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Introduction

Throughout, G denotes a connected reductive algebraic group defined over
an algebraically closed field k of characteristic p ≥ 0. We are mainly inter-
ested here in positive characteristic.

In his article in these proceedings, Seitz considers the problem of finding
closed subgroups H and P of G for which there are finitely many H,P -
double cosets in G; of particular interest is the case when H is reductive
and P is parabolic. We will describe some results on the closely related
(and often easier) problem of finding such subgroups H and P with a dense
H,P -double coset in G.

We mention two special cases: first, let ρ : H → G = GL(V ) be a
rational representation of H and let P be the stabilizer in G of a 1-space
in V . Then, there is a dense ρH,P -double coset in G if and only if H has a
dense orbit on the set of 1-subspaces of V – that is, V is a prehomogeneous
space for H. Irreducible prehomogeneous spaces have been classified in [26]
(p = 0) and [5], [6] (p > 0).

Secondly, take G to be arbitrary but let P = B be a Borel subgroup
of G. Then, subgroups H of G with a dense orbit on the flag variety G/B
– equivalently, a dense H,B-double coset – are called spherical subgroups,
and the associated varieties G/H are spherical varieties (see [3] for a sur-
vey of some geometric results). In characteristic 0, all reductive spherical
subgroups of G have been classified, by Krämer [16] (G simple) and Brion
[2], Mikityuk [20] (G reductive); there is at present no such classification in
positive characteristic.

One aim of this article is to make precise a reduction modulo p argu-
ment, assuming that the subgroup H is ‘defined over integers’ in a suitable
way. This argument depends on a representation-theoretic criterion for the
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existence of a dense H,P -double coset due to Kimel’fel’d and Vinberg,
which we review in section 1.

The reduction modulo p argument described in section 2 will sometimes
allow us to deduce the existence of a dense H,P -double coset in character-
istic p from (often known) existence in characteristic 0. For this to work,
we need the subgroup H to satisfy an extra condition connected with good
filtrations; we give some examples (and non-examples) of subgroups satisfy-
ing this extra condition in section 3. In particular, by a result of Donkin and
Mathieu, all Levi subgroups satisfy the condition, so we obtain the classifi-
cation of all spherical Levi subgroups immediately from Krämer’s classifi-
cation over C. The problem of classifying more general spherical subgroups
is discussed further in section 4.

We conclude the introduction with some remarks on the relationship
between the existence of a dense H,P -double coset as discussed here and
the existence of finitely many double cosets as in Seitz’s problem. Of course,
if there are finitely many H,P -double cosets in G then there is a dense
one, but the converse is false in general. For instance, take H to be the
unipotent radical of the opposite parabolic subgroup to P : there is always
a dense H,P -double coset in G, but there are finitely many double cosets
if and only if the Dynkin diagram of P is a union of connected components
of the Dynkin diagram of G.

However, in the special case that P = B is a Borel subgroup of G, the
existence of a denseH,B-double coset inG does imply that there are finitely
many H,B-double cosets in G. This follows from the following remarkable
result (with X = G/H), due to Brion [1] and Vinberg [29] in characteristic
0 and recently extended to positive characteristic by Knop [15, Corollary
2.6]:

Finiteness Theorem Suppose that X is an irreducible G-variety on which
B has a dense orbit. Then, B has finitely many orbits on X.

So, the reductive spherical subgroups give a family of examples in Seitz’s
finite orbit problem.

1. Representation-theoretic interpretation

In this section, we review results of Kimel’fel’d and Vinberg [14] giving
representation-theoretic criteria for the existence of dense orbits. These
results were originally proved only in characteristic 0, but generalize quite
easily to arbitrary characteristic, as is well known to several authors.

First, we set up notation that will be in place for the remainder of the
article. Always, G will denote a connected reductive algebraic group with
fixed Borel subgroup B containing a maximal torus T . Let X(T ) denote the
character group of T , W = NG(T )/T denote the Weyl group, and choose
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a W -invariant inner product 〈 , 〉 on R⊗
Z
X(T ). Let Φ ⊂ X(T ) denote the

root system of G. For α ∈ Φ, α∨ denotes 2α
〈α,α〉 . Let {αi | i ∈ I} be a base

for Φ, chosen so that B contains all negative root subgroups. For α ∈ Φ,
let Uα denote the corresponding T -root subgroup of G and for a subset J
of I, let PJ denote the standard parabolic subgroup 〈B,Uαj | j ∈ J〉.

Let X(T )+ ⊂ X(T ) denote the dominant weights, i.e. the weights λ
satisfying 〈λ, α∨i 〉 ≥ 0 for all i ∈ I. Let {ωi | i ∈ I} denote the fundamental
dominant weights, satisfying 〈ωi, α∨j 〉 = δij for all i, j ∈ I. Our labelling of
Dynkin diagrams is as in [11]. For λ ∈ X(T )+ let ∇G(λ) denote the dual
Weyl module indGBλ, and let ∆G(λ) denote the corresponding Weyl module,
which is the contravariant dual of ∇G(λ).

