A NEW APPROACH TO THE REPRESENTATION THEORY OF THE PARTITION
CATEGORY

JONATHAN BRUNDAN AND MAX VARGAS

ABsTRACT. We explain a new approach to the representation theory of the partition category based on a re-
formulation of the definition of the Jucys-Murphy elements introduced originally by Halverson and Ram
and developed further by Enyang. Our reformulation involves a new graphical monoidal category, the
affine partition category, which is defined here as a certain monoidal subcategory of Khovanov’s Heisen-
berg category. We use the Jucys-Murphy elements to construct some special projective functors, then
apply these functors to give self-contained proofs of results of Comes and Ostrik on blocks of Deligne’s

category Rep(S,).

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero and ¢ € k be a parameter. The partition
category Par; is the free strict k-linear symmetric monoidal category generated by a special commuta-
tive Frobenius object of categorical dimension z. Its additive Karoubi envelope is the category Rep(S,)
introduced by Deligne [D], which interpolates the categories of representations of the symmetric groups
S: (t € N) to non-integer values of . When ¢ ¢ N, Deligne’s category is a semisimple tensor cat-
egory which is not of sub-exponential growth, hence, it does not admit a fiber functor; see [EGNO,
Sec. 9.12] for further background here. When 7 € N, the category Rep(S;) is not semisimple, and its
semisimplification is the usual tensor category kS,;-Modgq of representations of the symmetric group.

The objects of the partition category are indexed by the natural numbers. For n € N, the endomor-
phism algebra Endap,,, (n) is the partition algebra P,(t) introduced by Martin [M1] and Jones [J]. The
representation theory of this finite-dimensional algebra has been well studied. In [M2], Martin showed
that P, (¢)-Modg is a highest weight category except when ¢ = 0, and he determined the precise struc-
ture of the standard modules; see also [DW]. When ¢ = 0, P,(¢) still has the structure of a cellular
algebra, as established in [DW, X], and its representation theory is also well understood. The partition
algebras form a tower Py(t) < P(f) < ---, but the cell modules do not restrict along this tower in a
multiplicity-free way, so that standard techniques like the Jones basic construction cannot be applied
directly. To address this, Martin [M3] and Halverson and Ram [HR] consider an intermediate family of
“half partition algebras” fitting into a tower

Po(t)<P%(¢)<P1(l)<P%(z‘)<...

Halverson and Ram also defined analogs L, L 1 Ly, L% , ... of Jucys-Murphy elements in these partition
algebras, which were studied further by Enyang [E1, E2]. Enyang worked out a recursive definition for
the Jucys-Murphy elements and used them to construct an analog of Young’s orthogonal form for the
irreducible P,(t)-modules. His definition involves a complicated five term recurrence relation, making
the Jucys-Murphy elements for partition algebras considerably harder to work with than the classical
Jucys-Murphy elements of the symmetric groups. Recently, Creedon [Cr] has revisited Enyang’s work,
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showing that supersymmetric polynomials in a renormalization of the Jucys-Murphy elements give a
family of central elements which is large enough to separate blocks.
In this article, we give a new treatment of the representation theory of Par;. Let

Par; := (—B Homg,,, (n, m)
m,neN

be the path algebra of this k-linear category, denoting the idempotents arising from the identity endo-
morphisms of the objects of Par, by {1, | n € N}. Since the partition algebra P,(t) is the idempotent
truncation 1,Par1,, most of the known results about the representation theory of the algebras P, ()
can be deduced from that of the partition category in a standard way. In fact, as well as producing
more general results, we are convinced that it is easier to study the representation theory of the parti-
tion category Par;, instead of working with the tower of partition algebras. To start with, Par; has an
efficient monoidal presentation encoding its universal property, with generating morphisms >< (“cross-
ing”), A (“merge”), Y (“split”), /) (“cap”), U (“cup”), ¢ (“downward leaf”) and & (“upward
leaf”); see Definition 3.1. This means that one can make calculations in Par, using the string calculus
for strict monoidal categories, which seems more flexible than the traditional algebraic expressions used
when working in P,(¢). But the key reason we prefer to work with Par, is that its path algebra has a
triangular decomposition in the sense of [BS, Def. 5.31], hence, the category Par,-Modjgq of locally
finite-dimensional Par,-modules is an upper finite highest weight category as in [BS, Def. 3.34]. The
Cartan subalgebra in this triangular decomposition is the locally unital algebra

Sym = @ kS,.,
n=0
with its irreducible modules being the Specht modules {S (1) | 4 € P} indexed by the set  of all
partitions. The standard modules {A(A) | A € P} for Par, are the modules defined by parabolically
inducing the Specht modules. Then we obtain a full set of pairwise inequivalent irreducible Par;-
modules {L(1) | A € P} from the irreducible heads of the standard modules. This gives a quick proof
of the classification of irreducible Par,-modules, which was established originally by Deligne [D] and
Comes and Ostrik [CO].

The highest weight approach to the representation theory of combinatorial monoidal categories such
as the partition category as just outlined has been developed systematically by Sam and Snowden [SS2].
In their language, Par; is a monoidal triangular category. There are many other interesting examples of
this structure, including several that are actually monoidal subcategories of Par,: the Brauer category
(cups, caps and crossings but no splits and merges), the Temperley-Lieb category (just cups and caps),
and the category studied by Khovanov and Sazdanovic in [KS] (just leaves). In their earlier work [SS1],
Sam and Snowden had already exposed the importance of the structure of the Borel subcategories of
these and other such categories, although at that time they did not work out the details fully in the case
of the partition category. In §3, we fill this gap by giving an exposition of some of their ideas in this case,
exploiting the structure of the upper partition category, i.e., the positive Borel subcategory, to determine
the Grothendieck ring Ko (Par;) of the category of finitely generated projective Par,-modules. In fact,
as a ring, this is identified with the ring A of symmetric functions, but the isomorphism classes of the
standard modules A(1) produce an interesting inhomogeneous basis {5,|1 € P} for A of deformed Schur
functions. These also appeared implicitly in [D, CO] and again in [SS1], and were rediscovered from a
slightly different perspective by Orellana and Zabrocki [OZ]. They are interesting because the structure
constants for multiplication in A with respect to this basis are the reduced Kronecker coefficients.

Although there are many important examples of monoidal triangular categories, and the work of Sam
and Snowden has revealed many common features, this still seems to be a subject where the more intri-
cate combinatorics needs to be studied separately in each case. For example, one wants to understand
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the center of the underlying category, and the induced decomposition of the irreducible representations
into blocks which comes from considering central characters. This can be framed as a question about
an analog of Harish-Chandra homomorphism for monoidal triangular categories; see §5.1. However, to
answer it, one needs some way to construct sufficiently many central elements, and we do not know any
uniform way to approach this. After understanding the block decomposition, the next step is to consider
the combinatorics of special projective functors, which are functors on the module category induced by
tensoring with generating objects of the underlying monoidal category.

The crucial new ingredient in our approach to Par; is the definition of another graphical monoidal
category, the affine partition category APar. This is obtained from the partition category by adjoining
two new generating morphisms o-| (“left dot”) and |—o (“right dot”) in such a way that Par, can be
recovered as the quotient of A%Par by a certain left tensor ideal, with the left and right dots mapping
to renormalized versions of the Jucys-Murphy elements; see Theorem 4.15 and Corollary 4.19. How-
ever, it is not easy to do this without making additional choices. The actual definition of A4Par given
in Definition 4.6 below adopts a quite different point of view based on an observation due to Likeng
and Savage [LSR]: we construct A%Par initially as a monoidal subcategory of Khovanov’s Heisenberg
category Heis from [K]. This allows complicated relations in A%Par to be derived rather quickly by ele-
mentary calculations using the string calculus for Heis; e.g., see Lemma 4.10 which recovers Enyang’s
five term recurrence relation for the Jucys-Murphy elements.

In the affine partition category, there is an obvious way to construct a large family of central ele-
ments; see Theorem 4.23. These map to central elements in Par, which turn out to be closely related to
Creedon’s central elements of the partition algebras from [Cr]. After that, we consider the self-adjoint
projective functor

D : Par,-Mod — Par,-Mod

induced by tensoring with the generating object 1 of Par,. This plays an analogous role in our ap-
proach to induction and restriction along the tower of partition algebras in the work of Martin and
others discussed earlier. We use the action of the left and right dots from A%Par to decompose D into
summands D = @, ,c, Dp|q; see Theorem 5.18. There is a close analogy here to the way Jucys-Murphy
elements were used to give a new approach to the representation theory of the symmetric groups in
[OV]. In fact, the Jucys-Murphy elements of Par, generate a large commutative subalgebra, and the
resulting “Gelfand-Tsetlin characters” of the standard modules A(1) can be computed explicitly using
the branching rules from Theorem 5.18, although we do not pursue this further here. Finally, we use
the combinatorial properties of the special projective functors Dy, to reprove the main structural result
about the representation theory of Par, for t € N. This was established originally by Comes and Ostrik
[CO].

Theorem. When t € N, i.e., Par, is not semisimple, the non-simple blocks of Par; are in bijection with
isomorphism classes of irreducibles in the semisimplification kS ;-Modgg. All of the non-simple blocks
are Morita equivalent. These blocks have infinitely many isomorphism classes of irreducible modules
parametrized by N, and the structure of the corresponding indecomposable projectives is as follows:

0 / \ / \ / \
§ . P(1) P(2) P(3)
1 \ / \ / \ /

v
—~
=)
S~—
Il
Il
I
|
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For a more formal statement, see Theorem 5.24. It is a straightforward exercise to deduce from this
that each non-simple block is Morita equivalent to the path algebra of the infinite quiver

X0 X1 X2
~— ~— ~—
Yo V1 y2

- with relations yoxo = 0, Xi+1X; = yiyit1 = Xiyi — Yi+1Xi+1 = 0.

This quiver is well known in representation theory, for example, it also describes the non-trivial block
of the Temperley-Lieb category, as noted in [CO, Rem. 6.5].

It is interesting to compare the general strategy developed here with the original arguments of Comes
and Ostrik. There are many parallels. For example, they also construct a large family of central elements,
although different from ours, and they also use summands of the functor D to construct equivalences
between blocks; see Remark 4.27 and Theorem 5.21. Another technique which is crucial in [CO] is
the idea of lifting projectives to the (semisimple) generic partition category. In our approach, this is
replaced everywhere with arguments involving standard modules and the BGG reciprocity coming from
the highest weight structure. In fact, largely due to the fact that they did not think in these module-
theoreic terms, Comes and Ostrik were forced in the end to refer to some of Martin’s results from [M2]
to obtain the precise submodule structure of projectives in the above theorem, whereas our proof is
independent of loc. cit., indeed, Martin’s results can now be deduced from here. One more key idea
used by Comes and Ostrik involves an explicit formula for categorical dimensions derived ultimately
from the hook formula, although we have avoided such considerations entirely by exploiting the functors
Dy, for a = b. The definition of these diagonal components of D cannot be formulated without using
Jucys-Murphy elements, so no counterpart for this part of our argument appears in [CO].

Acknowledgements. We thank Alistair Savage for discussions which influenced the final form of the
definition of the affine partition category given in Definition 4.6.

2. MONOIDAL CATEGORIES AND REPRESENTATIONS

In the opening section, we explain our general conventions for representations of k-linear (monoidal)
categories. Always in this article k will be an algebraically closed field of characteristic zero, although
all of the generalities recorded make sense more generally. Then we briefly recall some classical results
about Sym, the free strict k-linear symmetric monoidal category on one object, which categorifies the
ring of symmetric functions.

2.1. Path algebras and modules. Let 4 be a k-linear category. Its path algebra is the associative
algebra
A:= (P Homgu(X.Y)
X,Yeob 4

with multiplication induced by composition in 4, sothat gf = go ffor f: X — Y, g: Y — Z. Note
that A is not necessarily unital, but it is always a locally unital algebra, i.e., there is a distinguished
family {1x | X € O4} of mutually orthogonal idempotents such that A = @X,Ye@ . 1yAly. In this case,
Q4 is the object set ob A4 of the category 4, with 1y being the identity endomorphism of X. If 4 is
a finite-dimensional category, i.e., its morphism spaces are finite-dimensional, then the path algebra is
locally finite-dimensional in the sense that dim 1yAly < oo forall X, Y € Q4.

The category A-Mod of left A-modules is the category Homy (A, Vec) of k-linear functors from 4
to the category Vec of vector spaces, morphisms being natural transformations. Equivalently, using
the language we systematically adopt below, a left A-module V is a left module in the usual sense of
associative algebras such that V = Py, 1xV; this corresponds to the k-linear functor V : 4 — Vec
taking object X to the vector space V(X) = 1xV and morphism f € Homg(X,Y) to the linear map
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V(f) : 1xV — 1yV defined by left multiplication by f € 1yAlx. There is also the category Mod-A of
right A-modules, which is just the same as the category Homy (AP, Vec).

We say that V € A-Mod is locally finite-dimensional if dim 1xV < oo for all X € O4; equivalently, the
associated functor goes from 4 to the category Vecey of finite-dimensional vector spaces. Let A-Modgq
be the full subcategory of A-Mod consisting of the locally finite-dimensional A-modules. For more
background material about the structure of the category A-Modygq in the case that A is locally finite-
dimensional, we refer to [BS, §2.2-§2.3], where Abelian categories of this form are called Schurian
categories.

We also let A-Modgg be the full subcategory of A-Mod consisting of the globally finite-dimensional
modules, i.e., the V with dimV < oo, and A-Proj be the full subcategory of A-Mod consisting of the
finitely generated projective modules. If A is a locally finite-dimensional locally unital algebra then Aly
is a locally finite-dimensional module for each X € O4, hence, A-Proj is a subcategory of A-Modysq.
The category A-Proj can also be obtained in equivalent form directly from the k-linear category A4 since
the Yoneda embedding h* : 4 — Homy (A4, Vec) induces a contravariant k-linear equivalence between
Kar(4) and A-Proj. Here, Kar(A) denotes the additive Karoubi envelope of A, that is, the idempotent
completion of its additive envelope Add(4).

We let Ky(A) be the split Grothendieck group of the category A-Proj. Assuming that A is locally
finite-dimensional, every finitely generated module has a projective cover in A-Proj. Moreover, Ky(A)
is a free Abelian group with canonical basis coming from the projective covers of the irreducible A-
modules.

2.2. Pull-back and push-forward. Suppose that 4 and ‘B are two k-linear categories. Let
A= P lyAly, B= P IyBlx
X,Ye0, X,YeOp
be their path algebras. To a k-linear functor F : 4 — B, we associate an exact functor
resg : B-Mod — A-Mod 2.1)

which we call restriction along F. 1t is just the functor Homy (B, Vec) — Homy (A4, Vec) defined by
composing on the right with F. In elementary terms, and introducing a shorthand which will be ubiqui-
tous later on, the functor resg takes V € B-Mod to

1pV := @ 1pxV € A-Mod, (2.2)
XeOy
with the left module structure defined so that f € 1yAlyx acts on the X-th summand 1zxV as the linear
map Ff : 1pxV — 1pyV, and it acts as zero on all other summands. It takes a B-module homomorphism
¢ : V — W to the A-module homomorphism resp(¢) : 1V — 1pW defined by ¢px : 1pxV — 1pxW
for each X € O4. Similarly, there is the exact restriction functor we denote by

rres : Mod-B — Mod-A (2.3)
between the categories of right modules taking V € Mod-B to
Vig:= P Vlpx € Mod-A. (2.4)
XE@A

The functors resy and pres may also be denoted F* and (F°P)*; e.g., see [SS1, (2.1.4)], [SS2, §3.6].

The restriction Blp = (—DXE@A Blpy is a (B, A)-bimodule. The functor resp : B-Mod — A-Mod is
isomorphic to P xeo, Homp(B1Fx,?). Then adjointness of tensor and hom in the locally unital setting
(e.g., see [BS, Lem. 2.7]) implies that the functor

indgr := Blr®4 : A-Mod — B-Mod (2.5
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is left adjoint to resy. We call this induction along F. Since it is left adjoint to an exact functor, indr is
right exact and takes projectives to projectives. In fact, we have that

indrp Alx = Blr ®4 Aly = Blpy, (2.6)

i.e., indg can be viewed as an extension of F to arbitrary modules. From this, it is clear that indg
preserves finite generation. Likewise, the restriction 1B = (—DXG(@A lpxB is an (A, B)-bimodule. The
functor resg is also isomorphic to 1rB®p, hence, it has a right adjoint given by the functor

coindr := @ Homy(1rBly,?) : A-Mod — B-Mod. .7
YeOp
We call this coinduction along F. Since it is right adjoint to an exact functor, coind is left exact and
takes injectives to injectives. The functors indr and coindg are also called left and right Kan extensions
and may be denoted F'; and F, respectively; e.g., see [SS1, (2.1.4)], [SS2, §3.6]. There are also analogs
of indr and coindy with left modules replaced by right modules, which we denote by gind and gcoind;
in [SS2], these are denoted (F°P), and (F°P),.

Lemma 2.1. Let F : 4 — B be a k-linear functor as above.

(1) If BlF is a projective right A-module then indr and pcoind are exact functors.
(2) If 1gB is a projective left A-module then rind and coindg are exact functors.

Proof. This is obvious from the definitions of these functors. O

Suppose that F,G : 4 — B are k-linear functors. A natural transformation @ : F = G induces
natural transformations res,, : resp = resg, ind, : indg = indg and coind,, : coindg = coindp. We
leave the detailed definitions of these to the reader, just noting that ind, and coind,, are the left and right
mates of res,. Similarly, @ induces natural transformations ,res : gres = pgres, ,ind : pind = ¢ind
and ,coind : pcoind = gcoind. Assuming for simplicity! that 4 = B, so that F and G are k-linear
endofunctors of 4, these constructions define k-linear monoidal functors

resy : Endy(A) — Endx(A-Mod)™, indy, coind : Endy(A)® — Endy(A-Mod),  (2.8)
«res 1 Endy(A)® — Endy(Mod-A)™,  ind, xcoind : Endy(A) — End(Mod-A). (2.9)
Here, Endy(A) denotes the strict monoidal k-linear category of k-linear endofunctors and natural trans-

formations, “op” means the opposite category with the same monoidal product, and “rev”’ means the
same category with the reversed monoidal product.

2.3. Duality. Continue with A and B be the path algebras of A4 and B, respectively. There is a con-
travariant functor

7% : A-Mod — Mod-A (2.10)
taking V. = @y, 1xV to V€ 1= Dy, (1xV)*, the direct sum of the linear duals of the “weight
spaces” 1xV. The restriction of this to locally finite-dimensional modules is an equivalence, with quasi-
inverse given by the restriction of the analogously-defined duality functor

®2: Mod-A — A-Mod (2.11)

in the other direction. To obtain a duality (= contravariant auto-equivalence) on A-Modygg from (2.10)
and (2.11), one also needs a k-linear equivalence o : 4 — A4°P. Restriction along o~ gives equivalences
resy : Modigg-A — A-Modjq and sres : A-Modirg — Modjgq-A, hence, we obtain the duality functor

7% := res, 07® = ®? 0 ,res : A-Modjrqg — A-Modygy. (2.12)

ITo formulate analogs of (2.8) and (2.9) without this assumption, one needs to work in the strict 2-category of k-linear
categories.
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Given a k-linear functor F : 4 — B, we obviously have that

7 oresp = preso?® (2.13)
as functors from B-Mod to Mod-A. We deduce that
®9 o pind = coindp 0®?, ®9 0 peoind = indp 0®? (2.14)

as functors from Mod-A to B-Mod.

2.4. Induction product. The k-linear categories of interest later on will usually have some additional
monoidal structure. In fact, they will be strict k-linear monoidal categories defined by generators and
relations. We use the symbol x for the monoidal product in such categories, reserving & for the tensor
product ®x of vector spaces over k. We adopt the usual string calculus for morphisms in strict monoidal
categories, our convention being that f o g, the composition of f and g, is drawn as f on top of g and
f * g, the monoidal product of f and g, is drawn as f to the left of g.

Let C be a strict k-linear monoidal category with path algebra C = @ x.veo. 1¥Clx. The monoidal
product * on C extends canonically to Kar(C). There is also a monoidal product ® making C-Proj
into a (no longer strict) k-linear monoidal category such that the contravariant Yoneda equivalence from
Kar(C) to C-Proj is monoidal. This functor is the restriction of a tensor product functor ® on the
Abelian category C-Mod. We call this the induction product. Category theorists refer to this instead as
Day convolution and define it via the coend expression:

X1,X2eC
VieV, = J HomC(Xl *XQ,?)@V](X1)®V2(X2).

We give the algebraist’s formulation of the definition in the next paragraph; see also [SS1, (2.1.14)],
[SS2, §3.10]. Using ®, we can make the split Grothendieck group Ky (C) into a ring with multiplication

[P][Q] := [P®Q]. 2.15)

Its identity element is the isomorphism class of the distinguished projective module C1y, where 1 € O¢
is the unit object.

