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Lowering operators for GL(n) and quantum GL(n)

Jonathan Brundan

Abstract. We describe some developments in the representation theory of
GL(n) which depend on certain lowering operators recently discovered by
Kleshchev. We give a simple new definition of these lowering operators and
explain the relationship between these and operators which have previously ap-
peared in the work of Carter-Lusztig and others. Our approach simplifies two
important applications: the construction of orthogonal bases for Weyl mod-
ules over C and Kleshchev’s modular branching rules for symmetric groups.
We also describe previously unknown analogues of these two results in the
quantum case.

1. Introduction

At the Arcata conference in 1987, Carter [5] defined a certain lowering operator,
denoted Si,j for integers 1 ≤ i < j ≤ n, in the universal enveloping algebra UC(n)
of the Lie algebra gl(n, C). This operator is defined over Z, so lies in Kostant’s
Z-form UZ(n) for UC(n). Consequently, by base change, one obtains an operator,
also denoted Si,j , in the hyperalgebra UF(n) := UZ(n) ⊗

Z
F of GL(n) over a field F

of arbitrary characteristic p.
The purpose of this article is to give a new description of a remarkable gener-

alisation of Carter’s operator Si,j , originally discovered by Kleshchev in his work
on ‘modular branching’. The generalisation, denoted Si,j(A), is parametrised in
addition by a subset A of the open interval (i..j) := {i + 1, . . . , j − 1} ⊂ N. In
the special case A = ∅, Si,j(A) is just the element usually denoted Fi,j in gl(n, F),
that is, the lower triangular matrix with a 1 in the ji-entry and zeros elsewhere. At
the other extreme, if A = (i..j), then Si,j(A) is precisely Carter’s original operator
Si,j . These generalised operators are the key new technical tool in the proof of
Kleshchev’s modular branching rule for the symmetric group S(r) [14, 15, 16],
and hence in Ford and Kleshchev’s recent proof [17, 10] of the Mullineux conjecture
[20]. This result describes the irreducible FS(r)-module obtained by tensoring an
arbitrary irreducible FS(r)-module by the sign representation.

Our approach to these operators, based on material in [2, Chapters 7–8], results
in some significant simplifications to the previously rather technical proofs in the
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2 JONATHAN BRUNDAN

work of Kleshchev [16], as well as to the earlier work of Carter [5]. It also allows
us to generalise all definitions to the corresponding quantum hyperalgebra UF,v(n).

Once we have described this new formulation of the lowering operators, in
both the classsical and quantum cases, we will give two applications. The first
application is a construction of an orthogonal basis for Weyl modules for UC(v),v(n)
(ie not at roots of unity), which uses the quantum lowering operators combined
with a simplified version of Carter’s argument from [5] in the classical case.

The second application is to prove the quantum analogue of Kleshchev’s modu-
lar branching rule, describing the socle of the restriction of an irreducible represen-
tation for the Hecke algebra of the symmetric group S(r) to the Hecke algebra of
S(r−1), over F and at an arbitrary root of unity. As a consequence, this branching
rule yields a proof of the ‘quantum Mullineux conjecture’ for these Hecke algebras.
These results are the subject of [4], and we only give a brief survey here.

The modular branching rule for the Hecke algebra follows (by a Schur functor
argument) from a partial modular branching rule for the restriction of irreducible
UF,v(n)-modules to UF,v(n − 1) – all that is needed is to understand a part of this
restriction known as the first level. The modular branching rule for levels higher
than the first level is not known. At the end of the paper, we discuss this problem
of understanding all levels in the restriction of an irreducible UF,v(n)-module to
UF,v(n − 1). We explain a computational algorithm to solve this problem, and ask
whether there is a purely combinatorial solution.

2. Carter’s lowering operator

In this article, we will be working with the hyperalgebra UF(n) corresponding to
the algebraic group GL(n, F) over an arbitrary field F. The relationship between the
representation theory of this hyperalgebra and rational representations of GL(n, F)
is well known (see [13, I.7]). The aim in this section is to define this hyperalgebra,
and then review the classical theory of the lowering operators from [5].

2.1. The hyperalgebra. Let UC(n) be the universal enveloping algebra of
the Lie algebra gl(n, C). Let Xi,j ∈ gl(n, C) denote the n × n matrix with a 1
in the ij-entry and zeros elsewhere. Then, UC(n) can be defined as the C-algebra
generated by {Xi,j | 1 ≤ i, j ≤ n} subject to the relations

Xi,hXk,j − Xk,jXi,h = δkhXi,j − δijXk,h(2.1)

for all 1 ≤ i, h, k, j ≤ n. For 1 ≤ i < j ≤ n, we shall adopt the following shorthands
in the usual way for elements of UC(n):

Ei,j := Xi,j , Ei := Ei,i+1;

Fi,j := Xj,i, Fi := Fi,i+1;

Hi := Xii, Hi,j := Hi − Hj .

For an arbitrary X ∈ UC, we write X(r) for Xr/r!. Let UZ(n) be Kostant’s Z-form
for UC(n). As is well known (see [24, 6]), UZ(n) is a subring of UC(n) with Z-basis,
known as the PBW-basis, as follows:

∏

1≤i<j≤n

F
(Nij)
i,j

︸ ︷︷ ︸

U
−

Z
(n)

∏

1≤i≤n

(
Hi

Nii

)

︸ ︷︷ ︸

U0
Z
(n)

∏

1≤i<j≤n

E
(Nji)
i,j

︸ ︷︷ ︸

U
+
Z

(n)
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as N = (Nij)1≤i,j≤n runs over all n × n matrices with entries in Z≥0. Here,

the symbol

(
x
n

)

denotes 1
n!x(x − 1) . . . (x − n + 1). We specify the order of

multiplication in the first and last products in this expression as follows. In the
U−

Z
(n)-product, we choose the order for the tuples (i, j) in the product to be

(1, 2); (1, 3), (2, 3); (1, 4), . . . , (3, 4); . . . ; (1, n), . . . , (n − 1, n).

In the U+
Z

(n)-product the order is the opposite of this. Let U−
Z

(n), U0
Z
(n), U+

Z
(n)

be the subrings of UZ(n) generated by the terms of this basis indicated above, so
that UZ(n) ∼= U−

Z
(n) ⊗ U0

Z
(n) ⊗ U+

Z
(n). There is a natural antiautomorphism τ of

UC(n) defined on generators by τ(Xi,j) = Xj,i. This stabilises UZ(n).