Given an algebraic group S and an irreducible S-variety X, we let k(X)
denote the function field of X; S acts on k(X) by (g.f)(x) = f(g−1x) for
f ∈ k(X) defined at x ∈ X, and g ∈ S. We let k(X)S denote the S-fixed
points in k(X). We have the basic invariant-theoretic fact:

Lemma 1.1 (Rosenlicht, [25]) The transcendence degree of k(X)S over k
equals the minimum codimension of an S-orbit in X. In particular, S has
a dense orbit on X if and only if k(X)S = k.

Now we give the two results of Kimel’fel’d and Vinberg. The first is [14,
Theorem 2]; we have included the proof since it is quite instructive.

Theorem 1.2 Let X be an irreducible affine G-variety. Then, B has a
dense orbit on X if and only if HomG(∆G(λ), k[X]) is at most 1-dimensional
for all λ ∈ X(T )+.

Proof. For notational convenience, we work with the opposite Borel sub-
group B+ to B. Suppose that HomG(∆G(λ), k[X]) is at least 2-dimensional
for some λ. Then, we can find linearly independent functions f, g ∈ k[X]
that are B+-high weight vectors of weight λ. But then the quotient f/g ∈
k(X) is a non-constant B+-invariant, so there is no dense B+-orbit on X.

Conversely, suppose that there is no dense orbit, so that we can find
a non-constant B+-invariant function φ ∈ k(X)B

+
by Lemma 1.1. As X

is affine, we can write φ = f/g for f, g ∈ k[X]. The B+-submodule V of
k[X] generated by f is finite-dimensional, so we can find b1, . . . , bn ∈ B+

such that V = 〈b1.f, . . . , bn.f〉. Now, by the Lie-Kolchin theorem, B+ fixes
a 1-space in V , so there are scalars ci ∈ k such that f̃ :=

∑
cibi.f spans a

B+-stable 1-space, of weight λ say. Let g̃ =
∑
cibi.g.

Since f/g is B+-invariant, f(b.g) = g(b.f) for all b ∈ B+, so gf̃ = fg̃, so
f̃/g̃ = f/g. This is B+-invariant, so as b.f̃ = λ(b)f̃ for all b ∈ B+, the same
is true for g̃. But φ is non-constant, so f̃ and g̃ are linearly independent B+-
high weight vectors in k[X] of high weight λ. Now the universal property
of Weyl modules implies that dim HomG(∆G(λ), k[X]) ≥ 2.
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Recall that a subgroup H of G is spherical if it has a dense orbit on
G/B. As a corollary to the theorem, we obtain a representation-theoretic
criterion for reductive spherical subgroups:

Corollary 1.3 Let H be a closed, connected reductive subgroup of G. Then,
H is spherical if and only if the fixed point space

∇G(λ)H

is at most 1-dimensional for all λ ∈ X(T )+.

Proof. There is a dense H-orbit on G/B if and only if there is a dense
B-orbit on G/H. Now we note that the variety G/H is an affine variety
as H is reductive, by [22], and apply Theorem 1.2 to deduce that there is
a dense B-orbit on G/H if and only if HomG(∆G(λ), k[G/H]) is at most
1-dimensional for all λ ∈ X(T )+. To complete the proof, the G-module
k[G/H] is precisely the induced module indGHk, so by Frobenius reciprocity
[13, I.3.4], HomG(∆G(λ), k[G/H]) ∼= HomH(∆G(λ), k). The result follows
on dualizing.

Kimel’fel’d and Vinberg also prove a second result [14, Theorem 1],
which gives a similar criterion for the existence of a dense H,P -double
coset in G, for any closed subgroup H and any parabolic P . A proof in
arbitrary characteristic can be found in [4, Theorem 3.5]; the idea is sim-
ilar to the proof of Theorem 1.2, this time exploiting the fact that if G
is a semisimple, simply-connected algebraic group, then k[G] is a unique
factorization domain [21].

Theorem 1.4 Let H be a closed, connected subgroup of G. Let P = PJ be
a parabolic subgroup of G. There is a dense H-orbit on G/P if and only if
the fixed point space

(∇G(λ)⊗ µ)H

is at most 1-dimensional for all 1-dimensional H-modules µ and all λ ∈
X(T )+ such that 〈λ, α∨j 〉 = 0 for all j ∈ J .

Corollary 1.3 and Theorem 1.4 are particularly useful in proving the
non-existence of a dense double coset. For example, it is known that the Levi
subgroup H = GLn(k)GLm(k) < GLn+m(k) = G is a spherical subgroup.
In fact, providing n 6= m, the derived subgroup H ′ = SLn(k)SLm(k) is
also spherical, but this is false if n = m since then H ′ fixes a 2-dimensional
subspace in the dual Weyl module

∧n V , where V is the natural G-module.
On the other hand, the existence of dense double cosets can often be

proved directly. I am grateful to R. Guralnick for allowing me to include
his arguments in the following examples which we will refer to later:
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Lemma 1.5 (Guralnick) The following are spherical in all characteristics:
(i) SOn(k) < SLn(k) for n ≥ 2;
(ii) SOn(k)SOm(k) < SOn+m(k) for n,m ≥ 1.