Here is the detailed definition of ®. Let C ® C be the k-linearization of the Cartesian product C x C.
The objects in C ® C are pairs (X1, X2) € O¢ x O¢, and the morphism space from (X1, X») to (Y1, Y>)
is Hom (X1, Y1) ® Hom (X3, Y2). We denote its path algebra by

CrRC= P 1yCly, ®1yCly,.
X1,X2,Y1,Y2,€0¢
Multiplication in C ® C is the obvious “tensor-wise” product just like for a tensor product of algebras.
If C is locally finite-dimensional, so too is C ® C. Given V|, V> € C-Mod, let
ViV, = (—B 1X1V1®1X2V2
X1,X,e0¢

be their tensor product over k viewed as a left C ® C-module in the obvious way. In fact, this defines
a functor ® : C-Mod ® C-Mod — C ® C-Mod. The monoidal product on C is a k-linear functor
*:CRC— C.Let

Cl.= P Clxux
Xl,Xze(O)c

be the (C, C ® C)-bimodule obtained by restricting the right C-module C along this functor. Induction
along *, that is, the functor ind, = C1,&¢cgc : C ® C-Mod — C-Mod from (2.5), is left adjoint to the
restriction functor res, from (2.1). Then the induction product is the composition

® :=ind, o ® : C-Mod ® C-Mod — C-Mod. (2.16)
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Thus, for Vi, V, € C-Mod, we have that Vi®V, = Cl, ®cgc (Vi ® V,). Associativity of ® (up to
natural isomorphism) follows from “transitivity of induction”, i.e., the associativity of tensor products
of modules over locally unital algebras. We obviously have that

Cly,®Cly, = Cly,.x, 2.17)

for X1, Xa € Oc. This justifies our earlier assertion that ® extends the monoidal product » on Kar(C). It
also follows that V;®V} is finitely generated if both V| and V; are finitely generated.

The induction product ® is right exact in both arguments, but in general it is not left exact. We
denote the ith left derived functor of ® on C-modules V, W by ToriC(V, W). This can be computed from
a projective resolution of either V or W.

Lemma 2.2. If C1, is a projective right C ® C-module then the induction product ® is biexact.
Proof. This follows from Lemma 2.1. O

Finally suppose that C is a strict k-linear symmetric monoidal category, so that there is given a
symmetric braiding R : * = ™. From this, we obtain a braiding indg o® : ®*" = ® making C-Mod
into a k-linear symmetric monoidal category too.

Remark 2.3. There is a second convolution product ® which we call the coinduction product. This
is defined by replacing ind, with coind, in (2.16). It is easy to understand on injective rather than
projective modules. It will not often be used subsequently, but note that the induction and coinduction
products are interchanged by duality.

2.5. Projective functors. Suppose that C is a strict k-linear monoidal category and 4 is a k-linear
category, denoting their path algebras by C and A as usual. We say that 4 is a strict C-module category
if there is a strictly associative and unital k-linear monoidal functor x : C® 4 — 4. Equivalently, this is
the data of a strict k-linear monoidal functor ¥ : C — End(A). For f € Hom¢(X, X’), we sometimes
denote the evaluation of the natural transformation ¥(f) on Y € Oy simply by fy : X x Y — X' x Y.
The definition of the induction product » from (2.16) extends naturally to this setting, thereby defin-
ing a k-linear functor
® :=ind, o ®: C-Mod ® A-Mod — A-Mod (2.18)
which makes A-Mod into a (no longer strict) C-Mod-module category. For objects X € O¢ and Y € Oy,
we have that
Clx®Aly = Aly,y, (2.19)
ie., ® extends » : C® A4 — 4. Using ® to define the action as in (2.15), the split Grothendieck group
Ko(A) becomes a left module over the split Grothendieck ring Ko(C).
Now fix X € O¢ and consider the functor X+ : 4 — 4. There is an adjoint pair of endofunctors
(indy., resy,) of A-Mod defined by induction and restriction along Xx*:

indy, 1= Alx, ®a where Alx, = @ Alxay, (2.20)
YE@A

resxx := lxsA ®@a where 1x:A := (—D 1x4yA. 2.21)
YeOy

The general properties discussed earlier give that resy, is exact, and indy, is right exact and sends
(finitely generated) projectives to (finitely generated) projectives. Thus, indy, restricts to a well-defined
functor indy, : A-Proj — A-Proj. Note also that

indx*(Aly) = Alxyy (222)

for all Y € O4. One can also interpret indy, as a special induction product, thanks to the following
lemma.
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Lemma 2.4. For any X € Oc¢, we have that indy, = Clx®.
Proof. This follows from the chain of isomorphisms
Alx, @4V = (Al ®cua (ClxBA)) @4 V

=~ Al, Qcra ((Clx IZIA) (S V)
= Al, Qcra (CIX X V) =Clx®V

for V € A-Mod. m]

Let X, Y be objects of C. Recall that Y is a left dual of X (equivalently, X is a right dual of Y) if there
are evaluation and coevaluation morphisms ev : ¥ * X — 1 and coev : 1 — X x Y satisfying the zig-zag

identities. In string diagrams, we denote ev and coev by the cap m and the cup U , respectively,

so that the zig-zag identities become

- |, - . (2.23)

X X

Lemma 2.5. If X has a left dual Y in C then there is an isomorphism ¢ : 1x.,A — Aly, of (A,A)-
bimodules given explicitly by

(2.24)

Hence, the functors resy,. and indy, are isomorphic.

Proof. 1t is easily checked that ¢ is a bimodule homomorphism. It is an isomorphism because it has a
two-sided inverse i defined by

O

Corollary 2.6. If X has a left dual Y in C then (indx.,indy.) and (resx.,resy.) are adjoint pairs of
functors.

From the corollary, we deduce that if X is rigid, i.e., it has both a left and a right dual, then both of
the functors indy, and resy, have both a right and a left adjoint. Moreover, as discussed earlier, both
of these functors are exact and they preserve finitely generated projectives. We will refer to finite direct
sums of direct summands of endofunctors of A-Mod of this sort as projective functors.

2.6. The symmetric category. For a basic example, we have the symmetric category Sym, which is
the free strict k-linear symmetric monoidal category on one object. In string diagrams, we denote this
generating object simply by |; then an arbitrary object is the monoidal product |* for some n > 0.
Morphisms in Sym are generated by a single morphism depicted by the crossing

><:|*|—>|*| (2.25)
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ié . }g< :>§(, (2.26)

Sometimes it is convenient to identify objects in Sym with natural numbers, so that the object set {|*"|n €
N} of Sym is identified with N. For m,n > 0, the morphism space Hom,,(n,m) is {0} if m # n,
while if m = n it consists of k-linear combinations of string diagrams representing permutations in
the symmetric group S, i.e., we have that Endg,,(n) = kS,. Note our general convention here is to
number strings by 1,...,n from right to left, so that the transposition (1 2) € S, is represented by the
string diagram

Let Sym be the path algebra of Sym. Thus, we have that
Sym = PKkS,. (2.27)

n=0

subject to the relations

3 2 1

Since k is of characteristic zero, we deduce from Maschke’s theorem that Sym is a semisimple locally
unital algebra. In this case, the induction product ® making Sym-Mod into a monoidal category is
nothing more than the usual induction product on representations of the symmetric groups: we have that

Sn m
VoW = indy"s (VaW)

for V € kS ,-Mod and W € kS ,,-Mod. In fact, the induction product ® and the coinduction product &

on Sym-Mod are isomorphic as ind} ";’"S ~ coind} ”;’L’g (as always for finite groups).

Recall that the irreducible kS ,-modules are the Specht modules S (1) parametrized by the set P,
of partitions A = (A, Ay, ...) of n. Hence, the irreducible Sym-modules are the Specht modules S (1)
parametrized by all partitions A € P = | |~ P,. We sometimes write || for the size A} + A2 + --- of
a partition A € P, and £(1) for its length, that is, the number of non-zero parts. We will often identify

A € P with its Young diagram. For example, the partition (5,32,2) is identified with

The Grothendieck ring Ko(Sym) of the symmetric category is positively graded with degree n com-
ponent being Ko (kS ;). It is well known that Ko(Sym) is canonically isomorphic as a graded ring to the
ring of symmetric functions A = @, 5 A, With the class [S ()] of the Specht module corresponding
under the isomorphism to the Schur function s) € A. In A, we have that

susv = >, LR} 51 (2.28)
AeP

where LRﬁ’V is the Littlewood-Richardson coefficient. Since Sym is semisimple, this is equivalent to the
existence of an isomorphism

v) = @S ()P (2.29)
AeP
at the level of modules. Later on, we will also need the “triple” Littlewood-Richardson coefficient
LRy, = Y LR, LR, = [S()®S (1)®S (v) : S (x)]. (2.30)

yeP
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The content of the node in row i and column j of a Young diagram is the integer ¢ = j—i. Let add(Q)
be the set consisting of the contents of the addable nodes of A, that is, the places in the Young diagram
where a node can be added to the diagram to obtain a new Young diagram. Similarly, let rem (1) be the
set of contents of the removable nodes of A, that is, the places in the Young diagram where a node can be
removed from the diagram to obtain a new Young diagram. Note that all of the addable and removable
nodes of a Young diagram are of different contents (another of the benefits of working in characteristic
zero). For a € add(Q), let A + [a] be the partition obtained by adding the unique addable node of content
a to the diagram. For b € rem(Q), let 1 — [&] be the partition obtained by removing the unique removable
node of content b from the diagram.

The combinatorial notions just introduced arise naturally on considering branching rules for the
symmetric group. In our setup, the sums over all n > 0 of the usual restriction and induction functors

resg’;+1 and indg’;rl = kS ,+1®xs, are isomorphic to the functors
F :=res|, : Sym-Modtg — Sym-Modgq, E :=ind|, : Sym-Modgg — Sym-Modgq, (2.31)

notation as in (2.20) and (2.21). This follows because the functor

| * :Sym — Sym, |I g I|.—> |I g I" (2.32)

coincides with the natural inclusion S, < S+ on permutations g € S, < End 5ym(n). The canonical
adjunction makes (E, F) into an adjoint pair of functors. In fact, these functors are are biadjoint, i.e.,
there is also an adjunction making (F, E) into an adjoint pair. The effect of the functors F and E on the
Specht module S (1) is well known: we have that

FS()= @ S(AA-@), ES()= P S+ @). (2.33)
berem(Q) acadd(Q)

We finally recall a bit about the Jucys-Murphy elements in Sym. One natural way to obtain these is to
start from the affine symmetric category ASym, which is the strict k-linear monoidal category obtained
from Sym by adjoining an extra generator ¢ subject to the equivalent relations

X=X+ | KX | e

The path algebra ASym is isomorphic to (D,-,AH, where AH, is the nth degenerate affine Hecke
algebra. There is an obvious faithful strict k-linear monoidal functor i : Sym — ASym. There is also a
unique (non-monoidal) full k-linear functor

p : ASym — Sym (2.35)

p(l"’j) =0 (2.36)

forall n > 1. For 1 < j < n, the jth Jucys-Murphy element of the symmetric group S, is

j—1
xj—p<"l"$"">—Z(ij)ekSn, (2.37)

S i=1

such that p o i = Idg, and

i.e., it is the sum of the transpositions “ending” in j. Whenever we use this notation, it should be clear
from context exactly which symmetric group we have in mind. Note x; = 0 always. We may also
occasionally write xy, which should be interpreted as zero by convention.
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The Jucys-Murphy elements xi,...,x, generate a commutative subalgebra of kS, known as the
Gelfand-Tsetlin subalgebra. As concisely explained by [OV], for 4 € $,, each Jucys-Murphy element
acts diagonalizably on the Specht module S (1), and the Gelfand-Tsetlin character of S (1) recording
the dimensions of the simultaneous generalized eigenspaces of xi,...,x, may be obtained from the
contents of standard A-tableaux. Indeed, Young’s orthonormal basis {vr} for S (1) indexed by standard
A-tableaux T is a basis of simultaneous eigenvectors for xi, ..., x,, with x; acting on vt as the content
cont;(T) of the node labelled by j in 7. We will assume the reader is familiar with these ideas without
giving any further explanation.

The functor p induces an isomorphism ASym/I ~> Sym where I is the left tensor ideal® of ASym
generated by the morphism ¢ . It follows that Sym is a strict ASym-module category. The functors
E and F from (2.31) are also the induction and restriction functors ind| , and res , defined using this
categorical action of ASym on Sym. The advantage of passing from Sym to ASym here is that the object
| of ASym has the endomorphism defined by the dot, giving us a natural transformation

@i= ox |x=| *.
Applying the general construction from (2.8) to this, we obtain endomorphisms
x:=res, : F=F, x¥ :=ind, : E = E. (2.38)

Explicitly, on a kS ,-module V, xy is the endomorphism of FV = resg”il V defined by multiplying on

the left by x, € kS, while xy; is the endomorphism of EV = kS, ®xs, V defined by multiplying
kS, +1 on the right by x,4+; € kS 1. For ¢ € k, let F. and E. be the c eigenspaces of x : F = F and
x¥ : E = E, respectively. Since x" is the mate of x and E and F are biadjoint, it follows that E, and F,
are biadjoint endofunctors of Sym-Modg, for each ¢ € k. The description of Gelfand-Tsetlin characters
of Specht modules from the previous paragraph is equivalent to the assertion that the functors E, and
Fj, take the Specht module S (1) to exactly the summands S (1 + [a]) and S (A — [&]) in (2.33), or to zero
if a ¢ add(1) or b ¢ rem(A), respectively. It follows that

F =@ Fp, E =P E,. (2.39)

beZ acZ

3. THE PARTITION CATEGORY AND ITS TRIANGULAR DECOMPOSITION

Next we introduce the partition category Par,, which we define by generators and relations. We then
make some basic observations about its representation theory. Most of the results here are due to Sam
and Snowden [SS2, Sec. 6], but we have tried to give a self-contained account since our general notation
and other conventions are often different. The most important point is that the path algebra Par, of the
category Par; has a triangular decomposition, hence, the category of locally finite-dimensional Par;-
modules is an upper finite highest weight category in the sense of [BS, §3.3]. In fact, Par, is a monoidal
triangular category in the sense of Sam and Snowden.

3.1. The partition category. Let ¢ € k be a parameter. According to the following definition, the par-
tition category Par, is the free strict k-linear symmetric monoidal category generated by a commutative
Frobenius object which is special of categorical dimension ¢.

2A left tensor ideal 7 of a k-linear monoidal category C is the data of subspaces 7 (X, ¥) < Hom(X, Y) forall X, Y € ob C,
such that these subspaces are closed in the obvious sense under vertical composition either on top of bottom and under
horizontal composition on the left with any morphism. Then C/7 is the C-module category with the same objects as C and
morphisms that are the quotient spaces Hom.(X,Y)/Z(X,Y).
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Definition 3.1. The partition category Par; is the strict k-linear monoidal category generated by one
object | and the morphisms

Xolsl=1=l, A== Yoil=I«l, §:l-1, bs:1-] @D
subject to the following relations, as well as the ones obtained from these by horizontal and vertical
flips:

|l KX e
X X1 e
v gy e
| NE¢ o

: I " (3.6)

> <

The object set of Par, is {|*" | n € N}. We will sometimes denote |*" simply by 7, so that the object set
is identified with N.

The relations (3.2) and (3.3) imply that Par; is a symmetric monoidal category, (3.4) and (3.5) imply
that the generating object is a commutative Frobenius object, and the first relation from (3.6) means
that this object is actually a special Frobenius object. The symmetric monoidal category Par; is rigid
with every object being self-dual. To justify this, it is enough to specify the evaluation and coevaluation
morphisms ev : | x| — 1 and coev : 1 — | * | for the generating object, which we represent graphically
by the cap and cup:

eV:m = K, coev=u = Y (3.7)

These satisfy the zig-zag identities as in (2.23), as may easily be checked using (3.5). Now the relations
in (3.6) imply that the categorical dimension of the generating object is .

By an mxn partition diagram, we mean a string diagram f representing a morphism in Homepy;, (1, m)
obtained by horizontally and vertically composing the generating morphisms (3.1), such that every con-
nected component of f has at least one endpoint, i.e., is not a “floating bubble”. In view of the dimension
relation in (3.6), floating bubbles can be contracted then removed, multiplying the result by the scalar
t each time this occurs. It follows that every morphism in Homgyg,, (1, m) can be written as a k-linear
combination of m x n partition diagrams. Let o : Par, — (Par,;)°P be the strict k-linear monoidal
functor that is the identity on objects and sends the generating morphisms to their flips in a horizontal
axis. More generally, o sends an m x n partition diagram to the n x m partition diagram that is its flip
in a horizontal axis.

The above definition of Par; by generators and relations is not the most common definition found in
the literature. It was first formulated in this way by Comes in [C, Th. 2.1]; see also [LSR, Prop. 2.1]. In
the more traditional approach (e.g., see [D, §8] and [CO, Def. 2.11]), one instead defines the morphism
space Homg,,, (n, m) to be the vector space with basis labelled by set partitions of {1,...,n,1’,...,m'},
giving explicit combinatorial rules for the horizontal and vertical compositions in terms of these parti-
tions. Suppose that f is an m x n partition diagram. Labelling the endpoints of f from right to left by
1,...,n on the bottom bounadry and 1’,...,m  on the top boundary as in the following example, the
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diagram f determines a partition of the set {1,...,n,1’,..., m'} with parts arising from the labels at the
endpoints of the connected components in the diagram. For example, the 9 x 7 partition diagram

9/ 8/ 7/ 6/ 5/ 4/ 3/ 2/ 1 /

(3.8)

determines the partition
{1,4,1',2/,3",4,6/,8'} b {2,6} U {3,5,9'} L {7.5} L {T}.

In this way, one obtains a strict k-linear monoidal functor from the category Par, defined by generators
and relations as above to the category Par; as defined via the more traditional combinatorial approach.
Then the result of Comes just mentioned asserts that this functor is an isomorphism.

The discussion in the previous paragraph shows that two m x n partition diagrams represent the same
morphism in Homg,,, (n, m) if and only if the diagrams are equivalent in the sense that they determine
the same partition of the set {1,...,n,1’,...,m'} labelling their endpoints. For example, the morphism
represented by (3.8) is equal to the one represented by the tidier diagram

9/ 8/ 7/ 6/ 5/ 4/ 3/ 2/ 1 !

o 3.9

because this determines the same partition of the set labelling the endpoints. In fact, Comes’ result
implies that any set of representatives for the equivalence classes m x n partition diagrams give a basis
for the morphism space Homay,, (2, m). In particular, dim Homeg,,, (n, m) is equal to the the (m + n)th
Bell number which counts set partitions of m + n. Taking m = n = 0, this implies that

Endeg,, (1) = k. (3.10)

3.2. Triangular decomposition. Let c be a connected component in some partition diagram represent-
ing a morphism in Par,. We call ¢ an upward branch if ¢ has at least two endpoints on its top boundary
and no endpoints on its bottom boundary, and a downward branch if it has at least two endpoints on its
bottom boundary but no endpoints at the top:

We call ¢ an upward leaf if it has exactly one endpoint at the top and no endpoints at the bottom, and a
downward leaf if it has no endpoints at the top and exactly one at the bottom:

c=J> or c=?.

We refer to ¢ as an upward tree if it has more than one endpoint at the top and exactly one endpoint at
the bottom, and a downward tree if it has exactly one endpoint at the top and more than one endpoint at
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We say that c is a double tree if ¢ has more than one endpoint at the top and more than one endpoint at
the bottom. In that case, it is equivalent to the composition of an upward tree and a downward tree; for
example, the rightmost connected component in (3.9) is a double tree. Finally we say that c is a frunk if
¢ has exactly one endpoint both at the top and at the bottom:

the bottom:

C =

Any connected component of a partition diagram can be represented either as an upward branch, an
upward leaf, an upward tree, a downward branch, a downward leaf, a downward tree, a double tree, or
a trunk.

Let f be an m x n partition diagram. We say f is

e a permutation diagram if all of its connected components are trunks, in which case we must
have that m = n;

e an upward partition diagram if its connected components are trunks, upward branches, upward
leaves and upward trees, in which case we must have that m > n;

e a downward partition diagram if its connected components are trunks, downward branches,
downward leaves and downward trees, in which case we must have that m < n.

Let f be an upward m x n partition diagram. We say that it is strictly upward if m > n. Let cy,...,ck
be the connected components of f that are either trunks or upward trees, indexing them so that their
bottom endpoints are in order from right to left in f. We say that f is normally ordered if the rightmost
of the top endpoints of each of cy,...,c are also in order from right to left in f. In other words, f
is normally ordered if it can be drawn so that the right edges of all of the upward trees and trunks in
f are non-crossing. Similarly, we define strictly downward and normally ordered downward partition
diagrams.

Now we can define some monoidal subcategories of Par;. Let Sym be the symmetric category as
defined in §2.6. There is a strict k-linear symmetric monoidal functor

iy : Sym — Par, (3.11)

sending the generating object and the generating morphism of Sym to the generating object and the
generating morphism of Par; that is represented by the crossing. Using the basis theorem for morphism
spaces in Par;, it follows that this functor is faithful. We use it to identify Sym with a monoidal subcate-
gory of Par;. In other words, Sym is identified with the subcategory of Par, consisting of all objects and
all the morphisms which can be written as linear combinations of permutation diagrams.

