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Introduction

Let F be an algebraically closed field of characteristic p ≥ 0. We are interested in polynomial
representations of the general linear group GL(n) := GLn(F) and modular representations
of the symmetric group Σr over F. If p = 0 then the classical Littlewood-Richardson
coefficients describe the decomposition of all of the following modules:

(M1) the restriction of an irreducible GL(n)-module to a Levi subgroup of GL(n);
(M2) the tensor product of irreducible GL(n)-modules;
(M3) the restriction of an irreducible Σr-module to a Young subgroup of Σr;
(M4) the Σr-module induced from an irreducible module for a Young subgroup.
However in positive characteristic, very little is known about the structure of these mod-

ules. The goal of the article is to describe three quite different sources of connections be-
tween them, hence obtaining connections between various ‘modular Littlewood-Richardson
coefficients’.

In the modular case, we also have tilting modules (for general linear groups) and Young
modules (for symmetric groups). So we also consider:

(M1′) the restriction of an indecomposable tilting module to a Levi subgroup of GL(n);
(M2′) the tensor product of indecomposable tilting modules;
(M3′) the restriction of a Young module to a Young subgroup of Σr;
(M4′) the Σr-module induced from a Young module for a Young subgroup.
Our main results, in sections 2, 3 and 4 respectively, obtain the following connections

between these modules:
First, we construct a polynomial induction functor from a Levi subgroup of GL(n)

to GL(n), which plays the same role in the GL(n)-setting as ordinary induction does for
symmetric groups. Our main result about this induction functor (Theorem 2.7) shows that,
when applied to an outer tensor product of modules for the Levi subgroup, it gives an
inner tensor product of GL(n)-modules in a precise way. This gives a functorial connection
between branching rules and tensor products via ‘Frobenius reciprocity’. For example, it
allows us to give a direct relationship between the spaces of high weight vectors and the
socles of the modules (M1) and (M2) (see Theorem 2.8 and Theorem 2.20). As a special
case, taking the Levi subgroup to be a maximal torus of GL(n), we recover a character
formula due to Donkin [D3] (see Corollary 2.11).

Next, we use dual pairs to explain the connection between composition multiplicities in
(M1) to the tilting module decomposition multiplicities in (M2′), and similarly between the
composition multiplicities in (M2) and the tilting decomposition multiplicities in (M1′). The
main result here is Theorem 3.7. The proof depends on a modular version of Howe duality
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(as in [D3] and [AR]) allowing us to construct a dual pair associated to a Levi subgroup of
GL(n). As a special case, taking the Levi subgroup to be a maximal torus of GL(n) again,
we recover two character formulae (see Corollary 3.8 and Corollary 3.9), the first of which
is a result of Mathieu-Papadopoulo [MP].

Finally, we obtain the analogues of these results for the symmetric groups. To do this,
we first explain how to apply Schur functors to tensor products of GL(n)-modules (resp.
restrictions of GL(n)-modules to Levi subgroups), to obtain induced modules from Young
subgroups (resp. restrictions to Young subgroups) in the symmetric group setting. Using
this, we then translate our earlier connections in the GL(n)-setting to analogous connections
for symmetric groups. See Theorems 4.10, 4.11, 4.16, 4.17 and 4.19.

To give the reader a flavour of the questions to be considered in this paper we formulate
some special cases of our results. If G and H are groups, M is a G-module and N is an
H-module, we denote by M � N the outer tensor product (which is a G ×H-module). If
L is another G-module then M ⊗ L is the inner tensor product (which is a G-module with
the diagonal action). If L is irreducible we denote by [M : L] its multiplicity in M , and if L
is indecomposable its multiplicity as a direct summand of M will be denoted (M : L). For
a subgroup G1 < G we write M ↓G1 (or just M ↓ if the subgroup is clear from the context)
for the restriction of M to G1. Finally, Si(M) and

∧i(M) denote the ith symmetric and
exterior powers of M respectively.

The compositions (resp. partitions) with at most n non-zero parts are identified with
‘polynomial’ weights (resp. ‘polynomial’ dominant weights) for GL(n) and we denote the
set of all such by Λ(n) (resp. Λ+(n)). The partitions of r in Λ+(n) are denoted by Λ+(n, r),
and we write |λ| = r to indicate that λ is a partition of r. The partitions λ with at most
n non-zero parts and such that the first part λ1 is at most m are denoted Λ+(n×m). The
transpose λt of a partition λ is the partition whose Young diagram is the transpose of the
Young diagram λ (with respect to the main diagonal). If λ ∈ Λ+(n×m) then λt ∈ Λ+(m×n).
For λ ∈ Λ+(n), we write Ln(λ),∆n(λ),∇n(λ), and Tn(λ) for the irreducible, standard (or
Weyl), costandard and the indecomposable tilting modules over GL(n) with highest weight
λ, respectively. We always consider GL(m)×GL(n) as a subgroup of GL(m+n) (embedded
diagonally).

Theorem A. Let µ, ν ∈ Λ+(m+n) be partitions such that µ has at most m non-zero parts,
and ν has at most n non-zero parts. Set µ̄ = (µ1, . . . , µm) ∈ Λ+(m) and ν̄ = (ν1, . . . , νn) ∈
Λ+(n). Let M be any polynomial GL(m+ n)-module. Then,

(i) HomGL(m+n)(M,∇m+n(µ)⊗∇m+n(ν)) ∼= HomGL(m)×GL(n)(M ↓,∇m(µ̄)�∇n(ν̄)).
If in addition |µ| ≤ m and |ν| ≤ n, then

(ii) HomGL(m+n)(M,Lm+n(µ)⊗ Lm+n(ν)) ∼= HomGL(m)×GL(n)(M ↓, Lm(µ̄)� Ln(ν̄)).

If we take M = ∆n+m(λ) for some λ ∈ Λ+(n + m), the numbers appearing in Theo-
rem A(i) are – by standard properties of ∇-filtrations – the usual Littlewood-Richardson
coefficients. If instead we take M = Ln+m(λ), we obtain our first candidate for modular
Littlewood-Richardson coefficients. The other candidates are the numbers appearing
in (i) and (ii) of the next theorem. We note that the GL(m)×GL(n)-module Tm(µ)�Tn(ν)
appearing in Theorem B is an indecomposable tilting module.
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Theorem B. Let λ ∈ Λ+((m+ n)× k), µ ∈ Λ+(m× k) and ν ∈ Λ+(n× k). Then,
(i) (Tm+n(λ) ↓GL(m)×GL(n): Tm(µ)� Tn(ν)) = [Lk(µt)⊗ Lk(νt) : Lk(λt)].
(ii) [Lm+n(λ) ↓GL(m)×GL(n): Lm(µ)� Ln(ν)] = (Tk(µt)⊗ Tk(νt) : Tk(λt)).

Now we state the character formulae mentioned earlier.

Theorem C. Let λ ∈ Λ+(n × m), µ = (µ1, . . . , µn) ∈ Λ(n × m). Let V and W be the
natural GL(n)- and GL(m)-modules respectively. Then,

(i) (Donkin) dimLn(λ)µ = (Sµ1(V ) ⊗ · · · ⊗ Sµn(V ) : Qn(λ)), where Qn(λ) is the the
injective hull of Ln(λ) in the category of polynomial GL(n)-modules.

(ii) (Mathieu-Papadopoulo) dimLn(λ)µ = (
∧µ1(W )⊗ · · · ⊗

∧µn(W ) : Tm(λt)).
(iii) dimTn(λ)µ = [

∧µ1(W )⊗ · · · ⊗
∧µn(W ) : Lm(λt)].

Now, let Σn be the symmetric group on n letters. The irreducible FΣn module corre-
sponding to a p-regular partition λ of n is denoted by Dλ as in [J1]. Let Y µ be the Young
module corresponding to (an arbitrary) partition µ of n (see [J2]).

Theorem D. Let λ, µ and ν be partitions of m+ n, m, and n, respectively. Then,
(i) (Y λ ↓Σm×Σn : Y µ � Y ν) = [Lm+n(µ)⊗ Lm+n(ν) : Lm+n(λ)];
(ii) ((Y µ � Y ν) ↑Σm+n : Y λ) = [Lm+n(λ) ↓GL(m)×GL(n): Lm(µ)� Ln(ν)].

Moreover, if λ, µ and ν are all p-regular, then
(iii) [Dλ ↓Σm×Σn : Dµ �Dν ] = (Tm+n(µ)⊗ Tm+n(ν) : Tm+n(λ));
(iv) [(Dµ �Dν) ↑Σm+n : Dλ] = (Tm+n(λ) ↓GL(m)×GL(n): Tm(µ)� Tn(ν)).

The main results of the article will be applied in [BK], where we use our earlier work
[K2, K3, K4, B1, B2] on modular branching rules from GL(n) to GL(n− 1) to obtain new
results about versions of ‘translation functors’ in general linear and symmetric groups. In
particular, we will compute certain modular Littlewood-Richardson coefficients exactly.

Acknowledgement. The material on dual pairs in section 3 of the paper was explained
to us by O. Mathieu. In particular, he communicated to us Lemma 3.1 and Theorem D(iii).
We are very grateful to Prof. Mathieu for the illuminating discussion.

1 Preliminaries

We introduce some notation for rational and polynomial representations of GL(n) and its
Levi subgroups. We begin at the level of rational representations, following Jantzen [J]. A
GL(n)-module always means a rational left FGL(n)-module as in [J], and we denote the
category of all GL(n)-modules by GL(n) -Rat. More generally, given any algebraic group
G over F, a G-module means a rational FG-module and G -Rat denotes the category of all
such G-modules.

Let T (n) denote the fixed maximal torus of GL(n) consisting of all diagonal invertible
matrices, and let B+(n) denote the positive Borel subgroup consisting of all upper triangular
invertible matrices. The character group of T (n) is the free abelian group with generators
ε1, . . . , εn, where εi denotes the standard character defined by εi(diag(t1, . . . , tn)) = ti for
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all t1, . . . , tn ∈ F×. The root system of GL(n) (relative to T (n)) is the set {εi − εj | 1 ≤
i, j ≤ n, i 6= j}, and the root εi − εj is positive if i < j.

We let X(n) denote all n-tuples λ = (λ1, . . . , λn) of integers, and call the elements of
X(n) weights. We identify X(n) with the character group of T (n), by letting (λ1, . . . , λn) ∈
X(n) correspond to the character

∑
i λiεi. We have the usual dominance order on X(n),

defined by λ > µ if (λ − µ) is a sum of positive roots. A weight (λ1, . . . , λn) ∈ X(n) is
dominant (relative to B+(n)) precisely when λ1 ≥ · · · ≥ λn, and we let X+(n) denote all
such dominant weights. Say λ ∈ X+(n) is p-restricted if λi−λi+1 < p for i = 1, . . . , n− 1.

For λ ∈ X+(n), we have the GL(n)-modules Ln(λ),∆n(λ) (denoted V (λ) in [J]) and
∇n(λ) (denoted H0(λ) in [J]) which are the irreducible, standard and costandard modules
of highest weight λ respectively. We also denote the natural GL(n)-module ∆n(ε1) by V ,
with standard basis e1, . . . , en. Let f1, . . . , fn denote the dual basis for V ∗ ∼= ∆n(−εn).

