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Introduction

Let G denote the finite general linear group GLn(Fq) over the finite field with q elements.
Associated to each partition λ of n, there is an irreducible unipotent complex character
χλ of G. The degree of χλ is a polynomial in q given by Green’s hook formula [8,
p.444]; the polynomial is monic of degree b(λ′) where λ′ is the transpose of λ and, for
a partition µ = (m1 ≥ m2 ≥ · · · ≥ mh > 0) of n, b(µ) denotes n(n+1)

2 −
∑h

i=1 imi. An
easy consequence of Green’s formula is that

χλ(1) ≥ qb(λ′).

The purpose of this note is to prove similar lower bounds for the degrees of the irreducible
p-modular Brauer characters of G when p is coprime to q.

We first state a special case of our main result. Let F be an algebraically closed
field of characteristic p > 0 not dividing q. Then, for each partition λ of n, there is
an associated irreducible unipotent FG-module L(1, λ) (see [3, §3.5], or [11] where it is
denoted Dλ). For an integer N ≥ 1, we say that a partition is N -regular if it does not
have N or more non-zero parts that are equal; in particular, the only 1-regular partition
is the zero partition. Then we show:

Theorem A. Let λ be an e-regular partition of n, where e is minimal such that 1 + q+
· · ·+ qe−1 ≡ 0 (mod p). Then, dimL(1, λ) ≥ qb(λ′).

Thus, for e-regular partitions, the same lower bound as in characteristic 0 can be used.
If the regularity assumption is dropped, it is easy to find examples where the bound fails
(e.g. take λ = (1e)).

To formulate our main theorem in the general case, we need to recall a parametriza-
tion of the irreducible FG-modules. First, take σ ∈ F̄×q of degree d over Fq. Define `(d)
to be the order of the image of qd in F×. A partition λ will be called σ-regular if either
σ is a p′-element and λ is `(d)-regular, or σ has order divisible by p and λ is p-regular.
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For k ≥ 1 and each (not necessarily regular) partition λ of k, there is an associated
irreducible F GLdk(q)-module L(σ, λ) (see [3, §3.5], or [12] where it is denoted D(σ, λ)).
Note that the precise labelling of L(σ, λ) is not canonical: in the approach of [3], it
depends ultimately on the choice of an embedding of F̄×q into the group of units of the
algebraic closure of the p-adic field.

Choose a set Φ0 of orbit representatives for the action of Gal(F̄q/Fq) on F̄×q . If
σ ∈ Φ0 is a p′-element of degree d and i ≥ 0, we say that τ is an ith twist of σ if
τ ∈ Φ0 has degree d`(d)pi, order divisible by p and p′-part conjugate to σ. Now let Φp

be some subset of Φ0 containing all p′-elements of Φ0, and exactly one ith twist of every
p′-element of Φ0 for every i ≥ 0 (such a subset exists by [3, (2.1a)]). We should point out
that L(σ, λ) ∼= L(τ, λ) whenever σ, τ ∈ F̄×q have the same degree and conjugate p′-parts,
which ensures that the parametrization of irreducibles described in the next paragraph
is really independent of this choice of Φp.

We also need the Harish-Chandra operator � as introduced originally by Green [8,
p.403]; see [3, §5.2, §2.2] for its precise definition and properties in the modular case.
Then, every irreducible FG-module L can be written as

L ∼= L(σ1, λ1) � L(σ2, λ2) � . . . � L(σa, λa)

for some a ≥ 1, distinct elements σ1, . . . , σa ∈ Φp of degrees d1, . . . , da, and σi-regular
partitions λi of integers ki ≥ 1 (so n necessarily equals n1k1 + · · ·+naka). This labelling
of L is unique up to reordering of the terms in the Harish-Chandra product, and the
resulting parametrization of the irreducible FG-modules is the one that arises naturally
from Harish-Chandra theory, see e.g. [4]. Its relationship to the more usual parametriza-
tion used in [12] and [3, §4.4] was originally explained in [6]; it is best understood as an
application of the non-defining characteristic tensor product theorem, see [5] or [3, §4.3].