Next, let Par” be the strict k-linear monoidal category generated by one object | and the morphisms

Xilxl =1+, Noil=1+1, Lo (3.12)

subject to the relations (3.2) to (3.4) and their flips in a vertical axis. We call this the upward partition
category. The cup can also be defined in Par’ as in (3.7). Any upward partition diagram can be inter-
preted as a string diagram representing a morphism in Par’. Moreover, the defining relations in Par’
imply that two upward m x n partition diagrams which are equivalent in the sense that they define the
same partition of the set {1,...,n,1’,...,m'} labelling the endpoints are also equal as morphisms in
Hom,, »(n,m). There is a strict k-linear monoidal functor

i't’ . Par’ — Par, (3.13)
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sending the generating morphisms of Par’ to the corresponding ones in Par;. As equivalence classes
of upward m x n partition diagrams span Hom,, »(n,m) and their images in Homg,, (n, m) are linearly
independent, this functor is faithful. We use it to identify Par® with a monoidal subcategory of Par,. In
other words, Par” is identified with the monoidal subcategory of Par, consisting of all objects and all
of the morphisms which can be written as linear combinations of upward partition diagrams. Also let
Par™ be the monoidal subcategory of Par’ consisting of all objects and all of the morphisms which can
be written as linear combinations of normally ordered upward partition diagrams.

Similarly to the previous paragraph, we define Part, the downward partition category, to be the strict
k-linear monoidal category generated by one object | and the morphisms that are the flips of (3.12) in
a horizontal axis, subject to the relations that are the flips of the ones for Par’. The cap can also be
defined in Par! as in (3.7). Evidently, Par® = (?arb)OP with isomorphism being defined by the flip o in
a horizontal axis. There is a strict k-linear monoidal functor

i* . Part — Par, (3.14)

sending the generating morphisms of Par* to the corresponding ones in Par;. We have that if = o-oi? oo,

so we deduce from the previous paragraph that if is faithful too. We use it to identify Part with a
monoidal subcategory of Par,. In other words, Par® is identified with the monoidal subcategory of
Par, consisting of all objects and all of the morphisms which can be written as linear combinations
of downward partition diagrams. Also let Par™ be the monoidal subcategory of Par® consisting of
all objects and all of the morphisms which can be written as linear combinations of normally ordered
downward partition diagrams.

Finally we let Par, be the path algebra of Par,. It is a locally unital algebra with distinguished
idempotents {1, | n € N} arising from the identity endomorphisms of the objects of Par,. We also have
the path algebras Parb, Par—, Sym, Par™, Par? of LParb, Par—, Sym, Part, fParﬁ, which we may view as
locally unital subalgebras of Par; via the embeddings (3.11), (3.13) and (3.14). The following theorem
is the triangular decomposition of Par;.

Theorem 3.2. Let K := (‘Dnzo k1, viewed as a locally unital subalgebra of Par,. Multiplication defines
a linear isomorphism

Par~ ®x Sym Qg Par™ = Par,. (3.15)
Hence, we also have isomorphisms
Par~ ®x Sym > Par’, (3.16)
Sym Qg Part 5 Parﬁ, (3.17)
Par’ Rsym Part > Par;. (3.18)

Proof. Any partition diagram is equivalent to a diagram that is the composition of a normally ordered
upward partition diagram, a permutation diagram, and a normally ordered downward partition diagram;
see (3.9) for an example of such a decomposition. Moreover, equivalence classes of these sorts of
diagrams give bases for Par;, Par~,Sym and Par™. This implies that (3.15) is an isomorphism. Then
(3.16) to (3.18) follow as in [BS, Rem. 5.32]. O

Theorem 3.2 is all that is needed to see that the locally finite-dimensional locally unital algebra
Par, = C—D 1,,Par1,
m,neN

has a split triangular decomposition in the sense of [BS, Rem. 5.32]. Its negative and positive Borel
subalgebras are Par’ and Par?, and its Cartan subalgebra is Sym = Par’ ~ Par?. The set I in the notation
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of [BS] is the set N indexing the distinguished idempotents {1, | n € N}. The upper finite poset (A, <)
in the setup of [BS] is (N, >); we stress that the ordering is reversed here, as it has to be in order to have
an upper finite poset, thereby conforming to the general conventions of [BS]. The function ¢ from [BS]
is the identity function.

As Sym is semisimple, this discussion shows equivalently that Par; is a triangular category in the
sense of [SS2, Def. 4.1]. Its upward and downward subcategories U and 9 in the setup of loc. cit. are
Par’ and fParﬁ, respectively. In fact, Par, is a monoidal triangular category as defined in [SS2, §4.11], as
was established already by Sam and Snowden in [SS2, Prop. 6.3]. This means that induction commutes
with induction product: we have that

indgo (V@W) = (indg V)@ (indgy W), (3.19)

for Sym-modules V and W. This is easily seen directly from the definition of the induction product using
iy ox = %o (if ®i;). Similarly,

indfe (VW) = (ind5e Vie(ind5e’ w),  ind? (Ve W) = (ind?% V)@ (ind? W), (3.20)

3.3. Classification of irreducible modules and highest weight structure. As Par, has a triangular
decomposition with Cartan subalgebra Sym being semisimple, we can appeal to the general results of
[BS, §5.5] to obtain the classification of irreducible Par,-modules. Alternatively, this follows from
the results in [SS2, §5.5], but note that Sam and Snowden use the language of lowest weight rather
than highest weight categories. Since isomorphism classes of irreducible Par;-modules are in bijection
with isomorphism classes of indecomposable projective Par;-modules, and the latter are identified with
isomorphism classes of indecomposable objects in Kar(Par,), the results discussed in this subsection
are equivalent to the classification obtained originally in [CO, Th. 3.7].

The algebra Par; is Z-graded with 1,,Par;1, being in degree m — n. The induced gradings on the
subalgebras Par’ and Part make these into positively and negatively graded algebras, respectively, with
degree zero components in both cases being the semisimple algebra Sym. It follows that the Jacobson
radicals of Par® and Par are the direct sums of their non-zero graded components. Moreover, the
quotients by their Jacobson radicals are naturally identified with Sym, i.e., there are locally unital algebra
homomorphisms

7 :Par’ —» Sym, 7 :Part > Sym. 3.21)
Let infl : Sym-Modgg — Part-Modg and infl” : Sym-Modgg — Parb—Modfd be the functors defined by

restriction along these homomorphisms. The modules
{$"(2) :=inf’S(2) | 1 e P}, {S¥(1) :=infi* S (2) | 1€ P} (3.22)

give full sets of pairwise inequivalent irreducible modules for Par’ and Par?, respectively.
As in [BS, (5.13)—(5.14)], we define the standardization and costandardization functors

Jii= indﬁz:;j oinfl* : Sym-Modg — Par;-Modyg, (3.23)
Jx 1= coindllj Z:‘b oinfl’ : Sym-Modgg — Par,-Modjgq, (3.24)
where ind"" := Par®p,: and coind}"} := @,y Homp,s (Par,1,,?). From (3.15) to (3.17) it

follows that Par, is projective both as a right Parf-module and as a left Par’-module, hence, these
functors are exact. Then we define the standard and costandard modules for Par; by

A(A) == j1S () = ind} ™" S*(2), V(A) = jxS(A) = ind " S°(2), (3.25)

respectively.
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Theorem 3.3. The Par,-modules {L(1) | A € P} defined from
L(A) := hd A(Q) = soc V(Q)

give a complete set of pairwise inequivalent irreducible left Par,-modules. Moreover, Par;-Modyyq is an
upper finite highest weight category in the sense of [BS, Def. 3.34] with weight poset (P, <), where <
is the partial order on P defined by A <  if and only if either A = p or || > |u|. Its standard and
costandard objects are the modules A(1) and V(2Q), respectively.

Proof. This follows immediately from [BS, Cor. 5.39] using the triangular decomposition from Theo-
rem 3.2 and the semisimplicity of Sym; see also [SS2, §5.5]. O

The fact established in Theorem 3.3 that Par,-Modgq is an upper finite highest weight category has
several significant consequences. As for any Schurian category, L(1) has a projective cover we denote
by P(d) € Pari-Modjsq. Let Pari-Moda be the exact subcategory of Par,-Modjgg consisting of all
modules with a A-flag, that is, a finite filtration whose sections are of the form A(2) for A € . For any
V € Pari-Mod,, the multiplicity (V : A(u)) of A(u) as a section of some A-flag in V is well-defined
independent of the flag, indeed, it can be calculated from

(V : A(r)) = dimHompy,, (V, V(1)). (3.26)
This follows from the fundamental Ext-vanishing property of highest weight categories, namely, that
dim Extj,, (A(1), V(1)) = 6,064, (3.27)

for any A,u € P and i > 0; see [BS, Lem. 3.48]. The definition of highest weight category gives that
P(A) has a A-flag, so that Par,-Proj is a full subcategory of Par,-Moda. Moreover, from (3.26), one
obtains the usual BGG reciprocity formula

(P(A) - A(w)) = [V(u) : L()]. (3.28)

The functor o : Par; — (Par,)°P defined by flipping diagrams in a horizontal axis can also be viewed
as a locally unital anti-involution of the algebra Par,. It interchanges the subalgebras Par’ and Par?, and
restricts to an anti-involution also denoted o~ on the subalgebra Sym. Let ?2 be the duality on Sym-Modgq
taking a finite-dimensional left Sym-module to its linear dual viewed again as a left module using the
anti-automorphism . Since o7(g) = g~! for a permutation g € S, < Sym, this is the usual duality on
each of the subcategories kS ,,-Modgg. It is well known that the irreducible kS ,-modules are self-dual,
hence,

S()%=5(2) (3.29)

for all 1 € P. There is also a duality ?© on Par;-Modjtq defined as in (2.12). Similarly, as o inter-
changes Par’® and Part, we get contravariant equivalences also denoted ?© between Parf-Modsy and
Parb-MOdlfd. Similarly to (2.13) and (2.14), we have that

20 infl’ = infl* 072, ind)"", 07° =2% o coind " . (3.30)
Hence:
J1022 =90 j,., j#02?2 =720 j (3.31)
as functors from Sym-Modgq to Par;-Modigg. Then from (3.29) and (3.31), we deduce that
A(2)® =V(Q), V(1)? = A1), L(A)? = L(Q) (3.32)
forde P.
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Remark 3.4. In fact, the duality ?® is a Chevalley duality of Par,-Mod)gq in the sense of [BS, Def. 4.49].
The general construction from [BS, Cor. 5.36, Rem. 5.40] can be used to show that Par, admits a
basis making it into an upper finite symmetrically based quasi-hereditary algebra in the sense of [BS,
Def. 5.1]. Equivalently, Par; is an object-adapted cellular category in the sense of [EL, Def. 2.1].

3.4. The downward partition category and reduced Kronecker coefficients. The results in this sub-
section are the analogs for the downward partition category of the results proved in [SS1, §§7.5-7.6]
for the downward Brauer and downward walled Brauer categories. The methods are similar. In the first
lemma, our standing assumption that chark = 0 is essential in order to define the idempotent lim’n.

Lemma 3.5 (cf. [SS2, Prop. 6.5]). The right Part® Part-module Par®1, is projective. Consequently, by
Lemma 2.2, the induction product ® : Par’-Mod ® Par!-Mod — Par®-Mod is biexact. More precisely,
forintegers,m,n = 0and 0 <d < min(l+m—n,l+n—m,m+n—I1)withd =1+ m+n (mod 2),
let

a:=m+n—1-4d)/2, b:=(+n—m—d)/2, c:
and define

(l+m—n—d)/2  (333)

c d b
lem,n = /%\ € 1lparﬁlm*n (334)
@
c d a a d b

so that there are a nested caps at the bottom, b parallel trunks on the right, ¢ parallel trunks on the
left, and d nested downward binary trees in the middle. Also let 1fm , be the image of the idempotent

% Zwesa w under the embedding kS, — k(S x S,) < L Par' & 1,Part sending w € S, to the
diagram representing the permutation of m+n, ..., 1 +n,n, ..., 1 definedby 1 +n—i— 1 +n—w(i),
i+nw— w(i)+nfori=1,...,a, and fixing all other points (i.e., it arises from a permutation of the a
nested caps in the above picture). Finally, let S;/S . x Sy % Sp be a set of coset representatives viewed
as a subset of Sym via the usual embedding (in particular, S . and S, are permuting the leftmost ¢ and
rightmost b strings, respectively). Then there is a right Par' ® Part-module isomorphism

min(l4+m—n,l+n—mm+n—1I)

P P P lfm’n(ParIi R Par') > Partl,

L,m,n=0 d=0 8ES /S xS xS
d=l+m+n (2)

taking the idempotent lim’n in the g-th summand on the left hand side to g o f[dmn

Proof. This follows on considering the bases for 1;Par® and 1,,Par' ® 1,Par® given by equivalence
classes of downward partition diagrams. O

Recall for A, u, v € P, that the Kronecker coefficients are defined to be the structure constants for the
internal Kronecker product on representations of the symmetric group S ,:

Gy =[S @S () : S(A)] = dim (S (1) @S () ® S (v))*". (3.35)

Obviously from the second equality, Gﬁ,v is invariant under permuting the partitions 4, i, v. For a parti-

tion A and n > || + A;, let A(n) denote (n — |1], 41, A2, ...) € Py,. By a classical result of Murnaghan,
(n),
n

() () stabilizes as n — 00; see [BOR] for more

for A, u, v € P, the value of the Kronecker coeffcient Gﬁ
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background. The stable value is the reduced Kronecker coefficient, denoted Ei’v. Like the Kronecker

. =4 .. . .
coeflicients themselves, G, , is invariant under permutations of 4,4 and v.

Example 3.6. For any 4, € P, the reduced Kronecker coeflicient EE 1 1s equal to zero unless y =
A+ [a] for some a € add(A), u = 1 — [&] for some b € rem(A), or 4 = (A1— [&]) + [a] for some b € rem(A)
and a = add(1 — [&]). In these cases, EE’A is 1if u # A and |[rem(A)| if u = A. To see this using the
definition just given, consider the natural n-dimensional permutation module for the symmetric group
U,=S((n—1,1)) ®S((n)) and note that the functor U,®) is isomorphic to indi:il ores:gzil.

Lemma 3.7. Take [,m,n = 0and 0 < d < min(l+m—n,l+n—m,m+n—1) withd = l+m+n (mod 2),
and define a, b, ¢ according to (3.33). Let Q! be the set of partitions of {1,...,1} u {l',...,m'} U

I,m,n

{17,...,n"} such that exactly a of the parts are subsets of the form {j,k"}, exactly b of the parts are
subsets of the form {i, k"}, exactly ¢ of the parts are subsets of the form {i, j'}, and the remaining d parts
are subsets of the form {i, j/, K"} forie {1,...,1}, j e {l',....m'} and K" € {1”,...,n"} as suggested

by the picture:

c b
‘ 0

The group S| xS, xS, acts on the left on Qim’n so that S permutes {1,...,1}, S, permutes {1, ... ,m'}

and S , permutes {1”, ... ,n"}. LetkQ¢  be the linearization, which is ak(S x S x S ,)-module. For
e Prue Py, ve P, we have that

d . 0
[le,m,n ° S (/1) X S (/’l) X S (V)] = Z LRg,V,éLRZ/,'y,&/LRE,IBﬁ”G(S/,d”’
a€Py BEPy,YEP
6,0’ ,6"€Py

Proof. LetG := S| x S, x Sy, P be the parabolic subgroup (S5 x Sg X S¢) X (S¢ X Sax 8,) x (S4 %
Sa4 % Sp) < G and L be the subgroup S, x S, x S, x §4 < P embedded diagonally via the map
(x,y,Z,W) = (y,W,Z;Z,W,x§X,W,Y)-

The action of G on Qfm , 1s transitive and the subgroup L is a point stabilizer. Hence, the kG-module
kam , 18 induced from triv,, the trivial kL-module. By Frobenius reciprocity, it follows that

Q! S(A) RS (1) =S ()] =dim(S () &S (1) =S ()L

l,m,n

The restriction of S (1) ® S (u) ® S (v) to the parabolic subgroup P is isomorphic to

D ((S(/a) RSO BSH)) 8 (Sy)rsS@©E)vs@)) = (S rS¢") = S(ﬂ’)))®N.

a BB vy

6,6',6"€Py
. A u ) ; : ;
where N := LRﬁ’ dy,LR% 6,’a,LR(‘;’ o g By Schur’s lemma, this contributes to the L-fixed points only
from the summands with @ = o/, = ' and y = ¥/, and for each of those summands the contribution

; 6
is GY, ., by (3.39). o
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Since Par! is negatively graded, any Parf-module V has the degree filtration 0 = V_; < Vo <
<o <V, < .- defined from V, := @ 1,,V. The section V,/V,_; in this filtration is isomorphic to

infl* (1,V), viewing 1,V as a Sym-module by restriction. It follows that

[V:S*)] =[1,V:S(2)] (3.36)

m<n

for A € P,,.

A

Theorem 3.8. For A € P,y € Py, and v € Py, we have that [S*(u)@St(v) : SHA)] = EW.

Proof. Call d admissible if 0 < d < min(l+m—n,l+n—mm+n—1[)andd =m+n+n (mod 2).
For such a d, let Mldm , be the sub-bimodule of the (kS;,kS ,, ®kS ,,)-bimodule

My =1, ((infi*kS,,)@ (infl*kS,)) = 1/Par*l, ®pyegpes ((inflPkS,) = (inf*kS,))
generated by the vector fldmn ® (1 ® 1), where fldmn is as in (3.34). Lemma 3.5 implies that

Ml,m,n = @ Ml[fm,n’
admissible ¢
Note also that 1; (S*(1)®S*#(v)) = My, Qxs,mis, (S (1) ®S(v)) as kS;-modules. In view of this and
(3.36), the number we are trying to compute is equal to

(L (S*weste) s =Y [Mfm,n s, mics, (S () BS (V) : S (/1)] .

admissible d

Let Mldm , be the left kS; ® kS, ® kS ,-module obtained from the (kS, kS, ®kS ,)-bimodule Mldm L by

twisting the right actions of S, and S , into left actions using o : g — g~!. By the self-duality of Specht
modules, we have that

|7, @ s, (S () mS () S ()| = [ WL, - S @S () mS ()]
d
1,m,n
the proof of that lemma that kﬂim’n is the permutation module induced from the trivial representation of
the subgroup L = S xSp xS xSy < §;x8§,, xS ,. Itis easy to see from (3.34) that L acts trivially on the
generating vector flf’mﬂ R(I®1) e Mldmn Hence, there is a surjective homomorphism kﬂfm’n - M;imn
It is an isomorphism because both of these modules are of dimension (I!m!n!)/(a!b!c!d!). From the
claim, the previous displayed equation and Lemma 3.7, the problem is reduced to computing

d . _ A 9
Y, [k, SWeS@rSK)] = >, LRj LR, LR ;.G s
admissible d a,B,y,6,0' 6" €P

Now we claim that Mldm , 18 isomorphic to the module kQ7 ~ from Lemma 3.7. To see this, recall from

. .. . —A4 .
This expression is equal to the reduced Kronecker coefficient G, ,, by a theorem of Littlewood [L]. O

3.5. Grothendieck rings. Next we describe the Grothendieck rings Ko(Par*) and Ko(Par,). For A € P,
let

PH(Q) := ind§?7 5 (). (3.37)
This is a finite-dimensional projective Parf-module. In fact, it is the projective cover of the irreducible
Par®-module S#(1). This follows because P*(1) - S¥(2), and Endp,,: (P*(1)) = Endgyn(S (1)) =k so

that P*(2) is indecomposable. Thus, Ko(Par?) is the free Z-module with basis {[P#(1)] | 1 € P}, and

. . g . . .
we see that the monoidal functor 1nd§y“n’1 induces a ring isomorphism

Ko(Sym) = Ko(Par®). (3.38)
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Recall from §2.6 that Ko (Sym) is identified with the graded ring A of symmetric functions. Using (3.38),
it follows that we can also identify Ko(Par?) with A so that [P?(1)] corresponds to the Schur function
sy. Let

By, 1= dim Homp,,: (P*(u), P*(2)) = [P*(A) : S¥(u)], (3.39)

i.e., (Bay)auep is the Cartan matrix of Part.

Lemma 3.9. We have that B, , = dim eﬂParﬁe 1 Where ey € Sym denotes Young’s idempotent. Hence:
(i) Bya = 1foreverydeP.
(il) Bay, = 0if Jul > 4] or if ju] = || and % A

n 1 = (1" orp = (1"~
(i) If A= (1 )”””BM:{ 0 fj;l:azz(orhlrﬂlé so.( )

Proof. For A € P, the primitive idempotent e, € kS, has the property that S (1) = kS,e,. Hence,
pt (1) = Parfe,. We deduce that

By C2 dim Homp,,: (P*(u), P*(1)) = dim Homp, ; (Parﬁeﬂ, Parfe;) = dim ey Par‘e,.

