by induction on n, we leave the details to the reader. �

4. Distributions

Let X be an affine superscheme and x ∈ X(k). Then, there is a general notion of
the superspace Dist(X,x) of distributions on X with support at x. The definition is
an obvious extension of the purely even case, see [11, I.7]: if Ix denotes the kernel
of the evaluation map k[X]→ k, f 7→ f(x), a superideal of k[X], then

Dist(X,x) :=
∑
n≥0

Distn(X,x)

where Distn(X,x) ∼=
(
k[X]/In+1

x

)∗ is the annihilator in k[X]∗ of In+1
x . The tangent

space at x,
TxX := (Ix/I2

x)∗,
is naturally identified with a subspace of Dist(X,x).

Now suppose that G is an algebraic supergroup and let e ∈ G(k) be the identity
element. We make Dist(G) := Dist(G, e) into a cocommutative Hopf superalgebra
in a similar way to the purely even case [11, I.7.7], by taking the duals of the Hopf
superalgebra structure maps on k[G]. The only significant difference is that now we
identify Dist(G) ⊗ Dist(G) ⊆ k[G]∗ ⊗ k[G]∗ with a subset of (k[G] ⊗ k[G])∗ via the
map

i : k[G]∗ ⊗ k[G]∗ ↪→ (k[G]⊗ k[G])∗, (i(u⊗ v))(a⊗ b) = (−1)v̄āu(a)v(b) (4.1)

for u, v ∈ k[G]∗, a, b ∈ k[G]. The supercommutator [., .] on Dist(G) gives TeG
the structure of a Lie superalgebra, denoted Lie(G). Also note that if M is a
G-supermodule with structure map η : M → M ⊗ k[G], we can view M as a left
Dist(G)-supermodule with action um := (idM ⊗̄u)η(m).

We wish to describe Dist(G) explicitly for G = Q(n). The most concrete way to
realize this is by reduction modulo p via a Z-form of the enveloping superalgebra of
the Lie superalgebra q(n,C). So recall first that q(n,C) is the Lie superalgebra of
all matrices of the form

x =
(
S S′

S′ S

)
(4.2)
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under the supercommutator [., .], where S and S′ are n × n matrices over C, and
such a matrix is even if S′ = 0 or odd if S = 0. Let UC be the universal enveloping
superalgebra of q(n,C), see [13, 23]. For 1 ≤ i, j ≤ n, let ei,j (resp. e′i,j) denote
the matrix of the form (4.2) where the ij-entry of S (resp. S′) is 1, and all other
entries are zero. Thus, the {ei,j , e′i,j | 1 ≤ i, j ≤ n} form a basis of q(n,C). By the
PBW theorem for Lie superalgebras, see [23, §2.3, Cor.1], we obtain a basis for UC
consisting of all monomials ∏

1≤i,j≤n
e
ai,j
i,j

∏
1≤i,j≤n

(
e′i,j
)di,j

where ai,j are non-negative integers, di,j ∈ {0, 1}, and the product is taken in any
fixed order. We set hi := ei,i, h

′
i := e′i,i for short.

Define the Kostant Z-form UZ to be the Z-subalgebra of UC generated by all
elements of the form

e
(m)
i,j , e

′
i,j ,

(
hr
m

)
, h′r, 1 ≤ i 6= j ≤ n, 1 ≤ r ≤ n, m ≥ 0,

where e(m)
i,j denotes the divided power

emi,j
m! ,

(
h
m

)
denotes h(h−1) . . . (h−m+ 1)/(m!).

The standard comultiplication δ : UC → UC⊗UC and counit ε : UC → C are defined
as the unique superalgebra homomorphisms with δ(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0
for any x ∈ q(n,C) ⊂ UC, see e.g. [23, §2.4]. Also the antipode σ : UC → UC
is defined as the unique superalgebra antiautomorphism with σ(x) = −x for all
x ∈ q(n,C) ⊂ UC. These maps restrict to give a comultiplication δ : UZ → UZ⊗UZ,
an antipode σ : UZ → UZ and a counit ε : UZ → Z, which make UZ into a Hopf
superalgebra over Z. Following the proof of [26, Th.2] one verifies the following:

Lemma 4.3. The superalgebra UZ is a Z-free Z-module with basis given by the set
of all monomials of the form∏

1≤i6=j≤n
e

(ai,j)
i,j

(
e′i,j
)di,j ∏

1≤i≤n

(
hi
ai,i

)(
h′i
)di,i ,

for all ai,j ∈ Z≥0 and di,j ∈ {0, 1} (the product being taken in some arbitrary but
fixed order).

We return to working over our fixed algebraically closed field k. Define Uk :=
UZ ⊗Z k, naturally a Hopf superalgebra over k. We will write hi,

(
hi
m

)
, e(m)

i,j , h′i, and

e′i,j for the elements hi⊗ 1,
(
hi
m

)
⊗ 1, e(m)

i,j ⊗ 1, h′i⊗ 1, and e′i,j ⊗ 1 of Uk, respectively
(in spite of potential ambiguities).

Theorem 4.4. Uk is isomorphic as a Hopf superalgebra to Dist(G).

Proof. In case k = C, the isomorphism i : Uk → Dist(G) is induced uniquely by the
Lie superalgebra isomorphism i : q(n,C)→ Lie(G) that maps the basis {ei,j , e′i,j |1 ≤
i, j ≤ n} of q(n,C) to the unique basis of Lie(G) dual to {si,j , s′i,j |1 ≤ i, j ≤ n}. For
arbitrary k, the isomorphism is the reduction modulo p of the isomorphism over C,
cf. [11, II.1.12]. �
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We henceforth identify Uk and Dist(G) in this way. We can also realize each
of the superalgebras Dist(H),Dist(B),Dist(B+) etc... as subalgebras of Uk. For
instance, Dist(H) is the subalgebra generated by all h′i and

(
hi
m

)
, while Dist(B) is

the subalgebra generated by Dist(H) together with all e(m)
i,j and e′i,j for i > j.

5. Integrable representations

For λ =
∑n

i=1 λiεi ∈ X(T ) and a Dist(G)-supermodule M , define

Mλ := {m ∈M |
(
hi
r

)
m =

(
λi
r

)
m for all i = 1, . . . , n, r ≥ 1}.

We note by [11, I.7.14] that if M is a Dist(G)-supermodule arising from a G-
supermodule in the standard way, then Mλ as defined here coincides with the λ-
weight space Mλ taken with respect to the original action of T . Now call a Dist(G)-
supermodule M integrable if

(i) M is locally finite, i.e. it is the sum of its finite dimensional Dist(G)-
submodules;

(ii) M =
∑

λ∈X(T )Mλ.
It is easy to see that if M is a G-supermodule, then M is integrable when viewed as
a Dist(G)-supermodule. Our goal in this section is to prove the converse statement:
if M is an integrable Dist(G)-supermodule then the Dist(G)-action lifts uniquely to
make M into a G-supermodule.

Introduce the restricted dual Dist(G)� of the Hopf superalgebra Dist(G). By
definition, this is the set of all f ∈ Dist(G)∗ vanishing on some two-sided superideal I
(depending on f) such the left module Dist(G)/I is finite dimensional and integrable.
If M is any integrable Dist(G)-supermodule with homogeneous basis mi(i ∈ I), we
define its coefficient space c(M) to be the subspace of Dist(G)∗ spanned by the
coefficient functions fi,j defined from

umj = (1⊗̄u)

(∑
i∈I

mi ⊗ fi,j

)
(5.1)

for all u ∈ Dist(G). Note this definition of c(M) is independent of the choice of
homogeneous basis. Also, if 0 → N → M → Q → 0 is a short exact sequence of
integrable Dist(G)-supermodules, then c(N), c(Q) ⊆ c(M). The following is easy to
check (cf. [7, (3.1a)]):

Lemma 5.2. f ∈ Dist(G)∗ belongs to Dist(G)� if and only if f ∈ c(M) for some
integrable Dist(G)-supermodule M .

We wish to give Dist(G)� the structure of a Hopf superalgebra. To do this, we
identify Dist(G)∗ ⊗ Dist(G)∗ with a subset of (Dist(G) ⊗ Dist(G))∗ as in (4.1), so
f ⊗ g corresponds to the function with (f ⊗ g)(u⊗ v) = (−1)ḡūf(u)g(v). Then, the
dual map to the comultiplication δ on Dist(G) gives a multiplication on Dist(G)∗. If
M and N are two integrable Dist(G)-supermodules, then M ⊗N is also integrable,
and c(M ⊗N) = c(M)c(N). It therefore follows from Lemma 5.2 that Dist(G)� is
a subalgebra of Dist(G)∗. One then checks directly from the definition of Dist(G)�

that the dual map to the multiplication on Dist(G) embeds Dist(G)� into Dist(G)�⊗
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Dist(G)�, so that its restriction gives us a comultiplication on Dist(G)�. Moreover,
the restriction of σ∗ gives an antipode, denoted S : Dist(G)� → Dist(G)�, evaluation
at 1 gives a counit E, and ε gives a unit.