Our main result is as follows.

Theorem B. Given an irreducible FG-module L ∼= L(σ1, λ1) � . . . �L(σa, λa) for a ≥ 1,
distinct elements σ1, . . . , σa ∈ Φp of degrees d1, . . . , da, and σi-regular partitions λi of
integers ki ≥ 1 for i = 1, . . . , a, we have that

dimL ≥ |GLn(q) : GLk1(qd1)× · · · ×GLka(qda)|′qd1b(λ′1)+···+dab(λ′a),

where for an integer N , N ′ denotes its largest divisor that is coprime to q.

We remark that the lower bound in Theorem B is exact if and only if each partition
λi has either just one row (“trivial”) or just one column (“Steinberg”). Moreover, the
lower bound is always a polynomial in q whose leading term is the same as the leading
term in the generic degree for the ordinary irreducible character with the same labelling.

The remainder of the article is organized as follows. In §1, we prove the key auxiliary
result, namely, an analogue of the Premet-Suprunenko theorem [16, 17] for quantum
linear groups. Our proof of this follows the original arguments of [16, 17] closely. The
main result is proved in §2, ultimately as a consequence of the Premet-Suprunenko
theorem and [3, Theorem 5.5d]. Finally, in §3 we apply the theorem to improve on results
of Guralnick and Tiep [9] determining the irreducible FG-modules of small dimension.
In particular, in Theorem 3.4, we list all irreducible FG-modules of dimensions ≤ q3n−9

explicitly.
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1 A q-analogue of the Premet-Suprunenko theorem

In this section, F denotes an arbitrary algebraically closed field and q is a primitive `th
root of unity in F . For convenience, we exclude the possibility that q = 1, since the main
result below is already known [16, 17] in the classical case. Choose a square root v of q
in F so that if ` is odd, then v is also a primitive `th root of unity. We are concerned
with the divided power version of the quantized enveloping algebra of gln over F at
the parameter v, as defined originally by Lusztig [14, 15] and Du [7, §2] (who extended
Lusztig’s construction from sln to gln). We also cite [1, 2] as general references for the
rational representation theory of quantum groups at roots of unity.

To recall some definitions, let t be an indeterminate. Then, the quantized enveloping
algebra UQ(t) associated to gln is the Q(t)-algebra with generators {Ei, Fi,K±1

j | 1 ≤ i <
n, 1 ≤ j ≤ n} subject to the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,
KiEj = tδi,j−δi,j+1EjKi, KiFj = tδi,j+1−δi,jFjKi,

EiFj − FjEi = δi,j
Ki,i+1 −K−1

i,i+1

t− t−1
,

EiEj = EjEi, FiFj = FjFi if |i− j| > 1,

E2
i Ej − (t+ t−1)EiEjEi + EjE

2
i = 0,

F 2
i Fj − (t+ t−1)FiFjFi + FjF

2
i = 0 if |i− j| = 1.

Here, for any 1 ≤ i < j ≤ n, Ki,j denotes KiK
−1
j . For a, b ∈ N, X ∈ UQ(t) and 1 ≤ j ≤ n,

define

[a]! :=
a∏
c=1

tc − t−c

t− t−1
,

[
a

b

]
:=

b∏
c=1

ta−c+1 − t−a+c−1

tc − t−c
,

X(a) :=
Xa

[a]!
,

[
Kj

b

]
:=

b∏
c=1

Kjt
−c+1 −K−1

j tc−1

tc − t−c
.

