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NIL-BRAUER CATEGORIFIES THE SPLIT :-QUANTUM GROUP OF RANK ONE

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

ABsTRACT. We prove that the Grothendieck ring of the monoidal category of finitely generated graded
projective modules for the nil-Brauer category is isomorphic to an integral form of the split ;-quantum
group of rank one. Under this isomorphism, the indecomposable graded projective modules correspond
to the z-canonical basis. We also introduce a new PBW basis for the -quantum group and show that it
is categorified by standard modules for the nil-Brauer category. Finally, we derive character formulae for
irreducible graded modules and deduce various branching rules.
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1. INTRODUCTION

In [Let99], Letzter introduced what we now call the i-quantum groups associated to symmetric pairs.
These can be viewed as a generalization of Drinfeld-Jimbo quantum groups—the latter are the i-quantum
groups arising from diagonal symmetric pairs. Lusztig’s canonical bases for quantum groups, with their
favorable positivity properties, provided one source of motivation for the categorification of quantum
groups via the Kac-Moody 2-categories of Khovanov, Lauda and Rouquier [KLL10, Rou08]. A theory
of i-canonical bases for i-quantum groups was developed in [BW18a, BW18b]. In special cases, these
again have positive structure constants; see [LW 18] which treats the quasi-split types AIIl. Therefore, it
is reasonable to hope that there should be a categorification of i-quantum groups.

In rank 1, there are three quasi-split ;-quantum groups. First, there is the usual U,(sl,), which was
categorified by Lauda and Rouquier in [Laul0, Rou08]. The second, arising from the Satake diagram of
A, with non-trivial diagram involution, was categorified in [BSWW 18]. In this article, we explain how
to categorify the remaining case, the split ;-quantum group U;(slz) corresponding to the symmetric pair
(SL,, SOy). This is a basic building block for general i-quantum groups, and it is expected to play a key
role in the categorification of quasi-split --quantum groups of higher rank.

Our categorification of Uﬁl(slz) arises from the nil-Brauer category NB, introduced recently in
[BWW23]. This is a strict graded k-linear monoidal category defined over a field k of characteristic
different from 2. It has one self-dual generating object B and four generating morphisms represented
diagrammatically by + (degree 2), >< (degree —2), [\ (degree 0), and | ) (degree 0), subject to
some natural relations recorded in Definition 3.1. The parameter ¢ gives the value of () : 1 — 1, the
only admissible choices being t = O or = 1.

To formulate the main results precisely, rather than working in terms of idempotents, as is often
done in the categorification literature, we use the language of modules. By a graded NB,-module, we
mean a graded k-linear functor from AB, to graded vector spaces. The endofunctor of A‘B, defined by
tensoring with its generating object extends to an exact endofunctor, also denoted B, of the category of
graded A\B,-modules. Let [n] := ¢"~! + ¢"3 + --- + ¢' 7" be the quantum integer, and Vel denote
the corresponding direct sum of degree-shifted copies of a graded module V.

Theorem A. There are unique (up to isomorphism) indecomposable projective graded NB,-modules
P(n) (n = 0) such that P(0) is the projective graded module associated to the identity endomorphism
of the unit object, and

_f Pn+ 1)@t @ p(n— 1) jfp =t (mod?2)
BP(n) = { P(n + 1)®+1] ifn # t (mod2).

These modules give a full set of indecomposable projective graded NB,-modules (up to isomorphism
and grading shift).

The proof of Theorem A is similar in spirit to Lauda’s proof of the analogous result for the 2-category
U(sly) obtained in [LaulO]. It involves the explicit construction of appropriate homogeneous primitive
idempotents. These resemble primitive idempotents in the nil-Hecke algebra familiar from Schubert cal-
culus, but they are considerably more subtle; see Theorem 4.21 and Corollary 4.24. Another important
ingredient needed to establish the indecomposability of P(n) is the identification of the Cartan form on
the Grothendieck ring of A‘B, with an explicitly defined sesquilinear form on the :-quantum group. This
is discussed further after the statement of the next theorem, which is our main categorification result.