The main point now is to identify the Hopf superalgebras Dist(G)� and k[G]. We
define a map ∼: k[G]→ Dist(G)∗ by setting f̃(u) = (−1)f̄ ūu(f) for all f ∈ k[G], u ∈
Dist(G). The si,j , resp. the S(si,j) map to the coefficient functions of the natural
G-supermodule V , resp. it dual. Hence by Lemma 5.2, the image of k[G] under ∼
is contained in Dist(G)�. Since the Hopf superalgebra structure on Dist(G) is dual
to that on k[G] and the structure on Dist(G)� is dual to that on Dist(G), one gets
at once that ∼ is a Hopf superalgebra homomorphism. Moreover, if f̃(u) = 0 for
all u ∈ Dist(G), then u(f) = 0 for all u ∈ Distn(G) so that f ∈ In+1

e for each n,
i.e. f ∈

⋂
n≥0 I

n+1
e . But this is zero by Krull’s intersection theorem (or a direct

calculation), hence f = 0 and ∼ is in fact injective.
Let us henceforward identify k[G] with its image under ∼; then we wish to prove

that in fact k[G] = Dist(G)�. We need to appeal to the analogous result in the
classical case of GL(n). Now, Dist(Gev) is the subalgebra of Dist(G) generated by{

e
(m)
i,j ,

(
hk
m

) ∣∣∣∣ 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n,m ≥ 0
}
. (5.3)

Just as for Dist(G), we define integrable Dist(Gev)-modules, the coefficient space
c(M) of an integrable Dist(Gev)-module M , the restricted dual Dist(Gev)� and so
on. Note that the restriction of an integrable Dist(G)-supermodule to Dist(Gev) is
integrable as a Dist(Gev)-module by definition, so restriction of functions gives us a
natural Hopf superalgebra homomorphism

ξ : Dist(G)� → Dist(Gev)�.

It is well-known that Dist(Gev)� is equal to the coordinate ring k[Gev], i.e. it is the
localization of the free polynomial algebra k[ci,j | 1 ≤ i, j ≤ n] where ci,j := ξ(si,j)
at determinant. In other words, as goes back at least to Kostant [14] (or see [7,
(3.1c)]), we have that:

Lemma 5.4. Dist(Gev)� is generated as an algebra by {ci,j , S(ci,j) | 1 ≤ i, j ≤ n}.
Fix for the remainder of the section some order for products in the PBW monomi-

als so that every ordered PBW monomial is of the form mu with m being a product
of the e′i,j and u ∈ Dist(Gev). Let Υ denote the resulting PBW basis of Dist(G),
see Lemma 4.3. Set Γ = {(i, j) | 1 ≤ i, j ≤ n} and for I ⊆ Γ, let mI ∈ Υ denote
the ordered PBW monomial

∏
(i,j)∈I e

′
i,j . By Lemma 4.3, we have a direct sum

decomposition
Dist(G) =

⊕
I⊆Γ

mIDist(Gev),

showing that Dist(G) is a free right Dist(Gev)-supermodule with basis {mI | I ⊆ Γ}.
For I ⊆ Γ, define ηI ∈ Dist(G)∗ to be the “indicator function” of the monomial
mI , i.e. ηI(mI) = 1 and ηI(m) = 0 for any other ordered PBW monomial m ∈ Υ
different from mI .

Lemma 5.5. For each I ⊆ Γ, ηI ∈ k[G].
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Proof. LetN = n2, and setM =
∧N (V⊗V ∗), itself naturally a Dist(G)-supermodule.

Since both c(V ) and c(V ∗) lie in k[G] by definition, we certainly have that c((V ⊗
V ∗)⊗N ) ⊆ k[G]. But M is a quotient of (V ⊗ V ∗)⊗N , so c(M) ⊆ k[G] too.

Recall that v1, . . . , vn, v
′
1, . . . , v

′
n denotes the natural basis of V . Set vn+i := v′i

for short, and let w1, . . . , w2n denote the basis for V ∗ dual to v1, . . . , v2n. Set zi,j :=
vi ⊗ wj ∈ V ⊗ V ∗ for i, j = 1, . . . , 2n. Fix also some linear order on the set of all
pairs {(i, j) | i, j = 1, . . . , 2n}. Denote by Σ the set of all weakly increasing sequences
S = ((i1, j1) ≤ (i2, j2) ≤ · · · ≤ (iN , jN )) of length N such that (is, js) < (is+1, js+1)
if zis,js is even. If S ∈ Σ, we denote by zS the canonical image of the element
zi1,j1 ⊗ · · · ⊗ ziN ,jN ∈ (V ⊗ V ∗)⊗N in M . Then B := {zS | S ∈ Σ} is a homogeneous
basis for M . Moreover, letting z := zS where S ∈ Σ is the sequence which contains
every (i, j) ∈ Γ, z spans the trivial Dist(Gev)-submodule

∧N (V0̄ ⊗ V ∗0̄ ) of M .
The crucial step at this point is to observe that the vectors {mIz | I ⊆ Γ} are

linearly independent. This follows because they are related to the basis B in a
unitriangular way. Let C be some homogeneous basis for M extending {mIz |I ⊆ Γ}.
For I ⊆ Γ and u ∈ Dist(G), define gI(u) to be the mIz-coefficient of uz when
expressed in terms of the basis C . So, gI ∈ k[G] by the first paragraph. It is clear
from the definition that gI(mJ) = δI,J for every I, J ⊆ Γ. Moreover, since z spans a
trivial Dist(Gev)-module, uz = 0 for all ordered PBW monomials u ∈ Υ not of the
form mJ for any J ⊆ Γ. Hence gI(u) = 0 for such u, and we have now checked that
gI = ηI . �

Now we obtain the main result:

Theorem 5.6. Dist(G)� = k[G].

Proof. We first claim that (ηIf)(mIu) = f(u) and (ηIf)(mJu) = 0 for any u ∈
Dist(Gev), J 6⊇ I, and f ∈ Dist(G)�. Indeed, by definition of the product in
Dist(G)�, for any J ⊆ Γ we have (ηIf)(mJu) = (ηI⊗̄f)(δ(mJu)). But, when ex-
panded in terms of the PBW basis of Dist(G)⊗Dist(G), the (mI⊗?)-component of
δ(mJu) is equal mI ⊗ u if J = I and 0 if J 6⊇ I. This implies the claim.

Now let f ∈ Dist(G)� and ∆(f) =
∑

j fj ⊗ gj . The restrictions ξ(gj) belong
to Dist(Gev)�, so by Lemma 5.4, there exist degree 0̄ elements hj ∈ k[G] with
ξ(gj) = ξ(hj). For any I ⊆ Γ, define fI :=

∑
j fj(mI)ηIhj , which is an element of

k[G] thanks to 5.5. By the previous paragraph, we have

fI(mIu) =
∑
j

fj(mI)(ηIhj)(mIu) =
∑
j

fj(mI)hj(u)

=
∑
j

fj(mI)gj(u) = f(mIu).

Similarly fI(mJu) = 0 for any u ∈ Dist(Gev) and any J 6⊇ I. Thus, we have
proved that given f ∈ Dist(G)� one can find a function fI ∈ k[G], with fI = f on
mIDist(Gev) and fI = 0 on

⊕
J 6⊇I mJDist(Gev).
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Now we can prove that f ∈ k[G]. For i = 0, 1, . . . , n2, define the functions
f (i) ∈ k[G] by setting f (0) := f − f∅, and

f (i) = f (i−1) −
∑

I∈Γ,|I|=i

(f (i−1))I .

By induction on i we prove that f (i) = 0 on
⊕

J,|J |≤imJDist(Gev). In particular,

f (n2) is the zero element of Dist(G)�. It remains to note that f (n2) is obtained from
f by subtracting elements of k[G]. �

The theorem has the following important consequence:

Corollary 5.7. The category modG is isomorphic to the category of all integrable
Dist(G)-supermodules.

Proof. Suppose M is an integrable Dist(G)-supermodule with homogeneous basis
mi(i ∈ I). Define the coefficient functions fi,j ∈ Dist(G)� as in (5.1). Let gi,j be the
element of k[G] corresponding to fi,j under the identification, i.e. g̃i,j = fi,j . Then,
we define a structure map η making M into a G-supermodule by setting

η(mj) =
∑
i

mi ⊗ gi,j .

Conversely, if M is a G-supermodule, we view M as a Dist(G)-supermodule in
the standard way. Now check that the two constructions are inverse to one an-
other and that morphisms of G-supermodules correspond to morphisms of Dist(G)-
supermodules. �

Because of this corollary, we will not distinguish between G-supermodules and
integrable Dist(G)-supermodules in the sequel.

6. Highest weight theory

Let H be any closed subgroup of an algebraic supergroup G. There are restriction
and induction functors

resGH : modG → modH , indGH : modH → modG.

The induction here is essentially “coalgebra induction” from [6, §3], and is defined
as follows. If M is any vector superspace, we can view M⊗k[G] as a G-supermodule
with structure map idM ⊗∆G; we will denote this by Mtr ⊗ k[G] to emphasize that
the G-supermodule structure is trivial on M . Let δ : k[G] → k[H] ⊗ k[G] be the
comorphism of the multiplication µ̄ : H × G → G. Then indGHM is defined to be
the kernel of the map ∂ = η ⊗ idk[G]− idM ⊗δ in the following exact sequence of
G-supermodules:

0 −→ indGHM −→Mtr ⊗ k[G] ∂−→Mtr ⊗ k[H]tr ⊗ k[G]. (6.1)

On a morphism f : M →M ′ of H-supermodules, indGHf is simply the restriction of
the map f ⊗ idk[G] to the subspace indGHM ⊆ Mtr ⊗ k[G]. We remark that there is
an equivalent way of characterizing indGHM as a subspace of Mtr ⊗ k[G]:

indGHM = (M ⊗ k[G])H (6.2)
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where the H-fixed points are taken with respect to the given action on M and the
left regular action on k[G].