Let U
Z[t,t−1] be the Z[t, t−1]-subalgebra of UQ(t) generated by the elements E(a)

i , F
(a)
i ,K±1

j

and
[
Kj

a

]
for a ≥ 0, 1 ≤ i < n, 1 ≤ j ≤ n. We then obtain the F -algebra

U := F ⊗
Z[t,t−1]

U
Z[t,t−1]

on change of rings, where we are regarding F as a Z[t, t−1]-module by letting t ∈ Z[t, t−1]
act on F by multiplication by v ∈ F . From now on, we only work with U , so can

denote the images of F (a)
i , E

(a)
i ,K±1

i ,

[
Ki

b

]
∈ U

Z[t,t−1] in U by the same names with-

out confusion. Finally, let U−, U+ and U0 denote the subalgebras of U generated by{
F

(a)
i

∣∣ 1 ≤ i < n, a ≥ 0
}
,
{
E

(a)
i

∣∣ 1 ≤ i < n, a ≥ 0
}

and
{
K±1
i ,

[
Ki

b

] ∣∣∣∣ 1 ≤ i ≤ n, b ≥ 0
}

respectively.
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Let E denote the Euclidean space with orthonormal basis ε1, . . . , εn. For 0 6= λ ∈ E,
λ∨ denotes 2λ/〈λ, λ〉, where 〈., .〉 is the inner product on E. The root system of type
A can be identified with the subset {εi − εj | 1 ≤ i, j ≤ n, i 6= j} of E, and a set of
simple roots is given by the αi := εi − εi+1 for i = 1, . . . , n − 1. The weight lattice is
then the Z-submodule X of E generated by ε1, . . . , εn, where we identify the element
λ =

∑n
i=1 λiεi ∈ X with the unique algebra homomorphism λ : U0 → F such that

Kj 7→ vλj ,

[
Kj

a

]
7→
[
λj

a

]
for 1 ≤ j ≤ n, a ≥ 0.

A weight λ =
∑n

i=1 λiεi ∈ X is dominant, relative to our choice of simple roots, if and
only if λ1 ≥ · · · ≥ λn; we let X+ ⊆ X denote the set of all such dominant weights. We
also have the usual dominance ordering ≤ on X: λ ≤ µ if and only if µ− λ is a sum of
simple roots.

We say a vector v in a U -module V has weight λ if Kv = λ(K)v for all K ∈ U0,
and is a highest weight vector if E(a)

i v = 0 for all 1 ≤ i < n and a ≥ 1. For each
λ ∈ X+, there is a unique irreducible U -module L(λ) generated by a non-zero highest
vector vλ of weight λ. We also recall that L(λ) decomposes as the direct sum of its
weight spaces, i.e. L(λ) =

⊕
µ∈X L(λ)µ where L(λ)µ = {v ∈ L(λ) | v has weight µ}. For

λ ∈ X+, Ω(λ) denotes the set of all weights µ ∈ X appearing with non-zero multiplicity
in Weyl’s character formula for the irreducible gln(C)-module of highest weight λ. So,
µ ∈ Ω(λ) if and only if µ and all its conjugates under the Weyl group are ≤ λ in the
dominance order. Call λ =

∑n
i=1 λiεi ∈ X+ `-restricted if 〈λ, α∨i 〉 = λi − λi+1 < ` for all

i = 1, . . . , n− 1. The first lemma is well known.

1.1. Lemma. Let λ ∈ X+ be `-restricted and 0 6= v ∈ L(λ)µ for some µ ∈ X. If Eiv = 0
for all 1 ≤ i < n, then µ = λ.

Proof. This is equivalent to the fact that for `-restricted λ, the module L(λ) is irre-
ducible over the (thickened) Frobenius kernel, i.e. the subalgebra of U generated by U0

and {Ei, Fi}1≤i<n (see e.g. [2, 1.9]).

1.2. Lemma. Let λ ∈ X+ be `-restricted and fix some 1 ≤ i < n. Given µ = λ −∑
j 6=imjαj for integers mj ≥ 0, the restriction of the operator F (a)

i to the weight space
L(λ)µ is injective for all 0 ≤ a ≤ 〈µ, α∨i 〉.