LetU' := U;(slz) be the split i-quantum group of rank 1. As a Q(g)-algebra, this is simply a polyno-
mial algebra on one generator B, but it has a non-trivial Z[g, g~']-form U’ associated to the parameter
t € {0,1}. As a Z[q, g~ ']-module, zU! is free with a distinguished basis given by the i-canonical basis
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P, (n = 0) that was originally defined in [BW18b] in terms of the finite-dimensional irreducible sl,-
modules of highest weight 1 = ¢ (mod 2). Let Ko(A(B,) be the split Grothendieck ring of the monoidal
category of finitely generated projective graded AB,-modules. In fact, this is a Z[g, g~ ']-algebra, with
the action of ¢ arising from the grading shift functor. The recursion for the indecomposable projective
graded modules in Theorem A exactly matches the recursion for the i-canonical basis P, (n = 0) of 7U:
calculated in [BW18c]. This coincidence is the essence of our next main theorem; see Theorem 4.23:

Theorem B. There is a unique Z[q, g~ ']-algebra isomorphism
Ky © K()(?\@,) :> ZU;

intertwining the endomorphism of Ko(NB,) induced by the endofunctor B with the endomorphism of
zU;, defined by multiplication by the generator B of the 1-quantum group. For any n = 0, k; maps the
isomorphism class of the indecomposable projective module P(n) to the i-canonical basis element P,.

Under the isomorphism of Theorem B, the non-degenerate symmetric bilinear form (-,-)" on zU}
constructed in [BW18a] is equal (after twisting the first argument with the bar involution to make it
sesquilinear in the appropriate sense, and some rescaling) to the Cartan form on Ko(AB,). The proof of
this depends ultimately on the basis theorem for A‘B, from [BWW23] together with some combinatorics
of chord diagrams which is of independent interest; see Lemma 2.4, Corollary 2.6, and Theorem 3.7.

The remaining results in the article rely on the observation that the category of graded AB,-modules
has some useful additional structure: it is an affine lowest weight category in a suitably generalized sense.
In particular, there are certain graded AB,-modules A(n) and A(n), the standard and proper standard
modules, equipped with explicit bases. The proper standard module A(n) has a unique irreducible
quotient denoted L(n), the modules L(n) (n > 0) give a complete set of graded irreducible A‘B,-modules
up to isomorphism and grading shift, and there is a graded analog of the usual BGG reciprocity; see
Theorem 5.6. These assertions follow from an application of the general machinery of graded triangular
bases developed in [Bru23]—the nil-Brauer category is a perfect example for this theory.

The minimal standard modules A(0) and A(1) are projective and therefore coincide with P(0) and
P(1), respectively, but after that the two families of modules diverge. In fact, at the decategorified level,
the standard modules correspond to a new orthogonal basis for the i-quantum group, the PBW basis
A, (n = 0) introduced in section 2. The PBW basis elements satisfy the following recurrence relation:

n—1

Ao = 1, BA, = [n+ 1]Ans1 + ——
I—gq

An— 1 ’
interpreting A_; as 0. The assertion that the standard module A(n) categorifies A, is justified by the
next theorem, which describes the effect of the endofunctor B on standard modules:

Theorem C. For n > 0, there is a short exact sequence of graded NB,-modules

0— Pq" %A —1) — BA(n) — A(n + 1)@+ 0,

i=0

(In the first term, q denotes the downward grading shift functor, and this term should be interpreted as
Oincasen =0.)

An interesting feature of Theorem C is the presence of the infinite direct sum in the first term of
the short exact sequence—the finitely generated AB,-modules BA(n) (n > 0) are not Noetherian. This
corresponds to the fact that the PBW basis A, (n > 0) is a basis for U' over Q(g), but not for zU} over
Z[q,q']. Theorem C is proved in Theorem 5.14 in the main body of the text. There is also a parallel
result for proper standard modules, which categorify the dual PBW basis A, (n = 0); see Theorem 5.15.
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For closed formulae for the transition matrices between the bases P, (m > 0) and A, (n > 0), see
Theorem 2.7. Translating to representation theory and using BGG reciprocity, we obtain the following
explicit formula for graded decomposition numbers:

Theorem D. The irreducible subquotients of the proper standard module A(n) (n > 0) are isomorphic
(up to grading shifts) to L(n 4+ 2m) for m = 0 with

~ q—m(2m—1) / (1 —q- )(1 _ q—g) ce (] — q—4m) ifn=t (mod2)
[A(n) : L(n + 2m)]q = { g—m@m+1) J(=gH(1 =g ¥ (1—g*) ifn#t(mod2).