Induction and restriction have the familiar properties (see e.g. [6, p.306]): for
example, for a G-supermodule M , its structure map η determines a natural even
isomorphism M

∼−→ indGGM . The functor resGH is exact and indGH is right adjoint
to resGH , hence is left exact and sends injectives to injectives. Now one can prove
that modG has enough injectives, by following the usual proof in the even case [11,
I.3.9]. It therefore makes sense to consider the right derived functors RiindGH :
modH → modG. We have the generalized tensor identity: for any G-supermodule M
and H-supermodule N , there is a natural isomorphism

RiindGH(resGHM ⊗N) 'M ⊗RiindGHN (6.3)

of G-supermodules. (We wrote down a proof based on the arguments of [9, 1.3] and
[11, I.4.8].)

Turn now to our case G = Q(n). We wish to use induction from the Borel sub-
group B of G to classify the irreducible G-supermodules by their highest weights.
We should start with the case Q(1). To understand this case, we analyze its coordi-
nate ring. We know that k[Q(1)] = k[s, s−1, s′] (where s = s1,1, s

′ = s′1,1), so it has
basis

{sm, sm−1s′ |m ∈ Z}.
Let k[Q(1)]m be the subspace spanned by sm, sm−1s′, making k[Q(1)] into a Z-graded
superalgebra. The comultiplication satisfies

∆(sm) = sm ⊗ sm −msm−1s′ ⊗ sm−1s′,

∆(sm−1s′) = sm−1s′ ⊗ sm + sm ⊗ sm−1s′,

showing that each k[Q(1)]m is a two dimensional subcoalgebra of k[Q(1)]. The dual
superalgebra k[Q(1)]∗m is generated by the odd element cm defined from cm(sm−1s′) =
1, cm(sm) = 0, subject only to the relation c2

m = m. So it is either a rank one Clifford
superalgebra (if m is non-zero modulo p) or a rank one Grassmann superalgebra (if
m is zero modulo p). In either case, k[Q(1)]∗m has a unique irreducible supermodule
u(m) up to isomorphism. Now one proceeds in exactly the same way as in [2, §6] to
conclude that the corresponding Q(1)-supermodules {u(m) |m ∈ Z} form a complete
set of pairwise non-isomorphic irreducible Q(1)-supermodules, with u(m) being of
type M with character xm1 if p|m and of type Q with character 2xm1 if p - m.

Notice that H ∼= Q(1) × · · · × Q(1) (n times). So using the previous paragraph
and the general theory of representations of direct products of supergroups (which
is entirely similar to [2, Lemma 2.9]), we obtain the following parametrization of
the irreducible H-supermodules. Given λ =

∑n
i=1 λiεi, we define hp′(λ) to be the

number of i = 1, . . . , n for which p - λi.

Lemma 6.4. For each λ ∈ X(T ), there is a unique irreducible H-supermodule u(λ)
(up to isomorphism) with character 2b(hp′ (λ)+1)/2cxλ. The {u(λ) | λ ∈ X(T )} form
a complete set of pairwise non-isomorphic irreducible H-supermodules. Moreover,
u(λ) is of type M if hp′(λ) is even, type Q if hp′(λ) is odd.

As explained in §3, it follows immediately that the (inflations of) {u(λ)|λ ∈ X(T )}
give a complete set of pairwise non-isomorphic irreducible B-supermodules. Now we
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define

H0(λ) := indGBu(λ), L(λ) := socGH0(λ), (6.5)

for each λ ∈ X(T ). Let

X+(T ) := {λ =
n∑
i=1

λiεi ∈ X(T ) | λ1 ≥ · · · ≥ λn}, (6.6)

X+
p (T ) := {λ ∈ X+(T ) | λi = λi+1 for some 1 ≤ i < n implies p|λi}. (6.7)

We refer to weights λ lying in X+(T ) as dominant weights, and elements of X+
p (T )

are p-strict dominant weights. We will show that the {L(λ) | λ ∈ X+
p (T )} form a

complete set of pairwise non-isomorphic irreducible G-supermodules.

Lemma 6.8. Let ξ : k[G] → k[B] (resp. ξ+ : k[G] → k[B+]) denote the comor-
phism of the inclusion B → G (resp. the inclusion B+ → G). Then, for any
H-supermodule M , the restriction of the map idM ⊗ξ+ : Mtr ⊗ k[G]→Mtr ⊗ k[B+]
to indGBM ⊂M ⊗ k[G] defines a monomorphism

indGBM ↪→ indB
+

H M

as B+-supermodules.

Proof. To prove injectivity, let η : M →M⊗k[B] be the structure map of M as a B-
supermodule. Take v ∈ indGBM with (idM ⊗ξ+)(v) = 0. By definition of induction,
we have that

η ⊗ idk[G](v) = idM ⊗([ξ ⊗ idk[G]] ◦∆G)(v).
So applying idM ⊗ idk[B]⊗ξ+ to both sides, we get that

0 = (η ⊗ idk[B+]) ◦ (idM ⊗ξ+)(v) = idM ⊗([ξ ⊗ ξ+] ◦∆G)(v).

Now Theorem 3.5 implies that the map

(ξ ⊗ ξ+) ◦∆G : k[G]→ k[B]⊗ k[B+]

is injective. Hence, v = 0 as required. Finally, the fact that the image lies in
indB

+

H M ⊆M ⊗ k[B+] follows from (6.2). �

Lemma 6.9. View k[U+] as a B+-supermodule with structure map being the co-
morphism ρ∗ of the right action ρ : U+ × B+ → U+, (u, b) 7→ pr+(b)−1ub, where
pr+ : B+ → H is the projection (3.3). Then, for any H-supermodule M ,

indB
+

H M 'M ⊗ k[U+]

as a B+-supermodule.

Proof. By definition, indB
+

H M is a B+-submodule of Mtr⊗k[B+]. View k[H]⊗k[U+]
as a B+-supermodule via the inflation of the right regular H-action on k[H] and as
described above on k[U+]. Let µ : H × U+ → B+ be the superscheme isomorphism
induced by multiplication. Then the map

idM ⊗µ∗ : Mtr ⊗ k[B+]→Mtr ⊗ k[H]⊗ k[U+]

is an isomorphism of B+-supermodules. By definition of induction, it maps indB
+

H M
to the subspace η(M) ⊗ k[U+] of M ⊗ k[H] ⊗ k[U+], where η : M → M ⊗ k[H] is
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the structure map of M . Finally, we observe that η(M) 'M as B+-supermodules,
and the lemma follows. �

Lemma 6.10. Suppose that λ ∈ X(T ) such that H0(λ) 6= 0.
(i) If µ is a weight with H0(λ)µ 6= 0, then w0λ ≤ µ ≤ λ in the dominance order.
(ii) The B+-socle of H0(λ) is precisely its λ-weight space H0(λ)λ ' u(λ).
(iii) H0(λ) is finite dimensional.

Proof. By Lemmas 6.8 and 6.9, there is an injective B+-supermodule map

H0(λ) ↪→ indB
+

H u(λ) ' u(λ)⊗ k[U+]

which is non-zero by the assumption on λ. By Frobenius reciprocity, indB
+

H u(λ) has
B+-socle ' u(λ), hence H0(λ) has B+-socle ' u(λ) too. Considering the weights of
u(λ)⊗ k[U+] gives that dimH0(λ)λ ≤ dim u(λ) and that H0(λ)µ = 0 unless µ ≤ λ.
Parts (i) and (ii) follow easily. Finally, for (iii), each weight space of u(λ)⊗ k[U+] is
finite dimensional, hence each weight space of H0(λ) is also finite dimensional. But
by (i) there are only finitely many non-zero weight spaces, hence H0(λ) itself must
be finite dimensional. �

Now we are ready to prove the main result. Note in case p = 0, the following
theorem is due to Penkov [18].

Theorem 6.11. For λ ∈ X(T ), H0(λ) is non-zero if and only if λ ∈ X+
p (T ).

The modules {L(λ) | λ ∈ X+
p (T )} form a complete set of pairwise non-isomorphic

irreducible G-supermodules. Moreover L(λ) is of type M if hp′(λ) is even, type Q if
hp′(λ) is odd.

Proof. Note it is immediate from Lemma 6.10(ii) that the non-zero L(λ) are irre-
ducible and pairwise non-isomorphic. Moreover, a Frobenius reciprocity argument
shows that every irreducible G-supermodule is isomorphic to the socle of some non-
zero H0(λ). To check the statement about the type of L(λ) (whenever it is non-zero),
note that the B-head of L(λ) is ∼= u(λ); this follows on conjugating with w0 and
taking duals from the fact that the B+-socle of L(−w0λ) is u(−w0λ). So we can
calculate using Frobenius reciprocity:

EndG(L(λ)) ∼= HomG(L(λ),H0(λ)) ∼= HomB(L(λ), u(λ)) ∼= EndB(u(λ)).

Hence, L(λ) has the same type as u(λ) whenever it is non-zero, see Lemma 6.4.
It now just remains to prove that

X+
p (T ) = {λ ∈ X(T ) |H0(λ) 6= 0}.