Let Λ(n) ⊂ X(n) denote all n-tuples (α1, . . . , αn) satisfying αi ≥ 0 for i = 1, . . . , n,
and Λ+(n) := Λ(n) ∩X+(n). Let Λ(n, r) ⊂ Λ(n) denote all n-tuples (α1, . . . , αn) satisfying
|α| := α1 + · · · + αn = r, and Λ+(n, r) := Λ(n, r) ∩ X+(n). We call elements of Λ(n, r)
compositions of r (with at most n non-zero parts), and elements of Λ+(n, r) partitions
of r (with at most n non-zero parts).

Fix a ≥ 1 and ν = (n1, . . . , na) ∈ Λ(a, n) (a composition of n with at most a non-
zero parts). Let GL(ν) = GL(n1)× · · · ×GL(na) denote the standard Levi subgroup of
GL(n) consisting of all invertible block diagonal matrices with block sizes n1, . . . , na. Of
course, if ν = (n) then GL(ν) = GL(n) while, at the other extreme, if ν = (1, . . . , 1) then
GL(ν) = T (n).

The torus T (n) is also a maximal torus of GL(ν). Given a weight λ ∈ X(n) which is
dominant with respect to the Borel subgroup B+(ν) := GL(ν)∩B+(n) of GL(ν), we denote
the corresponding irreducible, standard and costandard GL(ν)-modules of highest weight λ
by Lν(λ),∆ν(λ) and ∇ν(λ) respectively. Let

X(ν) := X(n1)× · · · ×X(na).

The dominance order on X(ν) is defined as the product of the orders on X(n1), . . . , X(na).
The bijective map X(n) → X(ν) defined by λ 7→ (λ(1), . . . , λ(a)), where for j = 1, . . . , a,
λ(j) := (λn1+···+nj−1+1, . . . , λn1+···+nj ), induces a bijection between the B+(ν)-dominant
weights in X(n) and the set

X+(ν) := X+(n1)× · · · ×X+(na).

Moreover, for λ ∈ X+(ν), the GL(ν)-modules Lν(λ),∆ν(λ) and ∇ν(λ) correspond under
this bijection to the GL(n1)×· · ·×GL(na)-modules Ln1(λ(1))� · · ·�Lna(λ(a)),∇n1(λ(1))�
· · ·�∇na(λ(a)) and ∆n1(λ(1))� · · ·�∆na(λ(a)) respectively, where � denotes outer tensor
product.

Following [V], we say that the GL(ν)-module M has a ∇-filtration (resp. a ∆-
filtration) if it has an ascending filtration 0 = M0 < M1 < . . . with

⋃
i≥0Mi = M

such that each factor Mi/Mi−1 is isomorphic to a (possibly infinite) direct sum of copies of
∇ν(λi) (resp ∆ν(λi)) for some λi ∈ X+(ν).

We say a GL(ν)-module is tilting if it has both a ∆-filtration and a ∇-filtration. Donkin
[D3] has shown that, for each λ ∈ X+(ν), there a unique (finite dimensional) indecomposable
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tilting module Tν(λ) of highest weight λ, satisfying [Tν(λ) : Lν(λ)] = 1 and [Tν(λ) : Lν(µ)] =
0 for µ 6≤ λ.

For a left exact additive functor F from an abelian category with enough injectives
to another abelian category, RiF denotes its ith (right) derived functor. The category
GL(ν) -Rat contains enough injectives, and ExtiGL(ν)(M,−) denotes Ri HomGL(ν)(M,−).
We recall the cohomological criterion for ∇-filtrations (see [J, II.4.16(b)] and the proof of
[V, Theorem 3.2.7]):

1.1. A module M ∈ GL(ν) -Rat has a ∇-filtration if and only if Ext1
GL(ν)(∆(λ),M) = 0 for

all λ ∈ X+(ν).

Note that the last few definitions, and (1.1), include GL(n) as a special case, taking ν = (n).
Following [J, I.2.7], there are two commuting left actions of GL(n) on its coordinate ring

F[GL(n)], the left regular and right regular actions, which we define for g, g′ ∈ GL(n), f ∈
F[GL(n)] by (g ·l f)(g′) = f(g−1g′) and (g ·r f)(g′) = f(g′g) respectively. We stress that
both ·l and ·r are left actions, in spite of their ambigious names! Regarding GL(ν) as a
closed subgroup of GL(n), we have the usual restriction functor resGL(n)

GL(ν) : GL(n) -Rat →

GL(ν) -Rat. For M ∈ GL(ν) -Mod, we define the induced module indGL(n)
GL(ν) M to be the set

of GL(ν)-fixed points (M ⊗F[GL(n)])GL(ν) where the GL(n)-action on the induced module
comes from the right regular action of GL(n) on F[GL(n)] and the trivial action on M , and
the action of GL(ν) on M ⊗ F[GL(n)] under which we are taking fixed points comes from
the given action on M and the left regular action on F[GL(n)].

This gives a functor indGL(n)
GL(ν) : GL(ν) -Rat→ GL(n) -Rat which (precisely as in [J, I.3.4])

is right adjoint to the exact functor resGL(n)
GL(ν) , so sends injectives to injectives. Note that this

is not quite the same definition as in [J, I.3.3] – the roles of the left and right regular actions
are swapped there. This is important for us in relating our results to Schur algebras in the
most natural way. Our induction functor is naturally isomorphic to the one in [J, I.3.3] (for
example, because both definitions give functors which are right adjoint to resGL(n)

GL(ν)).
Now, by [R], the quotient GL(n)/GL(ν) is an affine variety, so [J, I.5.13(a)] implies:

1.2. The functor indGL(n)
GL(ν) is exact.

Hence [J, I.4.6] gives us generalized Frobenius reciprocity:

1.3. For M ∈ GL(n) -Rat, N ∈ GL(ν) -Rat and i ≥ 0,

ExtiGL(n)(M, indGL(n)
GL(ν) N) ∼= ExtiGL(ν)(resGL(n)

GL(ν) M,N)

We recall the Donkin-Mathieu theorem [W, D1, M]:

1.4. (i) If M,N ∈ GL(ν) -Rat are modules with ∇-filtrations (resp. tilting modules), then
M ⊗N has a ∇-filtration (resp. is tilting);

(ii) If M ∈ GL(n) -Rat has a ∇-filtration (resp. is tilting), then resGL(n)
GL(ν) M has a ∇-

filtration (resp. is tilting).
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In particular, (1.4)(ii) combined with (1.3) and (1.1) shows:

1.5. The functor indGL(n)
GL(ν) sends modules with ∇-filtrations to modules with ∇-filtrations.

We also note:

1.6. For λ ∈ X+(ν), Tν(λ) ∼= Tn1(λ(1))� · · ·� Tna(λ(a)).

To prove this, note that the outer tensor product is certainly a tilting module and it
has the correct highest weight. So it suffices to show that the outer tensor product of two
indecomposable tilting modules is indecomposable. This follows from the following general
fact for which we were unable to find a reference:

1.7. Lemma. Let A and B be two F-algebras and let M and N be finite dimensional inde-
composables for A and B respectively. Then, M �N is an indecomposable A⊗B-module.

Proof. Note that as M and N are indecomposable, the identity is a primitive idempotent
in each of the finite dimensional algebras EndA(M) and EndB(N). Consequently (by the
commutant correspondence described in section 3) EndA(M) and EndB(N) each possess a
unique irreducible module, of dimension 1. So by [CR, (10.38)(iii)] and the fact that F is
algebraically closed, EndA(M) ⊗ EndB(N) possesses a unique irreducible module, also of
dimension 1. Hence, as EndA⊗B(M � N) ∼= EndA(M) ⊗ EndB(N) by [CR, (10.37)], the
identity is a primitive idempotent of EndA⊗B(M �N), so M �N is indecomposable.

Now we specialize to polynomial representations of GL(n), following Green [G] and the
appendix to Donkin’s monograph [D5]. We note however that Green and Donkin consider
only finite dimensional modules whereas we include infinite dimensional (locally finite) mod-
ules. All the results from [G, D5] that we need are valid in this slightly more general setting
(without significant alterations to the proofs).

The coordinate ring F[GL(n)] of GL(n) has the structure of a Hopf algebra, with comul-
tiplication, counit and antipode coming from multiplication, unit and inversion in GL(n).
Given a coalgebra A over F, Comod-A denotes the category of all right A-comodules (a
right A-comodule means an F-module M with structure map µ : M → M ⊗ A as in [S]).
Every GL(n)-module is naturally a right F[GL(n)]-comodule, and this gives an equivalence
of categories between GL(n) -Rat and Comod-F[GL(n)].

Let A(n) denote the subalgebra of F[GL(n)] generated by the functions {cij |1 ≤ i, j ≤ n},
where cij picks out the ij-entry of a matrix g ∈ GL(n). Then, A(n) is a sub-bialgebra of
F[GL(n)], isomorphic to the free polynomial algebra F[cij |1 ≤ i, j ≤ n], and F[GL(n)] is the
localization of A(n) at the determinant function. For r ≥ 0, the subspace A(n, r) < A(n)
consisting of all homogeneous polynomials of degree r in the cij is a sub-coalgebra of A(n).

Let M be a left GL(n)-module with structure map µ : M →M ⊗ F[GL(n)]. We say M
is a polynomial module (resp. a polynomial module of degree r) if the image of µ lies in
M⊗A(n) (resp. M⊗A(n, r)). We denote the category of all left polynomial GL(n)-modules
(resp. polynomial modules of degree r) by MF(n) (resp. MF(n, r)). The category MF(n)
(resp. MF(n, r)) is equivalent to Comod-A(n) (resp. Comod-A(n, r)). Moreover, by [G,



Modular Littlewood-Richardson coefficients 7

2.2c], any polynomial module is a direct sum of polynomial modules of various degrees, and
MF(n) ∼=

⊕
r≥0MF(n, r).

The dual space S(n, r) := A(n, r)∗ of the coalgebra A(n, r) inherits a natural algebra
structure from the counit and comultiplication in A(n, r); S(n, r) is the Schur algebra
of [G]. Given any algebra S over F, S -Mod denotes the category of all (possibly infi-
nite dimensional) left S-modules. By [G, §1] there is an equivalence of categories between
S(n, r) -Mod and Comod-A(n, r), hence between MF(n, r) and S(n, r) -Mod. This can be de-
scribed more directly using the surjective homomorphism e : FGL(n)→ S(n, r) of [G, 2.4],
defined for g ∈ GL(n) by letting e(g) ∈ S(n, r) = A(n, r)∗ be the unique element satisfying
e(g)(a) = a(g) for all a ∈ A(n, r). We can regard any S(n, r)-module as an FGL(n)-module
via this surjection e, and Green shows that this gives the equivalence of categories between
MF(n, r) and S(n, r) -Mod.

A rationalGL(n)-module M is polynomial (resp. polynomial of degree r) if and only if all
weights of M are elements of Λ(n) (resp. Λ(n, r)). Hence, the modules Ln(λ),∆n(λ),∇n(λ)
and Tn(λ) lie in MF(n) (resp. MF(n, r)) if and only if λ ∈ Λ+(n) (resp. Λ+(n, r)). Noting
that MF(n) has enough injectives (which look like direct sums of injectives for various
S(n, r)), we let Qn(λ) denote the injective hull of Ln(λ) in the category MF(n), for λ ∈
Λ+(n).