Now we can define the hyperalgebra UF(n) (resp. U−
F

(n), U0
F
(n), U+

F
(n)) over an

arbitrary field F of characteristic p by tensoring with F, so UF(n) := UZ(n)⊗
Z
F and

so on. We write simply X(r) for the image in UF(n) of the element X(r) ∈ UZ(n).
We usually work in UF(n), so no confusion should arise. Note that τ induces an
antiautomorphism of UF(n).

Let UF(n − 1) < UF(n) be the naturally embedded hyperalgebra correspond-
ing to the subgroup GL(n − 1) < GL(n). So, UF(n − 1) is defined by base
change starting from UC(n − 1) which is the subalgebra of UC(n) generated by
{Xi,j | 1 ≤ i, j ≤ n − 1}.

Let εi : U0
C
(n) → C denote the unique algebra homomorphism such that

εi(Hj) = δij for all 1 ≤ i, j ≤ n. We make no distinction in our notation be-
tween the homomorphism εi : U0

C
(n) → C, the homomorphism εi : U0

Z
(n) → Z

defined by restriction, and the corresponding homomorphism εi : U0
F
(n) → F de-

fined by reduction mod p. Let X denote the free abelian group with generators
ε1, . . . , εn. We shall call X the weight lattice, and elements of X are weights. For a
dominant weight λ ∈ X , we shall use the notation △n(λ), Ln(λ) or ▽n(λ) to denote
the corresponding Weyl, irreducible or dual Weyl module for UF(n) respectively.

2.2. Carter’s lowering operator. We now define Carter’s original operator
Si,j ∈ UZ(n) for 1 ≤ i < j ≤ n; the corresponding operators in UF(n) are simply
the image of these under the map UZ(n) → UF(n) defined by X 7→ X ⊗ 1, and we
shall use the same notation for Si,j ∈ UF(n), relying on context to determine which
we mean. Let C(i, j) := j − i + Hi,j , an element of U0

Z
(n). For 1 ≤ i < j ≤ n,

define Si,j ∈ UZ(n) to be the determinant
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Fi,i+1 Fi,i+2 . . . Fi,j−1 Fi,j

−C(i, i + 1) Fi+1,i+2 . . . Fi+1,j−1 Fi+1,j

0 −C(i, i + 2) Fi+2,i+3 . . . Fi+2,j−1 Fi+2,j

...
. . .

. . .
...

...

−C(i, j − 2) Fj−2,j−1 Fj−2,j

0 . . . 0 −C(i, j − 1) Fj−1,j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Note some care is needed here in interpreting this determinant, since UZ(n) is a
non-commutative ring. We intend every monomial in the expanded determinant to
involve terms in order corresponding to the order of the rows in the matrix. That
is, we define the determinant of an n × n matrix M over a non-commutative ring
to be

∑

π∈S(n) ε(π)M1,1π . . .Mn,nπ.
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The key property from our point of view of these lowering operators is given
in the following lemma. We will give a simple inductive proof of this in section 3.
Essentially the lemma says that Ek and Si,j ‘almost’ commute providing k 6= j −1.

Lemma 2.2. Let 1 ≤ i < j ≤ n and k 6= j − 1 be given. Then,

EkSi,j ≡ 0 (modulo UF(n).Ek).

Thus, Si,n sends U+
F

(n)-high weight vectors to U+
F

(n − 1)-high weight vectors.

One can also define a raising operator Ri,j to be the image of Si,j under the
antiautomorphism τ , as in [5]. We will not consider these elements here.

2.3. The classical branching rule. In order to explain the importance of
Carter’s lowering operator, we first review a result known as the classical branching
rule. First, note if λ = λ1ε1 + · · · + λnεn is a dominant weight, then △n(λ) ∼=
△n(λ0) ⊗ detλn where λ0 is the dominant weight (λ1 − λn)ε1 + · · · + (λn−1 −
λn)εn−1 and det is the 1-dimensional determinant module. In the questions we are
considering, we will always assume that λn = 0 applying this remark if necessary.
Then, λ may be identified with the partition (λ1, . . . , λn−1).

Recall that a λ-tableaux is a function [λ] → [1..n], that is, a way of writing
integers in [1..n] := {1, . . . , n} into the boxes of the Young diagram [λ] of λ. For
example, if λ = (3, 2), its Young diagram is the following set of boxes in the plane:

The following are examples of λ-tableaux:

2 2 1
2 2

1 2 2
1 1

2 3 3
3 4

A tableaux is row standard if the entries increase weakly along the rows (as in the
second two tableaux in the above example) and standard if the entries increase
weakly along rows, strictly down columns (as in the third tableau in the example).

Given a row standard λ-tableau t such that every entry on row i is greater than
or equal to i, define

Ft :=
∏

1≤i<j≤n

F
(Ni,j)
i,j

where Ni,j is equal to the number of entries equal to j on row i of t, and the order
in the product is as in §2.1. Now we state the well-known standard basis theorem
[6]:

Theorem 2.3. Let vλ be a U+
F

(n)-high weight vector for △n(λ), over an arbi-
trary field F. Then,

{Ft.vλ | for all standard λ-tableaux t}

is a basis for △n(λ).

Given two partitions λ, µ, we write µ ևi λ if the Young diagram [µ] of µ can
be obtained from the diagram [λ] by removing precisely one node from the bottom
of i distinct columns. We write µ և λ if µ ևi λ for some i, in which case we say
that µ belongs to the ith level. For example, if λ is the partition (3, 2), then µ և λ
if and only if µ equals (3, 2), (3, 1), (3, 0), (2, 2), (2, 1) or (2, 0).
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As a final piece of notation, given µ և λ, define t(µ) to be the standard λ-
tableau with hk-entry equal to h if (h, k) is the coordinate of a box in the diagram
[µ], or n otherwise. For example, if λ = (3, 2) and µ = (2, 1), then t(µ) is the
tableau

1 1 n

2 n

Then, the classical branching rule over an arbitrary field F can be stated as follows
(see [4, Theorem 3.19] for a simple proof):

Theorem 2.4. Let µ1, . . . , µN be all partitions µ և λ ordered so that µi < µj

in the usual dominance order on X implies that i > j. Let vλ be a U+
F

(n)-high
weight vector in V = △n(λ), over an arbitrary field F. Then

(i) V has a UF(n − 1)-stable filtration 0 = V0 < V1 < · · · < VN = V such that
Vi/Vi−1

∼= △n−1(µi) for all i.
(ii) The image of Ft(µi).vλ in Vi/Vi−1 is a U+

F
(n − 1)-high weight vector.

In characteristic 0, this result has been known for a long time. In non-zero
characteristic, it asserts that △n(λ) has a Weyl filtration on restriction to UF(n−1),
which is a special case of Donkin’s restriction theorem [8]. The more technical part
(ii) of the theorem is less well known, but we need this in §5.3.