Proof. We use induction on M :=
∑

j 6=imi. Suppose first that M = 0, when µ = λ and

we need to prove that F (a)
i vλ 6= 0 for all 0 ≤ a ≤ 〈λ, α∨i 〉. Using well known commutation

relations (see e.g. [15, 6.5(a2)], [1, Lemma 1.1]),

E
(a)
i F

(a)
i vλ =

[
〈λ,α∨i 〉
a

]
vλ

which is non-zero as a ≤ 〈λ, α∨i 〉 < `. So certainly F (a)
i vλ 6= 0.
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Now suppose that M > 0 and that the lemma has been proved for all smaller M .
Take 0 6= v ∈ L(λ)µ. We need to show that F (a)

i v 6= 0 for all 0 ≤ a ≤ 〈µ, α∨i 〉. Noting
that Eiv = 0 by weights, Lemma 1.1 implies that for some h 6= i, Ehv 6= 0. By induction,
F

(a)
i Ehv 6= 0 for all 0 ≤ a ≤ 〈λ+αh−

∑
j 6=imjαj , α

∨
i 〉. So, since F (a)

i and Eh commute,

we deduce that F (a)
i v 6= 0 for all 0 ≤ a < 〈λ −

∑
j 6=imjαj , α

∨
i 〉. Now consider the case

a = 〈λ−
∑

j 6=imjαj , α
∨
i 〉. Here,

E
(a)
i F

(a)
i v =

[
a

a

]
v = v

so F (a)
i v 6= 0 as required

1.3. Lemma ([17, Lemma 3],[16, Lemma 3]). Let λ ∈ X+ and µ = λ −
∑

jmjαj
for integers mj ≥ 0 such that µ is dominant. Choose i such that mi is minimal among
all the mj. Then, λ−

∑
j 6=imjαj is a weight in Ω(λ), and mi ≤ 〈λ−

∑
j 6=imjαj , α

∨
i 〉.

Proof. We claim more: for any d ≤ mi and any root α, the weight µ+ dα lies in Ω(λ).
To see this, let α0 = α1 + · · ·+ αn−1 be the highest root and take w in the Weyl group
such that w(µ+dα) is dominant. Then, wµ+wdα ≤ wµ+dα0 ≤ µ+dα0 ≤ λ by choice
of d. So, w(µ+ dα) ≤ λ, as required to show that µ+ dα ∈ Ω(λ). The second statement
of the lemma now follows easily on considering the αi-string through λ −

∑
j 6=imjαj .

Now we can prove the main result of this section. The theorem asserts that for `-
restricted λ, the set of non-zero weights of L(λ) is the same as the set Ω(λ) of non-zero
weights of the corresponding Weyl module. Combining the theorem with the q-analogue
of Steinberg’s tensor product theorem, it allows one to determine the non-zero weights of
L(λ) for arbitrary λ ∈ X+. The proof given here is essentially identical to Suprunenko’s
proof in the classical case [17].

1.4. Theorem. Let λ ∈ X+ be `-restricted. Then, dimL(λ)µ ≥ 1 for all µ ∈ Ω(λ).

Proof. The theorem is clear in the case n = 1, so suppose that n > 1 and that the
result has been proved for all smaller n. For a fixed `-restricted λ ∈ X+, we proceed by
downward induction on the dominance order on Ω(λ), the result being clear for µ = λ.
It suffices to consider the case that µ ∈ Ω(λ) is dominant. Write µ = λ−

∑
jmjαj and

choose i such that mi is minimal.
Suppose first that mi = 0. Then, we pass to the Levi subalgebra U ′ of U generated

by U0 and all E(a)
j , F

(a)
j for j 6= i. The vector vλ generates a U ′-submodule of L(λ) which

is a highest weight U ′-module of highest weight λ (actually, the irreducible U ′-module
of highest weight λ though we do not need this much). By the hypothesis on n, this
submodule has non-zero µ-weight space, as required.