Now, the category MF(n) is a full subcategory of GL(n) -Rat. So, given M,N ∈MF(n),
we can compute Exti(M,N) either by computing ExtiMF(n)(M,N) in the category MF(n),
or by regarding M and N as elements of GL(n) -Rat and computing ExtiGL(n)(M,N) in the
category GL(n) -Rat. By [D2, Theorem 2.1f], these two calculations of Exti(M,N) give the
same answer:

1.8. Given modules M,N ∈MF(n), ExtiMF(n)(M,N) ∼= ExtiGL(n)(M,N).

Define the polynomial truncation functor Pol : GL(n) -Rat→MF(n) by letting PolM
equal the largest polynomial submodule of M for M ∈ GL(n) -Rat, and by restriction on
morphisms. Note Pol is a special case of Donkin’s truncation functor Oπ from [D2, 2.1]
(take π := Λ+(n), a saturated subset of X+(n)). We record the following basic property of
Pol [D2, 2.1b]:

1.9. For a module M ∈ GL(n) -Rat with a ∇-filtration, (Ri Pol)M = 0 for i > 0.

Note that Pol is obviously right adjoint to the inclusion functor MF(n) → GL(n) -Rat
(which is exact). So, Pol is left exact and sends injectives to injectives.

1.10. Lemma. Take M ∈ MF(n) and N ∈ GL(n) -Rat, and suppose that N has a ∇-
filtration. Then, ExtiGL(n)(M,N) ∼= ExtiGL(n)(M,PolN).

Proof. By the adjoint functor property, there is an isomorphism of functors between
HomGL(n) -Rat(M,−) and HomMF(n)(M,−)◦Pol. Moreover, Pol sends injectives to injectives
and HomMF(n)(M,−) is left exact, so for each M ∈MF(n), there is a Grothendieck spectral
sequence with

Ei,j2 = ExtiMF(n)(M, (Rj Pol)N)⇒ Exti+jGL(n)(M,N).
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If N has a ∇-filtration, then (Rj Pol)N = 0 for j > 0 by (1.9), so this degenerates to give
the isomorphism

ExtiMF(n)(M,PolN) ∼= ExtiGL(n)(M,N).

Now the lemma follows by (1.8).
Combining (1.1) and Lemma 1.10, we deduce:

1.11. The functor Pol sends modules with ∇-filtrations to modules with ∇-filtrations.

We finally extend the notion of polynomial representations from GL(n) to the standard
Levi subgroup GL(ν) < GL(n), for fixed ν ∈ Λ(a, n). The coordinate ring of GL(ν) is
isomorphic to F[GL(n1)] ⊗ · · · ⊗ F[GL(na)], which is the localization of A(ν) := A(n1) ⊗
· · · ⊗ A(na) at determinant. Now, A(ν) can be regarded as a free polynomial algebra in
indeterminates cij , where 1 ≤ i, j ≤ n and both i and j lie in the same one of the following
intervals: [1, n1], [n1 + 1, n1 + n2], . . . , [n1 + · · · + na−1 + 1, n]. If we let A(ν, r) denote the
sub-coalgebra of A(ν) consisting of all homogeneous polynomials of degree r, then we have
the coalgebra isomorphism

A(ν, r) ∼=
⊕

ρ∈Λ(a,r)

A(n1, ρ1)⊗ · · · ⊗A(na, ρa).

Define the category MF(ν) (resp. MF(ν, r)) of polynomial GL(ν)-modules (resp. of
degree r) to be all rational GL(ν)-modules M for which the image of the structure map
µ : M →M⊗F[GL(ν)] lies in M⊗A(ν) (resp. M⊗A(ν, r)). Copying Green’s construction,
the category MF(ν, r) is equivalent to the category S(ν, r) -Mod of left modules for the
algebra S(ν, r) := A(ν, r)∗. Obviously,

S(ν, r) ∼=
⊕

ρ∈Λ(a,r)

S(n1, ρ1)⊗ · · · ⊗ S(na, ρa). (1.12)

Let J(ν) be the ideal of A(n) generated by all cij with i and j not both lying in the
same one of the intervals [1, n1], [n1 + 1, n1 + n2], . . . , [n1 + · · · + na−1 + 1, n]. It is graded
by degree as

⊕
r≥0 J(ν, r).

1.13. Lemma. S(ν, r) is isomorphic as an algebra to the annihilator J(ν, r)◦ of J(ν, r) in
S(n, r).

Proof. The inclusion GL(ν) ↪→ GL(n) induces a surjection F[GL(n)] → F[GL(ν)] of the
coordinate rings. Since F[GL(n)] and F[GL(ν)] are the localizations of A(n) and A(ν)
respectively at determinant, this restricts to a surjection A(n) → A(ν). So we can regard
A(ν) as the bialgebra quotient A(n)/J(ν), and so A(ν, r) ∼= A(n, r)/J(ν, r). Hence, S(ν, r) =
A(ν, r)∗ is isomorphic as an algebra to the annihilator J(ν, r)◦.

1.14. Lemma. If e : FGL(n)→ S(n, r) is the natural surjection, e(FGL(ν)) ∼= S(ν, r).
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Proof. By definition of the map e, the annihilator e(FGL(ν))◦ < A(n, r) of e(FGL(ν)) <
S(n, r) is {f ∈ A(n, r) | f(g) = 0 for all g ∈ GL(ν)}, which is precisely J(ν, r). Taking
annihilators, we deduce e(FGL(ν)) = J(ν, r)◦ ∼= S(ν, r), by Lemma 1.13.

Because of this lemma, we call S(ν, r) a standard Levi subalgebra of S(n, r) (see [D4,
Section 2] and [D5, 4.6] for the quantum analogue). We can also describe an explicit basis
for S(ν, r) in terms of Green’s basis for S(n, r). Let I(n, r) denote the set of all functions
{1, . . . , r} → {1, . . . , n}. We regard a function i ∈ I(n, r) as an r-tuple i = (i1, . . . , ir)
where ik := i(k). Define a right action of Σr on I(n, r) by letting iπ be the composition of
functions i ◦ π, for i ∈ I(n, r), π ∈ Σr. The set

I2(n, r) := {(i, j) ∈ I(n, r)× I(n, r) | j1 ≤ · · · ≤ jr and ik ≤ ik+1 whenever jk = jk+1}

is a set of orbit representatives for the diagonal action of Σr on I(n, r) × I(n, r). Then
{ci,j | (i, j) ∈ I2(n, r)} is a basis for A(n, r). We let {ξi,j | (i, j) ∈ I2(n, r)} denote the dual
basis for S(n, r). With this notation, Lemma 1.13 also implies:

1.15. The set of all ξi,j with (i, j) ∈ I2(n, r) such that ik and jk belong to the same one of
the intervals [1, n1], [n1 + 1, n1 + n2], . . . , [n1 + · · ·+ na−1 + 1, n], k = 1, 2 . . . , r, is a basis of
S(ν, r).

Let Λ+(ν, r) denote the set of all λ = (λ(1), . . . , λ(a)) ∈ X+(ν) with 0 ≤ λ
(j)
i for all i, j

and |λ(1)| + · · · + |λ(a)| = r. Then, by (1.12), the modules Lν(λ),∆ν(λ),∇ν(λ) and Tν(λ)
for λ ∈ X+(ν) lie in MF(ν, r) if and only if λ ∈ Λ+(ν, r).

2 Polynomial induction functors

In this section, we introduce a ‘polynomial induction’ functor from Levi subgroups, and use
it to obtain our first functorial connection between tensor products and branching rules.

Fix ν = (n1, . . . , na) ∈ Λ(a, n) for some a, and let GL(ν) < GL(n) be the standard Levi
subgroup. By definition, the algebra A(ν) (resp. A(ν, r)) is the image of A(n) (resp. A(n, r))
under the quotient map F[GL(n)] → F[GL(ν)]. Hence, the restriction of a polynomial
module (resp. a polynomial module of degree r) from GL(n) to GL(ν) is again a polynomial
module (resp. a polynomial module of degree r). So we have the exact restriction functor

Rnν : MF(n)→MF(ν),

which sends MF(n, r) into MF(ν, r).
Now, the left and right regular actions of GL(n) on F[GL(n)] stabilize A(n) and A(n, r).

So, for M ∈MF(ν), we can define GL(n)-modules (M ⊗A(n))GL(ν) and (M ⊗A(n, r))GL(ν),
in the same way as the induced module indGL(n)

GL(ν) = (M ⊗ F[GL(n)])GL(ν) was defined in

section 1. Note that both (M ⊗ A(n))GL(ν) and (M ⊗ A(n, r))GL(ν) are submodules of
indGL(n)

GL(ν) . Define the functor
Inν : MF(ν)→MF(n)

by letting InνM := (M ⊗A(n))GL(ν), with the obvious definition on morphisms.
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We regard S(n, r) as a left GL(n)-module by letting g.s be the unique element of S(n, r)
such that (g.s)(a) = s(g−1 ·l a) for s ∈ S(n, r), a ∈ A(n, r) = S(n, r)∗, g ∈ GL(n).
Similarly, we regard S(n, r) as a right GL(n)-module by defining (s.g)(a) = s(g ·r a), for
s ∈ S(n, r), g ∈ GL(n). Note that g.s = e(g)s and s.g = se(g), where e : FGL(n)→ S(n, r)
is the natural surjection. Now, HomGL(ν)(S(n, r),M) is naturally a left GL(n)-module, with
action (gf)(s) = f(sg) for g ∈ GL(n), s ∈ S(n, r) and f ∈ HomGL(ν)(S(n, r),M).

2.1. Lemma. For M ∈ MF(ν) and r ≥ 0, the left GL(n)-modules (M ⊗ A(n, r))GL(ν) and
HomGL(ν)(S(n, r),M) are naturally isomorphic.

Proof. Identify M ⊗ A(n, r) with HomF(S(n, r),M) by letting a generator m ⊗ a ∈ M ⊗
A(n, r) correspond to the homomorphism s 7→ s(a)m (s ∈ S(n, r)).

Take M ∈MF(ν, r). By the isomorphism A(n) ∼=
⊕

s≥0A(n, s) and Lemma 2.1,

InνM
∼=
⊕
s≥0

HomGL(ν)(S(n, s),M).

Now S(n, s) is by definition a polynomial GL(ν)-module of degree s. But M is of degree r
and there are no GL(ν)-homomorphisms between polynomial modules of different degrees.
Hence,

InνM
∼= HomGL(ν)(S(n, r),M) ∼= (M ⊗A(n, r))GL(ν).

So Inν sends MF(ν, r) into MF(n, r). Moreover, it sends finite dimensional modules to finite
dimensional modules (unlike indGL(n)

GL(ν)).

2.2. Lemma. (i) The functor Inν is right adjoint to Rnν . Hence, Inν is left exact and sends
injectives in MF(ν) to injectives in MF(n).

(ii) The functors Inν : MF(ν)→MF(n) and Pol ◦ indGL(n)
GL(ν) : MF(ν)→MF(n) are isomor-

phic.
(iii) Let M ∈MF(n) and N ∈MF(ν). If N has a ∇-filtration, then

ExtiGL(ν)(R
n
νM,N) ∼= ExtiGL(n)(M, InνN)

for i ≥ 0.
(iv) Inν sends modules with ∇-filtrations to modules with ∇-filtrations.