Proof. Let V be a vector space endowed with a quadratic form q. We
say that W ≤ V is a non-singular subspace if either the restriction to W of
the bilinear form coming from q is non-degenerate, or W is odd-dimensional
in characteristic 2 and the bilinear form on W has a 1-dimensional radical
R on which q is non-zero.

(i) Let F be a maximal flag for SLn(k) so that each subspace is non-
singular. Let B be the Borel subgroup stabilizing this flag. We claim that
SOn(k) ∩ B is finite, which suffices to show that SOn(k) is spherical by
dimension. Consider the 2-dimensional subspace V2 in the flag; B induces
a subgroup of O2 on this subspace, acting as ±1 on a non-singular vector.
This is a finite subgroup of O2. Now, B ∩SOn(k) also preserves V2

⊥, so by
induction B ∩ SOn(k) is finite as desired.

(ii) Use induction on n. If either n = 1 or m = 1, we are done by [4,
Theorem A]. So suppose n,m ≥ 2. Let V be the natural Weyl module for
G = SOn+m(k), with quadratic form q. Suppose H = SOn(k)SOm(k) is
the stabilizer in V of a non-singular n-dimensional subspace W < V . Pick
a totally singular line R such that R⊥∩W is a non-singular subspace of W
of dimension n − 1. Let P be the parabolic subgroup of G fixing R. Now,
S = P ∩H stabilizes R⊥ ∩W,R and W , so Witt’s theorem easily implies
that S ∼= SOn−1(k)SOm−1(k). Given this, by dimensions we see that HP is
dense in G. Now let L be a Levi subgroup of P containing S. By induction,
there is a Borel subgroup BS < S such that SBS is dense in L. So if V is
the unipotent radical of P , B = BSV is a Borel subgroup of G and SB is
dense in P . So, HB = HSB is dense in HP , which is dense in G.

2. Integral embeddings

We now consider reduction modulo p. We begin by recalling some basic
facts about group schemes; we refer the reader to [13, I.2, II.1] for more
details of these matters.

Let R be a commutative ring and S be an R-group scheme (as in [13,
I.2.1]); so S is the group scheme associated to a commutative Hopf algebra
over R, namely its coordinate ring R[S]. We say S is an algebraic R-group
if R[S] is finitely presented, reduced if R[S] is reduced, and flat if R[S] is.
Given an R-algebra K and an R-module M , MK denotes M ⊗R K; if M is
an S-module (equivalently, an R[S]-comodule) then MK is an SK-module.
If K is algebraically closed and SK is a reduced algebraic K-group, we may
regard it simply as a linear algebraic group over K, written SK . We recall
the universal coefficient theorem:
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Proposition 2.1 ([13, I.4.18]) Suppose that R is a Dedekind ring and that
S is a flat R-group scheme. Let K be an R-algebra. Then, for any torsion
free S-module M and any i ∈ N, there is an exact sequence:

0 −→ H i(S,M)K −→ H i(SK ,MK) −→ TorR1 (H i+1(S,M),K) −→ 0.

Given our fixed connected reductive algebraic group G over k, there is
a split, reductive algebraic Z-group G such that Gk ∼= G. For any ring R,
we obtain the scheme GR on base change; note that R[GR] is R-free, so GR
is flat.

Fix now a pair (G,H) of connected reductive algebraic groups over k,
where H is a closed subgroup of G, and let G,H denote corresponding split
schemes over Z. We say that (G,H) is an integral embedding (defined over
R) if there is an embedding i : HR → GR and an isomorphism θ : Gk → G
such that θ ◦ ik : Hk → G is an isomorphism between Hk and H, for some
Dedekind ring R with field of fractions of characteristic 0 for which k is
an R-algebra. Given any R-algebra K that is an algebraically closed field,
we let (GK ,HK) be the corresponding embedding over K, and we identify
(Gk,Hk) with (G,H).

The following give examples of integral embeddings:
(1) any semisimple subgroup H of G = SL(V ), where H and the H-

module V arise via the Chevalley construction;
(2) any subgroup corresponding to a closed subsystem of the root system

of G;
(3) centralizers of graph automorphisms of G;
(4) SOn(k)SOm(k) < SOn+m(k).
In fact, all these cases are integral embeddings defined over Z, arising

from embeddings of the Kostant Z-forms U(h)Z → U(g)Z of the correspond-
ing semisimple Lie algebras over C. For more general integral embeddings,
R may need to be a ring of integers in an algebraic number field.

Now we obtain the following statement on reduction modulo p:

Theorem 2.2 Suppose that H is a closed, connected reductive subgroup
of G such that (G,H) is an integral embedding defined over R. Let K be
the algebraic closure of the field of fractions of R (of characteristic 0). Let
P be a standard parabolic subgroup of G and let PK be the corresponding
parabolic subgroup of GK .