If mi > 0, λ−
∑

j 6=imjαj > µ also lies in Ω(λ) by Lemma 1.3. So, by the induction
hypothesis, L(λ)λ−∑j 6=imjαj

6= 0. By Lemma 1.3 again, mi ≤ 〈λ−
∑

j 6=imjαj , α
∨
i 〉. So

by Lemma 1.2, the operator F (mi)
i gives an injection of L(λ)λ−∑j 6=imjαj

into the required
weight space L(λ)µ. Hence L(λ)µ is non-zero too.
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2 Main results

Let n ≥ 1 and µ = (m1,m2, . . . ,mh) be any composition of n (i.e. m1, . . . ,mh are
non-negative integers summing to n) with mh 6= 0. We say that µ has no gaps if
mi > 0 for all i = 1, 2, . . . , h. If µ has no gaps, we write ν ∼ µ if ν is a composition
with no gaps obtained from µ by reordering its non-zero parts. We denote by µ+ the
unique partition obtained by ordering the parts of µ in decreasing order. Also, µop

denotes the composition with no gaps obtained by reversing the order of the parts (e.g.
(2, 5, 7)op = (7, 5, 2)).

For a composition µ = (m1, . . . ,mh) of n, we define

Int(µ) := {1, 2, . . . , n} \ {m1,m1 +m2, . . . ,m1 + · · ·+mh−1,m1 + · · ·+mh}.

If in addition λ is a partition of n and t is an indeterminate, the following polynomials
in Z[t] were defined in [3, §5.5] by:

Rµ(t) :=
∏

i∈Int(µ)

(ti − 1), Sλ(t) :=
∑
µ∼λ

Rµ(t).

We also let ≤ denote the dominance order on partitions as in the previous section, and
for a partition λ we define the integer b(λ) as in the introduction.

2.1. Lemma. Let λ be a partition of n. Then Rλop(t) is a monic polynomial of degree
b(λ), and degRµ(t) < degRλop(t) for all µ ∼ λ different from λop. In particular, Sλ(t)
is monic of degree b(λ).

Proof. Follows from the definitions.

2.2. Lemma. If µ < λ are distinct partitions of n then b(λ) < b(µ).

Proof. Let λ = (l1, . . . , lh) and µ = (m1, . . . ,mk) be the parts of λ and µ. Then,
we have

∑j
i=1 li ≥

∑j
i=1mi for all j, with strict inequality for at least one j. Hence∑n

j=1

∑j
i=1 li >

∑n
j=1

∑j
i=1mi or

∑n
i=1 ili >

∑n
i=1 imi, which implies the result.

2.3. Lemma. Let µ be a composition of n with no gaps, M := Int(µop), and N be any
subset of M . Then there exists a composition ν of n with no gaps such that ν+ ≤ µ+

and Int(ν) = N .

Proof. Let M = {i1, . . . , ir} and 1 ≤ j ≤ r. It suffices to prove the result for N =
{i1, . . . , îj , . . . , ir}. Let us label the boxes of the Young diagram of µ with 1, 2, . . . , n from
left to right along the rows starting from the bottom row, as in the following picture:

7 8
4 5 6
2 3
1
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Then i ∈M if and only if i is not the last entry in a row. Now, let ij be contained in row
k and column l. Set ν := (µ1, . . . , µk−1, l, µk − l, µk+1, . . . , µh). For instance, if ij = 5 in
the example above, then

ν =

It is clear that Int(ν) = {i1, . . . , îj , . . . , ir} and ν+ ≤ µ+.

If M ⊆ {1, . . . , n}, we set

ϕM (t) :=
∏
i∈M

(ti − 1).

In particular, Rν(t) = ϕInt(ν)(t). Also set σ(M) =
∑

i∈M i.

2.4. Lemma.
∑

N⊆M ϕN (t) = tσ(M).

Proof.
∑

N⊆M
∏
i∈N (ti − 1) =

∏
i∈M ((ti − 1) + 1) =

∏
i∈M ti = tσ(M).