Proof. For (i), it suffices to prove that Rnν and Inν are adjoint when restricted to MF(n, r)
and MF(ν, r) respectively, for all r ≥ 1. The functor Inν : MF(ν, r) → MF(n, r) is isomor-
phic to the functor HomS(ν,r)(S(n, r),−) by Lemma 2.1, and it is a well-known fact about
finite dimensional algebras that this is right adjoint to restriction between S(n, r) -Mod and
S(ν, r) -Mod. To prove (ii), we simply note that the functor Pol ◦ indGL(n)

GL(ν) is also right ad-

joint to Rnν , which follows as indGL(n)
GL(ν) is right adjoint to resGL(n)

GL(ν) and Pol is right adjoint
to the inclusion functor MF(n) → GL(n) -Mod. Now (iii) follows easily from (ii), (1.5),
Lemma 1.10 and (1.3), while (iv) follows from (ii), (1.5) and (1.11).
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Now fix m ≤ n, and let ν = (m, 1, . . . , 1), a composition of n. Then, GL(m) is a
normal subgroup of the Levi subgroup GL(ν) ≤ GL(n), and we have an exact inflation
functor Inflνm : GL(m) -Rat → GL(ν) -Rat which sends each MF(m, r) into MF(ν, r). Let
H(m) ≤ GL(ν) be the (n−m)-dimensional torus such that GL(ν) = GL(m)×H(m). Then,
the fixed point functor M 7→MH(m) is right adjoint to Inflmν (see eg [J, I.6.4]). Now define
functors Inm : MF(m)→MF(n) and Rnm : MF(n)→MF(m) by the compositions

Inm := Inν ◦ Inflνm, Rnm := (−)H(m) ◦Rnν .

We note that Inm is right adjoint to Rnm, hence left exact. The exact functor Rnm just takes
the 0-weight space of a GL(n)-module with respect to the torus H(m) so, as special cases
of [J, II.2.11] and (since Rnm commutes with contravariant duality) [J, II.5.21], we know:

2.3. Fix λ ∈ Λ+(n) with λm+1 = · · · = λn = 0 (so λ has at most m non-zero rows). Let
λ̄ = (λ1, . . . , λm) ∈ Λ+(m). Then, Rnm∆n(λ) ∼= ∆m(λ̄) and RnmLn(λ) ∼= Lm(λ̄).

On the other hand, if λ ∈ Λ+(n) has λm+1 > 0, then all weights µ of ∇n(λ) also satisfy
µm+1 > 0. Hence:

2.4. For λ ∈ Λ+(n) with λm+1 > 0, we have Rnm∆n(λ) = RnmLn(λ) = 0.

Moreover by Lemma 2.2(iv), Inm sends modules with ∇-filtrations to modules with ∇-
filtrations. Hence, for µ ∈ Λ+(m), Inm∇m(µ) has a∇-filtration, and on calculating the factors
occuring in a ∇-filtration of Inm∇m(µ) using [J, II.4.16(a)], together with the isomorphism
HomGL(n)(∆n(λ), Inm∇m(µ)) ∼= HomGL(m)(Rnm∆n(λ),∇m(µ)) and (2.3),(2.4), one deduces:

2.5. Let λ and λ̄ be as in (2.3). Then, Inm∇m(λ̄) ∼= ∇n(λ).

Now, let λ and λ̄ be as in (2.3). Since Inm sends injectives to injectives, InmQm(λ̄) is injec-
tive. Moreover, for µ ∈ Λ+(n), HomGL(n)(Ln(µ), InmQm(λ̄)) ∼= HomGL(m)(RnmLn(µ), Qm(λ̄)).
If µm+1 = 0 this is zero by (2.3) unless µ̄ = λ̄, when it is one dimensional. If µm+1 > 0,
then RnmLn(µ) = 0 by (2.4), so again the Hom space is zero. This shows that InmQm(λ̄) is
injective with simple socle Ln(λ). Hence:

2.6. Let λ and λ̄ be as in (2.3). Then, InmQm(λ̄) = Qn(λ).

It is not in general true that InmLm(λ̄) ∼= Ln(λ) (but see (2.19)). For instance, consider
In1 L1(aε1) which equals ∇n(aε1) by (2.5), which is not necessarily irreducible. This example
also shows that Lemma 2.2(iv) is false if we replace ∇-filtrations with ∆-filtrations.

Our main reason for introducing the functors Inm and Inν is the following result describing
polynomial induction applied to an outer tensor product:

2.7. Theorem. Let ν ∈ Λ(a, n). Take any modules M1, . . . ,Ma with Mi ∈MF(ni), so that
M1 � · · ·�Ma ∈MF(ν). Then

Inν (M1 � · · ·�Ma) ∼= (Inn1
M1)⊗ · · · ⊗ (InnaMa).
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Proof. LetM = M1�· · ·�Ma. We can identifyA(n) with the symmetric algebra S(V ∗⊗V ),
letting the generator cij ∈ A(n, 1) correspond to fi ⊗ ej ∈ V ∗ ⊗ V . Having done this, it
is routine to check that the left regular (resp. right regular) action of GL(n) on A(n)
corresponds to the action of GL(n) on S(V ∗ ⊗ V ) coming from the action on V ∗ (resp. V ).
By the definition of Inν and these remarks,

InνM
∼= [M ⊗ S(V ∗ ⊗ V )]GL(ν)

where the GL(n)-action on InνM comes just from its action on V and the GL(ν)-action
under which we are taking fixed points comes from the action on M and V ∗. As a GL(ν)-
module, V ∗ ∼= V ∗1 ⊕ · · · ⊕ V ∗a , where Vi is the natural module for the ith factor GL(ni) of
GL(ν) (and GL(nj) acts trivially on Vi for j 6= i). So, as a GL(ν)×GL(n)-module,

M ⊗ S(V ∗ ⊗ V ) ∼= M ⊗ S((V ∗1 ⊗ V )⊕ · · · ⊕ (V ∗a ⊗ V ))
∼= M ⊗ S(V ∗1 ⊗ V )⊗ · · · ⊗ S(V ∗a ⊗ V )
∼= [M1 ⊗ S(V ∗1 ⊗ V )]⊗ · · · ⊗ [Ma ⊗ S(V ∗a ⊗ V )] ,

where the GL(ni)-action comes from action on Mi and V ∗i , and the GL(n)-action comes
from the action on V only. Taking fixed points, we deduce

Inν (M1 � · · ·�Ma) ∼= [M1 ⊗ S(V ∗1 ⊗ V )]GL(n1) ⊗ · · · ⊗ [Ma ⊗ S(V ∗a ⊗ V )]GL(na) .

So it remains to show that if m ≤ n and N is a polynomial GL(m)-module, then InmN
∼=

[N ⊗ S(W ∗ ⊗ V )]GL(m) where W denotes the natural GL(m)-module. But by definition,
InmN

∼= [InflnmN ⊗ S(V ∗ ⊗ V )]GL(m)×H(m) . Noting that S(V ∗ ⊗ V )H(m) ∼= S(W ∗ ⊗ V ) as a
GL(m)×GL(n)-module, the result follows on taking H(m)-fixed points.

2.8. Theorem. Let ν ∈ Λ(a, n) and µ(1), . . . , µ(a) ∈ Λ+(n) be partitions such that µ(i) has at
most ni non-zero rows for each i. Let µ̄(i) = (µ(i)

1 , . . . , µ
(i)
ni ) ∈ Λ+(ni). For any M ∈MF(n),

HomGL(n)(M,∇n(µ(1))⊗ · · · ⊗ ∇n(µ(a))) ∼= HomGL(ν)(R
n
νM,∇n1(µ̄(1))� · · ·�∇na(µ̄(a))).

Proof. This is just the fact that Inν is right adjoint to Rnν , together with Theorem 2.7 and
(2.5).

We record an elementary lemma:

2.9. Lemma. Let M be a GL(n − 1)-module all of whose weights are of the form µ with
µ1 + · · ·+ µn−1 = s and N be a GL(n)-module all of whose weights are of the form ν with
n1 + · · ·+ nn = r. Then, HomGL(n−1)(M,N) ∼= HomGL(n−1,1)(M �∆1((r − s)ε1), N).

Proof. The image of M under any GL(n − 1)-homomorphism lies in the subspace of N
consisting of the sum of all weight spaces Nγ with γ1 + · · ·+ γn−1 = s, hence γn = (r − s).
Now the conclusion is obvious.

We now state some corollaries of Theorem 2.8. The first will be used in [BK].
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2.10. Corollary. Fix λ, µ ∈ Λ+(n) with µn = 0. Then,

HomGL(n)(Ln(λ),∇n(µ)⊗ S`(V )) ∼= HomGL(n−1)(∆n−1(µ̄), Ln(λ) ↓GL(n−1))

where ` = |λ| − |µ|.

Proof. By Theorem 2.8 and contravariant duality, the left hand side is isomorphic to
HomGL(n−1,1)(∆n−1(µ̄)�∆1(`ε1), Ln(λ) ↓GL(n−1,1)). Now apply Lemma 2.9.

The second corollary is a result of Donkin [D3, Lemma 3.4(i)]:

2.11. Corollary (Donkin). Let λ ∈ Λ+(n) and µ ∈ Λ(n). Then,

dimLn(λ)µ = (Sµ1(V )⊗ · · · ⊗ Sµn(V ) : Qn(λ)),

the multiplicity of Qn(λ) as summand of the injective module Sµ1(V )⊗ · · · ⊗ Sµn(V ).

Proof. We first need to observe that Sµ1(V ) ⊗ · · · ⊗ Sµn(V ) is indeed injective in MF(n),
which is proved in [D3, Lemma 3.4(i)] (it is a summand ofA(n)). Now, takingGL(ν) = T (n),
dimL(λ)µ = dim HomGL(n)(Ln(λ), Sµ1(V ) ⊗ · · · ⊗ Sµa(V )) by Theorem 2.8. The result
follows immediately as Qn(λ) has simple socle Ln(λ).

2.12. Corollary. For r ≤ n, V ⊗r ∼=
⊕

λ∈Λ+(n,r)Qn(λ)dλ where dλ := dimLn(λ)ω and
ω = (1, . . . , 1, 0, . . . , 0) ∈ Λ(n, r). In particular, V ⊗r has p-restricted socle.

Proof. The first statement is immediate from Corollary 2.11. To deduce the second state-
ment, note that Qn(λ) has simple socle Ln(λ), while by [G, 6.4b], dλ is non-zero if and only
if λ is p-restricted.

In the remainder of the section, we will study the functors Rnm and Inm in more detail,
by relating them to Green’s functor dn,m from [G, 6.5]. For later use, we first recall some
standard properties of Schur functors, then specialize to the case in hand. The basic ref-
erences here are [G, Chapter 6] and [JS], but as we work with the right adjoint ‘induction’
functor whereas [G, JS] work with the left adjoint, we have given some of the proofs.

Suppose that S is a finite dimensional algebra over a field F, and e ∈ S is an idem-
potent. The Schur functor Re is the functor Re : S -Mod → eSe -Mod defined on
modules by M 7→ eM , and by restriction on morphisms. Equivalently, Re(M) is the
module HomS(Se,M), regarded as an eSe-module by the action (sθ)(s′) = θ(s′s) for
s ∈ eSe, s′ ∈ Se, θ ∈ HomS(Se,M). By [G, 6.2a], the functor Re is exact. We recall
[G, 6.2g]:

2.13. Let {L(λ) | λ ∈ X} be a full set of non-isomorphic irreducible modules in S -Mod,
indexed by a set X. Let X ′ = {λ ∈ X |ReL(λ) 6= 0}. Then, {ReL(λ) | λ ∈ X ′} is a full set
of non-isomorphic irreducible modules in eSe -Mod.