(i) If there is no dense HK , PK-double coset in GK , there is no dense
H,P -double coset in G.

(ii) If there is a dense HK , PK-double coset in GK and H1(H,∇G(λ)⊗
µ) = 0 for all λ, µ as in Theorem 1.4, then there is a dense H,P -double
coset in G.

(iii) If HK is a spherical subgroup of GK and H1(H,∇G(λ)) = 0 for all
λ ∈ X(T )+, then H is spherical in G.
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Proof. By localizing if necessary, we may assume that R is a DVR with
irreducible element π so that k is an extension of the residue field R/πR.
Let HR < GR denote the corresponding schemes over R. We first claim:
For an R-free HR-module M of finite rank, dimk(Mk)Hk ≥ dimK(MK)HK .
If H1(Hk,Mk) = 0 then equality holds.

To prove this, we may assume that k actually equals the residue field
R/πR. Note that R is a PID so MHR is R-free, of rank d = dimK(MK)HK
as K is flat over R. Proposition 2.1 with i = 0 implies that MHR ⊗ k
embeds injectively into (Mk)Hk , so that dimk(Mk)Hk ≥ d. For the second
part, let A = H1(HR,M) and suppose that H1(Hk,Mk) = 0. We just need
to show that TorR1 (A, k) = 0, since then MHR ⊗ k ∼= (Mk)Hk . We know
by our assumption and Proposition 2.1 with i = 1 that A ⊗ k = 0. But
A ⊗ k = 0 implies A ⊗ R/πR ∼= A/πA = 0, so π : A → A is surjective.
Since A is a finitely generated R-module (which follows from [8, 1.7]), the
Nakayama lemma now implies that π : A→ A is an isomorphism. Finally,
TorR1 (A,R/πR) is the kernel of π : A→ A, so 0.

We want to apply this to the module ∇G(λ) ⊗ µ for λ ∈ X(T )+ and
µ ∈ X(H). We need to note that this module is defined over R, that is, there
is an R-free HR-module M such that the Hk-module Mk is isomorphic to
∇G(λ) ⊗ µ (on identifying Hk and H). This is clear for ∇G(λ), since dual
Weyl modules are even defined over Z, and for the 1-dimensional H-module
µ since HR is a split reductive group.

The theorem now follows from the claim by Theorem 1.4 for (i) and (ii)
and Corollary 1.3 for (iii).

We note that the conditions in parts (ii) and (iii) of the theorem are
not necessary conditions for the dense orbit to be preserved on reduction
modulo p – compare Proposition 3.4 and Lemma 1.5 for examples.

3. Good pairs

We now consider how to verify the cohomological condition in Theorem
2.2. In fact, we use an even stronger condition to do with good filtrations
which turns out to be easier to verify.

Recall that a G-module V has a good filtration if it has an ascending
filtration 0 = V0 < V1 < V2 < · · · with V =

⋃
i≥0 Vi and each Vi/Vi−1

isomorphic to some ∇G(λ) with λ ∈ X(T )+. In that case, the dimension
of HomG(∆G(λ), V ) simply computes the number of factors in any such
filtration that are isomorphic to ∇G(λ), by [13, II.4.16(a)]. The dual of a
good filtration is a Weyl filtration.

There is also a cohomological criterion [13, II.4.16(b)]: V has a good
filtration if H1(G,V ⊗ ∇G(λ)) = 0 for all λ ∈ X(T )+. In particular, this
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cohomological criterion implies that if V1 < V2 are G-modules with good
filtrations, then V2/V1 also has a good filtration ([13, II.4.17]).

We say that (G,H) is a good pair if H is a closed, connected reductive
subgroup of G such that the restriction to H of every G-module V with a
good filtration has a good filtration as anH-module. We say that (G,H) is a
good integral embedding if it is both a good pair and an integral embedding.
By the cohomological criterion for good filtrations, if (G,H) is a good
integral embedding, then it satisfies the condition H1(H,∇G(λ) ⊗ µ) = 0
in Theorem 2.2 (ii), for all λ, µ.

We record the important theorem due to Donkin [7] (in almost all cases)
and Mathieu [19] (in general):

Theorem 3.1 (i) If V1, V2 are G-modules with good filtrations, then V1⊗V2

has a good filtration.
(ii) For any Levi subgroup L of G, the pair (G,L) is a good pair.

In particular, the theorem implies that the pair (G,L) for any Levi
subgroup of G is a good integral embedding. To apply Theorem 2.2 to more
general subgroups than Levi subgroups, we need some further examples of
good integral embeddings. To construct these, the following basic facts will
be useful:

Lemma 3.2 (i) If (G,H) and (H,L) are good pairs, so is (G,L).
(ii) (G,H) is a good pair if and only if (G,H ′) is a good pair.
(iii) If (G1,H1) and (G2,H2) are good pairs, so is (G1 ×G2,H1 ×H2).
(iv) For G semisimple and simply-connected, (G,H) is a good pair if

and only if ∇G(ωi) ↓H has a good filtration for all i ∈ I.
(v) If V is a finite-dimensional G-module with a Weyl filtration, and v

is a non-zero vector of maximal weight λ, then the G-submodule W of V
generated by v is isomorphic to ∆G(λ), and V/W has a Weyl filtration.