2.4. Constructing high weight vectors. Now we can describe the original
motivation behind the definition of the operators Si,j . Suppose that F = C, when
UC(n) is semisimple. Let V = △n(λ) be an (irreducible) Weyl module, generated
by a U+

C
(n)-high weight vector vλ. Since we are working over C, the restriction of

V to UC(n− 1) splits as a direct sum of irreducible UC(n− 1)-modules, as given by
Theorem 2.4. So, the restriction of △n(λ) to UC(n − 1) equals

⊕

µևλ

△n−1(µ).

Each of these summands is a high weight module for UC(n−1). Given any one such
summand △n−1(µ) in the restriction, it ought to be possible to find a corresponding
element Xµ ∈ UC(n) such that vµ = Xµ.vλ is precisely the U+

C
(n − 1)-high weight

vector in this irreducible.
Because of Lemma 2.2, Xµ can be described as a product of various lowering

operators Si,n. To explain this, let us generalise the notation Ft from §2.3, for a
row standard λ-tableau t such that every entry in row i is greater than or equal to
i. Given such a t, define St ∈ UC(n) by

St :=
∏

1≤i<j≤n

S
(Ni,j)
i,j

where Ni,j is equal to the number of entries equal to j on row i of t, and the order
in the product is as in §2.1.

We claim that, given µ և λ,

Xµ.vλ = St(µ).vλ = S
(N1,n)
1,n . . . S

(Nn−1,n)
n−1,n .vλ

is a non-zero U+
C

(n−1)-high weight vector in the summand △n−1(µ), where Ni,n is
defined to be the number of boxes deleted from row i of [λ] to obtain [µ]. To prove
the claim, it is clear from Lemma 2.2 that the given vector is a high weight vector.
So, it just remains to show that it is non-zero, which follows from the following
more general result, proved in [5, Theorem 7]:
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Lemma 2.5. Let vλ be a U+
C

(n)-high weight vector for △n(λ), over C. Then,

{St.vλ | for all standard λ-tableaux t}

is a basis for △n(λ).

It is important to note that Lemma 2.5 only applies in characteristic 0: essen-
tially, the argument in [5] shows that the elements St.vλ are related to the elements
Ft.vλ in the standard basis by a triangular transition matrix with non-zero entries
on the diagonal, using a ‘straightening formula’. This is false in characteristic p –
the diagonal entries in the transition matrix will often be zero in that case.

Finally, some historical remarks are in order. These elements Xµ ∈ UC(n) were
first described (in a slightly different form) by Nagel and Moshinsky in 1965 [22].
Closely related operators were used by Carter and Lusztig in 1974 [6] to study
modular representations. Their operators, denoted T i

j (t) in [6], are defined by a
very similar non-commutative determinant to the one in §2.2.

Carter and Lusztig used their elements in particular to construct non-zero
homomorphisms between Weyl modules for UF(n) in the modular case. This was
done by applying certain products of the lowering operators T i

j (t) to a high weight
vector vλ ∈ △n(λ) to construct a vector vµ inside the Weyl module △n(λ), with µ <

λ. By the above argument, vµ is easily seen to be a U+
F

(n−1)-high weight vector. By
exploiting some extra degeneracy dependent on the prime p, it is sometimes even
a U+

F
(n)-high weight vector, hence giving the required non-zero homomorphism

△n(µ) → △n(λ).
The key difficulty in the proof in [6] was to show that vµ 6= 0, hence that

a non-zero homomorphism had indeed been constructed. Later, in the Carter-
Payne theorem [7], this step of the proof was improved by a delicate argument
involving modifying the lowering operators slightly, to strengthen the results of [6].
Nowadays, such homomorphisms between Weyl modules are constructed in a more
conceptual way due to Andersen; see [13, II.6.25].

2.5. Orthogonal bases for Weyl modules. To conclude this section, we
describe the rather stronger fact about the basis from Lemma 2.5 noticed by Carter
in [5].

Recall that given a UF(n)-module V , a contravariant form (., .) on V is a sym-
metric bilinear form such that (X.u, v) = (u, τ(X).v) for all u, v ∈ V and all
X ∈ UF(n), where τ is the antiautomorphism defined in §2.1. High weight mod-
ules for UF(n) possess non-zero contravariant forms, unique up to scalars. If V is a
Weyl module, then the radical of V with respect to the contravariant form coincides
with the unique maximal submodule of V . In particular, in characteristic 0, the
contravariant form on a Weyl module is non-degenerate.

In [5], Carter proved the following result. We include a detailed proof, slightly
simpler than Carter’s original argument, since we wish to generalise this to quantum
GL(n) in section 4.

Theorem 2.6. Let vλ be a U+
C

(n)-high weight vector for V = △n(λ), over C.
Then,

{St.vλ | for all standard λ-tableaux t}

is an orthogonal basis for △n(λ) with respect to the usual contravariant form (., .).
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Proof. We prove this by induction on n, the result being trivial in the case
n = 1 (when any basis is an orthogonal basis!). The restriction of V to UC(n − 1)
splits as a direct sum of (irreducible) UC(n − 1)-Weyl modules

⊕

µևλ

△n−1(µ).

By §2.4, vµ := St(µ).vλ is a non-zero U+
C

(n − 1)-high weight vector in V , so the
summand Vµ = △n−1(µ) in this decomposition is precisely the module UC(n−1).vµ.

We now show that Vµ, Vν , for µ, ν և λ, µ 6= ν, are orthogonal relative to (., .).

Arbitrary elements of Vµ, Vν can be written as Yµ.vµ, Yν .vν for Yµ, Yν ∈ U−
C

(n−1).
Now, (Yµ.vµ, Yν .vν) = (vµ, τ(Yµ)Yν .vν). We may write τ(Yµ)Yν .vν as Y.vν for some
Y ∈ U−

C
(n − 1). Hence, this equals (vµ, Y.vν) = (τ(Y ).vµ, vν). Now, τ(Y ).vµ is a

(possibly zero) scalar multiple of vµ. So, it suffices to show that (vµ, vν) = 0. But
this is clear because they lie in different weight spaces.

In particular, since the contravariant form on UC(n) is non-degenerate over C,
this argument implies that for all µ և λ, (vµ, vµ) 6= 0. Hence, the restriction of the
contravariant form on V to Vµ is a non-zero multiple of the UC(n−1)-contravariant
form on Vµ. Now the result follows by induction and the definition of St (this is
why we chose the ordering for the bases in §2.1 with some care).