Given N ∈ eSe -Mod, we let Ie(N) := HomeSe(eS,N), regarded as an element of S -Mod
by defining the S-action to be (sθ)(s′) = θ(s′s), for s ∈ S, s′ ∈ eS, θ ∈ Ie(N). With the
obvious definition on morphisms, this gives a functor Ie : eSe -Mod→ S -Mod which is right
adjoint to Re. In other words:
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2.14. For M ∈ S -Mod, N ∈ eSe -Mod, HomS(M, IeN) ∼= HomeSe(ReM,N).

Hence, Ie is left exact and sends injective eSe-modules to injective S-modules. Note
Re(Ie(N)) = eHomeSe(eS,N) ∼= HomeSe(eSe,N) ∼= N , so Ie is a ‘right inverse’ to Re:

2.15. For N ∈ eSe -Mod, Re(Ie(N)) ∼= N .

For a module M ∈ S -Mod, we let M(e) denote the largest submodule of M annihilated
by e, and M (e) denote the smallest submodule such that M/M (e) is annihilated by e. We
say a module M is e-restricted if M (e) = M and M(e) = 0. Observe that M(e) = 0 if
and only if the socle of M is e-restricted, while M (e) = M if and only if the head of M is
e-restricted. Moreover, [JS, Lemma 2.1] proves that:

2.16. For M ∈ S -Mod, M (e) = SeM .

Now, take N ∈ S -Mod and let N̂ := Ie(Re(N)). Since N ∼= HomS(S,N) and N̂ =
HomeSe(eS, eN), there is a natural restriction map res : N → N̂ .

2.17. Lemma. (i) For N ∈ S -Mod and N̂ := Ie(Re(N)), the kernel of the natural restric-
tion map res : N → N̂ equals N(e), while the image of res contains N̂ (e).

(ii) Suppose N ∈ S -Mod has e-restricted socle and M ∈ S -Mod has e-restricted head.
Then, HomeSe(ReM,ReN) ∼= HomS(M,N).

(iii) If SeS = S, the functors Re and Ie induce an equivalence of categories between
S -Mod and eSe -Mod.

Proof. (i) The image under res of n ∈ N is the homomorphism res(n) ∈ HomeSe(eS, eN)
where res(n)(es) = esn for all es ∈ eS. So, res(n) = 0 if and only if eSn = 0, which is if
and only if n ∈ N(e). Hence, ker res = N(e). For the second statement, it suffices by (2.16)
to show that eN̂ ⊂ res(N). But, eN̂ = eHomeSe(eS, eN) = res(eN) ⊂ res(N) as required.
(This is an analogue of [JS, 2.11(ii)].)

(ii) By (2.14), HomeSe(ReM,ReN) ∼= HomS(M, N̂) where N̂ = Ie(Re(N)). By (i) and
the fact that N(e) = 0, N̂ is an extension of N by a module annihilated by e. But M has
e-restricted head, so any homomorphism from M to N̂ must have image wholly contained
in N , and HomS(M, N̂) ∼= HomS(M,N).

(iii) For N ∈ eSe -Mod, (2.15) shows that Re(Ie(N)) ∼= N . The assumption SeS = S
is equivalent by (2.16) to S having e-restricted head as a left S-module, or all irreducible
S-modules being e-restricted. Hence, for all M ∈ S -Mod, M(e) = 0 and M (e) = M . Given
this, (i) implies that M ∼= Ie(Re(M)) for M ∈ S -Mod. Finally, one checks that these
isomorphisms are functorial.

Now we specialize to the functors Inm and Rnm defined earlier, for n ≥ m ≥ 1. On
restricting Inm and Rnm to the subcategories MF(m, r) and MF(n, r) respectively, we obtain
functors In,rm,r : MF(m, r) → MF(n, r) and Rn,rm,r : MF(n, r) → MF(m, r). As Rn,rm,r amounts
to picking certain weight spaces, it can be identified with the Schur functor Ren,m , where
en,m ∈ S(n, r) is the idempotent defined as in [G, 6.5] (Ren,m is the functor denoted dn,m
by Green). As Inm is right adjoint to Rnm, In,rm,r is right adjoint to Rn,rm,r. Now, Ien,m is also
right adjoint to Rn,rm,r = Ren,m , so In,rm,r can be identified with Ien,m . Now, (2.15) and the
isomorphism MF(m) ∼=

⊕
r≥0MF(m, r) imply:
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2.18. For M ∈MF(m), Rnm(Inm(M)) ∼= M .

If r ≤ m ≤ n, then Rn,rm,rLn(λ) is non-zero for all λ ∈ Λ+(n, r) by (2.3). Hence, in this
case all S(n, r)-modules have en,m-restricted head, so S(n, r) = S(n, r)en,mS(n, r) by (2.16).
Now Lemma 2.17(iii) shows that In,rm,r : MF(m, r)→MF(n, r) is an equivalence of categories
for r ≤ m ≤ n, which is a result of Green [G, 6.5g]. Hence:

2.19. Let λ and λ̄ be as in (2.3). If |λ| ≤ m ≤ n, then InmLm(λ̄) ∼= Ln(λ).

Now we can prove an analogue of Theorem 2.8 for irreducible modules:

2.20. Theorem. With the notation of Theorem 2.8, assume in addition |µ(i)| ≤ ni for each
i. Then,

HomGL(n)(M,Ln(µ(1))⊗ · · · ⊗ Ln(µ(a))) ∼= HomGL(ν)(R
n
νM,Ln1(µ̄(1))� · · ·� Lna(µ̄(a))).

Proof. Use the fact that Inν is right adjoint to Rnν , together with Theorem 2.7 and (2.19).

2.21. Remarks. (I) Of particular interest are the cases when M = ∆n(λ) or Ln(λ) for
some λ ∈ Λ+(n). In the latter case, the theorem then gives a connection between the socle
of a tensor product and the head of a restriction to a Levi subgroup.

(II) We end with an example to show that Theorem 2.20 is in general false if we remove
the assumption |µ(i)| ≤ ni. Let p = 2. By Steinberg’s tensor product theorem, L3(ε1 +ε2)⊗
L3(2ε1) ∼= L3(3ε1 + ε2). So,

HomGL(3)(L3(2ε1 + ε2 + ε3), L3(ε1 + ε2)⊗ L3(2ε1)) = 0.

But L3(2ε1 + ε2 + ε3) is just the natural GL(3)-module tensored with determinant, so its
restriction to the Levi subgroup GL(2, 1) contains L2(ε1 + ε2)�L1(2ε1) as a summand. So,

HomGL(2,1)(L3(2ε1 + ε2 + ε3) ↓, L2(ε1 + ε2)� L1(2ε1)) 6= 0.

3 Dual pairs and tilting modules

Next, we use dual pairs to explain the connection between tensor products and restrictions
of irreducible GL(n)-modules to restrictions and tensor products of indecomposable tilting
modules. We begin in a general setting and then specialize to Schur algebras.

Let M be a finite dimensional vector space over F. Let A and C be subalgebras of
EndF(M). We say that (A,C) is a dual pair on M if

(D1) C = EndA(M);
(D2) A = EndC(M).
Assume now that only (D1) holds. Let

M =
⊕
i∈I

Ti
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be a decomposition of M into a direct sum of indecomposable A-modules Ti, over some
index set I. Let ei ∈ C be the idempotent such that eiM = Ti, and let Pi := HomA(M,Ti),
regarded as a right C-module by defining the product θc to be the composition of functions
θ ◦ c, for θ ∈ HomA(M,Ti) and c ∈ C. Observe that Pi is isomorphic to the right ideal eiC
of C. Fitting’s theorem (see eg [L, 1.4]) says that

∑
i∈I ei is a decomposition of the identity

in C into primitive idempotents, and Ti ∼= Tj as left A-modules if and only if Pi ∼= Pj as
right C-modules.

Define an equivalence relation ∼ on I by i ∼ j if Ti ∼= Tj , or equivalently if Pi ∼= Pj .
Let X denote the set of ∼-equivalence classes in I, and for λ ∈ X, let TA(λ) := Ti and
PC(λ) := Pi, for some arbitrary i ∈ λ. Let LC(λ) := hdPC(λ) be the head of PC(λ).
Then, {PC(λ) | λ ∈ X} is a complete set of non-isomorphic PIMs in the category Mod-C of
right C-modules, and {LC(λ) | λ ∈ X} is a complete set of non-isomorphic irreducible right
C-modules. Moreover, dimLC(λ) is equal to the cardinality |λ| of the equivalence class λ,
and so

M ∼=
⊕
λ∈X

TA(λ)dimLC(λ)

as an A-module.
Now, let B < A be a subalgebra of A, and let D ≥ C be its commutant EndB(M).

Performing the same construction for B and D, we can write

M =
⊕
j∈J

Tj

as indecomposable B-modules, over some index set J (disjoint from I). We obtain a corre-
sponding decomposition

∑
j∈J fj of the identity of D into primitive idempotents in D. Let

Y denote the equivalence classes of J under i ∼ j if Ti ∼= Tj , and for µ ∈ Y , let TB(µ)
denote Tj and PD(µ) denote fjD for some j ∈ µ. Finally, set LD(µ) := hdPD(µ); we obtain
all irreducible right D-modules in this way. Moreover,

M ∼=
⊕
µ∈Y

TB(µ)dimLD(µ)

as a B-module.
We denote the restriction functors A -Mod→ B -Mod and Mod-D → Mod-C by ↓B and

↓C respectively. We also use the induction functor ↑D: Mod-C → Mod-D, defined as usual
for finite dimensional algebras by N ↑D:= N ⊗C D, for N ∈ Mod-C. Restriction is exact,
and induction is left adjoint to restriction, hence is right exact and sends projectives to
projectives.

The following result is presumably known.

3.1. Lemma. For λ ∈ X,µ ∈ Y , we have

(TA(λ) ↓B: TB(µ)) = (PC(λ) ↑D: PD(µ)) = [LD(µ) ↓C : LC(λ)].



Modular Littlewood-Richardson coefficients 17

Proof. Pick an idempotent e ∈ C such that TA(λ) ∼= eM , so PC(λ) ∼= eC. Write e =
f1 + · · ·+ fn where f1, . . . , fn are primitive idempotents in D. Then,

TA(λ) ↓B=
n⊕
i=1

fiM

where fiM are indecomposable B-modules, and fiM ∼= TB(µ) if and only if fiD ∼= PD(µ),
for µ ∈ Y . Hence, (TA(λ) ↓B: TB(µ)) = (eD : PD(µ)).

Next, observe that the natural map eC ⊗C D → eD is clearly onto. It is injective,
because if x :=

∑
eci ⊗ di lies in the kernel, for ci ∈ C, di ∈ D, then y :=

∑
i ecidi = 0, and

x =
∑

i eci ⊗ di =
∑

i e ⊗ ecidi = e ⊗ y = 0. Hence, eD ∼= PC(λ) ↑D, and we have proved
the first equality (TA(λ) ↓B: TB(µ)) = (PC(λ) ↑D: PD(µ)). Finally, observe that

(PC(λ) ↑D: PD(µ)) = dim HomD(PC(λ) ↑D, LD(µ))
= dim HomC(PC(λ), LD(µ) ↓C)
= [LD(µ) ↓C : LC(λ)],

which completes the proof.
Fix m,n ≥ 1. Let Λ(n ×m) be the set of all weights α ∈ Λ(n) with αi ≤ m for all i

and define Λ+(n × m) := Λ(n × m) ∩ X+(n). For λ ∈ Λ+(n × m), we let λt denote the
transpose partition, which can be regarded as an element of Λ+(m × n). By definition,
λt = (µ1, . . . , µm) where µi is equal to the number of λj (1 ≤ j ≤ n) with λj ≥ i.