8ES y (_ 1 )f(g)&
so that any crossing composed with e, equals —e,. The space Parle, is spanned by terms of the form
fe, for downward partition diagrams f € Parfl,. When A = (1™), it follows using the anti-symmetry
that fe, = 0 if some connected component of f is a downward branch or a downward tree, or if f has
two components that are downward leaves. So in this case Par’e, is spanned just by the vectors ¢, and
(1,_1 * ¢)ey where c is a single downward leaf. Since these two elements of Par?® lie in different weight
spaces, they are linearly independent, so Parfe; is exactly two-dimensional. It remains to observe that
ke, is the sign representation S (1) of S, and k(1,,—; * ¢)e, is the sign representation S (u) of S,_; for

p= (1" O

Lemma 3.9(1)—(ii) shows that the Cartan matrix is unitriangular, hence, invertible. It follows that the
inclusion Parf-Proj — Parf-Modyq induces an isomorphism

Ko(Par*) = K (Par*), (3.40)

Parts (i) and (ii) follow easily using this formula. For (iii), let A := (1"). Then e, = >,

where K(’)(Parﬁ) denotes the Grothendieck group of the Abelian category Par®-Modgy. By Lemma 3.5,
we know that @ is biexact on Par®-Modyy, so it induces a multiplication making K(’)(Parﬁ) into a ring in
such a way that (3.40) is a ring isomorphism. Using the isomorphisms (3.38) and (3.40), the canonical
basis {[S*(2)]| 2 € P} of K[ (Par*) gives us another basis {5, | A € A} for the ring A. We call these the
deformed Schur functions. We have that

s2= . Baupn §1= D Ay (3.41)
HEP HeP

where (B, )iuep is the Cartan matrix from (3.39) and (A,,)iuep is the inverse matrix. From the
unitriangularity of the latter matrix, it follows that §, is equal to s, plus a linear combination of s, of
strictly lower degree. In other words, viewing the graded algebra A as a filtered algebra with filtration

induced by the grading, the deformed Schur function §, is in filtered degree n := |A| and gr,, §1 = s,.
This justifies the name “deformed Schur function”. By Theorem 3.8 we have that
- i
58y = D, G, S0, (3.42)
AeP

i.e., the reduced Kronecker coefficients are the structure constants of A in its inhomogeneous basis
.. . . . —A .
arising from deformed Schur functions. Comparing with (2.28), we deduce that G, , = LRﬁJ, if || =
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|| + |v| and Eﬁ’y = 0if |4 > |u| + |v|, both of which are well known properties of reduced Kronecker
coefficients.

Remark 3.10. The deformed Schur function §, € A as just defined is equal to the symmetric function
§, defined in a different way [OZ]. This follows from Lemma 3.9(iii), (3.42) and the characterization
given in [OZ, Th. 1(3)].

It remains to pass from Ko(Par?) to Ko(Par;). Let K{ (Par;) be the Grothendieck group of the exact
category Par-Moda. It is the free Abelian group on basis {[A(/l)] |/l € P}. The following result implies
that K (Par;) is a ring with multiplication induced by ®.

Theorem 3.11. For V, W € Par;-Modp, we have that Torf)‘"’(V, W) = 0foralli > 0, hence, ® is biexact
on Pari-Moda. For u,v € P, there is a filtration 0 = V_; < Vo < -+ < V)11, = A(u)®A(v) such
that

Vi/Vier = @ A4S

AEP;
=4 . .
where G, ,, is the reduced Kronecker coefficient.

Proof. The first statement is [SS2, Cor. 6.6], which is deduced from [SS2, Props. 4.31-4.32] using also
the exactness of ® on Part- Modgy established in Lemma 3.5 together with exactness of the monoidal
functor ind P‘”’ The second statement follows by applying ind Par "} to the degree filtation of § fu)@St(v),
using Theorem 3.8 which computes the multiplicities. O

Now consider the following commutative diagram of rings and ring homomorphisms, with maps
induced by the indicated biexact monoidal functors:

Ko(Part) —2 K (Par*)

Part

A = Ko(Sym) ind?" ind”" (3.43)

Parft Parfl

de

mn Sym

Ko(Par;) —— K{ (Pary).

(Recall Kj is the split Grothendieck group of finitely generated projectives, K(’) (Parﬁ) is the Grothendieck
group of the Abelian category Parf-Modsg, K(’)’ (Pary) is the Grothendieck group of the exact category
Par,-Mod,, and all of these Grothendieck groups are actually rings with multiplication induced by ®.)

Theorem 3.12. All of the arrows in (3.43) are isomorphisms, so that all of the Grothendieck rings in
this diagram are identified with A.

Proof. We already established this for the top two arrows in (3.38) and (3.40). It is immediate for the
arrow on the right since it takes basis element [S*(1)] to basis element [A(1)]. The fact that the bottom
arrow is an isomorphism is a general property of upper finite highest weight categories. Indeed, we have
that

[P(A)] = [A(4)] + (a sum of [A(u)] for u with |u| < |4]), (3.44)
equality in K{/(Par;). Hence, the transition matrix between the image of the canonical basis for Ko(Par)
and the standard basis for K{(Par;) is invertible, as required to see that the bottom map is an isomor-
phism. We deduce that the other two arrows are isomorphisms too using the commutativity of the
diagram. O
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From Theorem 3.12, we see that there are three natural basis for Ky(Par;):

e The canonical basis {[P(1)] | 1 € P} arising from the indecomposable projectives.
o The basis {[A(2)| 1 € P} arising from the standard basis for K)J (Par;) via the isomorphism that
is the bottom arrow of (3.43).

e The basis {[Q(1)] | 1 € P} where Q(1) := indg’r;’ S(A) = indf;zg1 S4(Q).

Note Q(A) is a finitely generated projective Par,-module which is usually decomposable. In fact
0(2) = P(A) @ (a finite direct sum of P(u) for u with |u| < |1]), (3.45)
as follows from (3.44) and the following lemma.

Lemma 3.13. For A € P, the Par;-module V := Q(Q) has a filtration0 = V_ < Vo < --- <V, =V

such that
Vi/Vier = @ Au) 5.
HEP;

In particular, V,,/V,—1 = A(Q).

Proof. Recalling the definition (3.39), this follows by applying the exact functor indﬁZ:’ti to the degree
filtration of P*(A), also using Lemma 3.9. o

Under the identification of Ky(Par,) with A, the isomorphism classes [Q(1)] correspond to the Schur
functions 54 € A, and the isomorphism classes [A(1)] correspond to the deformed Schur functions 3.
These statements are both clear from our previous discussion of Ko(Par?). The Q and A bases for
Ko(Par,;) are independent of the value of the parameter 7, whereas the P basis coming from indecom-
posable projectives undoubtedly does depend on . For values of ¢ such that Par, is semisimple (see
Corollary 5.11 below), we have that P(1) = A(1) = V(1) = L(4), and Theorem 3.11 implies that

—A
A(p)®A(v) = P A1) 0w, (3.46)
AeP
This was established before in [E-A]; see also [CO, Lem 5.14] and [BDVO, Cor. 3.2.2].

4. Jucys-MURPHY ELEMENTS VIA THE AFFINE PARTITION CATEGORY

Next, we introduce an auxiliary monoidal category A%Par, the affine partition category. We define this
as a certain monoidal subcategory of the Heisenberg category Heis, exploiting an observation of Likeng
and Savage from [LSR]. We then use APar to give a new approach to the definition of the Jucys-Murphy
elements of Par,. These were first defined in the context of the partition algebra by Halverson and Ram
[HR] and computed recursively by Enyang [E1]. We also construct more general central elements.

4.1. Schur-Weyl duality. Recall the generators and relations for the partition category from Defini-
tion 3.1. The following theorem of Deligne will play a key role in this section; see e.g. [C, Th. 2.3] for
a proof.

Theorem 4.1. Suppose that t € N. Let U, be the natural permutation representation of the symmetric
group S, with standard basis u,,...,u;. Viewing kS,-Modgy as a symmetric monoidal category via
the usual Kronecker tensor product ®, there is full k-linear symmetric monoidal functor ¥, : Par; —
kS ;-Modsqg sending the generating object | to U, and defined on generating morphisms by

vi(X): U QU —» Ui ® Uy, w @uj— u; Qu;
lﬂt(*) U QU — Uy, ui@uj — o ju;
l//;(Y):U;—>U,®U;, uj — u QU ,
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Ui(9): U —k, i — 1,
(b)) k>0 Loy + - +u.

Furthermore, the linear map Homap,, (n,m) — Homys, (U®", U®™), f — y,(f) is an isomorphism
whenevert = m + n.

For the next corollary, we assume some basic facts about semisimplification of monoidal categories;
e.g., see [BEEO, Sec. 2] which gives a concise summary of everything needed here.

Corollary 4.2. When t € N, the functor ; induces a monoidal equivalence s, between the semisimpli-
fication of Kar(®Par,) and kS ,-Modyq. In particular, Par, is not a semisimple locally unital algebra in
these cases.

Proof. The functor ¢, extends canonically to a functor Kar(Par;) — kS,-Modg. It is well known
that every irreducible kS;-module appears as a constituent of some tensor power of U;, hence, this
functor is dense. Now the first statement follows from the fullness of the functor ¥, using [BEEO,
Lem. 2.6]; see also [D, Th. 2.18] and [CO, Th. 3.24]. Since Kar(%Par,) has infinitely many isomorphism
classes of irreducible objects, it is definitely not equivalent to its semisimplification kS ;,-Modgg. This
shows that Kar(Par,) is not a semisimple Abelian category as it contains non-zero negligible morphisms.
Equivalently, the path algebra Par; is not semisimple in these cases. O

Remark 4.3. Continue to assume that + € N. By the general theory of semisimplification, the ir-
reducible objects in the semisimplification of Kar(®ar,) correspond to the indecomposable projective
Par,-modules P(1) of non-zero categorical dimension. In [D, Prop. 6.4], Deligne showed that P(1) has
non-zero categorical dimension if and only if 7 —|1| > A; — 1, in which case the irreducible object of the
semisimpliciation arising from P(1) corresponds under the equivalence i, to the irreducible kS ;-module
S (k) where k := (t — ||, 41,42, ...).

The generic partition category Par is the strict k-linear monoidal category with the same generating
object and generating morphisms as Par, subject to all of the same relations except for the final relation
in (3.6), which is omitted. The morphism

T = I € Endgy (1) .1

is strictly central in Par, so that Par can be viewed as a k[7']-linear monoidal category. For 7 € k, let
evy : Par — Par, “4.2)

be the canonical functor taking 7 to #1y. Using the basis theorem for Par, for infinitely many values of
t, one obtains a basis theorem for the generic partition category: each morphism space Homg,, (n, m) is
free as a k[T']-module with basis given by a set of representatives for the equivalence classes of m x n
partition diagrams. From this, we see that ev, induces an isomorphism k@km Par = ‘Par,, where on the
left hand side we are viewing k as a k[7']-module so that T acts as 7. This point of view is often useful
since it can be used to prove a statement involving relations in Par, for all values of ¢ just by checking it
for all sufficiently large positive integers, in which case Theorem 4.1 can often be applied to reduce to a
question about symmetric groups. To make a precise statement, let

¢t = l//t oevy . _(Par — kSt'MOdfd’ (4'3)
assuming ¢ € N.

Lemma 4.4. If f € Homg,,(n, m) satifies ¢,(f) = O for infinitely many values of t € N then f = 0.
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Proof. We can write f = >, p;(T) f; for polynomials p;(T) € k[T] and f; running over a set of rep-
resentatives for the equivalence classes of m x n partition diagrams. Since ¢,(f) = 0 we have that
> pi(t)é:(f;) = 0 for infinitely many values of ¢. By the final assertion in Theorem 4.1, this implies
that >, pi(t) ev,(f;) = O for infinitely many values of + > m + n. By the basis theorem in Par,, this
means for each i that p;(¢) = 0 for infinitely many values of 7. Hence, p;(T) = 0 for each i. o

We note that the proof of Lemma 4.4 depends on our standing assumption that the ground field k is
of characteristic zero.

4.2. Heisenberg category. Next we recall the definition of the Heisenberg category Heis which was
introduced by Khovanov in [K]. We follow the approach of [B]; Khovanov’s category is denoted
Heis_1(0) in the more general setup developed there.

Definition 4.5 ([B, Rem. 1.5(2)]). The Heisenberg category Heis is the strict k-linear monoidal category
with two generating objects | and | and five generating morphisms

><:T*T—>T*T, il —lxt, [\ dxlo1, X :lotxl, (\:ilx1>1,

subject to the following relations:
/é\ B W\ W\’ % B ’ (4‘4)
-l

- oy a6
N

Here, we have used the the sideways crossings which are defined from

It is also convenient to introduce the shorthand

% }@ a®

which automatically satisfies the degenerate affine Hecke algebra relation as in (2.34):

X=X+17, =Y +TT 4.9)
& =0 =o. (4.10)

In addition, the following relations hold, so that #eis is strictly pivotal with duality functor defined by
rotating diagrams through 180°:

-1 (-l

Note by (4.6) that
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i%:zmzw, X::%:%. (4.12)

Then we obtain further variations on (4.9) by rotating through 90° or 180° using this strictly pivotal
structure. One more useful consequence of the defining relations is that

K%

There is also a symmetry o : Heis — Heis"®, which is the strict k-linear monoidal functor that is the
identity on objects and sends a morphism to the morphism obtained by reflecting in a horizontal axis
and then reversing all orientations of strings.

Khovanov constructed a categorical action of Heis on Sym-Modgy = C—DnZO kS ,-Mody, i.e., a strict
k-linear monoidal functor

O : Heis — fmfk(Sym—Modfd). (4.14)
Explicitly, this takes the generating objects 1 and | to the induction functor E and the restriction functor

F, respectively, notation as in (2.31), and © takes generating morphisms for #eis to the natural trans-
formations defined on a kS ,-module V as follows (where g is an element of the appropriate symmetric

group):

(

> (kS0 ®us,y kS np1 s, V — kS 2 ®ks,y kS ny 1 ®xs, Vs
%

<

gR1I®v—gn+ln+2)®1Qv,

kS, ®us, Vo kS 1 ®us, V. g®@vi—gnn+1)®@v,

(),

: . ] &@av ifg=g(nntl)g forg €Sy,
<><> v kS ni1 ®s, V o Sy @us,, Vo 8@V { 0 otherwise,
(X) VoY, v— (n—1n)v,

4
(" NV)y  KSn s, V=V, gRV— gv,
n
A )y :V—>kS,®s, , V v Y (in)® (in)y,
i=1

) N DR ifgeS,,
(f\)" KSni1 Qus, Vo V) 8@V { 0 otherwise,
)y :V—>kSu1 @ks, V v 1®v,

(kS 1 s, V= kS 41 Qxs, Vo gRVi— gx41 @,

(),
@)V:VHV, Vs .

In the last two formulae, we have used the Jucys-Murphy elements x,+; € kS,1; and x, € kS, from
(2.37), respectively; the natural transformations here are the endomorphisms of £ and F denoted x and
xV just before (2.39). All of the other formulae displayed here can also be found in [LSR, §3]. Note in
particular that the clockwise bubble O acts as multiplication by n on any V € kS ,-Modgq.
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It is known moreover that the functor ® is faithful. Indeed, in [K], Khovanov uses the functor
® to prove a basis theorem for morphism spaces in #eis, and the argument implicitly establishes the
faithfulness of ® over fields of characteristic zero. We will not use this here in any essential way.

4.3. The affine partition category. Now the background is in place and we can make a new definition.

Definition 4.6. The affine partition category A%Par is the monoidal subcategory of Heis generated by
the object | :==71 » | and the following morphisms

X35 K |
A=/ M

T M =1, 4.17)
a %H’U F:=H+H’U
~><: TX% A l ><~ :=>§J+W A l (4.19)

We refer to the morphisms in (4.18) as the left dot and the right dot, and the morphisms in (4.19) as
the left crossing and the right crossing, respectively. The other shorthands for the generating morphisms
of APar introduced in Definition 4.6 are the same as the symbols used for generators of the partition
category. This is deliberate, indeed, the morphisms (4.15) to (4.17) generate a copy of the generic
partition category Par as a monoidal subcategory of Heis. This important observation is due to Likeng
and Savage; see Corollary 4.16 below. For now, we just need the following, which is proved in [LSR]
by a direct calculation using the defining relations in Heis.

(4.18)

Lemma 4.7 ([LSR, Th. 4.1]). There is a strict k-linear monoidal functor
i: Par — APar 4.20)

sending the generating object and generating morphisms of Par to the generating object and generating
morphisms in A%Par denoted by the same diagrams.

Because of the symmetry of the generators of A%Par under rotation through 180°, the strictly pivotal
structure on Heis restricts to a strictly pivotal structure on A%Par. The left and right dots are duals, as are
the left and right crossings. Moreover, the cap and the cup making | into a self-dual object are given by
the same formula (3.7) as we had before in Par, hence, i is a pivotal monoidal functor. Note also that

T.— I :G' (4.21)

Also, the symmetry o on Heis restricts to o : APar — A%Par®. This just reflects affine partition
diagrams in a horizontal axis, just like the earlier anti-automorphism o~ on Par;. Here are some further
relations, all of which are easily proved using the defining relations in #eis:

¥=\(L‘ Y=\'( - k. _.—02’—’_. (4.22)

Of course, the horizontal and vertical flips of all of these also hold. The next two lemmas establish some
less obvious relations.
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Lemma 4.8. The following relations hold in APar:

AT Ay e
(- K e
DA B A
R

Proof. For each of (4.23) to (4.25), it suffices just to prove the first equality, and then all the others
follow using o~ and duality to reflect in horizontal and/or vertical axes. For (4.23), use (4.22) and (3.5).
To prove (4.24), we expand as morphisms in Heis to see that

KIS0 % ] 2 181K PCT K |
#1518 1-X

For (4.25), we again expand the left hand side as a morphism in Heis:

o EHEN N TN

Finally, to prove (4.26), the second set of relations follows from the first set of relations by composing
on the bottom with a crossing and using (4.25). For the first set of relations, it suffices to prove the first
equality, the second then follows by duality. Expanding both of the left crossings as morphisms in Heis
produces a sum of four terms, two of which are zero, so we obtain:

TR e
<[5

Corollary 4.9. As a k-linear monoidal category, the subcategory APar of Heis is generated by the
object |, the five undotted generators (4.15) to (4.17), and the left dot.

O

Proof. The relations (4.23) and (4.24) together show that the right dot and the left and right crossings
may be written in terms of the left dot and the other undotted generating morphisms. O

Lemma 4.10. The following relations hold:

¥ 1gg -
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D OO SIS
Hig kX Xy -
OB TS

Proof. To prove (4.27), we observe by composing on the bottom with the crossing and using relations
from Par plus (4.25) that the relation we are trying to prove is equivalent to

XK K

Now we expand the left hand side in terms of morphisms in Heis using (4.6) and (4.10), then we use
(4.9) to commute the dot past a crossing in the first and fourth terms:

K& LR AN TEV 1
XA KRR R A oAl

Similarly, the expansion of the right hand side is
XKLL 1212
>§§<?§§j>§<h H %%[\ M N \

where we commuted the dot past a crossing just in the first term. These are equal. To deduce (4.28), first
apply duality to (4.27), i.e., rotate through 180°. Then compose on the top and bottom with a crossing
and simplify using relations in Par together with (4.25).

To prove (4.29), we rewrite its left hand side, replacing the right crossing with a left dot using (4.24),
then we apply (4.27) to push this left dot past the right hand string:

HF i 4

Now we simplify the five terms on the right hand side of the equation just displayed to obtain the five
terms on the right hand side of (4.29) (there is no need here to expand in terms of morphisms in #eis).

The following treats the first term:

(4.30)
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The second and third terms are easy to handle, we omit the details. For the fourth and the fifth terms, it
suffices by symmetry to consider the fifth term, which we rewrite as follows:

KR

Finally (4.30) follows easily from (4.29) on composing on the bottom with the crossing of the leftmost
two strings and using (4.25). O

Corollary 4.11. As a k-linear category, APar has object set {|*" |n € N} (which we often identify simply
with N) and morphisms that are linear combinations of vertical compositions of morphisms in the image
of i : Par — Heis together with the morphisms

: '—{ 4.31)

n 2 1

foralln = 1.

Proof. In view of Corollary 4.9, we just need to show that one can obtain the endomorphism of n
defined by the left dot on the mth string (m = 1, ..., n) by taking a linear combinations of compositions
of morphisms in the image of i and the given morphism (4.31) (in which the left dot is on the first string).
This follows by induction on m using relations (4.27) and (4.24). O

Remark 4.12. We have not attempted to formulate or prove a basis theorem for the morphism spaces
in APar. This is closely related to the problem of finding a complete monoidal presentation for APar.