Proof. Part (i) is obvious and (ii) follows from [7, Proposition 3.2.7 (ii)].
For (iii), argue as in [7, Proposition 3.4.6] and for (iv) use [7, Proposition
3.5.4] combined with Theorem 3.1 (i). Finally, (v) is a result of Jantzen;
see [7, 11.5.1].

Proposition 3.3 The (simply-connected covers of the) following pairs are
good integral embeddings:

(i) (G,H) = (SL2n(k), Sp2n(k)) (n > 1);
(ii) (G,H) = (Sp2n+2m(k), Sp2n(k)Sp2m(k)) (n,m ≥ 1);
(iii) (G,H) = (SLn(k), SOn(k)) (n ≥ 1) if p 6= 2;
(iv) (G,H) = (SOn+m(k), SOn(k)SOm(k)) (n,m ≥ 1) if either p 6= 2

or one of n or m is at most 2;
(v) (G,H) = (SO8(k), Spin7(k));
(vi) (G,H) = (D4, G2) or (B3, G2);
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(vii) (G,H) = (G2, A2) or (G2, A1Ã1).

A proof is given in the appendix. We clarify some of the embeddings: the
embedding of Spin7 in SO8 is the simply-connected group B3 embedded
via a spin representation. In (vi), G2 is the centralizer of a triality in a
simply connected D4, and lies in a subgroup of D4 of type B3. Finally, in
the maximal rank subgroup A1Ã1 < G2 in (vii), A1 denotes the long root
SL2, and Ã1 denotes the short root one.

We conclude the section with a negative result showing that the re-
strictions in Proposition 3.3 (iii) and (iv) are necessary. This is interesting
because it gives examples of maximal rank subgroups (coming from a closed
subsystem of the root system) that are not good, in types B or D. On the
other hand, all such subgroups yield good pairs in all characteristics in
types A,C or G; I do not know about E and F .

Proposition 3.4 Let p = 2. Then the following are not good pairs:
(i) (G,H) = (SLn(k), SOn(k)) (n ≥ 3);
(ii) (G,H) = (SOn+m(k), SOn(k)SOm(k)) (n,m > 2).

Proof. For (i), see the remark on [7, p. 75]. Now consider (G,H) =
(SOn+m(k), SOn(k)SOm(k)). If n,m are both odd, let V be the natural G-
module. If V ↓H has a good filtration, it contains a dual Weyl module for
H as a submodule, necessarily one of ∇SOn(ω1) or ∇SOm(ω1) by character
considerations; but this contradicts the fact that the socle of V ↓H is 1-
dimensional. It remains to consider the case where one of n,m is even; here
we will only sketch the argument.

Let G be simply connected of type Bs+t or Ds+t and let H be the
maximal rank subgroup BsDt (s ≥ 1, t > 1) or DsDt (s, t > 1) respectively.
Let g,h be the corresponding Lie algebras over C and U(g)Z, U(h)Z be
their Kostant Z-forms coming from the choice of Chevalley basis made
in [12, p. 38]. This choice of basis also fixes a triangular decomposition
U(g)Z = U(g)−

Z
U(g)0

Z
U(g)+

Z
. We fix the standard basis e±1, . . . , e±(s+t),

together with e0 in type B, for the natural g-module V , again as in [12] or
[4, Section 2]. The Z-span VZ of this basis is precisely the Z-form U(g)−

Z
e1 for

V , and U(h)Z is a subalgebra of U(g)Z stabilizing the decomposition VZ =
〈e−s, . . . , es〉 ⊕ 〈e±(s+1), . . . , e±(s+t)〉. The chosen triangular decomposition
of U(g)Z determines a corresponding decomposition of U(h)Z.

Now, the irreducible g-module V (ω2) is precisely
∧2 V ; let V (ω2)Z de-

note the Z-form U(g)−
Z
.e1 ∧ e2 in

∧2 V . By [12, pp. 38–44], the following
vectors give a basis for V (ω2)Z over Z:

{e±i ∧ e±j}1≤i<j≤s+t∪
{
ei ∧ e−i + ei+1 ∧ e−(i+1)

}
1≤i<s+t

∪
{

2es+t ∧ e−(s+t)

}
together with {e±i ∧ e0}1≤i≤s+t if we are in type B.
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Using this, a direct calculation shows that V (ω2)Z is generated as a
U(h)−

Z
-module by e1 ∧ es+1, es+1 ∧ es+2, e1 ∧ e−1 + es+1 ∧ e−(s+1), e1 ∧ e2 if

H 6= B1Db, e1∧e0 if H = B1Db and e1∧e−2 if H = D2Db, but by no proper
subset of these vectors. However, the vector 2(e1∧ e−1 + es+1∧ e−(s+1)) lies
in the U(h)−

Z
-submodule generated by all these vectors excluding e1∧e−1 +

es+1 ∧ e−(s+1).
Now, tensoring up with k or C, we have constructed a minimal set of

weight vectors generating V (ω2)k as a U(h)−k -module which contains one
more vector than a minimal set of weight vectors generating V (ω2)C as a
U(h)−

C
-module. But this implies that V (ω2)k ∼= ∆G(ω2) does not have a

Weyl filtration as an H-module, since in that case any such minimal set
over k has the same size as over C because of Lemma 3.2 (v).