We now briefly recall a special case of Donkin’s construction of generalized Schur algebras
from [D2]. Observe that Λ+(n×m) is a saturated set of dominant weights of X+(n) in the
sense of [D2]. We say a GL(n)-module belongs to Λ+(n×m) if all composition factors are
of the form Ln(λ) for λ ∈ Λ+(n×m). Regarding F[GL(n)] as a left GL(n)-module via the
right regular action, we let A(n×m) be the largest submodule of F[GL(n)] (or equivalently,
of A(n)) that belongs to Λ+(n×m). By [D2, 1.2], A(n×m) is a subcoalgebra of F[GL(n)]
and by [D2, 2.2c]:

3.2. dimA(n×m) =
∑

λ∈Λ+(n×m)(dim ∆n(λ))2.

Hence, S(n×m) := A(n×m)∗ is naturally a finite dimensional algebra. In fact, the results
in [D2] establish that S(n×m) is a quasihereditary algebra with weight poset Λ+(n×m),
in the sense of [D5, Appendix].

Now the arguments of Green [G, §1, 2.4] (see also [D2, §3] for the generalization to
hyperalgebras over Z) show that there is a natural surjection e : FGL(n) → S(n × m),
defined (as in section 1) by e(g)(a) := a(g) for all g ∈ GL(n) and a ∈ A(n × m), such
that every GL(n)-module belonging to Λ+(n ×m) factors through e to give a well-defined
S(n×m)-module. Moreover, this gives an equivalence of categories between S(n×m) -Mod
and the category of all GL(n)-modules belonging to Λ+(n×m).

Fix m,n ≥ 1. Given any GL(m)-module M , we let M̃ denote the right FGL(m)-
module obtained from the left FGL(m)-module M by twisting the action of GL(m) with
the antiautomorphism τ corresponding to matrix transposition.
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Our results depend centrally on the following theorem of Donkin [D3] and Adamovich
and Rybnikov [AR]. Actually, Donkin does not prove his version in quite this generality,
while in [AR], a slightly different module M is used. Therefore, we have included a sketch
of the proof, following the arguments in [D3] and [AR] closely.

3.3. Theorem (Donkin, Adamovich-Rybnikov). Let V and W denote the natural mod-
ule for GL(n) and GL(m), respectively. Regard M :=

∧
(V ⊗W ) as a GL(n) × GL(m)-

module, by letting GL(n) act trivially on W and GL(m) act trivially on V . Let A (resp. C)
denote the image of FGL(n) (resp. FGL(m)) in EndF(M). Then,

(i) the set of indecomposable summands of M as a GL(n)-module is

{Tn(λ) | λ ∈ Λ+(n×m)};

(ii) C ∼= S(m× n);
(iii) C = EndA(M);
(iv) for each λ ∈ Λ+(n×m), there is an idempotent eλ ∈ C such that eλM ∼= Tn(λ) and

eλC is the projective cover in Mod-C of L̃m(λt).

Proof. (i) We first decompose M =
∧

(V ⊗W ) as a GL(n)× T (m)-module to deduce

M ∼=
∧

((V ⊗ Fε1)⊕ · · · ⊕ (V ⊗ Fεm)) ∼=
∧

(V ⊗ Fε1)⊗ · · · ⊗
∧

(V ⊗ Fεm)

where Fεi denotes the 1-dimensional T (m)-module of weight εi. Consequently, for α ∈
X(m), the α-weight space Mα of M with respect to T (m) is zero unless α ∈ Λ(m × n), in
which case

Mα
∼=
∧α1V ⊗ · · · ⊗

∧αmV. (3.4)

The highest weight of this GL(n)-module Mα is the transpose of the unique dominant weight
conjugate to α under the Weyl group, so lies in Λ+(n ×m. In particular, this shows that
all weights of M with respect to T (n) lie in Λ(n×m). By (1.4)(i), M is tilting as a GL(n)-
module, so is a direct sum of tilting modules Tn(λ) for certain λ (necessarily) in Λ+(n×m).
Moreover, for every λ ∈ Λ+(n ×m), Tn(λ) definitely appears as a summand of M , since λ
is the highest weight of the summand Mλt .

(ii) The argument of (i) applies equally well to the action of GL(m) on M . In particular,
M belongs to Λ+(m × n) as a GL(m)-module, so the action of FGL(m) factors through
the quotient e : FGL(m) → S(m × n) to give a well-defined S(m × n)-module. Hence,
C is equal to the image of S(m × n) in EndF(M). But we have also shown that the set
of indecomposable summands of M as an S(m × n)-module is {Tm(λ) | λ ∈ Λ+(m × n)}.
Hence, M is a full tilting module for the quasihereditary algebra S(m × n), so faithful by
the argument of [AR, Proposition 4.4]. This shows that C ∼= S(m× n).

(iii) As M is a (contravariantly self-dual) tilting GL(n)-module, [J, II.4.13] implies that

dim EndA(M) =
∑

λ∈Λ+(n×m)

(dim HomA(M,∇n(λ)))2.
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We know that C ≤ EndA(M). By (ii) and (3.2), dimC =
∑

λ∈Λ+(m×n)(dim ∆m(λ))2. So it
suffices to show that dim HomA(M,∇n(λ)) = dim ∆m(λt) for any λ ∈ Λ+(n×m).

Let Xm(λ) := HomA(M,∇n(λ)), regarded as a GL(m)-module with action (gθ)(m) =
θ(τ(g)m) for g ∈ GL(m), θ ∈ HomA(M,∇n(λ)) and m ∈ M . By 3.4 and the observation
that τ is the identity on restriction to T (m),

dimXm(λ)α = dim HomGL(n)(Mα,∇n(λ)) = dim HomGL(n)(
∧α1V ⊗ · · · ⊗

∧αmV,∇n(λ))

for α ∈ Λ(m × n). But by the Littlewood-Richardson rule (or a calculation involving
symmetric functions), the right hand dimension is equal to the number of standard λt-
tableaux of weight α, which is precisely dim ∆m(λt)α (see [BKS, section 2] for these well-
known definitions). Hence, the character of the GL(m)-module Xm(λ) is equal to the
character of ∆m(λt). In particular, their dimensions agree as required to prove that C =
EndA(M).

For use in (iv), we claim now that Xm(λ) ∼= ∆m(λt). We know already that the charac-
ters agree, so it suffices to show that Xm(λ) is a standard module for GL(m), or equivalently
that it is a standard module for the quasihereditary algebra Cop, which we have just shown
is the Ringel dual of A (see [D5, Appendix A4]). But by definition, the Cop-module Xm(λ)
is HomA(M,∇n(λ)) which is certainly a standard module according to [D5, Appendix A4].

(iv) Given λ ∈ Λ+(n × m), we can find a primitive idempotent eλ ∈ C such that
eλM ∼= Tn(λ) by (i) and (iii). This means that eλC is a projective indecomposable right
C-module, so the projective cover of the irreducible right C-module L̃m(µ) for some µ ∈
Λ+(m×n). To show that µ equals λt as required, it suffices to show that the GL(m)-module
Ym(λ) := HomGL(n)(M,Tn(λ)) (with action defined as in (iii)) contains Lm(λt) in its head.

As Tn(λ) has a ∇-filtration and λ is its highest weight, we can find a submodule K <
Tn(λ) with a ∇-filtration such that

0→ K → Tn(λ)→ ∇n(λ)→ 0

is exact. Applying HomGL(n)(M,−) to this, we obtain the long exact sequence

· · · → HomGL(n)(M,Tn(λ))→ HomGL(n)(M,∇n(λ))→ Ext1
GL(n)(M,K)→ . . . .

But M has a ∆-filtration and K has a ∇-filtration, so Ext1
GL(n)(M,K) = 0 by [J, II.4.13].

This shows that Xm(λ) is a quotient of Ym(λ). But we showed in (iii) that Xm(λ) ∼= ∆m(λt).
Hence, Ym(λ) contains Lm(λt) in its head, as required.

We remark that the situation in the theorem is symmetric. So, with notation as in the
theorem, the theorem shows in fact that (A,C) is a dual pair on M .

Now fix in addition a ≥ 1. Applying the theorem a times to the outer tensor product,
the following corollary is immediate because of [CR, 10.37] and (1.6):

3.5. Corollary. For i = 1, . . . , a, let ni (resp. mi) be a positive integer and let Vi (resp.
Wi) denote the natural module for GL(ni) (resp. GL(mi)). Regard

M :=
∧

(V1 ⊗W1)� · · ·�
∧

(Va ⊗Wa)
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as a module for (GL(n1)× · · · ×GL(na))× (GL(m1)× · · · ×GL(ma)) in the obvious way.
Let A1 ⊗ · · · ⊗ Aa (resp. C1 ⊗ · · · ⊗ Ca) denote the image of the group algebra FGL(n1) ⊗
· · · ⊗ FGL(na) (resp. FGL(m1)⊗ · · · ⊗ FGL(ma)) in EndF(M). Then,

(i) the set of indecomposable summands of M as a GL(n1)× · · · ×GL(na)-module is

{Tn1(λ(1))� · · ·� Tna(λ(a)) | λ(i) ∈ Λ+(ni ×mi), i = 1, . . . , a};

(ii) Ci ∼= S(mi × ni) for i = 1, . . . , a;
(iii) C1 ⊗ · · · ⊗ Ca = EndA1⊗···⊗Aa(M);
(iv) for λ(i) ∈ Λ+(ni ×mi), i = 1, . . . , a, there is an idempotent

e := eλ(1) ⊗ · · · ⊗ eλ(a) ∈ C1 ⊗ · · · ⊗ Ca

such that eM ∼= Tn1(λ(1)) � · · · � Tna(λ(a)) and e(C1 ⊗ · · · ⊗ Ca) is the projective cover in
Mod-(C1 ⊗ · · · ⊗ Ca) of L̃m((λ(1))t)� · · ·� L̃m((λ(a))t).

Again, the situation in this corollary is symmetric, so, with the notation of the corollary,
it implies that (A1 ⊗ · · · ⊗Aa, C1 ⊗ · · · ⊗ Ca) is a dual pair on M .

Now we are ready for our application. Let GL(n)×GL(m) act on M :=
∧

(V ⊗W ) as
in Theorem 3.3, and let A (resp. C) be the image of FGL(n) (resp. FGL(m)) in EndF(M).
So, by Theorem 3.3, (A,C) is a dual pair on M .

Next we choose ν = (n1, . . . , na) ∈ Λ(a, n) for some a, and let B < A be the image of
FGL(ν) < FGL(n) in EndF(M). Let Vi be the natural GL(ni)-module, so V ∼= V1⊕· · ·⊕Va
as a GL(ν)-module. Observe that as a GL(ν)-module,

M ∼=
∧

((V1 ⊗W )⊕ · · · ⊕ (Va ⊗W )) ∼=
∧

(V1 ⊗W )� · · ·�
∧

(Va ⊗W ). (3.6)

Consequently, GL(ν) = GL(n1) × · · · × GL(na) acts on M in the same way as GL(n1) ×
· · · ×GL(na) in Corollary 3.5.