4.4. Action of APar on kS;-Modg. Suppose that ¢+ € N. The restriction of the functor ® from (4.14)
to the subcategory A%Par is a strict k-linear monoidal functor APar — End(Sym-Modsg) sending the
generating object | to the endofunctor E o F (induction after restriction). Since E o F takes kS ,-modules
to kS ,-modules, the restriction of ® gives strict k-linear monoidal functors

O, : APar — Endy (kS ;-Modyq). 4.32)
The functor ©, takes | to the endofunctor indgiil oresgiil = kS ®xs, , of kS;-Modgg; this should be

interpreted as the zero functor in the case + = 0. The natural transformations arising by applying ©;
to the other generating morphisms of A%Par may be computed using the formulae after (4.14) (taking
n := t). Explicitly, one obtains the following for V € k§,-Modgg and g, h € S;:
(><> kS ks, kS Rks,, V — kS Qxs,_ kS Rxs,_, V.
1%
ERhRV— gh@)h_1 X hv,
( ><> 1 kS, ks, kS, ®ks,_, V —kS,; s, kS, ks, V,
v
gRh®v—g®h® (h~'(1) t)v,
<>§ ) : KS, ®us,_, kS Bus,_, V — kS, ®us,_, kS @us_, V.
14

g@h@vvﬁgh@(h*l(t) 1) ®v,

()\> (kS Qs kS Rus,_, V = kS ks, V. ERh® Vv oy 8h @ v,
v
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(Y) kS, ®us, , V — kS, ®us, , kS, s, , V. g®vg®1®v,
\%4
<T>V:kS[®kstilV—>V, gRv— gv,
t
(&)V:VHkSt(@kS,_,V, VHi_El(it)(@(it)v,
t
(‘—{> :kst®kstflvg)kst®k5t71‘/’ g®v’_)zg(]t)®va
Vv j=1
t
(}4) kSt s, V> kS ®xs, , V. g®VH2g®(jt)v.
Vv j=1

Recall the natural kS z-module U, from Theorem 4.1; in particular, Uy is the zero module. Using the
Kronecker product, we can consider U,® as an endofunctor of kS ;-Mod¢y. Also let trivg, be the trivial
module.

Lemma 4.13. The functor O, is monoidally isomorphic to the strict k-linear monoidal functor
®, : APar — End (kS ,-Modgg) (4.33)

which sends the generating object | to the endofunctor U,® and taking the generating morphisms for
APar to the natural transformations defined as follows on V € kS ;-Modgg and 1 < i,j < t:

<><> UQURV U QU EY, UiQui v — uj@u; ®v,
\%

U, QU,QV > U,QU,R®YV, UQu;@v— u;@u;® (i j)v,
14

U QU,QV->U,QU, R Y, UiQu;@v— u;u; ® (i j)v,

<

UQU,RV - U Y, Ui @uj Qv — 0; ju; v,

<

)

)

(A

<Y> UV U QU RV, 0@V 1, @ U ® v,
)
)
)

<

U@V, 0 ®v v,

<

(
(
e

t
<}-> UV UV, w®v > 3w (i )
\%

=1

t
V:V—>Ut®V, VHZ”;‘@%
i=1

t
U@V UV, w®v i Y U@ (i j)v,

1% j=I

Proof. There is an isomorphism kS; Qgs,_, trivs,_, = U;, g ® 1 +— gu,. Combining this with the tensor
identity, we obtain a natural kS ;-module isomorphism

@)y KS; @, , VS UQV, gRV > g, @ gy (4.34)
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for V € kS;-Modgy. This defines an isomorphism agz) t kS QRus, = U,®. Let a/,(,l) = a/it) . -agt) be

the n-fold horizontal composition of a/gt). This is a natural isomorphism a/ff) : (kS Rxs, )" = (UR)™"
whose value on a kS ;-module V is given explicitly by the map

(Q’y(,t))v (8 ® Q&I OV guty @ gn&n—1Ur @ -+ - @ gn&n—1- - &1 @ gn&n—1" " L1V-

Now define ®, : APar — Endy (kS ;-Modyq) to be the strict k-linear monoidal functor taking the object

nto (U,®)°", and defined on a morphism f € Homggp,, (n,m) by @,(f) := a,(,? 0 0,(f) o (a,(,t))fl. It
is immediate from this definition that o) = (a,(f)
monoidal functors.

It remains to check that @, as defined in the previous paragraph is equal to the functor @, defined
on generating morphisms in the statement of the lemma. So we need to check for each generating
morphism f € Homgp,, (n,m) that the formula for ®,(f)y written in the statement of the lemma is
equal to (a/,(,?)v 0 O,(f)y o (aﬁ’)); " for V € kS,-Modgg and ¢ € N. This is a routine but lengthy
calculation. We just go through a couple of the cases.

If f is the crossing, we need to show that ((ag))v 0O,(f)y o (ag)) ) (UiQu;®V) = ujQui@v.

Now we consider four cases. If t # i # j # t we have that
((agf))VO(at(f)v o (“g)); ) (Ui Qu;®v) = (( §>)Vo®t(f)v) ()RR )it
= (@), (DN ® (N @ (1)) = u; @ u @ .

)@0 : @; = @, is an isomorphism of strict k-linear

If i = j we have that
(@) o0ve @),") weuv) = (@), ce)v) ((ne1@ i)

= (@), (D®1® (i) =u;@ui ®v.
Ifi =t # j we have that

((a&))vo@,(f) (ag)) )(uz®u1®v) ((ag))v(’@’(f)V) 1G>G
= (@ t)) ((NR®UH®V) =u;Qui V.

—

Finally if i # ¢ = j we have that
(@) c0ve (@)y") e u@v) = (@), o e)v) ()@ (i) @v)
= (@), 1@ (IN® (i) =u;@u®v.

This completes the check in this case.
If f is the left dot, we have that

(@), 00 (@);") wov) = (@), e 0,y ) ()@ (i)

t t
= Z (agl))v((it) Z i) (jHu (it)(jr)(it)v.
=1 j=1
If i = ¢ this is Z ® (j t)v which is right. If i # ¢ we pull out the j = i and j = ¢ terms

of the sum, s1mp11fy the three types of terms separately, then recombine to get the desired expression

Sic w4 ® (i j)v. 0
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We now have in our hands monoidal functors ¢, from (4.3), i from (4.20), and @, from (4.33). Let
Act : kS ;-Modgg — Endy (kS ;-Modgq) 4.35)

be the k-linear monoidal functor induced by the Kronecker product, i.e., Act(V) = V® for akS ;-module
V and Act(f) = f® for a homomorphism f : V — V'

Lemma 4.14. For every t € N, the following diagram commutes up to the obvious canonical isomor-
phism of monoidal functors:

Arar —2 End (kS ,-Modyq)

’T TA“ (4.36)

‘Par L} kS ;-Modgy.

Proof. The composition @, o i takes the nth object of APar to (U,®)°", while Act og, takes it to U[®"®.
Let

O () S U
be the canonical isomorphism between these functors defined by associativity of tensor product. Then

B = (,B,(,t))rpo : @, 01 = Actog, is an isomorphism of monoidal functors. To see this, we need to
check naturali{y. This follows because the five formulae defining ¢, from Theorem 4.1 tensored on the
right with a vector v are exactly the same as the formulae defining @, on these five generating morphisms
from Lemma 4.13. O

Now we can prove the main theorem justifying the significance of the affine partition category. Let
Ev : Endy (kS ;-Modsg) — kS -Modgq 4.37)

be the (non-monoidal) k-linear functor defined by evaluating on trivg,. There is an obvious isomorphism
of functors Ev o Act = Idys,-Mod;, defined on V by the isomorphism V @ trivg, — V,v® 1 +— v.

Theorem 4.15. There is a unique (non-monoidal) k-linear functor

p : APar — Par (4.38)

Moreover, for any t € N, the following diagram of functors commutes up to natural isomorphism:

such that p oi = Idp,, and

p (4.39)

!
n n 2 T ‘

APar i} End (kS ,-Modgq)

,,l lEV (4.40)

Par — 5 kS ,-Modg.
The functor p also maps

}—~»—>T , ‘lX.H ‘>< ‘.><H

n 2 1 no 1 n n 3 2 1 n 3 2 1 n

1]
3 2 1
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Proof. Fort e N, let y,(,t) : U®"®trivs, > U®" be the obvious isomorphism sending 1;, ®- - -®Qu;, @1 —

uj, ® -+ ® u;,. We say that f € Hom gp,,(n,m) is good if there exists a morphism f € Homgpy,, (1, m)
such that

&) =7 o BM(@(f) o (7)) (4.42)
for all t € N. If f is good, there is a unigue f such that (4.42) holds for all ¢. To see this, suppose that
7 and ' both satisfy (4.42) for all £ € N. Then ¢,(f) = ¥\ 0 Ev(®,(f)) o (&) ™" = /(). so that
¢.(f — f') = O forall € N. In view of Lemma 4.4 this implies that f = £’ as claimed.

Suppose that f € Homggp,,(n,m) and g € Homggp,, (I, m) are both good. Then f o g is good with
fog:= fog. This follows because

$(Foz) =y o Bv(®,(f)) o (1)) oy o Bv(@i(f)) o (") T = ) o Bv(@i(fog)) o (v\) .

Similarly, sums of good morphisms are good with f + g := f + 2.

In this paragraph, we show that every morphism in A%ar is good. In view of the previous paragraph,
it suffices to show that some family of generating morphisms for A%Par are all good. Hence, in view
of Corollary 4.11, it is enough to show that i(f) is good for every morphism f in Par and that the
morphisms (4.31) are good for all n. For f € Homg,,(n, m), the morphism i(f) is good with i(f) := f.
This follows from the following calculation using Lemma 4.14:

YW o Bv(@:(i(f)) o (v) ' = ¥ o Bv(Act(i(f))) o (v5) " = 8u(f).

Also the morphism f from (4.31) is good for every n. To see this, let f be the morphism on the right
hand side of (4.39). Using the definition in Theorem 4.1, ¢;(f) is the map u;, ® - - - Q u;, — 23:1 uj, ®
-+ @ uj, ® uj. Also using the definition in Lemma 4.13, Ev(®,(f)) is the map u;, ® - - - Q uj; @ 1 —

Z;: Ui, @ @ uj, ®u; ® 1. On contracting the final ®1 using y,(,t), these are equal, as required to
prove that f is good.

Now we can define a k-linear functor p making (4.40) commute (up to natural isomorphism) for
all + € N. On objects, define p by declaring that p(n) = n for each n > 0. On a morphism f €
Hom ¢, (n, m), we define p(f) := f. The checks made so far imply that this is a well-defined k-linear

functor satisfying (4.39). The equation (4.42) shows that y(t) = (yf,t))n>l : Evo®, = ¢, o p is a natural
isomorphism. We have also already shown that p o i = Idgp, and that (4.39) holds. Thus, we have
established the existence of a k-linear functor p : APar — Par satisfying all of the properties in the
statement of the theorem. The uniqueness of p follows from Corollary 4.11.

It remains to check the three properties (4.41). These can be checked using the commutativity of
(4.40) in the same way as we just established (4.39). Alternatively, and possibly quicker, they can be
deduced directly from (4.39) using the relations (4.23) to (4.25), respectively. We leave the details to
the reader. O

The faithfulness of i in the following corollary was already proved in two different ways in [LSR].
Our approach is similar in spirit to the first proof given in loc. cit., i.e., the argument used to prove [LSR,
Th. 5.2].

Corollary 4.16. The functor i : Par — APar is faithful and the functor p . APar — Par is full.
Proof. This follows because p o i = Idg,;,. O

Corollary 4.17. The functor p induces an isomorphism A%Par/I = Par where I is the left tensor ideal
of APar generated by the morphism o-l — $ .



36 JONATHAN BRUNDAN AND MAX VARGAS

Proof. The left tensor ideal 7 is the data of subspaces 7 (n,m) of Hom g, (n,m) for each m,n > 0
which are closed under vertical composition on the top or bottom with any morphism and closed under
horizontal composition on the left with any morphism. It is clear from (4.39) that p sends morphisms
in 7 to zero, hence, p induces a k-linear functor p : APar/I — Par. This is surjective on objects and
full. To see that it is faithful, suppose that f + I (n,m) € Hom gp,, /7 (n,m) = Homapy(n,m)/1 (n, m)
is a morphism sent to zero by p, hence, p(f) = 0. In view of Corollary 4.11 and the definition of 7,
we may assume that f = i(f) for some f € Homg, (n,m). Then f = p(i(f)) = p(f) = 0, so that

f=if)=0. m]
Composing the functor p : APar — Par with evaluation at any ¢ € k gives a full k-linear functor
p: = ev;op : APar — Par, (4.43)
such that
BN B s
?
n 2 1 n 2 1 n 2 1 n 2 1
AN X X -] 045,
n 32 1 n 32 1 n 3.2 1 n 32 1

Like in Corollary 4.17, the functor p, induces an isomorphism A%Par/1, = Par, where I, is the left
tensor ideal of A%Par generated by 7 — t1; and o—l — $ .

4.5. Jucys-Murphy elements for partition algebras. Now we can explain how affine partition cate-
gory is related to the works of Enyang [E1] and Halverson-Ram [HR]. These are concerned with the
partition algebra, which is the endomorphism algebra

P,(t) := Endp,, (n) = 1,Par1,,. (4.46)
By analogy, we define the affine partition algebra to be
AP, := End g9, (n) = 1,AParl,. (4.47)

Let us denote the elements of AP, defined by the left and right dots on the jth string by X]L. and Xf , and
the elements defined by the left and right crossings of the kth and (k + 1)th strings by S ,ﬁ and S f:

‘_{‘, X§3: ‘ }_.‘, (4.48)

S,I; = ‘ >< " Sf = ‘ >< ‘ (4.49)

n k1 k 1 n 1k 1

XL c=

for1 < j<mand 1 < k < n— 1. We note that {X}L,Xf ‘ j=1,... ,n} are algebraically independent,
so they generate a free polynomial algebra of rank 2n inside AP,(¢); his follows easily from the basis
theorem for morphism spaces Heis proved in [K]. Taking the images of the elements (4.48) and (4.49)
under the functor p, from (4.43) gives us elements of P,(¢) denoted

x? = pt(X]L), xf = p,(X,If), sf = p,(S,I;), sf = p,(Sf). (4.50)
The notation here depends implicitly on the values of n and ¢, which should be clear from the context.
By (4.44) and (4.45), we have that xf = | - |5, xf = 1, s = Land s = (12) € S, = P, (1),
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Theorem 4.18. Suppose that t € N and let , : P,(t) — Endkgt(U?”) be the homomorphism induced
by the functor ¢, from Theorem 4.1. The elements xJL., xf , s]f, sf € P, (1) satisfy
t

(o) (s, @ @uiy) = Dy, @ @iy, @ (i) [y, ® - @ uiy, @y, | (4.51)
i=1
t
() (i, @ - @uiy) = D i, @ @uiy @ (i i) [ui, ® - @uiy @y, | (4.52)
i=1
Ui(sp) (i, @ -+ @ uiy) = iy, ® -+ @ iy @ (i ix1) [, @+ @ ui, ® i, |, (4.53)
Ui(s) (U, @ - @uiy) =y, ® -+ @y, @ (i iks1) [Uips, ® - @ ui, @ uy, | (4.54)
for 1 <iy,...,i, <t where we are using the diagonal action of S; on tensor powers of U,.
Proof. This follows from the commutativity of (4.40), (4.50) and the formulae in Lemma 4.13. O

Corollary 4.19. Identifying P,(t) with the partition algebra in [E1] by reflecting diagrams through a
vertical axis to account for the fact that we number vertices from right to left rather than from left to

right, the elements (4.50) are related to the elements L L Li,... and o 3,02, of the partition algebra
P, (1) defined in [E1] according to the dictionary
e L, t—xf o Ly, SE© Thls SR <> Tyl (4.55)

Hence, by [E1l, Th. 5.5], the elements xJL. and t — xf are identified with the Jucys-Murphy elements
introduced originally by Halverson and Ram in [HR].

Proof. Enyang’s elements are defined by a recurrence relation which is independent of the value of the
parameter ¢. Hence, his elements can be viewed as specializations at 7 = ¢ of corresponding elements
of the generic partition algebra Endg,,(n). To identify them with our elements, we can use Lemma 4.4
to see that it suffices to check that they act in the same way on U?” for infinitely many values of
the parameter ¢t € N. This follows on comparing (4.51) to (4.54) to the formulae in [E1, Prop. 5.2,
Prop. 5.3]. O

Remark 4.20. Alternatively, one can prove Corollary 4.19 inductively, using the recurrence relations
in Lemma 4.10 which are equivalent to Enyang’s recurrence relations [E1, (3.1)—(3.4)]. In fact, all of
the relations derived in loc. cit. can now be deduced easily using the relations in A%Par derived in the
previous subsection.

Remark 4.21. Recently, Creedon [Cr] has introduced a renormalization of the Jucys-Murphy elements,
which he denotes by N, Ny, ..., No, € Py(t). They are defined in terms of the Enyang-Halverson-Ram
elements simply by Nyj—y :=L;_ Lfand Npj:=Lj— % The dictionary between Creedon’s elements

L
172
and ours is

x?—% — Naj, é—xjngsz71- (4.56)

The motivation for such a renormalization will be discussed further in Remark 4.26 below.

4.6. Central elements. By the center of a k-linear category 4, we mean the (unital) commutative
algebra Z(A4) := Endz(Idz) of endomorphisms of the identity endofunctor of 4. Thus, an element
7€ Z(A4) is a tuple (zx)xeob g sSuch that zy o f = f o zx for all morphisms f : X — Y in 4. Equivalently,
in terms of the path algebra A, it is the algebra

Z(A) = {z = (2%)xco, € H 1xAlx

za = azforall a e A} R 4.57)
XeOy
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interpreting the products in the obvious way. We note that there is an algebra isomorphism

Endagacr (A) = Z(A), ¢ (L(1x)),c0, € H 1xAly, (4.58)
Xe0y
where the algebra on the left is the endomorphism algebra of the A ® A°®’-module associated to the
(A, A)-bimodule A. If A is locally finite-dimensional, then it is a locally finite-dimensional A ® A°P-
module, hence, by [BS, Lem. 2.10], the endomorphism algebra Endagacr(A) = Z(A) is a pseudo-
compact topological algebra with respect to the pro-finite topology (ideals of finite codimension form a
base of neighborhoods of zero).

In the locally finite-dimensional case, Z(A) is isomorphic to the algebra C(A)* that is the linear dual
of the cocenter C(A). The cocenter is a cocommutative coalgebra isomorphic to Coendggacr (A) in the
notation of [BS, (2.15)]. To define C(A) explicitly, note that the space D := @X,Ye@A(l xAly)* is
naturally an (A, A)-bimodule with 1yD1y = (1xAly)*. Also each 1xDly is a coalgebra as it is the dual
of the finite-dimensional algebra 1xAly. Hence, @y, 1xD1x is a coalgebra. Then the cocenter is

C(A) = ( D 1XD1X)/J (4.59)
XeOy
where J is the coideal spanned by the elements {af — fa | X, Y €Oy,ae 1xAly, f € lyDlx}. To
identify C(A)* with Z(A), note that the linear dual of the coalgebra Dy.o, 1xDlx is the algebra
I XeO, 1xAly; the annihilator J° of the coideal J defines a subalgebra of | | XeOy, 1xAlx which is exactly
the center Z(A) according to the original definition (4.57).
In this subsection, we are going to construct a family of elements (z(")),~ in the center Z(APar,)
of the affine partition category APar,. We start by introducing some convenient shorthand. Given a
monomial x"y* € k[x, y|, we use the notation

+xrys - (}—o)o (._D (4.60)

to denote the element of End g, (|) on the right hand side, that is, it is the rth power of the right dot
(represented by x) composed with the sth power of the left dot (represented by y). It then makes sense
to label dots by polynomials f(x) € k[x,y]|, meaning the linear combination of the morphisms +X’y3'

just as f(x) is the linear combination of its monomials. We are also going to use generating functions
in the same way as explained in the context of #eis in [BSW, §3.1]. For these, u will be a formal
variable which should always be interpreted by expanding as formal Laurent series in k((u~")), e.g.,
u—x)"'=uttutx+u3

Let

O(u) =uly — i(u—x)l =uly — I(u—y)l euly + I/til Endgfar(ﬂ)[[ufl]]. 4.61)

For r > 0, the coefficient of «~"~! in this formal Laurent series is — g x" ; the x" here can be replaced

by y" due to the third relation in (4.22). Also introduce the rational function

(A (x—1))

a,(u) := =)

€ k(x,u). (4.62)

The expansion of this as a power series in k[x][[u~'] is
o) =1—(u—x)"2=1—-u?—2xu>=32u* —4xu> -, (4.63)

o) = 1w 2+ B+ Dt (4 A (4.64)
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The following elementary lemma will play a fundamental role in the rest of the article. It would be hard
to formulate this without the aid of generating functions.