2.5. Theorem. For a positive integer q and a partition λ of n,∑
µ≤λ

Sµ(q) ≥ qb(λ),

summing over partitions µ of n, with equality if and only if λ = (n) or (1n).

Proof. For every N ⊆ Int(λop) pick νN with (νN )+ ≤ λ and Int(νN ) = N . This is
possible in view of Lemma 2.3. Then, we have∑

µ≤λ
Sµ(q) =

∑
N⊆Int(λop)

RνN (q) + (∗)

where (∗) stands for a sum of certain terms of the form Rν(q). Observe by the definition
of Rν(q), (∗) is a non-negative integer. Moreover, using Lemma 2.4 we get∑

N⊆Int(λop)

RνN (q) =
∑

N⊆Int(λop)

ϕInt(νN )(q) =
∑

N⊆Int(λop)

ϕN (q) = qσ(Int(λop))

which equals qb(λ). This proves the inequality. To see that it is strict if λ 6= (n), (1n),
observe that then there is some 1 ≤ m < n not contained in Int(λop). Set ν =
(1m−1, 2, 1n−m−1); then, ν+ ≤ λ and Int(ν) = {m} which is not contained in Int(λop).
So the term Rν(q) gives a non-zero contribution to (∗) which makes the inequality strict.
Finally, for λ = (n) or (1n), one easily sees that the term (∗) is zero so equality holds in
these cases.
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Now we can prove Theorem B from the introduction. For partitions λ, µ of n and
d ≥ 1 define

mλ,µ(qd) := dimL(λ)µ,

the dimension of the µ-weight space of the irreducible highest weight module L(λ) over
the quantum gln over F as in §1 but with the image of qd in F replacing the parameter
q there; all other notation is as in the introduction. We state [3, Theorem 5.5d]:

2.6. Lemma. For σ ∈ Φp of degree d and a partition λ of k ≥ 1,

dimL(σ, λ′) = |GLdk(q) : GLk(qd)|′
∑
µ≤λ

mλ,µ(qd)Sµ(qd)

where the sum is over partitions µ of n.

Combining this with Theorem 1.4 (or [16, 17] if qd ≡ 1 (mod p)) and Theorem 2.5,
we deduce immediately that:

2.7. Theorem. For σ ∈ Φp of degree d and a σ-regular partition λ of k ≥ 1,

dimL(σ, λ′) ≥ |GLdk(q) : GLk(qd)|′qdb(λ)

with equality if and only if λ = (k) or (1k).

Theorem B in the introduction now follows immediately from this and the definition
of the Harish-Chandra operator �. To deduce Theorem A, it is obviously a special case
of Theorem B unless q ≡ 1 (mod p), in which case there exists a 0th twist σ of 1, also of
degree 1 over Fq. Then, L(1, λ) ∼= L(σ, λ) and using this observation, the statement in
Theorem A again follows as a special case of Theorem B.

3 Application: low-dimensional representations

Now we illustrate the usefulness of Theorem B by applying it to list all irreducible FG-
modules of dimension ≤ q3n−9. For simplicity, we only consider n ≥ 5 (for n < 5 it is
an easy matter to explicitly list all irreducible FG-modules and their dimensions using
[13]).

Given non-negative integers n1, . . . , na summing to n, define

{n}! :=
(qn − 1)(qn−1 − 1) . . . (q − 1)

(q − 1)n
,

{
n

n1,...,na

}
:=

{n}!
{n1}!{n2}! . . . {na}!

,

{k|d} :=
∏dk
i=1(qi − 1)∏k
i=1(qdi − 1)

.

Note that the index |GLn(q) : GLn1(q)×· · ·×GLna(q)|′ equals
{

n

n1,...,na

}
and the index

|GLdk(q) : GLk(qd)|′ = {k|d}.
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3.1. Lemma. For a ≥ 2 and n1, . . . , na ≥ 1 with n = n1 + · · ·+ na,{
n

n1,...,na

}
> q

∑
1≤i<j≤a ninj .