Let GL(m)× · · · ×GL(m) (a times) act on M via its natural action on W in the outer
tensor product of 3.6. This action obviously commutes with the action of GL(ν), and is
precisely the action of GL(m1)× · · · ×GL(ma) in Corollary 3.5 with m1 = · · · = ma = m.
We also note that the original action of GL(m) on M is the restriction of the GL(m)×· · ·×
GL(m)-action just defined if we embed GL(m) into GL(m)× · · · ×GL(m) diagonally. We
let D > C denote the image of the group algebra FGL(m) ⊗ · · · ⊗ FGL(m) in EndF(M).
Now, Corollary 3.5 immediately implies that (B,D) is a dual pair on M .

So we are now in the situation of the beginning of the section. We apply Lemma 3.1
twice to obtain our main result:

3.7. Theorem. Fix a, n,m ≥ 1, and choose ν ∈ Λ(a, n). Let GL(ν) denote the standard
Levi subgroup of GL(n). Choose λ ∈ Λ+(n ×m) and µ(i) ∈ Λ+(ni ×m) for i = 1, . . . , a.
Then,

(i) (Tn(λ) ↓GL(ν): Tn1(µ(1))� · · ·�Tna(µ(a))) = [Lm((µ(1))t)⊗· · ·⊗Lm((µ(a))t) : Lm(λt)].
(ii) [Ln(λ) ↓GL(ν): Ln1(µ(1))�· · ·�Lna(µ(a)))] = (Tm((µ(1))t)⊗· · ·⊗Tm((µ(a))t) : Tm(λt)).
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Proof. For (i), we apply Lemma 3.1 to the pairs (A,C) and (B,D), using Theorem 3.3(i)
(resp. Corollary 3.5(i)) to identify the indecomposable summands of M as an A- (resp.
B-) module and Theorem 3.3(iv) (resp. Corollary 3.5(iv)) to identify the corresponding
irreducible C- (resp. D-) modules arising from the commutant construction. The only
subtlety is in showing that the restriction from D to C of the right D-module corresponding
to the outer tensor product

L̃m((µ(1))t)� · · ·� L̃m((µ(a))t)

(which is a right FGL(m)⊗ · · · ⊗ FGL(m)-module) is the right C-module corresponding to
the right FGL(m)-module

L̃m((µ(1))t)⊗ · · · ⊗ L̃m((µ(a))t).

This follows because the embedding of C into D is induced from the diagonal embedding of
GL(m) into GL(m) × · · · × GL(m). Given this (i) follows easily. The argument for (ii) is
identical, but swapping the roles of A and D and the roles of B and C.

As special cases of Theorem 3.7(i) and (ii) (taking GL(ν) = T (n)), we recover the
following character formulae, the first of which is a result of Mathieu and Papadopoulo
[MP]:

3.8. Corollary (Mathieu-Papadopoulo). For λ ∈ Λ+(n×m) and µ ∈ Λ(n×m),

dimLn(λ)µ = (
∧µ1(W )⊗ · · · ⊗

∧µn(W ) : Tm(λt))

where W denotes the natural GL(m)-module.

3.9. Corollary. For λ ∈ Λ+(n×m) and µ ∈ Λ(n×m),

dimTn(λ)µ = [
∧µ1(W )⊗ · · · ⊗

∧µn(W ) : Lm(λt)]

where W denotes the natural GL(m)-module.

The final corollary clarifies the connection between the arguments in [BKS] and [MP]:

3.10. Corollary. For λ ∈ Λ+(n×m) and µ ∈ Λ+(n×(m−1)) with |λ| ≥ |µ| put ` = |λ|−|µ|.
Then

(Tn(µ)⊗
∧`(V ) : Tn(λ)) = [Lm(λt) ↓GL(m−1): Lm−1(µt)].

Proof. By Theorem 3.7(ii), the left hand side is equal to

[Lm(λt) ↓GL(m−1,1): Lm−1(µt)� L1(`ε1)].

Now a similar argument to Lemma 2.9 gives the conclusion.
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4 Symmetric groups and Schur functors

We now obtain our final general link between modular Littlewood-Richardson coefficients,
by explaining the relationship with representations of symmetric groups.

Throughout the section, we fix integers n, r and compositions ν = (n1, . . . , na) ∈ Λ(a, n)
and ρ = (r1, . . . , ra) ∈ Λ(a, r) for some a such that n ≥ r and ni ≥ ri for i = 1, . . . , a.

We denote the symmetric group on {1, . . . , r} by Σr. Note that we regard the natu-
ral action of Σr on {1, . . . , r} as a left action and always work with left modules for the
group algebra FΣr. First, we recall some basic facts about the representation theory of the
symmetric group Σr, following [J1].

Given a composition λ = (λ1, λ2, . . . ) we write λ � r if λ1 + λ2 + · · · = r. If λ � r is
actually a partition we say that λ is a partition of r and write λ ` r. For every λ ` r, there
is an associated left FΣr-module Sλ, defined as in [J1], called a Specht module.

Say λ ` r is p-regular if at most (p−1) of the non-zero parts λi of λ are equal. According
to [J1]:

4.1. If λ is p-regular, then Sλ has simple head denoted Dλ, and {Dλ | λ ` r, λ p-regular} is
a complete set of non-isomorphic irreducible FΣr-modules.

We mention some other important FΣr-modules. For any λ � r, let Mλ denote the
corresponding permutation module, which is the module induced from the trivial module
for the Young subgroup Σλ := Σλ1 × Σλ2 × . . . of Σr. Now, according to [J2], for λ ` r,
Mλ contains a unique submodule isomorphic to Sλ, and there is a unique indecomposable
summand Y λ of Mλ containing this submodule Sλ. These modules Y λ are the Young
modules. Moreover, any permutation module Mµ splits as a direct sum of Young modules.

Next, we recall Green’s construction of the Schur functor Rξ : MF(n, r) → FΣr -Mod
from [G, §6]. We write S := S(n, r) for short. Fix any weight ω ∈ Λ(n, r) of the form
ω = εh1 + · · · + εhr , h1 < h2 < · · · < hr. Let h = hω = (h1, . . . , hr) ∈ I(n, r). Set
ξ = ξω := ξh,h ∈ S (see section 1). By [G, §3], ξ is an idempotent and for any M ∈MF(n, r),
ξM is precisely the ω-weight space Mω of M . Moreover, as in [G, 6.1d]:

4.2. The set {ξhπ,h | π ∈ Σr} is a basis for the algebra ξSξ. The linear map FΣr → ξSξ,
defined by π 7→ ξhπ,h for π ∈ Σr, is an algebra isomorphism.

Now define the Schur functor Rξ : S -Mod → FΣr -Mod as in section two, using (4.2) to
identify FΣr with ξSξ. Explicitly, given M ∈ S -Mod, we regard the ξSξ-module RξM as
an FΣr-module by letting π ∈ Σr act in the same way as ξhπ,h ∈ ξSξ.

In this section we are also going to work with a well-known equivalent, but for us
more convenient, description of this functor, which we now explain. Let Permr denote the
subgroup of GL(n) consisting of all permutation matrices g ∈ GL(n) with gi,i = 1 whenever
i 6∈ {h1 . . . , hr}. Obviously, Permr is isomorphic to Σr. More precisely:

4.3. For w ∈ Permr, define w̄ ∈ Σr to be the unique element such that the (hw̄i, hi)-entry of
the permutation matrix w is 1 for all i = 1, . . . , r. This gives an isomorphism Permr → Σr.
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Given any M ∈ MF(n, r), the ω-weight space Mω of M is stable under the action of
Permr. We now define a functor

Fn,r = Fωn,r : MF(n, r)→ FPermr -Mod

on objects by letting Fn,rM := Mω, and by restriction on morphisms. (If we use another ω
of the form εh1 + · · ·+ εhr we get an isomorphic functor.)

4.4. Lemma. Identify Permr and Σr using the map w 7→ w̄ from (4.3). Then, Fn,rM and
RξM are isomorphic as FΣr-modules.

Proof. As vector spaces, Fn,rM and RξM both equal Mω. So it suffices to show that for
any w ∈ Permr, the action of w on Mω is the same as the action of w̄ ∈ Σr. Recall by
definition that w̄ acts on M as ξhw̄,h. The action of w on M factors through the quotient
e : FGL(n)→ S, so w acts on Mω in the same way as the element e(w) ∈ S. Since Mω = ξM
and ξ is idempotent, it therefore suffices to show that ξe(w)ξ = ξhw̄,h. To prove this, since
both lie in ξSξ which has basis ξhπ,h for all π ∈ Σr, we just need to check that

(ξe(w)ξ)(chπ,h) = ξhw̄,h(chπ,h)

for all π ∈ Σr. The right hand side is clearly zero unless π = w̄, when it is 1. On the other
hand note that (ξe(w)ξ)(chπ,h) = (e(w))(chπ,h) = chπ,h(w) = whπ1,h1 . . . whπr ,hr . This is
zero unless π = w̄, when it is 1, by definition of w̄.

Let sgn denote the 1-dimensional sign representation for FΣr. The effect of Fn,r on the
various modules in MF(n, r) is given by the following:

4.5. Lemma. Fix λ ∈ Λ+(n, r).
(i) Fn,r∇n(λ) ∼= Sλ;
(ii) Fn,r∆n(λ) ∼= (Sλ)∗ ∼= Sλ

t ⊗ sgn;
(iii) Fn,rLn(λ) is zero unless λ is p-restricted, in which case Fn,rLn(λ) ∼= Dλt ⊗ sgn .
(iv) for any µ ∈ Λ(n, r), Fn,r(

∧µ1(V )⊗ · · · ⊗
∧µn(V )) ∼= Mµ ⊗ sgn;

(v) Fn,rTn(λ) = Y λt ⊗ sgn.

Proof. (i), (ii) and (iii) are well-known, and are proved in [G, §6]. Also, (v) follows easily
from (ii) and (iv), since by definition Y λt ⊗ sgn is the unique indecomposable summand of
Mλt ⊗ sgn containing a submodule isomorphic to Sλ

t ⊗ sgn, see [D3, (3.6)(ii)]. Finally, (iv)
is proved in [D3, (3.5)(ii)] (or follows easily from Theorem 4.13).

Recall that we have fixed ν = (n1, . . . , na) ∈ Λ(a, n) and ρ = (r1, . . . , ra) ∈ Λ(a, r) with
ri ≤ ni for i = 1, . . . , a. Let GL(ν) be the corresponding Levi subgroup of GL(n), and Σρ

be the corresponding Young subgroup Σr1 × · · · ×Σra of Σr. First, we consider the effect of
Schur functors on restrictions from GL(n) to GL(ν).

Choose the weight ω above to be the specific weight

ω =
( r1 entries︷ ︸︸ ︷

1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸
n1 entries

,

r2 entries︷ ︸︸ ︷
1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸

n2 entries

, . . . ,

ra entries︷ ︸︸ ︷
1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸

na entries

)
. (4.6)
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Let h = hω and ξ = ξω Then the idempotent ξ ∈ S lies in the Levi subalgebra L :=
S(ν, r) < S (for example by (1.15)).

Let Permρ := Permr∩GL(ν). Then Permρ is isomorphic to the Young subgroup Σρ < Σr

(under the map from (4.3)).

4.7. Lemma. ξLξ ∼= FΣρ.

Proof. Note that ξLξ = ξSξ ∩ L since ξ ∈ L. Now the result follows from (4.2) and
Lemma 1.13.