4. Spherical subgroups

Now we discuss one special case, namely the classification of reductive
spherical subgroups. As we mentioned in the introduction, all reductive
spherical subgroups of G have been classified over C in [2, 16, 20]. In posi-
tive characteristic, many examples of spherical subgroups are known thanks
to a result of Springer [27, Lemma 4.1] which shows that, providing p 6= 2,
any centralizer K of an involution of G is spherical. Such subgroups K, or
rather the associated symmetric varieties G/K, have been studied by many
authors (see e.g. [10, 17, 23]).

In [16], Krämer classified all pairs (GR,HR) of compact, connected Lie
groups, with GR simple and HR < GR, satisfying the analogous represen-
tation-theoretic condition to the one in Theorem 1.3. Equivalently by [14],
Krämer’s results classify all pairs (GC,HC) of connected reductive algebraic
groups over C with GC simple such that HC is a spherical subgroup of GC.
We list all such pairs (GC,HC) from Krämer’s classification in table 1. We
note that the property that HC is spherical in GC is preserved by isogenies
of GC, so we only list the embeddings for our favourite representative of
the root datum of GC. In the left hand side of table 1, we have listed all
pairs for which HC is (the connected component of) a centralizer of an
involution of GC, and the remaining cases are listed in the right hand side.
In the table, we denote a 1-dimensional central torus of H by T1. Also
note that the embeddings of Spin7 < SO9 and Spin7SO2 < SO10 are via
Spin7 < SO8 < SO9 and Spin7SO2 < SO8SO2 < SO10 respectively.

All the embeddings in table 1 can be considered equally well over our
field k of arbitrary characteristic (the only ambiguity being SO2n+1(k) <
SL2n+1(k) if p = 2, where we mean either of the two classes of such a sub-
group). There is at present no complete classification of reductive spherical
subgroups in characteristic p. We give here two partial results.
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Table 1. Krämer’s spherical subgroups
GC HC GC HC

SLn+m SLnSLmT1 n,m ≥ 1 SLn+m SLnSLm n 6= m
SL2n Sp2n n ≥ 2 SL2n+1 Sp2nT1 n ≥ 1
SLn SOn n ≥ 2 SL2n+1 Sp2n n ≥ 1
Sp2n+2m Sp2nSp2m n,m ≥ 1 Sp2n+2 Sp2nT1 n ≥ 1
Sp2n GLn n ≥ 1 SO2n+1 GLn n ≥ 2
SOn+m SOnSOm n,m ≥ 1 SO4n+2 SL2n+1 n ≥ 1
SO2n GLn n ≥ 2 SO7 G2

SO8 G2

SO8 Sp2 ⊗ Sp4

SO8 Spin7

SO9 Spin7

G2 A1Ã1 SO10 Spin7SO2

E6 T1D5 G2 A2

E7 T1E6 E6 D5

F4 B4

F4 A1C3

E6 F4

E6 C4

E6 A1A5

E7 A7

E7 A1D6

E8 D8

E8 A1E7

First, we have the classification of spherical Levi subgroups in arbitrary
characteristic, which is immediate by Krämer’s result and Theorem 2.2:

Theorem 4.1 Let L be a Levi subgroup of G. Let G′ =
∏r
i=1Gi as a

commuting product of simple factors and set Li := L ∩ Gi. Then, L is
spherical in G if and only if, for each i, either Gi = Li or (Gi, L′i) is
one of (An, AmAn−m−1), (Bn, Bn−1), (Bn, An−1), (Cn, Cn−1), (Cn, An−1),
(Dn, Dn−1), (Dn, An−1), (E6, D5) or (E7, E6).

This result also gives a classification of all parabolic subgroups P of
G for which a Borel subgroup of a Levi factor of P has a dense orbit
(equivalently, finitely many orbits) on the unipotent radical of P , acting
by conjugation. This follows because of the following observation (see [2,
Proposition 1.1] for a more general result):

Lemma 4.2 Let P be a parabolic subgroup of G with Levi decomposition
P = LV , where V = Ru(P ), and let BL be a Borel subgroup of L. There is
a dense L-orbit on G/B if and only if there is a dense BL-orbit on V .