To formulate one more such combinatorial result, for a finitely generated graded AB,-module V, its
graded character is the formal series

chV = dy(V)e" e N(g " )I£]

n=0

where & is a formal variable and d,,(V) € N((g~!)) is the graded dimension of the graded vector space
obtained by evaluating the functor V on the object B*".

Theorem E. For n > 0, we have that

chL(n) = [n]'¢" [[ (-[k?&) eNg.q I
I<ksn+1
k=t (mod 2)

Finally, we also prove branching rules which give complete information about the structure of the
modules BL(n) (n = 0); see Theorem 5.18. Except in the case that n = ¢t = 0 (when it is zero),
these branching rules show that BL(n) is a self-dual uniserial module with irreducible socle and cosocle
isomorphic (up to appropriate grading shifts) to L(n—1) if n = ¢ (mod 2) or to L(n+1) if n # t (mod 2).
Moreover,

Endyg (BL(n)) = k[x]/(+*")
where B(n) = nif n =t (mod2) or n + 1 if n # r (mod 2). The combinatorics arising here is the same
as the combinatorics of the underlying i-crystal basis described in [Wat23, Ex. 4.1.4].

General conventions. Throughout the article, r € {0, 1} will be a fixed parameter. Given also n € N,
we use the shorthand 6,—, to denote 1 if n = 7 (mod2) or 0 otherwise. Similarly, 6, denotes 1 if
n # t (mod2) or 0 otherwise. We write S, for the symmetric group on n letters. Let s; € S, be the
simple transposition (i i+1), let £ : S, — N be the associated length function, and let w,, be the longest
element of S,. We denote the category of graded vector spaces over the field k by g%%ec, using ¢ for the
downward grading shift functor. So, for a graded vector space V = P ., Vy, its grading shift ¢V is the
same underlying vector space with new grading defined via (¢V), := V44 for each d € Z. For a graded
vector space V = @, Va4 with finite-dimensional graded pieces, we define its graded dimension to be

dim, V := ) (dim V,)g . (1.1)
deZ

For any formal series f = .., asq® with each a, € N, we write VO/ for @, ¢/ V4.

2. BASES OF THE SPLIT 1-QUANTUM GROUP OF RANK ONE

In this section, we recall some basic facts about the split -quantum group of rank 1 following
[BW18b, BW18c]. Then we introduce a new PBW-type basis, and derive combinatorial formulae for
various transition matrices, including between the PBW basis and the i-canonical basis. For all of this,

we work over the field Q(g) for an indeterminate g. We write [n] for the quantum integer & qq . [n]!
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for the quantum factorial, and [?] := [n][n — 1] - - [n — r + 1]/[r]!. The word anti-linear always means
with respect to the bar involution — : Q(q) — Q(g) that is the field automorphism taking g to g~ '. We
denote the limit of a convergent sequence (f3)=0 in Q((g~ 1)) by limy_« fi.

2.1. Quantum groups. Let U be the usual quantum group U,(sl), the Q(g)-algebra with generators
E,F,K,K~! satisfying the relations

K—K!

q—q "

Our general conventions are the same as in [Lus10], except that we write g in place of Lusztig’s v. The

subalgebras of U generated by F and by E are denoted U~ and U™, respectively, and the divided powers
are E® := E"/[n]!, F") := F"/[n]!. There are various useful symmetries:

KEK™' = §*E, KFK~' = ¢ ?F, [E,F] =

e Lety : U — U be the usual bar involution on U, that is, the anti-linear algebra involution which
fixes E and F and takes K to K.
e Letp : U — U be the linear algebra anti-involution such that p(K) = K, p(E) = ¢~ 'FK,
p(F) = gK~'E.
Let (-,-)” : U~ x U~ — Q(g) be Lusztig’s form on f from [Lus10, Sec. 1.2.5] transported through the
isomorphism between f and U™. Thus, it is the non-degenerate symmetric bilinear form such that
5m,n

(I=g2) (1 =g ) (1 =g

(Ftm, FM) ™ = 2.1)
form,n = 0.