Proof. Noting that qn−1
qm−1 > qn−m for n > m, we have for a = 2 that{

n

n1,n2

}
=

(qn − 1) . . . (qn−n1+1 − 1)
(qn1 − 1) . . . (q − 1)

> (qn−n1)n1 = qn1n2 .

Since
{

n

n1,...,na

}
=
{

n

n1+n2,n3,...,na

}{
n1+n2

n1,n2

}
, the general case a > 2 now follows easily

by induction.

3.2. Lemma. Suppose that n = kd for integers k ≥ 1, d ≥ 2. Then,

{k|d} > q
1
2
n(n−k)−1−δq,2 ≥ q

n2

4
−2.

Proof. Dividing both sides by q
1
2
n(n−k), the inequality is equivalent to proving that∏

1≤i≤n,d-i

(
1− 1

qi

)
>

1
q1+δq,2

.

The left hand side is certainly greater than the infinite product
∏
i≥1

(
1− 1

qi

)
. Using a

theorem of Euler [10, Theorem 353], this is bounded below by

1− 1
q
− 1
q2

=
q2 − q − 1

q2
≥ 1
q1+δq,2

,

which completes the proof of the first inequality. The second is obvious.

3.3. Lemma. Suppose that n ≥ 5, a ≥ 2, 1 ≤ n1 ≤ · · · ≤ na and n = n1 + · · ·+ na. If{
n

n1,...,na

}
≤ q3n−9 then (n1, . . . , na) is equal to either (r, n−r) with r ≤ 2 or (1, 1, n−2).

Proof. First suppose that a = 2. It is enough to show that
{

n

3,n−3

}
> q3n−9, which

follows from Lemma 3.1. Now suppose that a = 3. Since
{

n

n1,n2,n3

}
≥
{

n

n1+n2,n3

}
,

one can only have (n1, n2, n3) = (1, 1, n − 2) by what we have proved so far. Similarly,
a > 3 cannot occur.

Now we prove the main result of the section:
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3.4. Theorem. Let n ≥ 5 and L be an irreducible FG-module. Then,

dimL ≤ q3n−9

if and only if L is isomorphic to one of the modules in the table below. In the table, δn, ε
are defined by

δn =
{

1 if e|n,
0 otherwise,

ε =


1 if e > 2 and e|n− 1, or e = 2 and 2p|(n− 1),
−1 if e = 2, 2|n and 2p - (n− 2),
0 otherwise

where e is the smallest positive integer such that 1 + q + · · ·+ qe−1 ≡ 0 (mod p).

L dimL Conditions
L(σ, (n)) 1 deg(σ)=1

L(σ, (n−1, 1)) qn−q
q−1 − δn deg(σ)=1

L(σ, (n−2, 2)) (qn−1)(qn−1−q2)
(q2−1)(q−1) −δn−2

qn−q
q−1 −ε deg(σ)=1, n > 5,

(n, q) 6= (6, 2)
L(σ, (n−2, 12)) (qn−q2)(qn−q)

(q2−1)(q−1) − δn
qn−2q+1
q−1 deg(σ)=1, n > 6,

(n, q) 6= (7, 2)
L(σ, (3)) (q − 1)(q3 − 1)(q5 − 1) deg(σ)=2, n=6
L(σ, (4)) 27559 deg(σ)=2, n=8, q=2

L(σ1, (1)) � L(σ2, (n−1)) qn−1
q−1 deg(σi)=1, σ1 6=σ2

L(σ1, (1)) � L(σ2, (n−2, 1)) qn−1
q−1

(
qn−1−q
q−1 − δn−1

)
deg(σi)=1, σ1 6=σ2, n > 6,

(n, q) 6= (7, 2)
L(σ1, (2)) � L(σ2, (n−2)) (qn−1)(qn−1−1)

(q2−1)(q−1) deg(σi)=1, σ1 6=σ2, n > 5,
(n, q) 6= (6, 2)