Lemma 4.22. The following bubble slide relations hold in APar:

O(u) | = ‘;ﬁEZH O() » ‘O(u) - O) +(,;§;‘). (4.65)

=

]

Proof. The two equations are equivalent, so we just prove the first one. When working with Heis, we
adopt the notation of [BSW, §3.1]: an open dot labelled by x" means the rth power of the open dot in
Heis, and () (u) is the formal Laurent series from [BSW, (3.13)]. Under the embedding of A%ar into
Heis, we have that

O(u + 1) = (u + 1)1]1 — E(u(yl))l = (M + 1)1]1 — (M_X)_]O =17 + O(M)
The bubble slide relation for #Heis from [BSW, (3.18)] gives that

O (u) T J= wx(u)% O () J= axw)% i%wx(u)" O ) -

According to (4.18), the label x on the open dot on the | string translates into the label x — 1 on a closed
dot in A%Par, and the label x on the open dot on the { string translates into the label y — 1 on a closed dot
in A%Par. So the relation just recorded can be written equivalently as

— (u+1
Ou+1) |= 37—18 * Ou+1) = Ziﬁi;& + Ou+1) .
Replacing u by u — 1 everywhere gives the desired relation. O

The rational function ay(u)/a,(u) € k(x,y,u) will also be important later on. The low degree terms
of its expansion as a power series in #~! can be computed using (4.63) and (4.64):
ay(u)
ax(u)
Forn > 0, let

=1+ 2(x—y)u +3(7 =yt + [4° =) + 2 —p)]u + - (4.66)

("), —r -1 oyl o o | e .
Calu) = DG u™ := Ou) x 1, x Ow) ™ = @) o | @) € 1,AParl,u™"], (4.67)

r=0 n 2 1

where the final equality follows by applying the bubble slide relation repeatedly. Then we define
Clu) = ), CYUu™ = (Ca(u)) iz € | | 1nAParl, [[u"]). (4.68)

r=0 n=0
Note by (4.66) that C(¥) = 1 and c() = ¢(® = 0.
Theorem 4.23. C(u) € Z(APar)[[u='].

Proof. The interchange law immediately gives that

for any f € Hom gp,, (1, m). O
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(r)

Corollary 4.24. For each r > 1, the element Z) = (Z,”),¢ € [ [0 1nAParl, defined from

z = 3 ((xEy = (xBy) = (XB) 4 (X = (xB) - (xBY

i=1

belongs to Z(APar) (notation as in (4.48) and (4.49)). Moreover, the elements AONAC RS generate
the same subalgebra Zo(APar) of Z(APar) as the elements C®),C*), .. ..

Proof. Let f(u) := ay(u)/a,(u) for short. Then define g(u) := f'(u)/f(u) = “(In f(u)) to be its
logarithmic derivative. We have that

1 2 1 1 2 1
- (e i) - G e )
=230y —)u t+2-60% —x)u > +2-[100° — ) + 5@y —x)]u C + -

We deduce for r > 1 that the u~"~3-coefficient of g(u) is equal to 2(’;2) (y" — x") plus a linear combi-

nation of terms (y* — x*) for 1 < s < r with s = r (mod 2).

The coefficients of the power series C’(u)/C(u) are polynomials in the coefficients of the series
C(u). Hence, by the theorem, these coefficients are all central. To compute them, we take logarithmic
derivatives of (4.67) to obtain the identity

n

Clw)/Cofu) = ) |+ g -+

i=1, i 1

Using the previous paragraph and the definition of 7, we deduce for r > 1 that the central element
defined by the u~"~3-coefficient of C’(u)/C(u) is equal to 2(”2”2)2(” plus a linear combination of Z(*)
for | < s < rwith s =r (mod 2). Finally, induction on r shows that each Z(") is central.

The argument just given shows that each Z(") lies in the subalgebra generated by C),C™), ...
Conversely, by exponentiating an anti-derivative of the series C’(u)/C(u), one shows that each C(") can

be expressed as a polynomial in Z(), Z(?)| ... Hence, the two families of elements generate the same
subalgebra of Z(APar). |

Taking the images of C(u) and each Z(") under the functor p; from (4.43) give
c(u) = Z Dy = (cn(ut)) =0 € Z(Par))[u™"] where ¢, (u) = Z c,(f)u_’ = pi(Cn(u)), (4.69)

r=0 r=0

2= (z,([))m € Z(Par,) where 2" := p,(z\"). (4.70)

The elements c,(lr) and z,(f) belong to the center Z(P,(t)) of the partition algebra P, (). In terms of the

Jucys-Murphy elements (4.50), we have that
&) = [0 = ()] = by by = == (A7)

i=1

From Corollary 4.19, it follows that z,(ll) equals z, — nt where z, is the central element from [EI,

Th. 3.10(2)]. In fact, z,(,l) is closely related to the central elements of the group algebras kS, defined
by sums of transpositions:

Lemma 4.25 ([El, Prop. 5.4]). If t € N then w,(z,sl)) : US" — U®" is equal to the endomorphism
defined by the action of 3}, <, i<, ((i j) — 1) € Z(kS ).
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Remark 4.26. After constructing the elements z,(lr) € Z(P,(t)) in the manner explained above, we came
across a recent paper of Creedon which constructs similar central elements; see [Cr, Th. 3.2.6]. To
explain the connection, recall that the rth supersymmetric power sum in variables X1, ..., Xy, V1, . .»Vm
is pr(Xty e s Xn|V1s ey ym) = x|+ +x, —y] — - — yp. The expression on the right hand side of
(4.71) s pr(xk, ... xE|xR, .., xR). Ttis easy to see that these elements belong to Z(P,(r)) forall r > 1
if and only if p,((xk —1/2)", ..., (xk — 1/2)"| (xR —2/2)", ..., (xk — 1/2)) € Z(P,(t)) for all r > 1.
Moreover, p.((xk —1/2)",..., (xk — 1/2)"|(x® — 1/2)", ..., (xR — 1/2)) € Z(P,(1)) coincides with the
rth supersymmetric power sum p,(Na, Na, ..., Noy| — N1, —N3, ..., —N,—1) in Creedon’s renormalized
Jucys-Murphy elements from (4.56). Creedon showed that his elements are central in P,(¢) by a direct
check of relations. This gives an independent way to verify that z(") = (z,([)),go belong to Z(Par,):
Creedon’s calculations show that they commute with all crossings (a surprisingly hard calculation), and
after that it is easy to see that they commute with all other generators of Par,.

Remark 4.27. In [CO, Def. 4.5], Comes and Ostrik define another family of central elements ' (7) =
(w?, (1)) n=0 which lift the central elements of the group algebras kS, defined by the sums of all r-cycles.
We expect that our elements z,(f) and their elements /() are closely related, but we do not know
any explicit formula. In particular, the Comes-Ostrik elements should generate the same subalgebra of

Z(Par,) as our elements.

5. CLASSIFICATION AND STRUCTURE OF BLOCKS

Now we return to the study of the representation theory of Par,. By considering images of the central
elements from §4.6 under an analog of the Harish-Chandra homomorphism, we decompose Par,-Mod
as a product of subcategories, which turn out to be precisely the blocks. In fact, Par, is semisimple
if and only if ¢+ ¢ N, while if # € N the non-simple blocks are in bijection with partitions of r. We
also determine the structure of the non-simple blocks and explicitly show that they are all equivalent,
recovering the results of Comes and Ostrik [CO].

5.1. Harish-Chandra homomorphism. Although we just explain in the case of Par;, the general
development in this subsection is valid for any monoidal triangular category, replacing Sym with the
(semisimple) Cartan subcategory and replacing the set P of partitions by a set parametrizing isomor-
phism classes of irreducible representations of the Cartan subcategory.

According to the general definition (4.57), the center of the partition category is a subalgebra of the
unital algebra Hn>0 1,Par1,. Let K (resp., K~) be the left ideal (resp., right ideal) of Par, generated
by the strictly downward partition diagrams (resp., the strictly upward partition diagrams). From the
triangular basis, it is easy to see that 1,K*1, = 1,K~1,,. We denote this by K,,. It is a two-sided ideal
of the finite-dimensional algebra 1,,Par,1,,, and we have that

1,Par1l, = kS, ®K,. G.D

Equivalently, K, is the two-sided ideal of 1,Par1, spanned by morphisms that factor through objects
m < n. By analogy with Lie theory, we define the Harish-Chandra homomorphism

I:IE : H 1,Par1, — Hksne (Zn)nZO — (ch Zn)nZOa (52)
n=0 n=0
where HC,, : 1,Par1, - kS, is the projection along the direct sum decomposition (5.1). It is obvious
from (5.1) that the restriction of HC to Z(Par;) defines an algebra homomorphism
HC : Z(Par;) — Z(Sym) = [ [ Z(KS ). (5.3)

n=0
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As each kS, is semisimple with its isomorphism classes of irreducible representations parametrized
by P,, we can identify the algebra appearing on the right hand side of (5.3) with the algebra k[P] of
all functions from the set # to the field k with pointwise operations. Under this identification, the tuple
(za)n=0 € [],=0Z(kS,) corresponds to the function f : # — k such that f(1) is the scalar that z,
acts by on the Specht module S (1) for each A € #,,. Then the Harish-Chandra homorphism becomes a
homomorphism

HC : Z(Par;) — k[P]. (5.4

To describe HC more explicitly in these terms, let A € P, be a partition. As we have that Endpg,, (A(1)) =
Endgy, (S (1)) = k, an element z = (z,),>0 € Z(Par;) acts on the standard module A(1) as multiplica-
tion by a scalar denoted y;(z). This defines an algebra homomorphism

X1 Z(Pary) — k. (5.5

To compute y,(z), note that it is the scalar by which z, acts on the highest weight space 1,A (1), which
is the scalar arising from the action of HC,(z,) € Z(kS,) on S (4). It follows that

xa(z) = HC,,(z,) (1) = HC(2)(1). (5.6)

Recall that Z(Par,) is a commutative pseudo-compact topological algebra with respect to the profinite
topology. Let Spec(Z(Par;)) be its set of open (= finite-codimensional) maximal ideals.

Lemma 5.1. Spec(Z(Par;)) = {kerya | 1 € P}.

Proof. Points in Spec(Z(Par,)) parametrize isomorphism classes of finite-dimensional irreducible mod-
ules for Z(Par;) Let L, be the irreducible Z(Par,)-module associated to y, : Z(Par;) — k. Then we
need to show that any finite-dimensional irreducible Z(Par,)-module L is isomorphic to L, for some
A € P. To see this, we find it easiest to work equivalently in terms of irreducible comodules over the
cocenter C := C(Par;) defined in (4.59). So let L be an irreducible C-comodule and L* be the dual
comodule, there being no need to distinguish between left or right since C is cocommutative. By def-
inition, C is a quotient of the coalgebra D that is the direct sum of the coalgebras (1,Par;1,)* for all
n = 0. Since L* is isomorphic to a subcomodule of the regular C-comodule, it follows that L* is iso-
morphic to a subquotient of the restriction of the regular D-comodule to C. Hence, L* is isomorphic to
a subquotient of (1,Par,1,)* for some n. So L is isomorphic to a subquotient of 1, Par,1,. Now recall
that the left Par,-module Par1, has a A-flag, and z € Z(Par;) acts on A(1) as multiplication by the
scalar y,(z). Hence, all composition factors of the finite-dimensional Z(Par,)-module 1, Par,1, are of
the form L, for A € P. O

Let ~; be the equivalence relation on # defined by

AR S X = Xy (5.7)
From Lemma 5.1, we see that the equivalence classes / ~, parametrize the points in Spec(Z(Par;)).
Lemma 5.2. The image of HC : Z(Par,) — k[P] consists of of all functions f € k[P] which are

constant on ~-equivalence classes. Moreover, for each subset S of P that is a union of ~;-equivalence
classes, there is a unique central idempotent 1 € Z(Par;) such that

1 ifdes,

0 otherwise. (5-8)

HC(1)(1) = {

IfS is a single equivalence class then lg is a primitive idempotent, and Z(Par;) = [ [sep/x, 1sZ(Pary).
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Proof. 1t is clear from (5.6) that any function in the image of HC is constant on ~;-equivalence classes.
Conversely, take a function f € k[#] which is constant on equivalence classes. For an equivalence class
S € P/ ~4, let Lg be the irreducible Z(Par,)-module associated to the central character y, (1 € S). The
previous lemma shows that these give a full set of pairwise inequivalent irreducible finite-dimensional
Z(Par;)-modules. It follows that the cocommutative coalgebra C(Par;) decomposes as a direct sum of
indecomposable coideals
C(Par;) = @ Cs,
SeP/~,
where Cy is the injective hull of Lg. Then we consider the linear map 6 : C(Par;) — C(Par;) defined
by multiplication by the scalar (1) (1 € S') on the summand Cs. This is a comodule homomorphism.
Now we use that
Z(Par;) = C(Par,)* = Endc (pyr,) (C(Pary))®
as holds for any coalgebra, e.g., see [BS, Lem. 2.2]. It implies that 6 defines an element of Z(Par;). The
image of this element under HC is the function f € k[P].

To prove the existence of the idempotent 15 for any S that is a union of ~,-equivalence classes, we
apply the construction in the previous paragraph to obtain 1g € Z(Par,) such that 1 acts as the identity
on the indecomposable summands Cs/ of C(Par;) for all ~,-equivalence classes S’ < § and as zero on
all other summands. This is an idempotent satisfying (5.8), and it is a primitive idempotent if and only
if S is a single equivalence class. We then have that

Z(Par) = [ 1sz(Par)
SeP/~,

as this is the algebra decomposition that is dual to the decomposition of C(Par;) as the direct sum of its
indecomposable coideals. m]

For § € P/ ~,, the primitive central idempotent 15 € Z(Par,) from Lemma 5.2 is not an element of
Par,, but we have that 1g = (1g,),>0 for idempotents 1g, = 151, = 1,15 € 1,Par;1,. Moreover, for
a fixed n the idempotent 15 , is zero for all but finitely many S, so that 1,, = ZS P/~ 1s,. The locally
unital algebras 15 Par;, = @m,n>0 1s mParlg , are the blocks of the partition algebra Par;, and we have
the block decompositions

Par, = @ 1g Par,, Par,-Mod = H 1g Par,-Mod. (5.9
SeP/~, SeP/~,

Representatives for the isomorphism classes of irreducible 15 Par;-modules are given by the modules
L(A) forall 1€ S.

Lemma 5.3. The following properties are equivalent:
(i) Pary is semisimple.
(ii) All of the ~;-equivalence classes are singletons.
(iii) HC : Z(Par,) — k[P] is surjective.
(iv) HC : Z(Par,) — k[P] is an isomorphism.

Proof. If (i) holds, then Par; is a direct sum of locally unital matrix algebras indexed by the set $ that
labels its irreducible representations. Hence, its center is the direct product | [ ,.» k. It follows easily
that HC is an isomorphism, i.e., (iv) holds.

Obviously, (iv) implies (iii).

The equivalence of (ii) and (iii) follows from Lemma 5.2.

It remains to show that (ii) implies (i). Assuming (ii), Lemma 5.2 shows for any A € % that there is
a primitive central idempotent in Z(Par;) which acts as the identity on A(2) and as zero on L(y) for all
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1 # A. We deduce that all composition factors of A(1) are isomorphic to L(4). Since this is a highest
weight module we have that [A(2) : L(2)] = 1, so actually A(Q) is irreducible. This is the case for all
A € P, so by BGG reciprocity we deduce that P(1) = A(1) = L(A) for all 4, and (i) holds. o

Remark 5.4. When Par, is semisimple, the standardization functor j, : Sym-Modgg — Par,-Modigg
sends the irreducible Sym-modules S (1) to the irreducible Par,-modules A(4) = L(A) for all 1 € P. It
follows easily that j is an equivalence of categories in the semisimple case (although it is not a monoidal
equivalence). Since the center is a Morita invariant, it follows that Z(Sym) = Z(Par,) in the semisimple
case. Recalling that Z(Sym) = k[#], this gives another way to understand the equivalence (i)=(iv) of
Lemma 5.3.

Remark 5.5. As Par,-Modigq is an upper finite highest weight category, there is also a canonical partial
order on P, called the minimal order in [BS, Rem. 3.68], which we denote here by >;. By definition,
this is the partial order generated by the relation A >, u if [A(2) : L(u)] # 0. As always for highest
weight categories, the equivalence relation ~; defining the blocks of Par; is the transitive closure of the
minimal order >,. We will describe >; explicitly in Corollary 5.26 below.

5.2. “Blocks”. In the previous subsection, we introduced an equivalence relation ~; on  whose equiv-
alence classes parametrize the blocks of Par,. The relation ~; was defined in terms of the central char-
acters y, : Z(Par;) — k arising from the irreducible Par;-modules L(1); see (5.7). On the other hand,
in (4.69) and (4.70), we constructed some explicit central elements of Par,. Let ~; be the equivalence
relation on P defined from

A~ 1= XalzyPar) = Xulzo(Par) (5.10)

where Zy(Par,) is the subalgebra of Z(Par;) generated by the elements {c(’) r > 3} (equivalently, by

the elements {z(”) | r= 1}). We refer to the ~,-equivalence classes as “blocks”. We obviously have that
A u= A~ (5.11)
i.e., “blocks” are unions of blocks. Defining 15 as in Lemma 5.2, there are induced “block” decompo-
sitions
Par; = @ 15 Pary, Par;-Mod = H 1s Par,-Mod. (5.12)
SeP/~: SEP/~;
In this subsection, we are going to describe the relation ~, in explicit combinatorial terms.
Lemma 5.6. The images of the elements ijxf si, sf € 1,Par1, from (4.50) under the Harish-

Chandra homomorphism AC from (5.2) are

HC, (x}) = x;, HC,(xf) =1 —j+1, (5.13)
HC,(sp) = 1, HC,(s{) = (kk+1), (5.14)

where x; € kS, is the Jucys-Murphy element from (2.37).

Proof. Applying HC, to the relations (4.29) and (4.30) (on the kth, (k + 1)th and (k + 2)th strings)
we deduce that HC, (sf, ) = (k k+1 k+2)HC,(sp)(k+2 k+1 k) and HC, (s, ) = (k k+1 k+
2) HC,(s7)(k+2 k+1 k). Now (5.14) follows by induction on k, the base case k = 1 being immediate
from (4.45). Note for this that (k k+1 k+2)(k k+1)(k+2 k+1 k) = (k+1 k+2).

Applying HC, to the relations (4.27) and (4.28) (on the jth and (j+ 1)th strings), using also (4.24), we
deduce that HC,, (x| ) = (j j+1) HC, (x%)(j j+1) +HCu(s%) and HC, (x5, ) = (j j+1) HCW(x) (j j+
1)— HC,,(s?). Now (5.13) follows using (5.14) and induction on j, the base case j = 1 being immediate
from (4.44). Note for this that (j j+1)x;(j j+1) + (j j+1) = xj41. O
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Lemma 5.7. For A € P,, we have that

H Leont(T (5.15)

ar— t+1

where T is some fixed standard A-tableau and a\(u) is as in (4.62).

Proof. Note by (5.6) that ya(c(u)) = HC,(c,(u))(2) € k[[u~']. To compute this, we use Lemma 5.6
and the explicit formula for ¢,(u) = p;(C,(u)) arising from (4.67) to deduce that
n
HC, (en() = T T2 ¢ Z(es ) [T,
i1 Q’t—i—&-l(”)
To evaluate this at A, we act on the basis vector vt from Young’s orthonormal basis for S (1), remem-
bering that x;vr = cont;(T)vr. O

Lemma 5.6 suggests some combinatorics of weights. Let P be the free Abelian group on basis
{Ac ]| c ek} Lete, := Ar — Ay and @, := &, — &.—1. We define the weight of a rational function
f(u) € k(u) to be

wt f(u) := Z [( Multiplicity of ¢ ) B ( Multiplicity of ¢ )] A eP. (5.16)
k

. as a pole of f(u) as a zero of f(u)
C!

For example, wta.(u) = —A.—1 + 2A; — Acr1 = a.. For A € P, let wt;(1) be the weight of the
rational function appearing on the right hand side of (5.15). As the coefficients of the power series ¢(u)
generate the subalgebra Zy(Par,), the equivalence relation ~, defined by (5.10) satisfies

A~ pe wt () = wt(u). (5.17)

This suggests using elements of P rather than ~;-equivalence classes to index the “blocks” from (5.12):
for any y € P, let
S(y) = {1eP| wi;(1) = v}. (5.18)
Then define
pr, : Par,-Mod — Par,-Mod (5.19)

to be the projection functor defined by multiplication by the central idempotent 1 ,) from Lemma 5.2.
In other words, pr, projects a Par;-module V to its largest submodule all of whose irreducible subquo-
tients are of the form L(A) for A € P with wt,(1) = y. The admissible y € P which parametrize “blocks”
are the ones with S (y) # @;if S (y) = @ then pr, is the zero functor.

Lemma 5.8. For A € P,, and any standard A-tableau T, we have that
n
th(/l) = Z(aconti(T) - a’t—i+l) = (SI—M\ — &)+ (8/l|—1 - 8—1) +ot (8/lk—k — k) (5.20)
i=1
for any k = €(Q). Moreover, given another partition u € P, we have that wt;(1) = wt,(u) if and only if
the infinite sequences (t — |A|, 4y — 1,2 —2,...) and (t — |u|, ;1 — 1,42 — 2,...) are rearrangements
of each other.

Proof. The first equality in (5.20) follows immediately from Lemma 5.7. To deduce the second equality,
take k > €(1). For 1 < r < k the contents of the nodes in the rth row of the Young diagram of A are
1—r,2—r,...,4,—r,and we have that |, +- - -+ - = €1,—r—&—r. Also;+ i1+ +Q—py1 =
& — &—pn. Now the desired formula follows easily.
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Rearranging the right hand side of (5.20) gives that E—jatey—1+ep—2+- -+ -k = wt, (1) +
e1+é&e_2+ -+ &_y+ & forany k = €(1). Hence, we have that wt,(1) = wt,(u) if and only if

&1 +ey-1teEL2t e[k = Er—|ul + Euy—1 + Eup—2 + -+ Eup—k

for all k » 0. This is clearly equivalent to saying that the infinite sequences (r — |1|,4; — 1,4, —2,...)
and (f — |u|,u1 — 1,2 — 2,...) may be obtained from each other by permuting the entries. o

The final assertion from Lemma 5.8 shows that ~, is exactly the same as the equivalence relation on
partitions defined in [CO, Def. 5.1]. The equivalence classes of this relation were investigated in detail
in [CO, §5.3]. The following summarizes the results obtained there. For the statement, we say that
A € P is typical if it is the only partition in its ~,-equivalence class; otherwise we say that A is atypical.
Of course, these notions depend on the fixed value of the parameter .