We denote the irreducible U-module of highest weight 1 € N by V(). This is generated by a vector
14 such that En, = 0 and K5, = ¢'n,. There is an anti-linear involution ; : V(1) — V(Q) such that
Ya(ma) = maand Ya(uv) = Y(u)y(v) foru € U,v € V(A). Also let (-,-), : V() x V(1) — Q(gq) be
the unique non-degenerate symmetric bilinear form on V(1) such that

(ma,m)a =1, (uvi,v2)a = (vi,p(u)v2)a (2.2)

for u € U,vi,v; € V(2). The form (-,-)~ on U™ can be recovered from these forms on the modules
V(Q) since we have that

Oy2)” = Ali_)ffolo (vim.y2m) (2.3)

for all y;,y, € U™ by a special case of [Lus10, Prop. 19.3.7]. The vectors F(")W (0 < n < Q) give
the canonical basis for V(). In fact, they give a basis for an integral form 7V (1) over Z[g,g~']. The
anti-involution y, restricts to an anti-linear involution of zV(1), and the values of the form (-,-), on
elements of 7V (1) lie in Z[q, ¢~ '].

Let R: U~ — U™ be the linear map defined by

n—1p(n—1)
R(1) =0, R(FMy=94_"___ 2.4
(1) (F") === (24)
for n > 1. This map arises naturally as the adjoint of left multiplication by F: we have that
(Fy1,y2)” = (1, R(»2))~ (2.5)

for all y;,y» € U~. Equivalently, R(y) = r(y)/(1 — ¢~2) where r is the map defined in either the
first or the second paragraph of [Lus10, Sec. 1.2.13] (the two maps coincide in rank one). So [Lus10,
Prop. 3.1.6(b)], or an easy induction exercise using (2.4), gives that

Ey—yE = q 'KR(y) — ¢ '"R()K™! (2.6)
forany ye U™.
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For the purposes of categorification, one usually replaces U by its modified form U, whichis a locally
unital algebra U= @ Apez | ﬂUl 2 with a distinguished system 1,(2 € Z) of mutually orthogonal idem-
potents replacing the diagonal generators K, K~!. The relationship between U and U can be expressed
either by saying that Uisa (U, U)-bimodule, or that U embeds into the completion of U consisting of
matrices (a#, 1) Auez € I1 Apez 1 #Ul 2 such that there are only finitely many non-zero entries in each row

and column. The element K € U corresponds to the diagonal matrix with g1, as its Ath diagonal entry,
while E, F € U are identified with the matrices whose only non-zero entries are 1,,,E1, (1 € Z) and
1,F 1,45 (A € Z), respectively.

2.2. The i-quantum group and its PBW basis. The i-quantum group U'(sl,) is the subalgebra U’ of
U generated by

B:=F +p(F)=F +qgK'E. 2.7
As an algebra, U’ is uninteresting since it is the free Q(g)-algebra on B. However it is an interesting
coideal subalgebra of U for an appropriate choice of comultiplication.

The symmetry p of U restricts to a linear anti-involution p : U" — U" with p(B) = B. Also, the bar
involution ' : U" — U is the unique anti-linear involution such that ¢/ (B) = B. We stress a key point:
Y is not the restriction of the bar involution ¢ on U, indeed, the latter does not leave U’ invariant. For
A € N, there is a unique anti-linear involution ¢, : V(1) — V(1) such that

() = m. Y (uv) = ' )y, (v) (2.8)

forallu € U',v € V(2); see [BW18b, Cor. 3.11] and [BW18a, Prop. 5.1]. Also, by [BW18a, Lem. 6.25],
there is a symmetric bilinear form (-, -)" : U" x U" — Q(g) such that

(ur,up)' = lim (urma, uamy) (2.9)
for all uy, u; € U'. From (2.2), we get that
(Bul, Ltz)l = (ul,Bug)’ (2.10)

for any u;,u; € U'. In [BW18a, Th. 6.27], it is shown that (-, )" is non-degenerate. This also follows
from the following theorem together with the non-degeneracy of the form (-,-)~ on U™.