Suppose first that λ ∈ X(T ) and H0(λ) 6= 0. Since the set of weights of H0(λ) is
invariant under the action of W , Lemma 6.10(i) implies that λ1 ≥ · · · ≥ λn. Now
suppose that λi = λi+1 for some i; we need to show that p|λi. By restricting to the
subgroup of G isomorphic to Q(2) corresponding to the ith and (i + 1)th matrix
rows and columns, it suffices to do this in the case n = 2, so λ = (λ1, λ2) ∈ X(T )
and λ1 = λ2. Then, by Lemma 6.10(i), λ is the only non-zero weight of H0(λ). So
if we take 0 6= v ∈ H0(λ)λ and consider the action of Dist(G), we must have that
e′2,1v = 0. Hence,

e′1,2e
′
2,1v = (h1 + h2)v = 2λ1v = 0,
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so p|λ1 as required.
Conversely take λ ∈ X+

p (T ). We need to show that there exists an irreducible G-
supermodule L with Lλ 6= 0 and Lµ = 0 for all µ 6≤ λ. Write λ as λ−+λ+ where λ+

(resp. λ−) is obtained from λ by replacing all negative (resp. positive) parts by zero.
By [2, Theorem 10.1], there exist irreducible G-supermodules L(λ+) and L(−w0λ−)
with highest weights λ+ and −w0λ− respectively. Then, M := L(λ+)⊗L(−w0λ−)∗

is a G-supermodule with Mλ 6= 0 and Mµ = 0 for µ 6≤ λ. So at least one of
the composition factors of M must be an irreducible G-supermodule with highest
weight λ. �

Let us finally introduce the G-supermodules

V (λ) := H0(−w0λ)∗ (6.12)

for each λ ∈ X+
p (T ). Note V (λ) is generated by the B+-stable submodule V (λ)λ ∼=

u(λ). The V (λ) are the “universal” highest weight modules according to the follow-
ing lemma, proved as in [11, II.2.13]:

Lemma 6.13. Let λ ∈ X+
p (T ). If M is a G-supermodule which is generated by

a B+-stable submodule isomorphic to u(λ), then M is isomorphic to a quotient of
V (λ).

7. Extensions

Next, we consider another basic principle of highest weight theory: it should be
possible to compute extensions between L(λ) and other irreducibles by looking at
socG(H0(λ)/L(λ)), cf. [11, II.2.14].

Let ũ(λ) denote the injective hull of u(λ) as an H-supermodule. By reducing to
the case H = Q(1), one checks:

dim ũ(λ) = 2n−hp′ (λ) dim u(λ). (7.1)

For λ ∈ X+
p (T ), define

H̃0(λ) := indGB ũ(λ). (7.2)

Since indGB is left exact, there is a canonical embedding H0(λ) ↪→ H̃0(λ). Moreover,
arguing using Lemma 6.8 as we did in the proof of Lemma 6.10,

socB+H̃0(λ) = socB+H0(λ) ' u(λ), (7.3)

socGH̃0(λ) = socGH0(λ) ' L(λ). (7.4)

Theorem 7.5. Let λ, µ ∈ X+
p (T ) with µ 6≥ λ.

(i) Ext1
G(L(µ), L(λ)) ' HomG(L(µ), H̃0(λ)/L(λ)) ' HomG(L(µ),H0(λ)/L(λ)).

(ii) Ext1
G(L(λ), L(λ)) ' HomG(L(λ), H̃0(λ)/L(λ)).

Proof. Take arbitrary λ, µ ∈ X+
p (T ). We have the long exact sequence

0 −→ HomG(L(µ), L(λ)) ∼−→ HomG(L(µ), H̃0(λ))

−→ HomG(L(µ), H̃0(λ)/L(λ)) −→ Ext1
G(L(µ), L(λ))

−→ Ext1
G(L(µ), H̃0(λ)) −→ . . . .
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So it suffices for the first isomorphism in (i) and (ii) to show that Ext1
G(L(µ), H̃0(λ)) =

0, providing µ 6> λ. So suppose that we have an extension

0 −→ H̃0(λ)
f−→M −→ L(µ) −→ 0.

Let i : H̃0(λ)→ ũ(λ) be the B-supermodule homomorphism induced by the identity
map H̃0(λ) → indGB ũ(λ) under adjointness. By injectivity of ũ(λ) and the assump-
tion µ 6> λ, we can find a B-supermodule homomorphism g : M → ũ(λ) such that
g ◦ f = i. This induces a G-supermodule homomorphism ḡ : M → H̃0(λ) which
splits f . This proves the claim.

The second isomorphism in (i) is proved similarly but using the fact that

Ext1
H(u(λ), u(µ)) = 0

for λ 6= µ, instead of injectivity of ũ(λ). �

As an application of the theorem, we compute Ext1
G(k, k). Note u(0) = k. By

(7.1), ũ(0) has dimension 2n. Set

k̃ := indGB ũ(0). (7.6)

Lemma 7.7. There is a non-split short exact sequence

0 −→ k −→ k̃ −→ Πk −→ 0

of G-supermodules.

Proof. Let M = Dist(H)⊗Dist(T ) (Πnk). This is an integrable Dist(H)-supermodule,
hence an H-supermodule. Note M has basis

hA := h′a1
. . . h′an ⊗ 1

indexed by subsets A = {a1 < · · · < an} of {1, . . . , n}. Let Md denote the subspace
of M spanned by all such basis elements with |A| = d, so h′iMd ⊆ Md+1 for each i.
One easily shows using this that socHM = Mn ' k. Hence, M ' ũ(0).

Now indGBk ' k and ũ(0) has a composition series with all composition factors ∼= k.
Hence, all composition factors of indGB ũ(0) are ∼= k too. This shows that the natural
map indGB ũ(0) ↪→ ũ(0)⊗k[U+] arising from Lemmas 6.8 and 6.9 defines an embedding
k̃ = indGB ũ(0) ↪→ ũ(0). This identifies k̃ with the largest submodule of ũ(0) for which
the action of H can be extended (necessarily uniquely) to an action of G.

So now suppose that N is a submodule of M maximal subject to the condition
that the action of Dist(H) extends to an action of Dist(G). Clearly each hi and each
ei,j , e

′
i,j for i 6= j must act as zero, hence [ei,j , e′i,j ] = h′i−h′j acts as zero. This shows

that N = {m ∈M | h′1m = · · · = h̄′nm}. Now a straightforward induction gives that
N has dimension 2 on basis

h′1 . . . h
′
n ⊗ 1,

n∑
i=1

(−1)ih′1 . . . h
′
i−1h

′
i+1 . . . h

′
n ⊗ 1.

Since N ' k̃, this proves the lemma. �

Corollary 7.8. Ext1
G(k, k) ' Πk.



18 JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

8. The linkage principle

In [25], Sergeev constructed certain central elements of Dist(G). To describe them
explicitly, in the notation of §4, we first define elements xi,j(m), x′i,j(m) ∈ Dist(G)
for m ≥ 1, 1 ≤ i, j ≤ n, by setting xi,j(1) = ei,j , x′i,j(1) = e′i,j , and

xi,j(m) =
n∑
s=1

(ei,sxs,j(m− 1) + (−1)m−1e′i,sx
′
s,j(m− 1)), (8.1)

x′i,j(m) =
n∑
s=1

(ei,sx′s,j(m− 1) + (−1)m−1e′i,sxs,j(m− 1)) (8.2)

for m > 1. The following commutation relations are noted in [25] (they are easily
verified using induction on m):

[ei,j , xs,t(m)] = δj,sxi,t(m)− δi,txs,j(m),

[e′i,j , xs,t(m)] = (−1)m−1δj,sx
′
i,t(m)− δi,tx′s,j(m),

[ei,j , x′s,t(m)] = δj,sx
′
i,t(m)− δi,tx′s,j(m),

[e′i,j , x
′
s,t(m)] = (−1)m−1δj,sxi,t(m) + δi,txs,j(m).

Sergeev’s central elements are the elements

zr :=
n∑
i=1

xi,i(2r − 1), (8.3)

for r ≥ 1. One checks directly using the above commutator relations that the zr
are indeed central. It is even proved in [25] that the elements z1, z2, . . . generate
the center of Dist(G) in case k = C, but we will not need this fact. Instead, for
λ =

∑n
i=1 λiεi ∈ X(T ), define the integer

zr(λ) :=
∑

(−2)s−1λi1λi2 . . . λis(λ
2
i1 − λi1)a1(λ2

i2 − λi2)a2 . . . (λ2
is − λis)

as ,

where the sum is over all 1 ≤ s ≤ r, 1 ≤ i1 < i2 < · · · < is ≤ n, and a1, a2, . . . , as ≥ 0
with a1 + · · ·+ as = r − s.
Lemma 8.4. Let M be a Dist(G)-supermodule and v ∈Mλ be a vector of weight λ
annihilated by all ei,j , e′i,j for all 1 ≤ i < j ≤ n. Then, zrv = zr(λ)v.