Theorem 5.9 (Comes-Ostrik). If't ¢ N then all partitions are typical. If t € N then there is a bijection
P, 5 {atypical ~-equivalence classes} taking k € P; to the ~-equivalence class {k©, k() «?, .}
where

K = (k1 4+ 1,k + LKy 2, Kng 35+ ) € Pron—iirs (5.21)

i.e., it is the partition obtained from k by adding a node to the first n rows of its Young diagram then
removing its (n + 1)th row. Moreover, still assuming t € N, a partition A € P is typical if and only if
t— || = A — i for some i > 1.

Example 5.10. For any 7 € N, the ~,-equivalence class associated to k = (f) € P, is
S ={a,(t+1),(t+1,1), (t+1,1%),--- }.
Fort € N — {0, 1}, the ~,-equivalence class associated to k = (1) € P, is
S = {7 @17, (2% 17, (271, (2, (21 1), (2. 1%), -}

As noted in [CO, Cor. 5.23] (using a different argument for the forward implication), the first as-
sertion of Theorem 5.9 allows us to recover the following well known result of Deligne [D, Th. 2.18]:
Rep(S,) is semisimple if and only if 7 ¢ N. In terms of the path algebra Par;, Deligne’s result can be
stated as follows.

Corollary 5.11 (Deligne). Par, is semisimple if and only if t ¢ N.

Proof. We already know that Par; is not semisimple if + € N by Corollary 4.2. Conversely, if # ¢ N,
we apply the criterion from Lemma 5.3, noting that all ~;-equivalence classes are singletons thanks to
(5.11) and the first part of Theorem 5.9. O

Remark 5.12. When ¢ ¢ N, the above arguments show for 4, u € P with A # u that there is a central
element in the subalgebra Zy(Par;) of Z(Par;) which acts by different scalars on the irreducible modules
L(A) and L(u). It follows in these cases that Zy(Par;) is a dense subalgebra of the pseudo-compact
topological algebra Z(Par;,)>. We do not expect that this is the case when ¢ € N, but nevertheless
Zo(Par,) is still sufficiently large to separate blocks. This will be established in Corollary 5.25 below,
which shows for any value of ¢ that the relations ~, and &, coincide, so that “blocks” are blocks, and

(5.12) is always the same decomposition as (5.9); see also [CO, Th. 5.3].

3These algebras are certainly not equal since Z(Par,) = [ [ ,.p k, is of uncountable dimension.
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5.3. Special projective functors. From now on, we will primarily be interested in parameter values
t € N, so that Par, is not semisimple. Consider the atypical block {K(O),K(l),K(z), ...} associated to
k € P,. From (5.21), it follows that «" is obtained from x(*—1) by adding «, — k,+1 + 1 nodes to the
nth row of its Young diagram, leaving all other rows unchanged. The partition «(°) is the smallest of all
of the x| hence, it is maximal in the highest weight ordering from Theorem 3.3. It follows that

Pk = A(x©). (5.22)

The indecomposable projectives A(K(O)) are exactly the ones of non-zero categorical dimension men-
tioned already in Remark 4.3, with the irreducible kS ;-module associated to the image of A(k(?)) under
the equivalence ¢, between the semisimplification of Kar(Par;) and kS ;-Modyq being the Specht module
S (k). It is also useful to note for 7 € N and « € P, that the associated block {«(*),«(1), ..} is the set
S (y) from (5.18) for

Y= (eq — &)+ (g1 —&-1) + -+ + (€141 — &) E P. (5.23)

This is follows easily using (5.20) and (5.21).
In order to understand the structure of the atypical blocks more fully, we are going to use the endo-
functor | * : Par; — Par,. Let

D := res|, = 1| «Par@pgr, : Pari-Mod — Par,-Mod (5.24)

be the corresponding restriction functor from (2.21). This obviously preserves locally finite-dimensional
modules. The object | is self-dual so, by Lemma 2.5, the restriction functor D is isomorphic to the
induction functor ind|,. By Corollary 2.6, D is a self-adjoint projective functor, so it preserves finitely
generated projectives (and finitely cogenerated injectives). To make the canonical adjunction as explicit
as possible, we note that its unit and counit are induced by the bimodule homomorphisms

m | bt m | w2 ot 0
n: Par, — 1|*Part Qpar, 1|*Par,, — ‘ ® : ‘ ) (5.25)
R 1T |
i w1
ol 1|*Par, ®Rpar, 1|*Part — Par,, ® — (5.26)
n i it i

Using (2.13), it follows that D commutes with the duality ?® on Par;-Modgq.
Lemma 5.13. For A € P, there is a filtration 0 = Vo € V| S Vo V3 = DA(Q) such that

V3/Vo=x B A+ @),
acadd(Q)

w/VizA)e @ @ A((A-m@)+ @),

berem(d) acadd(A— [B])
Vi/Vo= @ Ad-[@).

berem(Q)
Proof. By Lemma 2.4, D is isomorphic to the functor Q([])®? defined by taking the induction product
with the projective module Q([]). By Lemma 3.9(iii) and Lemma 3.13, Q([]) has a A-flag of length
two with sections A([]) at the top and A(®) at the bottom. Applying Theorem 3.11, we deduce that
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DA(2) = Q([J)®A(A) has a A-flag with one section A(@)®A(4) = A(A) and other sections arising
from the A-flag of A([J)®A(A) described in that theorem. For this, one just needs to know the values
of the reduced Kronecker coefficients EE, , which were worked out in Example 3.6. The A-flag can be
ordered in the way described since Ext! (A(u), A(v)) = 0if |u| < |v|. o

Remark 5.14. Lemma 5.13 also follows from Lemma 5.29 below, which constructs the filtration ex-
plicitly. The proof of Lemma 5.29 is also valid over fields of positive characteristic.

Now we are going to use the affine partition category APar to decompose the endofunctor D as a
direct sum of special projective functors Dy,. The approach here is analogous to the way the affine
symmetric category ASym was used to decompose E and F' as direct sums of E, and Fj, in (2.39). As
noted at the end of §4.3, Par, is isomorphic to the quotient of APar by a left tensor ideal. Hence, Par;
is a strict A%Par-module category. The self-adjoint functor D is also the restriction functor res|, arising
from this categorical action of 4%Par on Par,. Now the left and right dots give us natural transformations

a/::|-0*:|*:|*, ,8:=O-|*:|*:>|*.
Applying the general construction from (2.8) to these, we obtain commuting endomorphisms
x:=r1esy : D= D, y:=resg:D=D. (5.27)

Let Dy, be the summand of D that is the simultaneous generalized eigenspace of x and y of eigenvalues
a and b, respectively. Explicitly, D = res|, is defined by tensoring with the bimodule 1|, Par;, and
the endomorphisms x and y of D are induced by the bimodule endomorphisms p and A of 1}, Par;
given by left multiplication by x”fl 4 and x}ﬁ 1> respectively, on the summand 1,41 Par; of 1|, Par;
for each m = 0. Then, Dy, is the functor defined by tensoring with the summand of 1,Par; that
is the simultaneous generalized eigenspaces of p and A for the eigenvalues a and b, respectively. As
1yt Pary = C‘ano 1,y41Par:1,, with each 1,,; | Par:1, being finite-dimensional, these endomorphisms
are locally finite, so we have that

D = P Dy, (5.28)
a,bek

Lemma 5.15. For a,b € k, the endofunctor Dy, commutes with the duality 7%, i.e., Dy|,07% =7% 0 Dy,

Proof. This follows from the fact that D commutes with the duality ?®, and o~ fixes both the left dot and
the right dot. O

Lemma 5.16. For a,b €k, the endofunctors Dy, and Dy, are biadjoint.

Proof. The adjunction (Da‘b,Db‘a) is induced by the self-adjunction of D. The unit 77 of adjunction
comes from the bimodule homomorphism that is the composition of the unit 1 from (5.25) with the pro-
jection onto the generalized a and b eigenspaces of p and A on the left tensor factor and the generalized
b and a eigenspaces of p and A on the right tensor factor. The counit & of adjunction comes from the
composition of the counit € from (5.26) with the inclusion of the generalized b and a eigenspaces of p
and A on the left tensor factor and the generalized a and b eigenspaces of p and A on the right tensor
factor. To check the zig-zag identities, one just needs to use the relations

G- @D U - U M = o)
i.e., the fact that the left and right dots are duals. O

When a # b, Lemma 5.16 can also be proved a bit more easily using the description of Dy, given in
the following lemma, since the projection functor pr,, commutes with 29 thanks to (3.32).
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Lemma 5.17. Let pr,, be the projection functor defined by (5.19). If a # b then

Dy, = @ Prysa,—ay D O PI,
yeP

Also @yEP pry oDo pry = @aek Dd|(l'

Proof. Take a module V in the “block” parametrized by y € P, so that wt,(1) = 7 for all irreducible
subquotients of V. We need to show that D,V is in the “block”™ parametrized by y + @, — @p. Since
Dy, is exact, we may assume that V is irreducible, so V = L(4) for A € P with wt,(1) = y. The module
DV = 1| PariQ@par, V = 1| .V is generated by the finite-dimensional vector spaces 1,41V forallm > 0.
Hence, Dy, V is generated by the simultaneous generalized eigenspaces of x,’fl 4 and xi sy on Ly V
of eigenvalues a and b, respectively. Consequently, if L(u) is an irreducible subquotient of Dy, V, then
c(u) must act on L(u) in the same way as | * ¢,,(u) acts on a simultaneous eigenvector v € 1,1V for
xﬁﬂ and x£1+1 of eigenvalues a and b. Also ¢,,+1(u) acts on v € V as multiplication by y(c(u)), the
rational function displayed on the right hand side of (5.15). Using (4.65), we deduce that
@a(u)

xule(w) = 2508

Hence, wt;(u) = wt;(1) + @, — ap. O

X xalc(u)).

Our main combinatorial result about the functors Dy, is as follows.

Theorem 5.18. For A € P and a,b € k, there is a filtration 0 = Vo = Vi S Va V3 = Dy, A(A) such

that
Va/Vs = A1+ [d) ifa€add(d) andb =1t — |4
3Y2=0 0 otherwise,
A1) @A) ift —|A| = a=berem(Q)
Va)Vy = A(Q) ift—|A|#a=>berem(d) ort—|A| =a=b ¢rem(1)
YUIEYA(A-B) + @) ifa+ berem(d)and a € add(A — [B])
0 otherwise,

ViV = A1 —[B]) ifa=1t— |4+ 1andb € rem(Q)
0= 0 otherwise.

In particular, when t € Z, the functor Dy, is zero unless both a and b are integers.
Proof. See §5.5 below. O

The following corollary is an immediate consequence of the theorem, but actually it has a much
easier proof which we include below.

Corollary 5.19. For A € P and a,b € k with a # b, there is a filtration 0 = Vo € V) € V, € V3 =
Dy, A(A) such that

Vs/Vs = A(A+ [d) ifa € add(d) and b =t — |4|

32=0 0 otherwise,

Va)Vy = A((A—@)+ @) if b € rem(A) and a € add(A — [&])
27V =7 0 otherwise,

ViV = A(d— [B]) ifa=1t—|A] + 1 andb € rem(Q)
7Y0=17 0 otherwise.
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Direct proof avoiding Theorem 5.18. Lety := wt,(1). By Lemma 5.17, we can compute Dj|,A(1) by
applying pr,.. , _,, to the A-flag for DA(2) from Lemma 5.13. This produces a module with a A-flag
consisting of all A(u) in the original A-flag such that wt,(1) — wt;(1) = a, — ap. It just remains to
compute wt; (1) — wt, (1) for the various possible p. If 1 = A+ [c] for ¢ € add(A) then, by a computation
using the first equality from (5.20), we have that wt, (u) — wt;(1) = a. — a,_; for this to equal @, — @)
we must have b = r — |1l and ¢ = a. If u = A — [d@] for d € rem(A) then, by a similar computation,
Wt (1) — Wt () = ;341 — ag; for this to equal @, — a, we must have d = band a = ¢ — |A] + 1.
Finally if u = (1 — [d) + [c] for d € rem(A) and ¢ € add(A — [d]) then wt,(u) — wt,(1) = @, — ayg; for
this to equal @, — ap we must have ¢ = aand d = b. O

5.4. Blocks. We assume throughout the subsection that + € N. We are going to describe the structure
of the atypical “blocks,” revealing in particular that they are indecomposable, hence, they are actually
blocks. Recall from Theorem 5.9 that the atypical “blocks” are parametrized by partitions x € $;, with
the irreducible modules in the “block” being the ones labelled by the partitions {«(®), (1), ... }. This is
the set S (y) from (5.18) where y € P is obtained from « according to (5.23).

The first step is to show that all of the atypical “blocks” are equivalent to each other. The proof of this
uses the special projective functors Dy, with a # b. These are the ones which can be defined just using
information about central characters rather than requiring the Jucys-Murphy elements; cf. Lemma 5.17
and Corollary 5.19. In view of Remark 4.27, this sort of information was already available to Comes and
Ostrik in an equivalent form, and indeed they were also able to prove a similar result by an analogous
argument; see [CO, Lem. 5.18(2)] and [CO, Prop. 6.6].

Lemma 5.20. Let k and & be partitions of t such that k is obtained from k by moving a node from the
first row of its Young diagram to its (r + 1)th row for some r > 1. Let a := k1 —r + 1 and b := k.
Then for all n > 0 we have that Db|aA(K(”)) = A(k™) and Da|bA(/?(")) = A(x().

Proof. Let y,% € P be defined from « and k according to (5.23). From this formula it follows that
¥ =79+ a;, —ap, where a = k.41 —r + 1 and b = «; as in the statement of the lemma. Note that
a # b. So we can apply Lemma 5.17 to see that Db|aA(K(")) = Plyia,—ap (DA(x™)) and Da|bA(7<(”)) =
Py gotas (DA(x™)). Now we use this description to show that Db‘aA(K(”)) = A(x™). The proof that
Da‘bA(k(")) = A(k™) is similar and we leave this to the reader.

Fix n > 0 and let B, be the set of i € ? which are obtained from ") by removing a node, removing
a node then adding a different node, or adding a node. Bearing in mind that a # b, the standard modules
A(u) for u € B, include all of the ones which are sections of the A-flag from Lemma 5.13 which could
possibly be in the same block as A(f((”)). Now it suffices to show for m > 0 that k") € B, if and only if
m = n. There are four cases to consider.

Case one: n = 0. We have that (0 = (K2, K3y« - s Kpt1,. .. ) and 70 = (k2,K3y ...y K1 + 1,... ), which
is (9 with one node added to the rth row of its Young diagram. We definitely have that K9 e By. All
other i € By satisfy || < [k(?)]. Since all &) with m > 0 have [z")| > |z(?)|, none of these belong to
By.

Case two: 1 < n < r. We have that k" = (ki + Lkp+ 1,00k + 1,...,K41,...) and ) =
(ki,ko + 1,0 ok + 1,0 ke + 1,00 ), which is «" with a node removed from the first row and a
node added to the rth row of its Young diagram. We definitely have that " e B,. Form < n, &
is of smaller size than « and its rth row is of length «,41 + 1. This cannot be obtained from P by
removing a node since ) has rth row of length ., ;. So it does not belong to B,. For m > n, k™ is
of greater size than «" and its first row is of length k. This cannot be obtained from k) by adding a
node since ") has first row of length «; + 1. So again it does not belong to B,,.
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Case three: n = r. We have that kW = (ki + Lkp + 1,...,6 + 1,K42,...) and g = (k1, k2 +
...,k + 1,kr42,...), which is «" with a node removed from the first row of its Young diagram. We
definitely have that &) € B,. The k" with m < n have x| < || — 1 = [ | — 2 s0 are not
elements of B,,. The %M with m > n have (r + 1)th row of length «, 4] + 2, so these are not elements
of B, either since this is at least two more than the length of the (r + 1)th row of ().

Case four: n > r. We have that (") = (ki+Lko+ 1, . kep1+1,.00) and &) = (ki,ko+ 1, kg1 +
2,...), which is " with a node removed from its first row and a node added to its (r + 1)th row. We
definitely have that X" € B,. The ™ with m > n are of greater size than ) and have first row of
length «1; these cannot be obtained by adding a node to k") The k™ with r+ 1 < m < n are of smaller
size than <™ and have (r + 1)th row of length «,41 + 2; these cannot be obtained by removing a node
from ™. The ¥ with m < r have first row of length < | and (r + 1)th row of length 7, whereas
these two rows of ") are of lengths k1 + 1 and «,41 + 1 > k42, so these are not elements of B,,. O

Theorem 5.21 (Comes-Ostrik). Let « and & be partitions of t, denoting the associated ~-equivalence
classes by S := (kO k... Y and § := (g, &), ... }. There is an equivalence of categories

X : lgPar-Mod — 15Par,-Mod

between the corresponding “blocks” such that TL(k™) = L(&™) for all n > 0. The functor ¥ is a
composition of the special projective functors Dy, (a # b), hence, it is a projective functor:

Proof. We may assume that k is obtained from « by moving a node from the first row of its Young
diagram to its (r 4+ 1)th row for some r > 1. Thus, we are in the situation of Lemma 5.20. The
lemma gives us functors Dy, : 1gPar-Mod — 15Par-Mod and D, : 15 Par-Mod — 15 Par,-Mod
such that Db|aA(K(”)) = A(k™) and Da‘bA(E(”)) = A(x("). These functors are also biadjoint thanks
to Lemma 5.16. It follows easily that they are quasi-inverse equivalences of categories as claimed in
the theorem. In more detail, the unit and counit of one of the adjunctions gives natural transformations
Dyjp © Dy = 1d and Id = Dy, © D). We claim that these natural transformations are isomorphisms.
They are non-zero, hence, they are isomorphisms on all standard modules. The functors are exact and
indecomposable projectives have finite A-flags, so it follows that the natural transformations are iso-
morphisms on all indecomposable projectives. Then we get that they are isomorphisms on an arbitrary
module by considering a two step projective resolution and applying the Five Lemma. O

The next lemma does use the functors Dy, in the case a = b, i.e., it definitely requires the full
strength of Theorem 5.18 rather than merely Corollary 5.19.

Lemma 5.22. Let«k € P,and S := {K(O), D } be the corresponding ~-equivalence class. For each
n = 0, there is an endofunctor 11, : Par,-Mod — Par,-Mod such that HnA(K(m)) = 0form #n,n+ 1,
and moreover there exist short exact sequences 0 — A(x") — TLA(k™) — A(x"D) — 0 and
0 — AKW) - ILAK™D) - AKP+D) — 0. The functor 11, is a composition of the special
projective functors Dy, (a,b € Z), hence, it is a projective functor.

Proof. In view of Theorem 5.21, it suffices to prove the lemma in the special case that k = (¢), when
S ={@,(t+1),(t+1,1),(r+1,1%),... } as in Example 5.10. Then we take ITy := Dyj,0- - -0D,_1j;0Dyq
and I, := D_,_, forn > 0. Now it is just a matter of applying Theorem 5.18 to see that these functors
have the stated properties.

The situation for Iy is the most interesting. To understand this, let u := [4] and v := [5]. Then
one checks that D, jj,— © -++ o D,y © Dyo(A(@)) = A((u)); each of these functors adds a single
node to the first row of the Young diagram. After that we apply D,|, to get a module with a two step
A-flag, with a copy of A((u+1)) at the top and a copy of A((v)) at the bottom. Note this is obtained from
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Theorem 5.18 in a slightly different way according to whether u = v (i.e., riseven) oru = v+1 (i.e., ¢ is
odd). Also, this is now a module in an atypical block. Finally we apply Doj;0 Dy, 0" - D,_j,41 to end
up with the desired two step A-flag with a copy of A(k(1)) = A((r + 1)) at the top and A(x(?)) = A(2)
at the bottom; each of these functors adds a single node to the first row of the Young diagram labelling
the module at the top and removes a node from the Young diagram labelling the module at the bottom.
This is what Ij is meant to do to A(@). A similar argument shows that ITpA((7 + 1)) has a A-flag with
the same two sections. It is also easy to check that H()A(K(m)) = 0 for m > 1, indeed, D, already
annihilates these standard modules.

The functors I1, = D_,|_, for n > 0 are easier to analyze. Noting that k" = A((t + 1,1"71)), the
module TT,A(«x™) has a two step A-flag with A(k"*1)) = A((r + 1,1")) at the top and A(x() at the
bottom; this uses the 7 — [1| = a = b ¢ rem(A) case from Theorem 5.18. Similarly, IT,A(x""+1)) has a
A-flag with the same two sections. Finally, one checks that IT,A(k(™)) = 0 for m # n,n + 1. O

Remark 5.23. In the proof of the next theorem, we will show that the functor IT,, from Lemma 5.22
satisfies IT,A (k™) = IT,A (1) = IT,L(k"+ V) = P(«**+ 1) for all n > 0.