Theorem 2.1. There is a unique isomorphism of Q(q)-vector spaces j : U' = U~ such that
Jim (g, yma) , = (iw), )~ 2.11)
forall u € U' and y € U~. Moreover, the following hold for u,u;,u; € U':

(1) j(Bu) = Fj(u) + R(j(u)).

(2) (ur,uz)' = (j(w), j(u2))
Proof. Uniqueness of a linear map j satisfying (2.11) follows easily from the non-degeneracy of the
form (-,-)~. To prove existence, we can assume that u is a power of B and proceed by induction on
degree. Let j(1) := 1, which clearly satisfies (2.11) for all y € U~. Now assume for some u € U* that
J(u) satisfying (2.11) for all y has been constructed inductively, and consider j(Bu). Using (2.2) and the
identity (2.6) multiplied on the left by gK !, we have that

: @2 .. . -

Tim (Buy, yma) ;= lim (una, Byna), = lim (una, Fyna + K~ Eyn)
2.6) .. _ _

(:)}520 (sna. Fyna + R(y)ma — K~ R()K™'ma) ,

= lim (una, Fyna + ROYm) , = (70). Fy + RO)™ = (Filw) + R(w)).y)"
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So j(Bu) := Fj(u) + R(j(u)) satisfies (2.11). This proves the existence of a linear map j satisfying
(2.11), and at the same time we have established (1). To see that j is a linear isomorphism, it follows
easily from (1) that j(B") is a monic polynomial of degree n in F. Since U’ and U™ are free on B and
on F, respectively, it is now clear that j is an isomorphism.

It remains to prove (2). By the definition (2.9) and (2.11), we need to show that

lim (i, j(u)m), = lim (s om)

for all u;,u; € U'. Note that the limit on the left hand side exists by what we have proved so far. We
assume that u; is a power of B and proceed by induction on its degree. The base case u, = 1 is clear.
Now assume the result has been proved for all u; and some u,, and consider Bu,. Using (1), we have
that

uin, Fj(uz)na + R(j(u2))ma) ,
wina. Fj(uz)na + R(j(uz))ma — K 'R(j(u2))K~"'ma)

Jim (w1, j(Buz)my) | = Jim (
= hm (

2.6) ,. . .

(=)Algn (w1ma, Fj(uz)na + gK ' Ej(u2)) , = lim (urna, Bj(uz)m,) ,

2.2) .. . 22 ..

= Alim (Buina, j(u2)m) , Algrolo (Buina, uoma) | = ﬁlir{}o (u1na, Buamy) .
O

Applying Theorem 2.1, we let A,, € U’ be the unique element such that j(A,) = F ("), The elements
A, (n = 0) give a basis for U’, which we call the PBW basis. From Theorem 2.1(2) and (2.1), we get

that
5m,n

Ams An)' =

(&) = =T =g =0
for m,n > 0. Thus, the PBW basis is an orthogonal basis. The following recurrence relation is easily
deduced using Theorem 2.1(1) and (2.4):

(2.12)

n—1

Ao =1, BA, = [n+ 1]Auss + J]—An,l (2.13)

-2

for n > 0, interpreting A_; as 0.

Remark 2.2. The PBW basis for U’ with the orthogonality property (2.12) is an r-analogue of the (or-
thogonal) PBW bases for modified quantum groups constructed in [Wan21], and the linear isomorphism
in Theorem 2.1 is an i-analogue of the linear isomorphism Ut @ U™ = Ulg in [Wan21, Theorem 2.8].
The PBW basis construction described here can be generalized to :-quantum groups of higher rank.