270

Proof. We may assume that the Borel subgroup B of G is contained
in P and that BL = B ∩ L. Let P+ = LV + be the opposite parabolic to
P . Now, L has a dense orbit on G/B if and only if L × B has a dense
orbit on P+B, since P+B is dense in G. The map P+ × V → P+B given
by multiplication is an isomorphism of varieties, so this is equivalent to
L × B having a dense orbit on P+ × V , where the action of L is by left
multiplication on P+, and the action of an element ub ∈ B (b ∈ BL, u ∈ V )
on (p, v) ∈ P+×V is ub.(p, v) = (pb−1, bvb−1u−1). Since the orbits of L×B
on P+ × V under this action are of the form LpBL × V for p ∈ P+, this is
if and only if L×BL has a dense orbit on P+, i.e. BL has a dense orbit on
P+/L. Now the quotient map V + → P+/L is an isomorphism of varieties,
so this is equivalent to BL having a dense orbit on V +, and hence V .

In fact, for all of the pairs listed in Theorem 4.1 except for (Bn, An−1)
and (Cn, Cn−1), the unipotent radical V of P is abelian. This abelian unipo-
tent radical case has been studied by a number of authors: for instance, in
[24], the number of L-orbits on V + is shown to equal the number of P, P -
double cosets in G. Also, Vavilov [28, §4] has given a direct proof that there
are finitely many BL-orbits on V + here.

The proof of the next theorem has only recently been completed, thanks
to work of Lawther [18]. Lawther’s results show that there are finitely
many double cosets for all the cases in the bottom half of table 1, even
in characteristic 2. Of course, in characteristic different from 2, these cases
are centralizers of involutions, so finiteness follows from Springer’s result.
Lawther’s approach in characteristic 2 involves bounding the number of
double cosets for the corresponding finite groups of Lie type, using Deligne-
Lusztig character theory.

Theorem 4.3 The entries in table 1 are spherical in all characteristics.

Proof. The cases (SLn, SOn) and (SOn+m, SOnSOm) are verified in
Lemma 1.5, and (SO8, Sp2⊗Sp4) follows from (SO8, SO3SO5) on applying
triality. The cases in the bottom half of table 1 follow from [27, Lemma
4.1](p 6= 2) or [18] (p = 2). The remaining entries in table 1 are immediate
from Theorem 2.2, Lemma 3.2, Theorem 3.1 (ii) and the list of good pairs
in Proposition 3.3.

We conclude with a conjecture motivated by the article; there is some
hope for a case-free proof of this (for part (i) it only remains to show that
(E6, F4) is a good pair, given Proposition 3.3).

Conjecture 4.4 Let H be a closed reductive subgroup of G. If either
(i) H is the centralizer of a graph automorphism of G; or
(ii) H is the centralizer of an involution of G,

then (G,H) is a good pair.
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A. Proof of Proposition 3.3

In this appendix, we give the proof of Proposition 3.3. We will verify each
case in the proposition in turn, using Lemma 3.2 (iv).

Part (i) is immediate from the following result of Donkin:

Lemma A.1 ([9, Appendix A]) Let G = Sp2n(k), with natural module V .
Then for 1 ≤ r ≤ n,

∧r V has a filtration

0 = (
∧r V )0 < · · · < (

∧r V )m =
∧r V

such that

(
∧r V )i/(

∧r V )i−1
∼=
{
∇G(ω2i) r even,
∇G(ω2i+1) r odd,

for all 0 < i ≤ m, where m = [ r2 ].

Consider the pair (G,H) = (Sp2n+2m(k), Sp2n(k)Sp2m(k)). We have
just shown that (SL2n(k), Sp2n(k)) is a good pair, so Lemma 3.2 (iii) implies
that (SL2n(k)SL2m(k), Sp2n(k)Sp2m(k)) is a good pair. Also, by Theorem
3.1 (ii) and Lemma 3.2 (ii), (SL2n+2m(k), SL2n(k)SL2m(k)) is a good pair.
Combining, it follows that (SL2n+2m(k), Sp2n(k)Sp2m(k)) is a good pair.
Now the conclusion follows from the next lemma:

Lemma A.2 Let G = SL2n(k), H = Sp2n(k). Suppose L < H < G is a
connected reductive algebraic group. Then (H,L) is a good pair if and only
if (G,L) is a good pair.

Proof. The forward implication is immediate by Lemma 3.2 (i), so con-
sider the converse. By Lemma 3.2 (iv), we need to check that ∇H(ωi)
has a good filtration as an L-module for each 1 ≤ i ≤ n. For i = 1,
V = ∇H(ω1) ∼= ∇G(ω1) ↓H , so has a good filtration as an L-module as
(G,L) is a good pair. In general, ∇G(ωi) =

∧i V has a good filtration
as an L-module by assumption, and contains an H-submodule isomorphic
to
∧i−2 V by Lemma A.1. This submodule has a good filtration as an L-

module by assumption, hence so does the quotient. But this quotient is
precisely ∇H(ωi), completing the proof.