Consequently, we obtain a Schur functor R̄ξ : L -Mod→ FΣρ -Mod. Precisely as before,
we can identify this Schur functor with the functor

Fν,ρ : MF(ν, r)→ FPermρ -Mod

given on M ∈ MF(ν, r) by letting Fν,ρM denote the weight space Mω, noting that this is
stable under the action of Permρ < GL(ν). It is now obvious that:

4.8. For any M ∈MF(n, r), Fν,ρ(RnνM) ∼= (Fn,rM) ↓FPermr
FPermρ

.

The action of the functor Fν,ρ on outer tensor products is also easily understood:

4.9. Lemma. Given a GL(ν)-module that is an outer tensor product M1 � · · · �Ma for
Mi ∈MF(ni, ri),

Fν,ρ(M1 � · · ·�Ma) ∼= (Fn1,r1M1)� · · ·� (Fna,raMa).

Proof. This follows because the ω-weight space of M1� · · ·�Ma is (M1)ω(1)� · · ·�(Ma)ω(a)

where ω(i) ∈ Λ(ni, ri) is the weight (1, . . . , 1, 0, . . . , 0).
We now give applications of this Schur functor Fν,ρ. First, we have the following results

on composition and tilting module multiplicities:

4.10. Theorem. Fix λ ` r and µ(i) ` ri for i = 1, . . . , a. Regard λt as an element of
Λ+(n, r) and each (µ(i))t as elements of Λ+(ni, ri). Then,

(Y λ ↓Σρ : Y µ(1)
� · · ·� Y µ(a)

) = (Tn(λt) ↓GL(ν): Tn1((µ(1))t)� · · ·� Tna((µ(a))t)).

Moreover, if in addition all the partitions are p-regular, then

[Dλ ↓Σρ : Dµ(1)
� · · ·�Dµ(a)

] = [Ln(λt) ↓GL(ν): Ln1((µ(1))t)� · · ·� Lna((µ(a))t)].

Proof. We prove this for the irreducible modules; precisely the same argument (together
with Lemma 1.7) gives the statement about tilting modules. We now identify Permr with
Σr. Observe that

Fν,ρ(RnνLn(λt)) ∼= (Fn,rLn(λt)) ↓Σρ∼= (Dλ ⊗ sgn) ↓Σρ
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by (4.8) and Lemma 4.5(iii). By Lemma 4.5(iii) and Lemma 4.9,

Fν,ρ(Ln1((µ(1))t)� · · ·� Lna((µ(a))t)) ∼= (Dµ(1)
� · · ·�Dµ(a)

)⊗ sgn,

which is a non-zero irreducible for FΣρ. Since the Schur functor Fν,ρ is exact, it preserves
composition multiplicities, so the result follows on tensoring with sgn.

Special cases of the next more general result on homomorphisms have appeared in [JS]
and [K1].

4.11. Theorem. Let M be a GL(n)-quotient of V ⊗rn , and for i = 1, . . . , a, let Mi be a
module in MF(ni, ri) with p-restricted socle. Then,

HomGL(ν)(M ↓GL(ν),M1� · · ·�Ma) ∼= HomFΣρ((Fn,rM) ↓Σρ , (Fn1,r1M1)� · · ·�(Fna,raMa)).

Proof. By assumption, M ∈MF(n, r). As a GL(ν)-module, M splits as a direct sum⊕
ρ′∈Λ(a,r)

M(ρ′)

where M(ρ′) denotes the summand of M that is homogeneous of polynomial degree ρ′i for
GL(ni) for each i = 1, . . . , a. The GL(ν)-module M1 � · · · �Ma is of polynomial degree
ri for each GL(ni), and there are no GL(ν)-homomorphisms between modules of different
degrees. Consequently,

HomGL(ν)(M ↓GL(ν),M1 � · · ·�Ma) ∼= HomGL(ν)(M(ρ),M1 � · · ·�Ma).

Also note that by weights and (4.8) we have

(Fn,rM) ↓Σρ= Fν,ρ(RnνM) = Fν,ρM(ρ),

while by Lemma 4.9,

(Fn1,r1M1)� · · ·� (Fna,raMa) = Fν,ρ(M1 � · · ·�Ma).

So, if L = S(ν, r), we need to prove that

HomL(M(ρ),M1 � · · ·�Ma) ∼= HomFΣρ(Fν,ρM(ρ), Fν,ρ(M1 � · · ·�Ma)).

By Lemma 2.17(ii), the proposition follows once we have shown that M(ρ) has ξ-restricted
head and M1 � · · · �Ma has ξ-restricted socle. By Lemma 4.5(iii) and Lemma 4.9, an L-
module M1� · · ·�Ma has a ξ-restricted socle if and only if each Mi has a p-restricted socle,
which we have by assumption. To see that M(ρ) has p-restricted head, we first decompose
V ⊗rn as a GL(ν)-module:

V ⊗rn
∼=

⊕
ρ′∈Λ(r,a)

a(ρ′)V ρ′1
n1 � · · ·� V ρ′a

na

for some multiplicities a(ρ′). Now, M(ρ) is a submodule of the factor of this direct sum with
ρ′ = ρ, which has p-restricted head again by Corollary 2.12 (and contravariant duality).
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4.12. Remark. By Corollary 2.12, we can take the module M in Theorem 4.11 to be ∆n(λ)
or Ln(λ) for p-restricted λ ∈ Λ(n, r), and each Mi to be ∇ni(µ(i)) or Lni(µ

(i)) for p-restricted
µ(i) ∈ Λ(ni, ri).

Now we turn our attention to tensor products. Our main result describing the Schur
functor Fn,r applied to a tensor product of GL(n)-modules is as follows:

4.13. Theorem. Given modules Mi ∈MF(n, ri) for i = 1, . . . , a,

Fn,r(M1 ⊗ · · · ⊗Ma) ∼= (Fn,r1M1 � · · ·� Fn,raMa) ↑FΣr
FΣρ

.

Proof. For notational simplicity, we prove this in the special case that a = 2; the general
case then follows quite easily by induction on a, using transitivity of induction and the
tensor identity.

So, assume that a = 2. Take M ∈MF(n, r1) and N ∈MF(n, r2). We will show that

Fn,r(M ⊗N) ∼= (Fn,r1M � Fn,r2N) ↑Permr
Permρ

.

Let J = {1, . . . , r1, n1 + 1, . . . , n1 + r2} = {i | ωi 6= 0} (see (4.6)). Given a subset I =
{i1, . . . , ik} ⊆ J , we write ωI for the weight εi1 +· · ·+εik ∈ Λ(n) . For a module M ∈MF(n),
denote the ωI -weight space of M by MI . Then, as vector spaces,

Fn,r(M ⊗N) =
⊕

I⊆J,|I|=r1

MI ⊗NJ\I . (4.14)

Taking K = {1, 2, . . . , r1} we see that W := MK�NJ\K is a FPermρ-submodule of Fn,r(M⊗
N), isomorphic to Fn,r1M �Fn,r2N . Now it suffices to prove that Fn,r(M ⊗N), as a vector
space, equals ⊕

t∈T
wtW (4.15)

where {wt | t ∈ T} is a complete system of left coset representatives of Permρ in Permr.
For w ∈ Permr and I = {i1, . . . , ir} ⊂ J we write wI for {wi1, . . . , wir}. Note that

wLI = LwI . For every I ⊂ J with |I| = r1 pick wI ∈ Permr such that wIK = I. Then

{wI | I ⊂ [1, r], |I| = r1}

is a complete system of left coset representatives of Permρ in Permr. Since

wI(MK �NJ\K) = MwIK �NwI(J\K) = MI �NJ\I ,

(4.15) follows from (4.14).
Again, this gives direct connections between modular Littlewood-Richardson coefficients

for general linear groups and the corresponding coefficients for symmetric groups. The
proofs of these are essentially identical to the corresponding proofs for branching rules in
Theorem 4.10 and Theorem 4.11, so we omit the details. First we have the tensor product
analogue of Theorem 4.10:
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4.16. Theorem. Fix partitions λ ` r and µ(i) ` ri for i = 1, . . . , a. Regard λt as an element
of Λ+(n, r) and each (µ(i))t as elements of Λ+(n, ri). Then,

(Y µ(1)
� · · ·� Y µ(a) ↑Σr : Y λ) = (Tn((µ(1))t)⊗ · · · ⊗ Tn((µ(a))t) : Tn(λt)).

Moreover, if all the partitions are p-regular, then

[Dµ(1)
� · · ·�Dµ(a) ↑Σr : Dλ] = [Ln((µ(1))t)⊗ · · · ⊗ Ln((µ(a))t) : Ln(λt)].

The analogue of Theorem 4.11 for tensor products is as follows:

4.17. Theorem. Let M be a GL(n)-module with p-restricted head, and for i = 1, . . . , a, let
Mi be a GL(n)-submodule of V ⊗rin . Then,

HomGL(n)(M,M1 ⊗ · · · ⊗Ma) ∼= HomFΣr(Fn,rM, ((Fn,r1M1)� · · ·� (Fn,raMa)) ↑Σr).

As in Remark 4.12, we can take the module M in Theorem 4.17 to be ∆n(λ) or Ln(λ)
for p-restricted λ ∈ Λ+(n, r), while Mi can be ∇n(µ(i)) or Ln(µ(i)) for p-restricted µ(i) ∈
Λ+(n, ri). In particular, this gives the following special cases of Theorem 4.17, which will
be used in [BK]:

4.18. Corollary. Fix p-regular partitions µ ` r and λ ` (r+ 1), and take n > r. Regard µt

and λt as elements of Λ+(n). Then,

HomΣr+1(Dλ, Dµ ↑Σr+1) ∼= HomGL(n)(Ln(λt), Ln(µt)⊗ Vn),

HomΣr+1(Sλ, Dµ ↑Σr+1) ∼= HomGL(n)(∆n(λt), Ln(µt)⊗ Vn),

HomΣr+1(Sµ ↑Σr+1 , Dλ) ∼= HomGL(n)(Ln(λt),∇n(µt)⊗ Vn),

HomΣr+1(Sµ ↑Σr+1 , (Sλ)∗) ∼= HomGL(n)(∆n(λt),∇n(µt)⊗ Vn).

Finally, observe that on combining Theorem 4.10 and Theorem 4.16 with the main
result Theorem 3.7 from section 3, one obtains (under our usual assumptions n ≥ r, ni ≥ ri)
the final connections between modular Littlewood-Richardson coefficients in the symmetric
group setting:

4.19. Theorem. Fix partitions λ ` r and µ(i) ` ri for i = 1, . . . , a. Regard λ as an element
of Λ+(n, r) and each µ(i) as elements of Λ+(ni, ri) or Λ+(n, ri). Then,

(i) (Y λ ↓Σρ : Y µ(1)
� · · ·� Y µ(a)

) = [Ln(µ(1))⊗ · · · ⊗ Ln(µ(a)) : Ln(λ)];
(ii) ((Y µ(1)

� · · ·� Y µ(a)
) ↑Σr : Y λ) = [Ln(λ) ↓GL(ν): Ln1(µ(1))� · · ·� Lna(µ(a))].

Moreover, if all the partitions are p-regular, then
(iii) [Dλ ↓Σρ : Dµ(1)

� · · ·�Dµ(a)
] = (Tn(µ(1))⊗ · · · ⊗ Tn(µ(a)) : Tn(λ));

(iv) [(Dµ(1)
� · · ·�Dµ(a)

) ↑Σr : Dλ] = (Tn(λ) ↓GL(ν): Tn1(µ(1))� · · ·� Tna(µ(a))).
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