It is interesting to note that there is a quite different approach to constructing
essentially the same (up to scalars) orthogonal basis for Weyl modules over C. This
argument is due to James and Mathas; in [12], they give the argument in full for
the quantum analogue of Weyl modules, working with the q-Schur algebra. Their
argument involves certain operators known as Murphy operators in the q-Schur
algebra. In particular, James-Mathas use the orthogonal basis to understand the
Jantzen filtration of the corresponding Weyl module in the non-semisimple case,
from which they are able to give a purely algebraic (ie non-geometric) proof of the
Jantzen-Schaper theorem.

3. Generalised lowering operators: the classical case

We begin this section by discussing the problems with Carter’s operators in
non-zero characteristic, and the possibility of obtaining modular branching rules.
It is to overcome these problems that we need the generalised lowering operators.
We give the new definition of these operators, explain the relationship between the
original operators of Carter and Kleshchev, and use them to give a very simple
proof of Lemma 2.2.

3.1. Modular branching rules. The branching rule in Theorem 2.4 shows
that, in arbitrary characteristic, the restriction of △n(λ) to UF(n − 1) has a Weyl
filtration with factors △n−1(µ) occuring precisely once for each µ և λ. Unlike
in characteristic 0, there need not be a U+

F
(n − 1)-high weight vector in △n(λ)

corresponding to each of these factors. However, the following remains true in
non-zero characteristic [3, Theorem A]:

Theorem 3.1. Let µ = µ1ε1 + · · · + µn−1εn−1 be a dominant weight. Then,

dimHomUF(n−1)(△n−1(µ),▽n(λ)) =

{
1 if µ և λ
0 otherwise.
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(Here, HomUF(n−1) denotes homomorphisms of UF(n−1)-modules.) Hence, each of
the spaces

HomUF(n−1)(△n−1(µ), Ln(λ)) ∼= HomUF(n−1)(Ln(λ),▽n−1(µ)),

HomUF(n−1)(Ln−1(µ),▽n(λ)) ∼= HomUF(n−1)(△n(λ), Ln−1(µ)),

HomUF(n−1)(Ln−1(µ), Ln(λ)) ∼= HomUF(n−1)(Ln(λ), Ln−1(µ))

are at most 1-dimensional, and they are non-zero only if µ և λ.

Proof. The first statement is immediate from Theorem 2.4 and standard prop-
erties of good filtrations [13, II.4.16]. The second follows immediately from the first
applying the universal property of Weyl modules [13, II.2.13].

In particular, the theorem implies that the socle of the restriction of Ln(λ) to
UF(n − 1) is multiplicity-free, a result which was first noticed by Kleshchev [14,
Theorem A]. The proof given here is taken from [3] (where this multiplicity-free
phenomenon is explained conceptually in terms of density of certain double cosets
in reductive algebraic groups).

Because of the theorem, we make the following definitions. Let µ և λ.
(i) Say µ is normal (for λ) if dimHomUF(n−1)(△n−1(µ), Ln(λ)) = 1.
(ii) Say µ is good (for λ) if dimHomUF(n−1)(Ln−1(µ), Ln(λ)) = 1.

It is reasonable to ask for a combinatorial description of normal and good partitions,
and we refer to such results as modular branching rules. We will return to these
matters again in section 5, when we discuss Kleshchev’s modular branching rules
for the first level.

Observe that if µ is normal for λ, then a non-zero U+
F

(n − 1)-high weight
vector of weight µ does indeed exist in Ln(λ). One might hope to use Carter’s
lowering operators to give an explicit construction of such high weight vectors, as
in 2.4. However, this does not work in general – the problem is that in non-zero
characteristic, Si,n often act as zero on high weight vectors in Ln(λ). This is original
motivation behind Kleshchev’s generalisation of Carter’s operators.

3.2. The definition. We wish to define operators Si,j(A) for all 1 ≤ i < j ≤ n
and all subsets A of the open interval (i..j) := {i+1, . . . , j−1}. First, we define the
operators that we have been calling Murphy operators because they play a similar
role to operators defined by Murphy [21] in the representation theory of symmetric
groups. For 1 < j ≤ n, define

Lj :=
∑

1≤i<j

Fi,jEi,j .

These operators commute: for all j, k, LjLk = LkLj (this is an easy exercise using
the relations 2.1).

Now define C̃(i, j) := C(i, j) + 1, where C(i, j) is as in §2.2. Note that

C̃(i, k)Fi,j = Fi,jC(i, k) and C(k, j)Fi,k = Fi,jC̃(k, j) for i < k < j, and that C̃(i, k)
commutes with Lt for all t (because any element of U0

F
(n) does). For A ⊂ (i..j),

define the operator S̃i,j(A) ∈ UF(n) by

S̃i,j(A) :=
∏

t∈A

(C̃(i, t) − Li+1 − · · · − Lt).Fi,j .

Because the Murphy operators commute, we do not need to specify the order in
the product.
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Finally, we define the required operator Si,j(A). Well, we can expand S̃i,j(A)
in terms of the PBW-basis from §2.1. Define Si,j(A) to be the sum of those terms
in this expansion which lie in U−

F
(n)U0

F
(n). The point of this is that any PBW-basis

element of the form FHE for E 6= 1 acts as zero on U+
F

(n)-high weight vectors, so
is irrelevant for the questions we are considering.

To compute the lowering operators Si,j(A) in practise, the following lemma is
useful:

Lemma 3.2. Let A ⊂ (i..j). For any k ∈ [1..n], let Ik be the left ideal of UF(n)

generated by {E
(r)
h,l | 1 ≤ h < l ≤ k, r ≥ 1}. Then,

(i) LtFi,j ≡ −Fi,tFt,j (modulo Ij−1);

(ii) For i < t < j, (C̃(i, t) − Li+1 − · · · − Lt)LtFi,j ≡ 0 (modulo Ij−1).

Proof. (i) is clear from the defining relations. Now, for (ii), working modulo
Ij−1 always,

(C̃(i, t) − Li+1 − · · · − Lt−1)LtFi,j ≡ −

(

C̃(i, t)Fi,tFt,j +
∑

i<s<t

Fi,sFs,tFt,j

)

.

We show that L2
t Fi,j ≡ −LtFi,tFt,j is congruent to this expression modulo Ij−1 to

prove (ii). For this, one first checks using the defining relations that

Fs,tEs,tFi,tFt,j ≡







Fi,sFs,tFt,j + Fi,tFt,j if i < s < t
(Hi,t + 2)Fi,tFt,j if s = i
0 if s < i.