L(σ1, (12)) � L(σ2, (n−2)) (qn−1)(qn−1−1)
(q2−1)(q−1) (q − δ2) deg(σi)=1, σ1 6=σ2, n > 6,

if e - 2 then (n, q) 6= (7, 2)
L(σ1, (1)) � L(σ2, (n−2)) (qn−1)(qn−1−1)

(q2−1) deg(σ1)=2,deg(σ2)=1, n > 6,

L(σ1, (1)) � L(σ2, (1)) (qn−1)(qn−1−1)
(q−1)2 deg(σi)=1, σi 6=σj , n > 6,

�L(σ3, (n−2)) (n, q) 6= (7, 2)

Proof. First, we show that if dimL ≤ q3n−9, then L is one of the modules in the table.
Take

L ∼= L(σ1, λ1) � . . . � L(σa, λa)

where the σi of degree di and the σi-regular partitions λi of ki are as in Theorem B.
Also let xi be the number of nodes in the diagram of λi outside of the first row and set
ni = diki, for each i = 1, . . . , a. By Theorem B and Lemma 3.3, we may assume that
(n1, . . . , na) = (n), (r, n−r) with r ≤ 2 or (1, 1, n−2). Consider the case (1, 1, n−2), when

we need to show that d3 = 1 and x3 = 0. Well, if d3 > 1 then dimL > q2n−3q
(n−2)2

4
−2

using Lemmas 3.1–3.2, which for n ≥ 5 is > q3n−9. So, d3 = 1. Now suppose x3 > 0.
Then, by Lemma 3.1 and Theorem B, dimL > q2n−3qn−3 > q3n−9, so x3 = 0. For the
case (2, n − 2), the same argument forces d2 = 1, x2 = 0. For (1, n − 1), first suppose
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that d2 > 1. Then, dimL > qn−1q
(n−1)2

4
−2 which is easily checked to be ≥ q3n−9 for

n ≥ 5. So d2 = 1. Also if x2 > 1, then dimL > qn−1q2n−6 > q3n−9 using Lemma 3.1 and

Theorem B. So x2 ≤ 1. Finally, consider the case a = 1. If d1 ≥ 2, we get dimL > q
n2

4
−2

which easily forces n ≤ 8. A little further direct calculation reveals the only possibilities
are then d1 = 2 and n = 6, or d1 = 2, n = 8 and q = 2. Finally, if d1 = 1, and x1 ≥ 3,
then dimL > q3n−9 applying Theorem 2.7 (note the equality there is certainly strict for
x1 ≥ 3).

To calculate the dimensions of the entries in the table, one uses the hook formula
and the following fragment of the unipotent decomposition matrix of GLn(Fq) (in the
notation of [13]):

(n) (n− 1, 1) (n− 2, 2) (n− 2, 12)
(n) 1 0 0 0
(n− 1, 1) δn 1 0 0
(n− 2, 2) κ δn−2 1 0
(n− 2, 12) 0 δn 0 1

where

κ =


1 if e = 2 and n ≡ 1 or 2 (mod 2p),
δn−1 if e > 2,
0 otherwise.

The entries in this decomposition matrix follow at once from [13, Theorem 6.22] (for
hook partitions) or [11, Theorem 20.6] (for two row partitions).

Finally, we need to determine which of the remaining possibilities do indeed satisfy
the bound. Certainly, the largest dimension of any of our modules is

(qn − 1)(qn−1 − 1)
(q − 1)2

< q2n−2+δq,2 ,

so for n ≥ 7 + δq,2, all entries do definitely satisfy the bound dimL ≤ q3n−9. Further
calculation for n < 7 + δq,2 gives rise to some extra exclusions for small n and q, as in
the table.

3.5. Remark. There are several irreducible FG-modules with q3n−9 < dimL ≤ q3n−8.
The smallest of these is the module L(σ, (n − 3, 3)) for σ of degree 1, whose dimension
generically is (qn−1)(qn−1−q)(qn−2−q2)

(q3−1)(q2−1)(q−1)
.
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