Proof. Let Ω be the left superideal of Dist(G) generated by all ei,j and e′i,j with
i < j. We will write ≡ for congruence modulo Ω throughout the proof. We first
show that

xi,j(m) ≡ x′i,j(m) ≡ 0 for each 1 ≤ i < j ≤ n and m ≥ 1. (8.5)
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This follows by induction on m, the induction base being clear. For m > 1, using
the inductive assumption and the commutator relations, we get

xi,j(m) =
n∑
s=1

(ei,sxs,j(m− 1) + (−1)m−1e′i,sx
′
s,j(m− 1))

≡
n∑
s=j

(ei,sxs,j(m− 1) + (−1)m−1e′i,sx
′
s,j(m− 1))

=
n∑
s=j

(
xs,j(m− 1)ei,s + xi,j(m− 1)

−(−1)m−1x′s,j(m− 1)e′i,s − xi,j(m− 1)
)

≡ 0.

The proof of (8.5) for x′i,j(m) is similar.
Now let m ≥ 3 be an odd integer. We claim

xi,i(m) ≡ (h2
i − hi)xi,i(m− 2)− 2

n∑
s=i+1

hixs,s(m− 2). (8.6)

Indeed, using (8.5) and the commutator relations, we see that

xi,i(m) =
n∑
s=1

(ei,sxs,i(m− 1) + e′i,sx
′
s,i(m− 1))

≡ hixi,i(m− 1) + h′ix
′
i,i(m− 1)

+
n∑

s=i+1

(ei,sxs,i(m− 1) + e′i,sx
′
s,i(m− 1))

≡ hixi,i(m− 1) + h′ix
′
i,i(m− 1).

Similarly, we get

xi,i(m− 1) ≡ hixi,i(m− 2)− h′ix′i,i(m− 2)− 2
n∑

s=i+1

xs,s(m− 2),

x′i,i(m− 1) ≡ hix′i,i(m− 2)− h′ixi,i(m− 2).

Substituting these formulas into the above expression for xi,i(m) gives (8.6).
Now let r ≥ 1 and yi := h2

i − hi. The theorem follows at once from the following
formula:

xi,i(2r − 1) ≡
∑

(−2)s−1hi1hi2 . . . hisy
a1
i1
ya2
i2
. . . yasis , (8.7)

where the sum is over all 1 ≤ s ≤ r, i = i1 < i2 < · · · < ik ≤ n, and a1, a2, . . . , as ≥ 0
with a1 + · · ·+ as = r − s. To prove this, apply induction on r, the induction base
being clear. For the induction step, let r > 1. Then by (8.6) and the inductive
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hypothesis, we have

xi,i(2r − 1) ≡ (h2
i − hi)xi,i(2r − 3)− 2

n∑
j=i+1

hixj,j(2r − 3)

≡
r−1∑
s=1

(−2)s−1
∑

hi1hi2 . . . hisy
a1+1
i1

ya2
i2
. . . yasis

+
n∑

j=i+1

r−1∑
s=1

(−2)s
∑

hihj1hj2 . . . hjsy
b1
j1
yb2j2 . . . y

bs
js
,

where the first unmarked sum is over all i = i1 < i2 < · · · < is ≤ n and all
a1, a2, . . . , as ≥ 0 with a1 + · · · + as = r − 1 − s and the second one is over all
j = j1 < j2 < · · · < js ≤ n and all b1, b2, . . . , bs ≥ 0 with b1 + · · · + bs = r − 1 − s.
The formula (8.7) follows. �

Let ` = (p− 1)/2, or ` = ∞ in case p = 0. Given j ∈ Z, define its residue res(j)
to be the unique integer r ∈ {0, 1, . . . , `} such that j2 − j ≡ r2 + r (mod p). So:

res(i) = res(j) if and only if (i2 − i) ≡ (j2 − j) (mod p). (8.8)

Now let λ =
∑n

i=1 λiεi ∈ X(T ). For r ∈ {0, 1, . . . , `}, define

cr := |{(i, j) | 1 ≤ i ≤ n, 0 < j ≤ λi, res(j) = r}|
−|{(i, j) | 1 ≤ i ≤ n, λi < j ≤ 0, res(j) = r}|.

Define the content cont(λ) of λ to be the tuple (c0, c1, . . . , c`). For example, let
n = 6, λ = (9, 7, 4, 0,−5,−8) and p = 5. In the following picture the nodes (i, j) are
represented by boxes with the corresponding residues written in them:

2 1 0 0 1 2 1 0
0 1 2 1 0

0
0
0

1
1
1

2
2
2

1
1
1

0
0

0
0

1
1 2 1

− +

Hence, the content of λ is (2, 4, 1). Also for r, s ∈ {0, 1, . . . , `}, we set

Ar(λ) = |{i | 1 ≤ i ≤ n, res(λi + 1) = r}|,
Br(λ) = |{i | 1 ≤ i ≤ n, res(λi) = r}|,
dr,s(λ) = |{i | 1 ≤ i ≤ n, res(λi) = r, res(λi + 1) = s}|.

Lemma 8.9. Let λ, µ ∈ X(T ) with
∑n

i=1 λi =
∑n

i=1 µi. Then the following are
equivalent:

(i) cont(λ) = cont(µ);
(ii) dr,r+1(λ)− dr+1,r(λ) = dr,r+1(µ)− dr+1,r(µ) for all r ∈ {0, 1, . . . , `− 1};
(iii) Ar(λ)−Br(λ) = Ar(µ)−Br(µ) for each r ∈ {0, 1, . . . , `};
(iv) zr(λ) ≡ zr(µ) (mod p) for all r ≥ 1.
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Proof. (i)⇔(ii). Let us write λ#µ for the 2n-tuple (λ1, . . . , λn,−µ1, . . . ,−µn). Ob-
serve that cont(λ) = cont(µ) if and only if cont(λ#µ) = (0, 0, . . . , 0), and

dr,r+1(λ)− dr+1,r(λ) = dr,r+1(µ)− dr+1,r(µ)

if and only if
dr,r+1(λ#µ)− dr+1,r(λ#µ) = 0.

In other words, it is sufficient to prove the equivalence of (i) and (ii) in the special
case µ = 0.

So suppose µ = 0 and let cont(λ) = (c0, . . . , c`). We need to show that c0 = · · · =
c` = 0 if and only if dr,r+1(λ) − dr+1,r(λ) = 0 for each r ∈ {0, 1, . . . , ` − 1}, which
follows easily from the equations:

c0 + c1 + · · ·+ c` = 0,
cr − cr+1 = dr,r+1(λ)− dr+1,r(λ) for r ∈ {0, 1, . . . , `− 2},
c`−1 − 2c` = d`−1,`(λ)− d`,`−1(λ).

(ii)⇔(iii). This follows from the equations

A0 +A1 + · · ·+A` = B0 +B1 + · · ·+B` = n,

A0 = d0,0 + d1,0, B0 = d0,0 + d0,1,

Ar = dr−1,r + dr+1,r, Br = dr,r−1 + dr,r+1 for r ∈ {1, . . . , `− 1}.
(iii)⇔(iv). Define

Gλ(t) := 1− 2
∑
r≥1

zr(λ)tr ∈ k[[t]].

We need to prove that given λ, µ ∈ X(T ) with
∑n

i=1 λi =
∑n

i=1 µi, we have that
Gλ(t) = Gµ(t) if and only if Ar(λ)−Br(λ) = Ar(µ)−Br(µ) for each r = 0, 1, . . . , `.
We represent Gλ(t) as a rational function:

Gλ(t) =
n∏
i=1

(1− 2
∑
r≥1

λi(λ2
i − λi)r−1tr)

=
n∏
i=1

(1− 2λit(1− (λ2
i − λi)t)−1)

=
n∏
i=1

1− (λ2
i − λi)t− 2λit

1− (λ2
i − λi)t

=
n∏
i=1

1− (λ2
i + λi)t

1− (λ2
i − λi)t

.

Counting multiplicities of zeros and poles, we see that Gλ(t) = Gµ(t) if and only if
ar(λ)− br(λ) = ar(µ)− br(µ) for each r = 0, 1, . . . , p− 1 where

ar(λ) = |{i = 1, . . . , n | (λi + 1)2 − (λi + 1) ≡ r (mod p)}|,
br(λ) = |{i = 1, . . . , n | λ2

i − λi ≡ r (mod p)}|.
Finally using (8.8), we have that ar(λ)−br(λ) = ar(µ)−br(µ) for each r = 0, . . . , p−1
if and only if Ar(λ)−Br(λ) = Ar(µ)−Br(µ) for each r = 0, 1, . . . , `. �
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Now we obtain the main result of the section, being an analogue of the “linkage
principle”. The linkage principle in case p = 0 was proved originally by Penkov; see
[18] for the shorter statement and proof in that case.

Theorem 8.10. Let λ ∈ X+
p (T ). All composition factors of H0(λ) are of the form

L(µ) for µ ≤ λ with cont(µ) = cont(λ).

Proof. It suffices to show that (zr − zr(λ)) annihilates H0(λ). By Lemma 6.10(ii),
the B+-socle of H0(λ) equals H0(λ)λ. So by Lemma 8.4, (zr − zr(λ)) annihilates
H0(λ)λ. Therefore (zr−zr(λ))H0(λ) intersects the B+-socle H0(λ)λ trivially, hence
is zero. �

Applying Theorem 7.5 (or an obvious direct argument) gives:

Corollary 8.11. For λ, µ ∈ X+
p (T ) with cont(λ) 6= cont(µ), we have

Ext1
G(L(λ), L(µ)) = 0.