Hence, LtFi,tFt,j ≡

(
∑

s<i

Fs,tEs,t + Fi,tEi,t +
∑

i<s<t

Fs,tEs,t

)

Fi,tFt,j

≡ (Hi,t + t − i + 1)Fi,tFt,j +
∑

i<s<t

Fi,sFs,tFt,j ,

precisely as required.

Let us now illustrate the definition by computing S1,4({3}) and S1,4({2, 3}).
By definition, working modulo I3 as in the lemma,

S1,4({3}) ≡ (C̃(1, 3) − L2 − L3)F1,4 ≡ F1,4C(1, 3) + F1,2F2,4 + F1,3F3,4

using Lemma 3.2(i). Similarly, this time using Lemma 3.2(ii) as well,

S1,4({2, 3}) ≡ (C̃(1, 2) − L2)(C̃(1, 3) − L2 − L3)F1,4

≡ (C̃(1, 2) − L2)(C̃(1, 3) − L3)F1,4

≡ (C̃(1, 2) − L2)(F1,4C(1, 3) + F1,3F3,4)

≡ F1,4C(1, 2)C(1, 3) + F1,3F3,4C(1, 2) + F1,2F2,4C(1, 3) + F1,2F2,3F3,4.

This last expression is easily checked to be the same as S1,4 from §2.2.
More generally, suppose that A = (i..j). Then, by Lemma 3.2,

Si,j(A) ≡
∏

i<t<j

(C̃(i, t) − Lt)Fi,j ≡
∑

B⊂A



FB
i,j

∏

t∈A\B

C(i, t)



(3.3)
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where if B = {b1 < · · · < bs}, then FB
i,j = Fi,b1Fb1,b2 . . . Fbs,j . The next lemma

now follows immediately from this expression, expanding the determinant in the
definition of Si,j :

Lemma 3.4. If A = (i..j), then Si,j(A) = Si,j .

Thus the operators here are indeed generalisations of Carter’s lowering oper-
ators. The equation 3.3 also gives the link between our approach to constructing
orthogonal bases for Weyl modules and the James-Mathas approach in [12].

3.3. The recurrence relation. We now prove a fundamental property of
the operators Si,j(A), namely that they satisfy a certain recurrence relation. This
recurrence relation is the key to giving elementary proofs to most facts about the
lowering operators.

Two pieces of notation are convenient here. First, given a property P , we let
δP be 1 if P is true, or 0 if it is false. Second, given any subset A ⊂ N, and i ≤ j,
we let Ai..j denote {a ∈ A |i < a < j}. The key result is:

Proposition 3.5. Let A ⊂ (i..j). If A = ∅, then Si,j(A) = Fi,j . Otherwise,
take any k ∈ A and let h = max([i..k − 1] \ A). Then,

Si,j(A) = Si,j(A \ {k})C(h, k) + δh 6=iSi,j({h} ∪ A \ {k}) + Si,k(Ai..k)Sk,j(Ak..j).

Proof. We work modulo the left ideal of UF(n) generated by the non-constant
elements of U+

F
(n). We consider the case h 6= i here, leaving the (easier) case h = i

to the reader. Rewrite the definition of Si,j(A) using the identity (C̃(i, k) − · · · −

Lk) = C(h, k) + (C̃(i, h) − · · · − Lh) − (Lh+1 + · · · + Lk−1) − Lk to deduce that
Si,j(A) ≡ P1 + P2 + P3 + P4, where

P1 =
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)C(h, k)
∏

t∈Ak..j

(C̃(i, t) − Li+1 · · · − Lt)Fi,j ,

P2 =
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)(C̃(i, h) − · · · − Lh)
∏

t∈Ak..j

(C̃(i, t) − · · · − Lt)Fi,j ,

P3 = −
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)(Lh+1 + · · · + Lk−1)
∏

t∈Ak..j

(C̃(i, t) − · · · − Lt)Fi,j

which is zero by Lemma 3.2(ii), and

P4 = −
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)
∏

t∈Ak..j

(C̃(i, t) − · · · − Lt)LkFi,j

≡
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)
∏

t∈Ak..j

(C(k, t) − Lk+1 − · · · − Lt)Fi,kFk,j

≡
∏

t∈Ai..k

(C̃(i, t) − · · · − Lt)Fi,k

∏

t∈Ak..j

(C̃(k, t) − Lk+1 − · · · − Lt)Fk,j ,

using Lemma 3.2(ii) twice in this last step. Now, P1 + · · · + P4 is easily seen to
equal the required right hand side.

In particular, this recurrence relation allows us to explain the connection be-
tween our lowering operators and the operators originally defined by Kleshchev in
[16], working over Z. Fix a partition λ ∈ X . Define a map

eλ : U−
Z

(n)U0
Z(n)U+

Z
(n) → U−

Z
(n)U+

Z
(n)
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by “evaluation at λ”; on a basis element FHE, eλ(FHE) := Fλ(H)E. For any
X ∈ UZ(n), let Xλ := eλ(X). In particular, this defines operators Sλ

i,j(A) =

eλ(Si,j(A)). In [16], Kleshchev defines certain operators Ti,j−1(M) ∈ U−
Z

(n) for
M ⊂ (i..j), and shows that they satisfy a recurrence relation given in [16, Lemma
2.4]. On rearranging Proposition 3.5, together with Lemma 3.4, one can easily see
that

Ti,j−1(M) = Sλ
i,j(A)

where A = (i..j)\M . So, our operator Si,j(A) specialises to the operator Ti,j−1(M)
defined by Kleshchev in [16].

To conclude this section, we illustrate the use of the recurrence relation by
giving the simple proof of Lemma 2.2. In fact, we prove something slightly more
general; Lemma 2.2 follows from this using Lemma 3.4:

Lemma 3.6. Let A ⊂ (i..j) and 1 ≤ l < n. Suppose one of the following holds:
(a) l + 1 ∈ A;
(b) l /∈ {i} ∪ A and l + 1 /∈ A ∪ {j}.

Then, ElSi,j(A) ≡ 0 (modulo UF(n).El).

Proof. Use induction on height, where ht(A) =
∑

a∈A a. If ht(A) = 0,
Si,j(A) = Fi,j and the result is immediate from 2.1. If ht(A) = i + 1, A = {i + 1}
and

Si,j(A) = Fi,jC(i, i + 1) + Fi,i+1Fi+1,j .

The conclusion is immediate from this and 2.1 if (b) holds. So, suppose (a) holds,
so that l = i. Then, by 2.1

ElSi,j(A) ≡ −Fi+1,j(1 + Hi,i+1) + Hi,i+1Fi+1,j = 0.