Now we can prove the main result about blocks. This can also be deduced from [CO, Th. 6.10], but
the proof of that appealed to results of Martin [M2] in order to obtain the precise submodule structure of
the indecomposable projectives, whereas we are able to establish this by exploiting the highest weight
structure and the Chevalley duality ?°.

Theorem 5.24. Let x € Par, and S := {K(O), 0, } be the corresponding ~-equivalence class.

(i) For each n = 0, the standard module A(x\")) is of length two with head L(k")) and socle
L( K(n+1))‘
(ii) The indecomposable projective module P(k) is isomorphic to A(x9)), while for n > 1 th
module P(k\") has a two step A-flag with top section A(k™) and bottom section A(k"=1).
(iii) For eachn > 1, P(k")) is self-dual with irreducible head and socle isomorphic to L(x™) and
completely reducible heart rad P(k™)/ soc P(k™) = L(x"=1)) @ L(x"+1).

._.
Q

n—

Proof. To improve the readability, we write simply P(n), A(n) and L(n) in place of P(x™), A(k")) and
L(x™). For n > 0, Lemma 5.22 shows that the module P, := IT,_; o - - - IT; o IIp(A(0)) has a two step
A-flag with top section A(n) and bottom section A(n — 1). Since A(0) is projective by the minimality
observed in (5.22) and each II; is a projective functor, P, is projective. Since P, has L(n) in its head,
it must contain the indecomposable projective P(n) as a summand, so we either have that P(n) = P, if
P, is indecomposable, or P(n) = A(n) otherwise. In the former case, (P(n) : A(m)) = 6mn + Omn—1,
while (P(n) : A(m)) = 6, in the latter situation. Now we apply BGG reciprocity to deduce for any
m = 0 that [A(m) : L(n)] = 8pm + Onm+1 if Py is indecomposable and [A(m) : L(n)] = 6, otherwise.
Hence, for each m > 0, we either have that A(m) = L(m), or A(m) is of composition length two with
composition factors L(m) and L(m + 1).

We claim for any n > 0 that A(n) = L(n) if and only if A(n + 1) = L(n + 1). Suppose first that
A(n) = L(n). Since I, commutes with duality by Lemma 5.15, this implies that IT1,A(n) is self-dual.
But this module has a two step A-flag with top section A(n + 1) and bottom section A(n) = L(n). The
only way such a module can be self-dual is if A(n + 1) = L(n + 1) (and the module must be completely
reducible). Conversely, suppose for a contradiction that A(n + 1) = L(n + 1) but A(n) # L(n). Then
A(n) is of length two with composition factors L(n) and L(n + 1), so that P(n + 1) has a two step A-flag
with top section A(n + 1) = L(n + 1) and bottom section A(n). Since I1,4+;A(n) = 0 according to
Lemma 5.22 and IT,, is exact, we must have that IT,;L(n + 1) = 0. Since A(n + 1) = L(n + 1), this
implies that IT, ;A(n 4+ 1) = 0, which contradicts Lemma 5.22.
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From the claim, we see that if A(n) is irreducible for any one n > 0, then it is irreducible for all n > 0.
Since all atypical “blocks™ are equivalent by Theorem 5.21, it follows in that case that the standard
modules A(A) for all A € P are irreducible. This implies that the minimal ordering >, from Remark 5.5
is trivial, hence, the blocks are trivial and Par; is semisimple, which contradicts Corollary 5.11. Thus,
we have proved that A(n) must be of length two for every n > 0, and (i) is proved.

Property (ii) follows immediately from (i) and BGG reciprocity as noted earlier.

It remains to prove (iii). Take n > 1. By Lemma 5.22, we have that I1,_1A(n + 1) = 0. Since
[T, is exact and L(n + 1) is a composition factor of A(n + 1), it follows that II,_;L(n + 1) = 0
too. From this, we deduce that IT,,_;A(n) = I1,_L(n). By Lemma 5.22 again, IT,_;A(n — 1) has the
same composition length as IT,,_1A(n) = I, L(n). Also A(n — 1) has L(n) as a constituent. Using the
exactness of II,_; again, we must therefore have that IT,_;A(n — 1) = I1,_;L(n). As observed earlier
in the proof, this module is isomorphic to P(n), so using that L(n) is self-dual and IT,_; commutes with
duality, we now see that P(n) is self-dual. We also know that it has length four with irreducible head
L(n), [P(n) : L(n)] =2 and [P(n) : L(n — 1)] = [P(n) : L(n + 1)] = 1. The only possible structure is
the one claimed. O

Corollary 5.25 (Comes-Ostrik). All “blocks” of Par,-Mod are indecomposable, hence, they coincide
with the blocks.

Corollary 5.26. The minimal ordering >, from Remark 5.5 is the partial order such that ™ >, k)
for each k € P; and m < n, with all other pairs of partitions being incomparable.

In general, in an upper finite highest weight category, the standard objects can have infinite length.
Our final corollary, which is also noted in [SS2, Rem. 6.4], shows that this is not the case in Par,-Modigq.
Consequently, the full subcategory consisting of all modules of finite length has enough projectives and
injectives, indeed, this subcategory is an essentially finite highest weight category in the sense of [BS,
Def. 3.7].

Corollary 5.27. The locally unital algebra Par, is locally Artinian, i.e., the left ideals Par,1, and the
right ideals 1, Par; are of finite length for all n = 0.

Proof. Theorem 5.24 shows that all indecomposable projective left Par,-modules are of finite length,
hence, all finitely generated projectives are of finite length too. This includes all of the left ideals Par;1,,.
Since there is a duality ?2, it also follows that all fintely cogenerated injective left Par,-modules are of
finite length. This includes all of the duals (1, Par;)®, hence, each 1, Par, is of finite length as a right
module. O

5.5. Proof of Theorem 5.18. It just remains to prove Theorem 5.18. In fact, we will prove the following
slightly stronger result, from which Theorem 5.18 follows easily on applying the functors involved
to the Specht module S (1). To state this stronger result, let j, : Sym-Modig — Par,-Modjzq be the
standardization functor from (3.23), E, and F}; be the refined induction and restriction functors from
(2.39), Dy|q be the special projective functor from (5.28), and pr, : Sym-Modsg — Sym-Modgq be the
functor defined by multiplication by the identity element of the symmetric group S, if c € N, i.e., it is
the projection onto kS .-Modyg followed followed by the inclusion of kS .-Modgq into Sym-Modyq, or the
zero functor if c € k — N.

Theorem 5.28. For a,b €k, there is a filtration of the functor Dy, o ji : Sym-Modgg — Par,-Moditq by
subfunctors 0 = So S 81 €S2 S §3 S S4 = Dy|, © i such that

S4/S3 = jioE,opr,_y,
S3/S2 = jiopr,_,opr,_,
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S2/S1 = j1oEso0Fp,
S1/So = jiopr,_,oFp.

(Recall that a subfunctor S of a functor T : Sym-Modgg — Par,-Modygq is a functor S : Sym-Modgy —
Par-Modysq such that SV is a submodule of TV for all V. € Sym-Modyq and S f = T f|sy for all
f € Homg,,,(V, V'), then the quotient T /S is the obvious functor with (T /S)(V) := TV/SV.)

The proof will take up the rest of the subsection. We begin by constructing a filtration of the functor
Do j, : Sym-Modgqg — Par;-Modjgg. Note that D o ji = M®sy,, where M is the (Par;, Sym)-bimodule

M := 1|, Par, ®p,,: infl* Sym. (5.29)
We also have the (Par,, Sym)-bimodules
Ny = Par; ®py,+ inﬂﬁ(Sym1| <) (5.30)
N3 1= Par; Qpy4 inf? Sym, (5.31)
Ny := Par; ®pg,+ inﬂﬁ(Symlh ®sym 1 Sym) (5.32)
Ny := Par; @pg,s infl* (1) ,Sym). (5.33)

The functors Sym-Modgq — Par;-Modigg defined by tensoring with N4, N3, N and N; are isomorphic to
J1oE, ji, jioEoF and j, o F, respectively.

Form = n > 0, let B,,,, be the basis for 1,,Par™1, defined by representatives for the equivalence
classes of normally ordered upward partition diagrams. By Theorem 3.2, the vector space M is isomor-
phic to 1| +Par~ ®x Sym, hence, it has basis

{feg|m=0n=0m+1>nf€Bui1ngcSn}. (5.34)

For any f € By,11., let ¢(f) be the connected component of the diagram containing the top left vertex.
In the language from §3.2, this component could be a trunk, an upward tree, an upward leaf, or an
upward branch. Then we introduce the following subspaces of M:

Let M be the subspace of M spanned by all f ® g in this basis such that ¢(f) is a trunk.

Let M, be the subspace spanned by all f ® g such that ¢(f) is either a trunk or an upward tree.
Let M3 be the subspace spanned by all f ® g such that ¢(f) is either a trunk, an upward tree, or
an upward leaf.

Let My :=0and My := M.

The following is a generalization of Lemma 5.13.

Lemma 5.29. The subspaces 0 = My ¢ My < My, ¢ Mz < My = M are sub-bimodules of the
(Par;, Sym)-bimodule M. Moreover, there are bimodule isomorphisms 6; : N; = M;/M;_, for each
i=1,...,4

Proof. The fact that each M; is a sub-bimodule of M is easily checked by vertically composing a basis
vector f ® g with an arbitrary partition diagram on the top and with any permutation diagram on the
bottom. One just needs to note that the action on top involves res|,, so that the top left vertex is
untouched. This implies that the type c(f) does not change if it is a trunk or an upward leaf, while if it
is an upward tree it can only be changed to another upward tree or to a trunk.

We show in this paragraph that there is a bimodule isomorphism

6, : N| — M, yl f I\®yl g I\H ’l f I\@)yl g l‘ (5.35)
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foranym = 0,n > 0, f € 1,,Par,1,_1 and g € §,,. This is a well-defined bimodule homomorphism. By
Theorem 3.2, N is isomorphic as a vector space to Par~ Qg 1| Sym, hence, it has basis

{f@g|m=n—1=>0,f€Byu1,8€Sn}. (5.36)

The vector space M has basis given by all fj ® gform+1>n > 0, fi € Bjy+1,, and g € S, such that
¢(f1) is a trunk. As it is normally ordered, any such fj is of the form

for a unique f € B, ,—1. Moreover, fi ® ¢ = 0;(f ® g) for every g € S,,. It follows that ; takes a basis
for N; to a basis for M, so it is an isomorphism.
Next we show that there is a bimodule isomorphism

[---] [---] [---] ;fL
0, : Ny — My/M;, yl I I\®yl g I\®yl h I‘H IR |+ M (5.37)

form = 0,n > 0, f € 1,,Par/1, and g, h € S,. Again, this is a well-defined bimodule homomorphism.
By Theorem 3.2, N, is isomorphic to Par™ Qx Sym1| « ®sym 1| Sym. Also kS, is free as aright kS, -
module with basis given by {(i i+1 --- n) |1 <i < n}, which is a set of S,,/S ,_;-cosets. It follows
that N, has basis

{f®(i i+1 - n)®g‘m>n>0,f€Bm’n,1<i<n,g65n}. (5.38)

The vector space M,/M has a basis given by all L ®g+ M, form+1>n>0,f, € By 1,andge S,
such that ¢(f>) is an upward tree. Any such f; is equal to

for a unique f € B, and a unique 1 < i < n (the index of the string at which the component ¢(f3)
meets the bottom of f). Moreover, /L ® g = 0,(f® (i i+1 --- n)®g) for each g € §,,. It follows that
6, takes a basis for N, to a basis for M,/M, so it is an isomorphism.

The isomorphism 65 is defined by

63 : N3 — M3/Mj, yl f I\®yl g I‘H lyl f l‘®’l g l\+M2 (5.39)

form>0,n>0, f € 1,,Par,1, and g € S,. This is obviously a well-defined bimodule homomorphism.
It is an isomorphism because it takes the basis

{(f®g|m=n=>0,f€Buygec Sy} (5.40)

for N3 to the basis for M3/M, consisting of all s ® g+ My form+1>n>0, f3€ Byi1n,andge S,
such that ¢(f3) is an upward leaf.
Finally, we construct the isomorphism 64. The vector space N4 has basis

{f®g‘m_1>n>03f€Bm,n+lagesn+l}' (541)




56 JONATHAN BRUNDAN AND MAX VARGAS

We define the linear map

(5.42)

942N4—>M4/M3, ’ S ‘@’ 8

where f ® g is a vector from the basis for Ny just displayed, and ¢’ € S, and | < i < n+ 1 are
defined from the equation g = (i i+1 --- n+1)g’. To see that this linear map is actually a bimodule
isomorphism, we construct a bimodule homorphism in the other direction and show that it is a two-sided
inverse of 4. Consider the map

-] |- C -]

¢: M — N, [ 7 e[ s \HF! f \@‘! s | (5.43)
T T -1 ] ]

form = 0,n = 0, f € 1,,41Par1, and g € §,,. It is easy to show that this is a well-defined bimodule
homomorphism. Moreover, M3 < ker ¢ since applying ¢ to any basis vector f ® g € M3 produces
a downward leaf, a cap or a downward tree which can be pushed across the tensor to act as zero on
infl* Sym. Hence, ¢ induces a homomorphism ¢ : M4/M3 — Ny. It remains to check that ¢ o 64 and
64 o ¢ are both identity morphisms, which is straightforward. O

In the next two lemmas, we finally need to make some explicit calculations with the relations involv-
ing the left and right dots in the affine partition category. However, we are working now with Par;, not
with A%Par, so all string diagrams from now on should be interpreted as the canonical images of these
morphisms in A%Par under the functor p, : APar — Par, from (4.43). We will also use the notation
from (2.37) for an open dot on the interior of a string, meaning the canonical image of this morphism in
ASym under the functor p : ASym — Sym from (2.35). This is quite different from an open dot at the
end of a string!

Lemma 5.30. Suppose thatm = 0,n = 0, f € 1,,Par;1, and g € S,,.
(i) The following holds in the bimodule M = 1|, Par; ®pq,+ infl® Symfori=1,...,n:

_s_lz l f_ll®ll_$_l (mod My).

(ii) The following holds in the bimodule M fori = 0, 1,...,n (the case i = 0 is when there are no
strings to the right of the dangling dots):

® E (t—1i) <L® (mod My).

Proof. (i) We proceed by induction on i = 1,...,n. The base case i = 1 follows from (4.44). For the
induction step, we take i > 1 and assume the result has been proved for i — 1. Then we apply (4.27) to
commute the left dot past the string to its right. This produces a sum of five terms. Ordering these terms
in the same way as they appear on the right hand side of (4.27), the induction hypothesis can be applied
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to the first term, to produce the right hand side that we are after. It remains to show that the other four
terms lies in M. These terms are as follows:

The second and third terms here are zero already in M because, in both of them, the diagram to the left
of the tensor is equivalent to a diagram with a downward tree at the bottom. It remains to show that the
first and the fourth terms lie in M;. For the fourth term, we note that

The left dot can now be absorbed into the morphism f, changing it to some other morphism f’. The
result is a linear combination of morphisms in all of which the top left vertex is connected to the bottom
edge, so that the connected component containing this vertex is either a tree or a trunk, and it belongs
to the sub-bimodule M,. The reason the first term lies in M, is very similar, one just needs to rewrite
the right crossing using (4.24), and then it is easy to see that the top left vertex is again connected to the
bottom edge.

(i1) Again we proceed by induction. The base case i = O follows from (4.44) using that 7 = ¢1y. For
the induction step, we consider some i > 0. Then we apply (4.28) to commute the right dot past the
string to its right. This produces a sum of five terms. This time, the induction hypothesis can be applied
to the first term, to produce the vector that we are after but scaled by (¢ — i + 1) rather than the desired
(t — i). The remaining four terms are as follows:

In the first term here, the left dot is some morphism in Par,, which has the effect of changing f to some
other morphism f’. After doing that, it is clear that the top left vertex is still connected to the bottom
edge, so the first term lies in M. For the second and third terms, the left and right dots can be commuted
across the tensor using (5.13), then again we see that these morphisms lie in M, since the top left vertex
is connected to the bottom edge again. For the final term, we note that

(4.25) (4.24) 33
N N 3.5) :

Making this substitution in the middle of the picture reveals that the final term is exactly the expression
studied in (i). On applying the conclusion of (i), we deduce that it contributes exactly the needed
correction to complete the proof. O

Lemma 5.31. Consider the bimodule endomorphisms p and A of M defined on 1,,41Par:1, QkS , by the
left action of xﬁl 1 ®1,and x,fq +1 ® Ly, respectively, for each m,n = 0. These endomorphisms preserve
each of the sub-bimodules M; (i = 1,2,3,4), hence, p and A induce endomorphisms also denoted p
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and A of each of the subquotients M;/M;_,. Moreover, for each i, the isomorphism 6; from Lemma 5.29
satisfies

Biopi =pob fiodi =106, (5.44)

where p;, A; : N; — N are defined as follows:

(i) p1 and Ay are the bimodule endomorphisms of N, defined on the subspace 1,,Par;1,_1 ® kS,

by the left actions of (t —n + 1)1,, ® 1,, and 1,;, ® x,, respectively, for each m = 0,n > 0.

(ii) pa and Ay are the bimodule endomorphisms of N, defined on 1,,Par;1, kS, ®kS ,, by the right
action of 1, @ x, ® 1,, and the left action of 1,, ® 1, ® x,,, respectively.

(iii) p3 and A3 are both equal to the bimodule endomorphism of N3 defined on 1,,Par/1, ® kS, by
multiplication by (t — n).

(iv) p4 and A4 are the bimodule endomorphisms of Ny defined on 1,,Par1,+1 @ kS 11 by the right
actions of 1,11 ® xp41 and (t — n)1,41 ® 1,11, respectively.

Proof. (i) Recall the definition of 8; from (5.35). Take a vector f ® g in the basis for Ny from (5.36).
By (5.13), we have that x1 = x, (mod K,) and xf = (t — n + 1)1, (mod K,) where K,, is the two
sided ideal of 1, Par1, from (5.1). Since the strictly downward partition diagrams which generate K™
are zero on infl* Sym, it follows that

p61(f®g)) P ! ®‘é|—Llf |® g”

(t—n+1 ‘H H—& (P1(f®g)),

6 ®8) \f@ J|f®gll

‘l Fle - ar e,

This shows as the same time that p and A both leave M| invariant.

(i1) Recall the definition of 8, from (5.37). The argument for A is similar to in (i). It follows from the
calculation

L] Lo
/1(02(f®g®h))=1£ ®+M1=L£ ®+M1

— —
=\® [ » |+ M =6 ’Ifl‘®llgl‘®’lhl‘
= 6h(L(f®g®h)),

where f ® g ® h is one of the basis vectors for N, from (5.38). For p, we instead have that

p(fR®g®h)) = g
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o5 [

=6 (ll f l\® ’(P.f’_l\@’l h I\>=92(P2(f®g®h))-

(iii) Recall the definition of 85 from (5.39). Note that p = A by the third relation from (4.22). For p, we
need to show that p(65(f ® g)) = (t — n)63(f ® g) for any basis vector f ® g € 1,,Par;1, kS, < N3
from (5.40). This follows from Lemma 5.30(ii) taking i = n.

(iv) Instead of working with 64 from (5.42), it is easier to use the inverse map ¢ induced by the homo-
morphism ¢ : M — N4 from (5.43). We need to show that ¢ o p = p4 o ¢. This follows from the
following calculations for f ® g € 1,41 Par,1, ®kS, and m,n > 0:

¢(p(f®g))=¢<! el \) =ﬂ“f o \:_[? ; \®‘! =
[t [~ I s |- mev s

¢(/1(f®g)>=¢<!l'-{”'l\@)ll‘f‘l\) F# ‘H m ‘H
—<r—n>®‘ — Lo ©9)).

Proof of Theorem 5.28. The functor Dy, o j) is defined by tensoring with the bimodule M that is the
simultaneous generalized a eigenspace of the endomorphism p and generalized b eigenspace of the
endomorphism A defined in Lemma 5.31. Lemma 5.29 defines a filtration of M with sections M;/M;_; =
Njfori =1,...,4. Then Lemma 5.31 shows that the endomorphisms p and A preserve this filtration,
hence, the ﬁltratlon of M induces a filtration of the summand M. Moreover, for each i, M; /Ml 1
is isomorphic to the summand N; of N defined by the simultaneous generalized a-eigenspace of the
endomorphism p; and generalized b eigenspace of the endomorphism A;. By the descriptions of p; and
A;, it follows that N@Sym is isomorphic to the functor j; o E, o pr,_,, j1 © pt,_,O0pr,_p, j1 © Eq 0 Fp
or ji opr,_,oF fori = 4,3,2,1, respectively. It remains to observe that Sym is semisimple, so every
Sym-module is flat. This means that the filtration of M induces a filtration 0 = S 0SS5 SS5,c83¢
S4 = Db|a o jy such that §; = Mi/ﬁi—l®5ym = Ni@Sym- O

O
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