9. Steinberg’s tensor product theorem

Suppose throughout the section that p 6= 0. We wish next to prove the analogue
for G = Q(n) of the Steinberg tensor product theorem [27], following the approach
of [4]. We will often now appeal to well-known results about Gev = GL(n). For
instance, the coordinate ring k[Gev] is the localization of the free polynomial algebra
k[ci,j |1 ≤ i, j ≤ n] in n2 even indeterminates at determinant. We have the subgroups
T = Hev, Bev, B

+
ev, Uev, U

+
ev of Gev, and the algebra of distributions Dist(Gev) was

described as a subalgebra of Dist(G) in (5.3). For every λ ∈ X+(T ), we have an
irreducible Gev-module of highest weight λ which we denote by Lev(λ); it can be
defined as the simple socle of the induced module H0

ev(λ) = indGev
Bev

kλ, see [11].
For r ≥ 1, we have the Frobenius morphism F r : G → Gev defined for a commu-

tative superalgebra A by letting F r : G(A)→ Gev(A) be the group homomorphism
obtained by raising matrix entries to the pr-th power (note ap

r
= 0 for all a ∈ A1̄

so this makes sense). Clearly F r stabilizes the various subgroups H,B,B+, U, U+

of G, giving us morphisms also all denoted by F r from each of these supergroups
to their even part. We denote the kernel of F r by Gr (resp. Hr, Br, B

+
r , Ur, U

+
r ).

Then, Gr is a normal subgroup of G, called the rth Frobenius kernel.

Lemma 9.1. F r : G→ Gev is a quotient of G by Gr in the category of superschemes,
that is, for any morphism of superschemes f : G → X that is constant on Gr(A)-
cosets in G(A) (for each superalgebra A) there is a unique f̃ : Gev → X such that
f = f̃ ◦ F r.

Proof. Let σ : G → Gev be the morphism defined for each A as the projection
G(A) → Gev(A) onto the diagonal, see (3.1). Let f : G → X be a morphism
of superschemes constant on Gr-cosets. For any superalgebra A and any element
g ∈ G(A) of the form (3.1), we have that(

I S′S−1

−S′S−1 I

)−1(
S S′

−S′ S

)
=
(
S 0
0 S

)
,

i.e. σ(g) = hg for some h ∈ Gr(A). Hence, f = (f |Gev) ◦ σ. But F r|Gev : Gev → Gev

is the quotient of Gev by Gr,ev by the purely even theory [11, I.9.5]. Since f |Gev is
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constant on Gr,ev-cosets in Gev, we get a unique morphism f̃ : Gev → X such that
f |Gev = f̃ ◦ (F r|Gev). Hence f = f̃ ◦ (F r|Gev) ◦ σ = f̃ ◦ F r. �

Note that k[Gr] ∼= k[G]/Ipr where

Ipr = 〈sp
r

i,j , s
pr

l,l − 1 | 1 ≤ i 6= j ≤ n, 1 ≤ l ≤ n〉.

So a basis of k[Gr] is given by images of the monomials∏
1≤i<j≤n

s
aj,i
j,i

(
s′j,i
)dj,i . ∏

1≤l≤n
s
al,l
l,l

(
s′l,l
)dl,l . ∏

1≤i<j≤n
s
ai,j
i,j

(
s′i,j
)di,j

for integers ai,j ∈ {0, 1, . . . , pr − 1}, di,j ∈ {0, 1}, where the products are taken in
any fixed order. In particular, dim k[Gr] = (2pr)n

2
, and Gr is a finite algebraic

supergroup (cf. [11, I.8.1]). Moreover, the pr-th power of each generator of the
augmentation ideal Ie = kerE of k[G] (i.e. the elements si,j , s′i,j , sr,r − 1, s′r,r for
1 ≤ i 6= j ≤ n, 1 ≤ r ≤ n) is an element of Ipr , hence the image of Ie in k[Gr] is a
nilpotent ideal. So Dist(Gr) can actually be identified with the dual superalgebra
k[Gr]∗. It follows easily (see [11, I.8.3] and the discussion at the beginning of [2,
§5]) that the category of Gr-supermodules is isomorphic to the category of Dist(Gr)-
supermodules. As a basis for Dist(Gr) ⊂ Dist(G), we can take the ordered PBW
monomials ∏

1≤i<j≤n
e

(aj,i)
j,i

(
e′j,i
)dj,i . ∏

1≤l≤n

(
hl
al,l

)(
h′l
)dl,l . ∏

1≤i<j≤n
e

(ai,j)
i,j

(
e′i,j
)di,j

for integers ai,j ∈ {0, 1, . . . , pr− 1}, di,j ∈ {0, 1}. Similarly, one can describe explicit
bases for k[Br], k[Ur], Dist(Br), Dist(Ur) etc. We obviously have:

Lemma 9.2. Dist(Gr) is a free right Dist(B+
r )-supermodule with basis given by the

ordered monomials{ ∏
1≤i<j≤n

e
(aj,i)
j,i (e′j,i)

dj,i | aj,i ∈ {0, 1, . . . , pr − 1}, dj,i ∈ {0, 1}
}
.

Identifying Gr- (resp. B+
r -) supermodules with Dist(Gr)- (resp. Dist(B+

r )-) su-
permodules, we have the coinduction functor

coindGr
B+
r

: modB+
r
→ modGr , coindGr

B+
r

? = Dist(Gr)⊗Dist(B+
r )?.

Lemma 9.2 gives that this is an exact functor that is left adjoint to resGr
B+
r

. Indeed,
given any B+

r -supermodule M , we have that

coindGr
B+
r
M ' Dist(Ur)⊗M (9.3)

as a vector superspace, so in particular coindGr
B+
r
M has dimension (2pr)N dimM for

finite dimensional M , where N = n(n− 1)/2.
Now consider the representation theory of Hr. For λ ∈ X(T ), let ur(λ) denote

the restriction of the H-supermodule u(λ) to Hr. Arguing in the same way as for
Lemma 6.4, one shows:
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Lemma 9.4. The modules {ur(λ) | λ ∈ X(T )} give a complete set of irreducible
Hr-supermodules. Moreover, for λ, µ ∈ X(T ), we have ur(λ) ∼= ur(µ) if and only if
λ− µ ∈ prX(T ).

We also write ur(λ) for its inflation to Br (resp. B+
r ). By the lemma, the mod-

ules {ur(λ) | λ ∈ X(T )} also give a complete set of irreducible Br- (resp. B+
r -)

supermodules. Given λ ∈ X(T ), let

Zr(λ) := coindGr
B+
r
ur(λ).

Note dimZr(λ) = 2b(hp′ (λ)+1)/2c(2pr)N . Let Lr(λ) be the Gr-head of Zr(λ).

Theorem 9.5. The modules {Lr(λ) | λ ∈ X(T )} form a complete set of irreducible
Gr-supermodules, with Lr(λ) ∼= Lr(µ) if and only if λ− µ ∈ prX(T ).

Proof. One can easily see that the Br-module ur(λ) is a quotients of Zr(λ). More-
over, by (9.3), we have dim HomUr(Zr(λ), k) = dim ur(λ). Hence, Zr(λ) has irre-
ducible Br-head ' ur(λ). It follows at once that Zr(λ) has irreducible Gr-head,
so that Lr(λ) is an irreducible Gr-supermodule. Now, if L is any irreducible Gr-
supermodule, choose λ ∈ X(T ) so that HomB+

r
(ur(λ), L) 6= 0. Then Frobenius

reciprocity gives that L is isomorphic to a quotient of Zr(λ), hence L ∼= Lr(λ). Fi-
nally, since the Br-head of Lr(λ) is ur(λ), we get from Lemma 9.4 that Lr(λ) ∼= Lr(µ)
if and only if λ− µ ∈ prX(T ). �

Now we begin the proof of the Steinberg tensor product theorem. It suffices from
now on to consider the special case r = 1, since the tensor product theorem is already
proved for Gev.
Lemma 9.6. Let L be an irreducible G-supermodule. Then, L is completely reducible
as a G1-supermodule.

Proof. Pick L1 in the G1-socle of L. Since G1 is a normal subgroup of G, we have
for each g ∈ G(k) that the translate gL1 is an irreducible G1-submodule of L. Hence
M :=

∑
g∈G(k) gL1 is a completely reducible G1-submodule of L. To complete the

proof, we just need to show that M = L. This will follow from irreducibility of L
if we check that M is invariant under the action of Dist(G). By definition, M is
invariant under G(k). So M is a Gev-submodule of L, for example by [11, I.2.12(5)]
since G(k) = Gev(k) is dense in Gev (cf [11, I.6.16]). So M is invariant under both
Dist(Gev) and Dist(G1). But Dist(G) is generated by Dist(Gev) and Dist(G1), so
M is invariant under Dist(G). �

Lemma 9.7. Let λ ∈ X+
p (T ). Then, Dist(G1)L(λ)λ is a G1-submodule of L(λ)

isomorphic to L1(λ).

Proof. As a B+-supermodule, L(λ)λ ' u(λ), so as a B+
1 -supermodule it is ' u1(λ).