So now suppose that ht(A) > i + 1 and that the result has been proved for all A
of smaller height. Suppose first that A = {l + 1} where i < l < j − 1. Applying
Proposition 3.5 twice, Si,j(A) equals

Fi,l+1Fl+1,j + Fi,lFl,j + Fi,jC(l − 1, l + 1) + δl−16=iSi,j({l − 1}).

By induction, ElSi,j({l − 1}) ≡ 0 ≡ El, Fi,j . Now the conclusion follows since by
2.1 again, El commutes with Fi,l+1Fl+1,j + Fi,lFl,j . So, we may assume that we
can choose some k ∈ A with k 6= l + 1. Let h = max([i..k − 1] \ A) and apply
Proposition 3.5. The conclusion follows in either case (a) or case (b) using the
induction hypothesis.

4. Generalised lowering operators: the quantum case

In this section, we explain briefly how to generalise the lowering operators
Si,j(A) to the quantum analogue UF,v(n) of UF(n). In particular, this will enable
us to give the correct definition of the quantum analogue of Carter’s operators Si,j ,
hence to construct orthogonal bases for quantum Weyl modules. Further details
here can be found in [2, Chapter 8] and [4].
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4.1. The quantum hyperalgebra. We begin by briefly sketching the defi-
nition from [18, 9] of the quantum hyperalgebra UF,v(n) over our arbitrary field F,
where v is a fixed element of F×. The definition is by base change, much as in the
classical case in §2.1. First, we let UC(v),v(n) be the Drinfeld-Jimbo generic quan-
tised enveloping algebra corresponding to UC(n), where here v is an indeterminate
over C. This is defined by generators and relations; we use notation as in [9, 4], so
denote the generators by Ei, Fi, Kj , K

−1
j (1 ≤ i < n, 1 ≤ j ≤ n). The full relations

can be found in [9] or [4], and we omit the details here.
For t, u ∈ N, we define the quantum factorial and the quantum binomial coeffi-

cient by

[t]! :=
t∏

s=1

vs − v−s

v − v−1
,

[
t
u

]

:=
u∏

s=1

vt−s+1 − v−t+s−1

vs − v−s
.

For X ∈ UC(v),v(n), X(s) now denotes the divided power Xs/[s]! and

[
Kj

u

]

:=

u∏

s=1

Kjv
−s+1 − K−1

j vs−1

vs − v−s
.

Lusztig [18] has constructed an integral form for UC(v),v(n) over the ring of

Laurent polynomials Z[v, v−1]. To describe a PBW-basis for this integral form, we
need to define elements Ei,j , Fi,j for arbitrary 1 ≤ i < j ≤ n, as in the classical
case. Unfortunately, there are many ways of doing this as shown in [18]. We want
to be definite here, so fix our choice to be the one described in [18, Example 4.4]
(see also [4]). This is quite arbitrary, and with appropriate modifications, any of
Lusztig’s definitions of Ei,j , Fi,j for general i, j could be made to work.

Having fixed this choice, we can describe the integral form. Du [9, Sec-
tion 2] and Lusztig [18, 4.5] have shown that there is a free Z[v, v−1]-subalgebra
UZ[v,v−1],v(n) of UC(v),v(n) with Z[v, v−1]-basis

∏

1≤i<j≤n

F
(Nij)
i,j

︸ ︷︷ ︸

U−

∏

1≤i≤n

(

Kδi

i

[
Ki

Nii

])

︸ ︷︷ ︸

U0

∏

1≤i<j≤n

E
(Nji)
i,j

︸ ︷︷ ︸

U+

as N = (Nij)1≤i,j≤n runs over all n × n matrices with entries in Z≥0 and δ =
(δi)1≤i≤n runs over all vectors with entries in {0, 1}. The order of multiplication in
the first and last products is fixed as in §2.1.

We now obtain the quantum hyperalgebra UF,v(n) by base change. So now F

is an arbitrary field of characteristic p and v is an arbitrary unit in F. Regard F as
a Z[v, v−1]-algebra by letting the indeterminate v ∈ Z[v, v−1] act as multiplication
by v ∈ F. Then,

UF,v(n) := UZ[v,v−1],v(n) ⊗
Z[v,v−1]

F.

The construction is precisely analogous to the classical case in §2.1. In fact, if
v2 = 1, then UF,v(n) is just (a covering of) the classical hyperalgebra UF(n), so our
results about UF,v(n) contain as a special case results about the classical case.

One then defines U−
F,v(n), U0

F,v(n), U+
F,v(n) to be span of the image of those parts

of the PBW-basis indicated above, as in the classical case. A weight λ ∈ X is now
regarded as a homomorphism U0

F,v(n) → F by base change from the generic case,

when εi : U0
C(v),v(n) → C(v) is defined by Kj 7→ vδi,j . Again, UF,v(n) admits an
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antiautomorphism τ as in the classical case defined by base change from the generic
case where τ acts as τ(Ei) = Fi, τ(Fi) = Ei, τ(Ki) = Ki for all i.

Finally, we note that all the classical notions of Weyl, irreducible and dual Weyl
modules have analogues in the quantum case. Denote these by △n(λ), Ln(λ),▽n(λ)
as before. Also, the standard basis theorem and the analogue of the classical branch-
ing rule (Theorem 2.3 and Theorem 2.4) generalise easily to the quantum case [4,
Section 3].

4.2. Quantum lowering operators. To define the quantum analogue of
Si,j(A), we renormalise Fi,j . For 1 ≤ i < j ≤ n, define

F̂i,j := v−jKjFi,jKiv
−i.

The following relations hold for the renormalised F̂i,j : for all 1 ≤ i < j ≤ n and all
1 ≤ l < n,

ElF̂i,j =







F̂i,jEl + v−2i

v−v−1 (K2
i − K2

i+1) if l = i, l + 1 = j

v−1F̂i,jEi − vF̂i+1,j if l = i, l + 1 6= j

vF̂i,jEi + F̂i,j−1 if l 6= i, l + 1 = j

F̂i,jEl if l /∈ {i, j}, l + 1 /∈ {i, j}

vF̂i,jEl if l + 1 = i

v−1F̂i,jEl if l = j.

(4.1)

Also define the quantum C(i, j) for 1 ≤ i < j ≤ n by

C(i, j) :=
v−2i−1K2

i − v−2j−1K2
j

v − v−1
.

Now we can define Si,j(A) in the quantum case. We want to do this simply by
giving the analogue of the recurrence relation in Proposition 3.5. So, if A = ∅, we
let Si,j(A) be F̂i,j . Otherwise, if A is non-empty and k ∈ A is any element, we let
h = max([i..k − 1] \ A) and set

Si,j(A) := Si,j(A \ {k})C(h, k) + δh 6=iSi,j({h} ∪ A \ {k}) + Si,k(Ai..k)Sk,j(Ak..j).