Next, we look at Proposition 3.3 (iii), (iv) and (v). If p 6= 2 and G
is the simply-connected cover of SOn(k), we note that the fundamental
modules ∇G(ωi) are all irreducible, by for instance [12, Satz I.13]. So, ex-
cluding the spin modules, these modules coincide with the exterior power∧i V , where V is the natural G-module. Now Proposition 3.3 (iii) and
(iv) for p 6= 2 are obvious using Lemma 3.2 (iv). For p = 2, we need
to show (SOn+m(k), SOn(k)SOm(k)) is a good pair if m ≤ 2. If m = 2,
this is just a Levi subgroup, so the result follows from Theorem 3.1. If
m = 1, this is proved in [4, Theorem D] (unfortunately though the proof



272

in [4] for D` < B` is not quite complete, though the result is correct). The
case (SO8(k), Spin7(k)) follows from (SO8(k), SO7(k)) on applying triality
(working in the simply-connected cover of SO8(k) where triality is defined).

For the remaining two cases, we will use the fact that if G is a simple,
simply-connected group, then Lie(G) is a Weyl module. First, for Proposi-
tion 3.3 (vi), let G be the simply connected group of type D4 and H = G2.
We can view H as L ∩ L′, where L is a simply-connected group of type
B3 coming from the natural embedding SO7(k) < SO8(k), and L′ is the
image of L under a triality. Consider the natural G-module ∆G(ω1) of di-
mension 8. Since ∆G(ω1) ↓L contains the 7-dimensional module ∆L(ω1)
as a submodule, it has a Weyl filtration on restriction to H. Now apply-
ing triality yields that ∆G(ω3) and ∆G(ω4) also have Weyl filtrations as
H-modules. So, it remains to show that ∆G(ω2) ∼= Lie(G) has a Weyl fil-
tration on restriction to H. A direct check using Chevalley bases shows
that Lie(G) = Lie(L)+Lie(L′), hence that Lie(L)∩Lie(L′) = Lie(L∩L′) =
Lie(H) by dimension. Now we claim that 0 < Lie(H) < Lie(L) < Lie(G)
is a Weyl filtration as an H-module. Certainly, Lie(H) ∼= ∆H(ω2). Since
(G,L) is a good pair by (iv), Lemma 3.2 (v) implies that Lie(G)/Lie(L)
is a Weyl module, necessarily ∆L(ω1), which has a Weyl filtration as an
H-module. The same argument shows that Lie(G)/Lie(L′) has a Weyl fil-
tration as an H-module; but Lie(G)/Lie(L′) = Lie(L) + Lie(L′)/Lie(L′) ∼=
Lie(L)/Lie(L)∩Lie(L′) = Lie(L)/Lie(H). These arguments also show that
(L,H) is a good pair.

Now let G = G2. To prove (vii), there are two G-modules to check for
Weyl filtrations: the 7-dimensional module ∆G(ω2) and the 14-dimensional
Lie algebra. For H = A2, ∆G(ω2) is semisimple as an H-module (factors of
dimension 1, 3, 3) and the module Lie(G) contains Lie(H) = ∆H(ω1 + ω2)
as a submodule, and the quotient is semisimple (factors of dimension 3, 3);
so both have Weyl filtrations here. For H = A1Ã1, we note that ∆G(ω2) ↓H
has the same character as ∆A1(ω1)⊗∆Ã1

(ω1)⊕∆Ã1
(2ω1), so it is a direct

sum of irreducible Weyl modules as an A1-module, and has a Weyl filtration
as an Ã1-module by Theorem 3.1; this is enough to show (using Lemma 3.2
(v)) that it has a Weyl filtration as an A1Ã1-module. Also, by considering
weights we see that the Lie algebra splits as a direct sum of Lie(H) together
with a module with the same character as ∆A1(ω1) ⊗ ∆Ã1

(3ω1), so this
summand is again a direct sum of irreducible Weyl modules as an A1-
module and has a Weyl filtration as an Ã1-module by Theorem 3.1. Hence
it has a Weyl filtration as an A1Ã1-module as desired.

This completes the proof of Proposition 3.3.
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16. Krämer, M. (1979) Sphärische Untergruppen in kompakten zusammenhängenden

Liegruppen, Compositio Math. 38, 129–153.
17. Lawther, R. (1995) Double cosets involving involutions in algebraic groups, Proc.

London Math. Soc. 70, 115–145.
18. Lawther, R. (1998) Finiteness of double coset spaces, in preparation.
19. Mathieu, O. (1990) Filtrations of G-modules, Ann. Sci. Ecole Norm. Sup. 23, 625–

644.
20. Mikityuk, V. (1987) On the integrability conditions of invariant Hamiltonian sys-

tems with homogeneous configuration spaces, Math. USSR Sb. 57, 527–546.
21. Popov, V.L. (1974) Picard groups of homogeneous spaces of linear algebraic groups

and one-dimensional homogeneous vector bundles, Math. USSR Izvestija 8, 301–327.
22. Richardson, R.W. (1977) Affine coset spaces of reductive algebraic groups, Bull.

London Math. Soc. 9, 38–41.
23. Richardson, R.W. and Springer, T.A. (1990) The Bruhat order on symmetric vari-

eties, Geom. Ded. 35, 389–436.
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