Hence there is an even B+
1 -supermodule homomorphism u1(λ) → L(λ) with image

L(λ)λ. Applying Frobenius reciprocity, we obtain a G1-supermodule homomorphism
Z1(λ) → L(λ) with image Dist(G1)L(λ)λ. By Lemma 9.6, Dist(G1)L(λ)λ is com-
pletely reducible, while Z1(λ) has irreducible G1-head. So in fact Dist(G1)L(λ)λ is
an irreducible G1-supermodule isomorphic to the head L1(λ) of Z1(λ). �
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Now we introduce the restricted weights (cf. [2, §9]): call λ =
∑n

i=1 λiεi ∈ X+
p (T )

restricted if λi − λi+1 ≤ p when p - λi, and λi − λi+1 < p when p | λi, for each
i = 1, . . . , n−1. Let X+

p (T )res denote the set of all restricted λ ∈ X+
p (T ). The proof

of the next lemma is based on the argument in [1, 6.4].

Lemma 9.8. For λ ∈ X+
p (T )res, the irreducible G-supermodule L(λ) is also irre-

ducible as a G1-supermodule, and resGG1
L(λ) ' L1(λ).

Proof. Let M = Dist(G1)L(λ)λ. By Lemma 9.7, M ' L1(λ). So we just need to
show that M = L(λ), which will follow if we can show that M is invariant under
the action of Dist(G). But Dist(G) is generated by Dist(Gev) and Dist(G1), so we
just need to check that M is invariant under the action of Dist(Gev). Since B+

ev

normalizes G1 and L(λ)λ is a B+
ev-submodule of L(λ), M is invariant under the

action of Dist(B+
ev); in particular, M is the sum of its weight spaces. Therefore we

just need to prove that:

(∗) e(r)
i+1,iv ∈M for all v ∈Mµ, i = 1, . . . , n− 1, r ≥ 1 and all µ ∈ X(T ).

We prove (∗) by downward induction on the weight µ.
To start the induction, we need to consider the case µ = λ. Here we need to show

that e(r)
i+1,iv ∈ M for all r ≥ 1 and v ∈ L(λ)λ. But e(r)

i+1,iv = 0 for r > λi − λi+1 by

SL(2) theory, while clearly e
(r)
i+1,iv ∈ M for r < p. This just leaves the case when

λi − λi+1 = p, when p - λi by assumption; we need to check that e(p)
i+1,iv ∈M for all

v ∈ L(λ)λ. In fact we will show more, namely, that

e
(p)
i+1,iv = e

(p−1)
i+1,i e

′
i+1,ihv, where h =

h′i − h′i+1

λi + λi+1
.

Well, consider m = e
(p)
i+1,iv − e

(p−1)
i+1,i e

′
i+1,ihv. If m 6= 0, then (since L(λ)U

+
= L(λ)λ)

we can find a PBW monomial x in Dist(U+) such that xm is a non-zero vector
in L(λ)λ. But by weights, the only possibilities for the monomial x are e(p)

i,i+1 and

e′i,i+1e
(p−1)
i,i+1 . We note that (h′i−h′i+1)hv = v. So using the commutator relations (cf.

[26, Lemma 5]), we get that:

e
(p)
i,i+1m =

(
hi − hi+1

p

)
v −

(
hi − hi+1 − 1

p− 1

)
ei,i+1e

′
i+1,ihv

= v − (h′i − h′i+1)hv = 0,

e′i,i+1e
(p−1)
i,i+1 m = e′i,i+1ei+1,i

(
hi − hi+1 − 1

p− 1

)
v

−e′i,i+1

(
hi − hi+1

p− 1

)
e′i+1,ihv

−e′i,i+1ei+1,i

(
hi − hi+1 − 2

p− 2

)
ei,i+1e

′
i+1,ihv

= (h′i − h′i+1)v − 0− (h′i − h′i+1)2hv = 0.

This shows that m = 0, as required.
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Now take µ < λ and assume (∗) has been proved for all greater µ. Any v ∈ Mµ

can be written as es,s+1w or e′s,s+1w for some s and w ∈Mµ+εs−εs+1 . Then,

e
(r)
i,i+1v = e

(r)
i,i+1es,s+1w or e

(r)
i,i+1e

′
s,s+1w.

Now one uses the commutator relations once more together with the inductive hy-
pothesis to see that in either case the expression on the right hand side lies in M . �

Given any Gev-module M (viewed as a supermodule concentrated in degree 0̄)
we can inflate through F = F 1 : G → Gev to obtain a G-supermodule F ∗M , the
Frobenius twist of M . Thus, we have a functor

F ∗ : modGev → modG.

Conversely, given a G-supermodule N , there is an induced Gev-module structure
on the fixed point space NG1 : the representation G → GL(NG1) is constant on
G1-cosets so factors to Gev → GL(NG1) by Lemma 9.1. (In case N is infinite
dimensional, equal to the direct limit of its finite dimensional submodules, one needs
here to use the fact that taking fixed points commutes with direct limits.) Thus we
have a functor

?G1 : modG → modGev

which is right adjoint to F ∗. Now we can prove the main result of the section:

Theorem 9.9. For λ ∈ X+
p (T )res, µ ∈ X+(T ),

L(λ+ pµ) ∼= L(λ)⊗ F ∗Lev(µ)

as a G-supermodule.

Proof. For λ ∈ X+
p (T )res, L(λ) is irreducible as a G1-supermodule by Lemma 9.8.

By Lemma 9.7,
H := HomG1(L(λ), L(λ+ pµ))0̄

is non-zero (replacing L(λ + pµ) by ΠL(λ + pµ) if necessary). In what follows, we
view H as a G-supermodule by conjugation, so the action of u ∈ Dist(G) is given
by (uf)(l) =

∑
i uif(σ(u′i)l) for f ∈ H, l ∈ L(λ) if δ(u) =

∑
i ui ⊗ u′i (where σ is the

antipode on Dist(G)). One checks directly from this that the map

θ : H ⊗ L(λ)→ L(λ+ pµ), f ⊗ l 7→ f(l)

is an even G-supermodule homomorphism. Since it is non-zero and L(λ + pµ) is
irreducible, θ is surjective. On the other hand, by Schur’s lemma,

dim HomG1(L(λ), L(λ+ pµ))0̄ ⊗ L(λ)
≤ (dimL(λ+ pµ)/dimL(λ)) dimL(λ)
= dimL(λ+ pµ),

hence θ is in fact an isomorphism. Finally, since the action of G1 on H is trivial,
we must have that H ' F ∗M for some Gev-module M . Moreover, M must be
irreducible since L(λ+ pµ) is irreducible. But the highest weight of H is pµ, hence
M ∼= Lev(µ). �
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10. Polynomial representations

Recall that k[Mat] = k[si,j , s′i,j | 1 ≤ i, j ≤ n], and k[G] is the localization of
k[Mat] at det. We call a representation M of G = Q(n) polynomial if the image of
the structure map η : M →M ⊗ k[G] lies in M ⊗ k[Mat].

More generally, given any standard Levi subgroup Gγ of G, we can talk about
polynomial representations ofGγ , defined in an entirely analogous way. In particular,
we can talk about polynomial representations of H: an H-supermodule M with
structure map η : M →M ⊗ k[H] is polynomial if η(M) ⊆M ⊗ k[xi, x′i | 1 ≤ i ≤ n]
where xi, x′i are the restrictions of the coordinate functions si,i, s′i,i to H respectively.

The natural G-supermodule V is a polynomial representation, as is any subquo-
tient of V ⊗d for any d ≥ 0, but the dual G-supermodule V ∗ is not polynomial.
Thus, the natural duality ∗ on finite dimensional G-supermodules does not respect
polynomial representations. However, there is another duality denoted τ which does
take polynomial representations to polynomial representations. To define this, let
τ : k[G] → k[G] be the unique linear map which maps 1 7→ 1, si,j 7→ sj,i, s

′
i,j 7→ s′j,i

and satisfies τ(fg) = τ(g)τ(f) for all f, g ∈ k[G]. By checking on the generators
si,j , s

′
i,j ,det−1, one verifies:

Lemma 10.1. ∆ ◦ τ = T ◦ (τ ⊗ τ) ◦∆ where T : k[G]⊗ k[G]→ k[G]⊗ k[G] is the
unsigned twist f1 ⊗ f2 7→ f2 ⊗ f1.

Now let M be a finite dimensional G-supermodule with structure map η : M →
M ⊗ k[G]. Pick a basis m1, . . . ,mr for M and write η(mj) =

∑r
i=1mi ⊗ ci,j for

ci,j ∈ k[G]. Let f1, . . . , fr be the basis for M∗ dual to m1, . . . ,mr. Define M τ to be
the G-supermodule equal to M∗ as a vector superspace with structure map

ητ : M τ →M τ ⊗ k[G], fj 7→
r∑
i=1

fi ⊗ τ(cj,i).

Note the definition of ητ is independent of the choice of basis, and it is easily checked
to be a comodule structure map using Lemma 10.1. Obviously, (M τ )τ ' M and,
since τ leaves k[Mat] invariant, M τ is polynomial if and only if M is polynomial.
Moreover, M and M τ have the same character since τ fixes each si,i.

Let

Λ(T ) = {λ =
∑n

i=1λiεi ∈ X(T ) | λi ≥ 0 for each i = 1, . . . , n}, (10.2)

Λ+
p (T ) = Λ(T ) ∩X+

p (T ). (10.3)

If M is a polynomial representation of G, it is polynomial over H so in particular
all its weights lie in Λ(T ). Hence all its composition factors are of the form L(λ) for
λ ∈ Λ+

p (T ). We can state [2, Theorem 10.1] (see also [24] over C) as follows:

Theorem 10.4. The modules {L(λ) | λ ∈ Λ+
p (T )} give a complete set of pairwise

non-isomorphic irreducible polynomial representations of G.