Unfortunately, it is not immediately clear that this recurrence relation is well-
defined (since there is freedom to choose k ∈ A). So, we have to proceed with
slightly more care: certainly, there are well-defined operators Si,j(A) defined by this
recurrence relation where we prescribe at all times that k is chosen to be max(A) in
the inductive definition of Si,j(A). One then needs to prove by induction that the
operator thus defined satisfies the given recurrence relation for all k ∈ A. This is
not hard to do, and we leave the details to the reader. A rather different approach
to defining this quantum Si,j(A) is given in [4, Section 4].

The key fact about the quantum operators Si,j(A) is that the analogue of
Lemma 3.6 holds in precisely the same way. The proof is identical to the classical
case, using 4.1 in place of the classical relations 2.1 (see [4, Lemma 4.11]). In
particular, we can now give the definition of the quantum analogue Si,j of Carter’s
original lowering operator Si,j . By definition, this should be Si,j(A) in the case
A = (i..j). It is easy to see (using the recurrence relation) that this is just the
element of UF,v(n) obtained by expanding the non-commutative determinant of
§2.2 with every entry C(i, j) replaced with the quantum C(i, j) and every entry

Fi,j replaced with F̂i,j . We remark that, as F̂i,j and C(i, j) both specialise to the
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classical objects Fi,j and C(i, j), the operators we have defined do indeed specialise
to the classical objects from section 3.

4.3. Orthogonal bases revisited. We now give a first application of these
quantum lowering operators to construct orthogonal bases for quantum Weyl mod-
ules using the quantum Si,j . We work now in the semisimple case F = C(v), where
v is an indeterminate.

Given a standard λ tableau t, define St as in §2.4, now using quantum divided
powers and the quantum version of Si,j . The Weyl module △n(λ) again possesses
a (unique up to scalars) non-degenerate contravariant form over C(v), and we have
the analogous orthogonal basis given by our lowering operators:

Theorem 4.2. Let vλ be a U+
C(v),v(n)-high weight vector for △n(λ) over C(v).

Then,

{St.vλ | for all standard λ-tableaux t}

is an orthogonal basis for △n(λ) with respect to the usual contravariant form (., .).

Proof. Precisely the argument described in the proof of Theorem 2.6 carries
over to the quantum case, since all that we used is that Si,n sends UF(n)+-high
weight vectors to UF(n−1)+-high weight vectors, which follows because the analogue
of Lemma 3.6 holds for our quantum lowering operators. The only problem in doing
this is to show that if µ և λ, then St(µ).vλ is actually non-zero. But this follows
because this element specialises under the map v 7→ 1 to the classical element
St(µ).vλ, which is known to be non-zero by Lemma 2.5.

We stress again that this orthogonal basis over C(v) does not give a basis at
roots of unity. The basis in Theorem 4.2 is the same (up to scalars) as the basis
constructed by James and Mathas [12] working within the q-Schur algebra.

5. Modular branching rules

Now we survey the original application of the lowering operators Si,j(A) to
prove a modular branching rule for the first level. In the classical case, this is a
result of Kleshchev [16], which has recently been generalised [4] to the quantum
case, using the operators in section 4. We refer the reader to [4] for detailed proofs.
The material in §5.3 is new.

5.1. Normal and good nodes. We first give the combinatorial definitions of
normal and good nodes from [16]. These definitions are the key to understanding
Kleshchev’s modular branching rule. Our formulation of the definitions is somewhat
different from Kleshchev’s original formulation, though equivalent by [4, Remark
2.5].

Fix an integer e ∈ N, and let λ = (λ1, . . . , λn−1) be our fixed partition. Given
the coordinate (i, j) of a box in the diagram [λ], define the corresponding e-residue
rese(i, j) to be i − j regarded as an element of the ring Z/eZ. In the example
λ = (3, 2), the 3-residues are:

0 2 1

1 0

Say (i, j) is a removable node if the diagram obtained from [λ] by removing the
box in position (i, j) is the diagram of a proper partition. We may parametrise
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removable nodes by the set

R := {i | 1 ≤ i < n, λi 6= λi+1},

so i ∈ R corresponds to the removable node with coordinate (i, λi). If i ∈ R, let
λ(i) be the partition obtained from the diagram of λ by removing (i, λi).

Define a partial order on subsets of [1..n], which we call the lattice order, de-
noted by ↓. Let A, B ⊂ [1..n]. Then, A ↓ B if there exists an injection θ : A →֒ B
such that θ(a) ≤ a for all a ∈ A.

For 1 ≤ i ≤ j ≤ n, let

B(i) := {j | i ≤ j < n, rese(i, λi) = rese(j + 1, λj+1 + 1)},

C (i) := {j | i < j < n, rese(i, λi) = rese(j, λj)}.

Fix i ∈ R and r ∈ Z/eZ. Say i is r-normal if rese(i, λi) = r and B(i) ↓ C (i).
Let Rnormal be the set of all i ∈ R such that i is r-normal for some r. Finally, say
i ∈ R is r-good if i is r-normal and there is no r-normal node j ∈ R with j < i.
Let Rgood be the set of all i ∈ R such that i is r-good for some r.

It is interesting to note that the concept of r-good node has also proved im-
portant to understanding the combinatorics behind computing crystal bases for
the ‘Fock space’. This can be found in the work of Lascoux, Leclerc and Thibon
[19], where they conjecture an algorithm for computing decomposition numbers for
Hecke algebras of type A (at roots of unity over C) using these crystal bases. This
algorithm has now been proved (independently) in [1, 11].

5.2. A modular branching rule. We work in this subsection with the quan-
tum hyperalgebra UF,v(n). Given any UF,v(n)-module W and i ∈ Z, define the ith
level of W to be

W i :=

{

w ∈ W

∣
∣
∣
∣
Kn.w = viw,

[
Kn

r

]

.w =

[
i
r

]

w for all r ∈ N

}

.

Since Kn and

[
Kn

r

]

centralise UF,v(n− 1), this is a UF,v(n− 1)-submodule of W .

Now we note that all the results and definitions in §3.1 generalise without
complication to the quantum hyperalgebra (details can be found in [4, Section 3]).
In particular, one has analogous definitions for normal and good partitions to those
in §3.1: a partition µ և λ is normal if dimHomUF(n−1)(△n−1(µ), Ln(λ)) = 1, and
good if dim HomUF(n−1)(Ln−1(µ), Ln(λ)) = 1.