Note however that there exist non-polynomial extensions of polynomial L(λ)’s,
unlike the situation for GL(n). For example, the G-supermodule k̃ from (7.6) is
an extension of two copies of the trivial G-supermodule that is not even polynomial
over H. The goal in the remainder of the section is to prove that a G-supermodule is
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polynomial if and only if it is polynomial on restriction toH. There are several proofs
of the analogous statement for GL(n) in the literature, see [7], [8], [10, Prop.3.4]
and [12, Theorem 5.3]. Of these, Jantzen’s argument from [12] adapts easily to our
situation. First we record the following lemma which will easily settle the case p = 0:

Lemma 10.5. If p = 0, every representation of G that is polynomial on restriction
to H is completely reducible.

Proof. This is trivial to check directly ifG = Q(1). Hence, sinceH is a direct product
of copies of Q(1), every polynomial representation of H is completely reducible.

As observed above, if M is a polynomial representation of G that is polynomial
over H then all its composition factors are of the form L(λ) for λ ∈ Λ+

p (T ). So take
λ, µ ∈ Λ+

p (T ) with µ 6> λ and suppose we have an extension

0 −→ L(λ) −→M −→ L(µ) −→ 0

where M is a G-supermodule that is polynomial over H. To prove the lemma, it
suffices to show that the extension splits. By the linkage principle in characteristic 0,
H0(λ) = L(λ) for λ ∈ Λ+

p (T ). Thus, L(λ) is the induced module indGBu(λ). Using
this, one constructs a splitting M → L(λ) of the above short exact sequence in
exactly the same way as in the proof that Ext1

G(L(µ), H̃0(λ)) = 0 in Theorem 7.5,
replacing the injectivity of ũ(λ) there with the complete reducibility of M as an
H-supermodule. �

Now suppose for the next lemma that p > 0. Then we can consider the “thick-
ened” Frobenius kernel GrT defined to be the closed subgroup (F r)−1T of G, so
(GrT )(A) = Gr(A)T (A) for each superalgebra A. The coordinate ring k[GrT ]
is the quotient of k[G] by the ideal generated by {sp

r

i,j | i 6= j}. Note also that
H is a subgroup of GrT . On GrT , we have that detp

r
= (s1,1 . . . sn,n)p

r
, hence

det−1 = detp
r−1(s1,1 . . . sn,n)−p

r
. So

k[GrT ] = k[Mat][s−1
1,1, . . . , s

−1
n,n]/(sp

r

i,j | i 6= j). (10.6)

We also define the following subsets of k[GrT ]:

R := k[Mat]/(sp
r

i,j | i 6= j), (10.7)

Rl := k[Mat][s−1
1,1, . . . , s

−1
l−1,l−1, s

−1
l+1,l+1, . . . , s

−1
n,n]/(sp

r

i,j | i 6= j), (10.8)

for each l = 1, . . . , n. We call a GrT -supermodule M with structure map η : M →
M ⊗ k[GrT ] polynomial if η(M) ⊆M ⊗R.

Lemma 10.9. If p > 0, every GrT -supermodule that is polynomial on restriction
to H is polynomial over GrT .

Proof. Let ui,j , u′i,j (i > j), vi,j , v′i,j (i < j) and xi, x
′
i (1 ≤ i ≤ n) be the standard

coordinate functions (restrictions of various si,j , s′i,j) on Ur, U+
r and H respectively.

Consider the morphism
µ : Ur ×H × U+

r → GrT

induced by multiplication. We claim that µ is an isomorphism of superschemes,
and moreover the functions ui,j , u′i,j , vi,j , v

′
i,j and xi, x

′
i belong to Rn when viewed
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as elements of k[GrT ] via the isomorphism µ. This is proved by induction on n in a
similar way to [12, Lemma 5.1]. For example, for n = 2, the matrix

g =


a b a′ b′

c d c′ d′

−a′ −b′ a b
−c′ −d′ c d

 ∈ (GrT )(A)

can be factorized as

g =


1 0 0 0

ca+c′a′

a2 1 c′a−ca′
a2 0

0 0 1 0
ca′−c′a
a2 0 ca+c′a′

a2 1

×


a 0 a′ 0
0 q 0 q′

−a′ 0 a 0
0 −q′ 0 q



×


1 ab+a′b′

a2 0 ab′−a′b
a2

0 1 0 0
0 a′b−ab′

a2 1 ab+a′b′

a2

0 0 0 1

 ,
where

q = d− abc+ ab′c′ + a′b′c− a′bc′

a2
,

q′ = d′ − ab′c+ a′b′c′ + abc′ − a′bc
a2

.

The point is that d−1 does not appear in these expressions.
Now let M be a GrT -supermodule that is polynomial over H, with structure map

η : M →M ⊗ k[GrT ]. Let mi (i ∈ I) be a homogeneous basis for M and write

η(mj) =
∑
i∈I

mi ⊗ ci,j (10.10)

for some ci,j ∈ k[GrT ]. Given g ∈ (GrT )(A) for some superalgebra A, write g = uhv
for u ∈ Ur, h ∈ H, v ∈ U+

r . Then,

ci,j(g) =
∑
l,m

ci,l(u)cl,m(h)cm,j(v).

Now, ci,l(u) and cm,j(v) are polynomial functions in the coordinates ui,j , u′i,j on Ur
and vi,j , v′i,j of U+

r respectively. Moreover, by the assumption that M is polynomial
over H, cl,m(h) is a polynomial in the coordinates xi, x′i on H. This shows each
ci,j ∈ Rn thanks to the previous paragraph.

The symmetric group W acts on GrT by conjugation, hence for each w ∈ W
we obtain a new GrT -supermodule wM by twisting the action by w. The matrix
coefficients of wM are the functions w·ci,j where the ci,j ’s are as defined in (10.10) and
(w · ci,j)(g) = ci,j(w−1gw). Clearly each wM is polynomial over H too, so applying
the previous paragraph to wM instead shows that w · ci,j ∈ Rn, hence ci,j ∈ Rw−1n,
for all w ∈ W . But R =

⋂n
l=1Rl. Thus we have shown that each ci,j ∈ R, hence M

is polynomial over GrT . �
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Theorem 10.11. A G-supermodule M is polynomial if and only if it is polynomial
on restriction to H.

Proof. Obviously, any polynomial representation of G is polynomial over H. So
suppose instead that M is a G-supermodule that is polynomial over H. In case
p = 0, Lemma 10.5 shows that M is completely reducible. Hence M is a direct
sum of L(λ)’s for λ ∈ Λ+

p (T ). But all such L(λ) are polynomial by Theorem 10.4.
Now assume p > 0. By Lemma 10.9, M is polynomial over GrT for all r ≥ 1. This
implies that M is polynomial over G by the argument of [12, Corollary 5.4]. �

Corollary 10.12. If M is a B-supermodule that is polynomial over H, then indGBM
is polynomial over G. In particular, each H0(λ) for λ ∈ Λ+

p (T ) is polynomial.

Proof. It suffices to prove this for finite dimensional M , in which case indGBM is
finite dimensional too by Lemma 6.10(iii). Set

P := M τ , Q := (indGBM)τ .

By the theorem, we just need to check that Q is polynomial over H. Since we can
conjugate by W , it suffices in turn to check that Q is polynomial over the subgroup
H(1) ∼= Q(1) embedded into G in the bottom right hand corner. Let P0 (resp. Q0)
denote the sum of all weight spaces of P (resp. Q) with εn-component equal to zero,
and P>0 (resp. Q>0) denote the sum of all weight spaces with εn-component greater
than zero. All weights of M lie in Λ(T ), so the same is true for Q by Lemma 6.10(i).
Hence,

P = P0 ⊕ P>0, Q = Q0 ⊕Q>0.

All H(1)-supermodules of weight > 0 are polynomial. Hence, Q>0 is certainly
polynomial over H(1). Moreover, P0 is polynomial over H(1) by assumption.

By Lemmas 6.8 and 6.9, there is a B+-homomorphism indGBM ↪→ M ⊗ k[U+].
Considering the U+-fixed points, we get an H-homomorphism indGBM → M that
is injective on the B+-socle of indGBM . Applying τ , we get an H-homomorphism
ρ : P → Q whose image generates Q as a B-supermodule.

Let B(n− 1) denote the Borel subgroup of Q(n− 1) embedded into G in the top
left hand corner. Then, by the previous paragraph, Q0 is generated as a B(n− 1)-
supermodule by ρ(P0). Thus,

Q0 =
∑

1≤j<i<n, r≥0

(
e

(r)
i,j ρ(P0) + e

(r)
i,j e
′
i,jρ(P0)

)
.

Since each such e
(r)
i,j and e′i,j centralizes H(1), this shows that Q0 is a sum of H(1)-

homomorphic images of P0. Since P0 is polynomial over H(1), this implies that Q0

is polynomial over H(1) too, completing the proof. �

Remark 10.13. In particular, the corollary shows that the supermodules

V (λ) ∼= H0(λ)τ (10.14)

defined in (6.12) are polynomial for λ ∈ Λ+
p (T ). Comparing Lemma 6.13 and [2,

Lemma 8.3] now shows that the V (λ) as defined here coincide with the V (λ) intro-
duced in [2] for λ ∈ Λ+

p (T ).
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