Suppose that µ ևi λ, so that µ belongs to the ith level. It is clear then the
image of △n−1(µ) or Ln−1(µ) in Ln(λ) (under these homomorphisms) must lie in
the ith level Ln(λ)i. Thus, when considering normal and good partitions, it is
natural to look at each level separately.

A purely combinatorial description for normal and good partitions belonging
to the first level is known [16, 4]. To state these results, we need to define the
integer e used in the definition of r-normal and r-good nodes in §5.1. Let e be the
smallest positive integer such that

v1−e + v3−e + · · · + ve−3 + ve−1 = 0

in F, or 0 if no such number exists. Observe that if v2 = 1, then e is precisely
the characterstic p of the field F, but if v2 6= 1, then (somewhat surprisingly) e is
independent of p.
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Theorem 5.1. Let µ և1 λ belong to the first level. Then
(i) µ is normal if and only if µ = λ(i) for some i ∈ Rnormal;
(ii) µ is good if and only if µ = λ(i) for some i ∈ Rgood.

In particular, the socle of the restriction of the first level Ln(λ)1 to UF,v(n − 1) is
precisely

⊕

i∈Rgood

Ln−1(λ(i)).

In the classical case v2 = 1, these facts are proved in [16], and in the quantum
case, in [4]. In fact, in the proof of Theorem 5.1(i), slightly more is proved –
an explicit construction for a U+

F,v(n − 1)-high weight vector is given, using the
generalised lowering operators. This explicit construction is the key to proving the
criterion for good partitions in Theorem 5.1(ii). The construction is as follows.
Suppose that µ = λ(i) is normal, so that B(i) ↓ C (i). Take any injection θ :
B(i) →֒ C (i) such that θ(b) ≤ b for all b ∈ B(i), and let A = (i..n) \ im θ. Then,
the proof shows

Si,n(A).vλ

is a non-zero U+
F,v(n − 1)-high weight vector in Ln(λ). That is, the generalised

lowering operators Si,n(A) suffice to construct all U+
F,v(n − 1)-high weight vectors

in the first level of Ln(λ) – precisely as Carter’s original lowering operator does in
characteristic 0.

This modular branching rule has an important application to proving a modular
branching rule for symmetric groups and (in the quantum case) Hecke algebras of
type A, by a Schur functor argument due to Kleshchev [15]. As a consequence,
one obtains a combinatorial description of the corresponding Mullineux map. For
full details of these matters, we refer the reader to [17, 4]. We also remark that
the algorithm for computing decomposition matrices for Hecke algebras of type A

from [19] now gives an alternative way to construct the Mullineux map.

5.3. Higher levels. The results of Theorem 5.1 give a purely combinatorial
description of normal and good partitions belonging to the first level of λ. There is
at present no elementary combinatorial description of normal and good partitions
for higher levels.

The main problem here is likely to be the normal partitions: it is reasonable
to expect the good partitions to be minimal amongst all normal partitions in the
same block, as in the first level. To prove this, one would first need some sort of
explicit construction of the high weight vectors corresponding to normal partitions,
hopefully by iterating the operators Si,n(A). We now wish to discuss briefly the
problem of computing normal partitions for arbitrary levels. We consider only the
classical case v = 1 for simplicity, but the same argument applies to the quantum
case as well.

So fix some µ ևi λ. We wish to determine whether or not µ is normal, that is
whether the (unique up to scalars) UF(n−1)-homomorphism θµ : △n(λ) → ▽n−1(µ)
given in Theorem 3.1 factors to give a homomorphism θ̄µ : Ln(λ) → ▽n−1(µ). We
have the following criterion for normal partitions:

Theorem 5.2. The map θµ factors through Ln(λ) if and only if there is no
vector w lying in the radical of △n(λ) such that the (Ft(µ).vλ)-coefficient of w is
non-zero when w is expanded in terms of the standard basis.
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Proof. Recall that ▽n−1(µ) is just an induced module, induced from the 1-
dimensional U−

F
(n − 1)U0

F
(n − 1)-module Fµ of weight µ. Thus, by Frobenius

reciprocity, the condition that θµ factors through Ln(λ) is equivalent to determin-

ing when the U−
F

(n − 1)U0
F
(n − 1)-homomorphism φµ : △n(λ) → Fµ factors to

give a homomorphism φ̄µ : Ln(λ) → Fµ. Here, φµ is the image on θµ under the
isomorphism in Frobenius reciprocity.

Take w ∈ △n(λ). Observe from Theorem 2.4(ii) that all vectors of weight µ in
the standard basis for △n(λ), except for Ft(µ).vλ itself, lie in strictly lower factors
than ▽n−1(µ) in the Weyl filtration of Theorem 2.4. Consequently, φµ simply picks
out the (Ft(µ).vλ)-coefficient of w when written in terms of the standard basis.

Now suppose φ̄µ exists; then, for all w in the radical of △n(λ), φµ(w) = 0, or
equivalently, the (Ft(µ).vλ)-coefficient is zero, as required. Conversely, if some w
exists in the radical of △n(λ) with non-zero (Ft(µ).vλ)-coefficient, then φµ(w) 6= 0,
so φµ cannot factor through Ln(λ).

The condition in Theorem 5.2 can be tested computationally. Let Gµ be the
Gram matrix of the contravariant form on the µ-weight space of △n(λ), written
with respect to the standard basis b1, . . . , bm of Theorem 2.3 for this weight space
ordered so that b1 = Ft(µ).vλ. Then, by the theorem, we see that µ is normal if
and only if the first row of Gµ cannot be written as a linear combination of the
remaining rows of Gµ.

We have implemented this algorithm in the Gap language [23]. The algorithm
is computationally very intensive, since it involves computing the Gram matrix for
certain weight spaces of △n(λ), and thus is only useful in small cases. We conclude
by presenting some data to illustrate the complexity of the problem of giving a
purely combinatorial criterion for normal partitions. In Tables 1 and 2, we list the
normal partitions µ ևi λ for all i, and all n ≤ 8, when p = 3. In fact, we only list
those normal partitions µ for which µ1 6= λ1, since it is easy to see that if µ1 = λ1,
then µ is normal for λ if and only if (µ2, . . . , µn−1) is normal for (λ2, . . . , λn−1)
which can be found earlier in the table. We also omit λ if λ = (h) has just one
non-zero part, since here it is obvious that µ = (k) is normal for λ if and only if

0 ≤ k ≤ h and

(
h
k

)

6≡ 0(mod p). The Gap program used to compute this output

is available on request from the author.
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