2.3. Combinatorics of chord diagrams. Next, we investigate the rational functions wy,,(q) € Q(q)
defined from the expansion

= Z Winn (@) A (2.14)
n=0

One reason to be interested in these is that

(Bn,Bm)z (Zé()) (I,Bern)z (2;3) (AOa Bm+n)z (2;2) Wern,O(Q) (215)
for any m,n = 0.
Lemma 2.3. For 0 < n < m, we have that
n
Win—1n+1
woold) = 1, Wina(g) = [l 1 (g) + Lottt ()

1—qg2



8 JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

interpreting Wy ,(q) as 0 ifn < 0orn > m.

Proof. Applying j to B" = 3" wn.(q)A, gives that j(B") = S wua(q)F™. Thus, wy,.(q)
is the F"-coefficient of j(B™). Suppose that m > 1. By Theorem 2.1(1), we have that j(B™) =
Fj(B™ ') + R(j(B"')). Then we observe using (2.4) that the right hand side equals

m—2 n
Wim—1,n n
[l 1-1 (@) F™ + ql_l—’q_*;@F( ),

Ms

n=1 n=0

From this, we see that the coefficient w,,,,(q) of F") in j(B™) satisfies the recurrence relation in the
statement of the lemma. m]

We are going to give an elementary combinatorial interpretation of w;, ,(g) in terms of certain chord
diagrams with n chords tethered to a fixed basepoint and f = (m — n)/2 free chords. In lieu of a formal
definition, we just give an example. The following is a chord diagram with n = 3 tethered chords, f = 4

free chords, and ¢ = 11 crossings:
< g :@ (2.16)

The three tethered chords are the ones attached to the basepoint. We have also numbered the free
endpoints of the tethered chords in order going clockwise around the circle. Here is one more example

withn=4,f =3 andc = 5:
<% (2.17)

In a chord diagram with f free and n tethered chords, the maximum possible number of crossings is
nf + % f(f = 1). Counting chord diagrams up to planar isotopy fixing the basepoint, let N(f,n,c) be
the number of chord diagrams with f free chords, n tethered chords, and ¢ crossings, and

nf+3f(f=1)
Tra(q):= Y,  N(finc)g" € Nlg] (2.18)

c=0

be the resulting generating function. We obviously have that Ty ,(g) = 1, and T} ,_(q) is equal to the
classical g-integer {n} = 1 + g+ ¢* + --- + ¢"~!. Other examples: T>0(q) = 2 + ¢q and T30(q) =
5+ 6q + 3¢*> + ¢°. Note also that Ty, (1) = (2f;L") (2f — 1)!! (here, n!! denotes the double factorial
defined recursively by n!! = n- (n —2)!!and 0!! = (—1)!! = 1).

Lemma 2.4. The generating function T,(q) satisfies the recurrence relation

To,o =1, Tf,n(q) = Tf,n,l(q) + {n + l}Tffl,nJrl(q), (2.19)
interpreting Ty, r(q) as 0 if n or f is negative.
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Proof. 1t is clear that Ty o(q) = 1. Now suppose that n > 0. Let C(f,n) be the set of chord diagrams
with f free and n tethered chords. We are going to construct a set partition

n
C(fin) = C(fin) u | [Cilfn).
i=0
Take a chord diagram D € C(f,n). Consider the chord x in D which has the nearest free endpoint to
the basepoint measured in a clockwise direction around the circumference of the circle. There are two
cases:
e If x is a tethered chord then we put D into the set C(f,n) and let (D) € C(f,n— 1) be the chord
diagram obtained from d by removing x. Note that (D) has the same number of crossings as
D. An example of this situation is given by (2.17); for this §(D) is

O

e Otherwise, x is a free chord. Its furthest endpoint from the basepoint lies between the free
endpoints of the ith and (i + 1)th tethered chords for some 0 < i < n. We put D into the set
Ci(f,n) and let 6;(D) € C(f — 1,n + 1) be the chord diagram obtained from D by replacing x
by a tethered chord y with the same furthest endpoint as x. Note that 6;(D) has i fewer crossings
than D since y crosses i fewer tethered chords compared to x. An example is given by (2.16);
for this, we have that i = 2 and 6,(D) is

@

We have now defined the partition of C(f,n). It is also clear that 6 : C(f,n) = C(f,n — 1) and all
6; : Ci(f,n) > C(f —1,n+ 1) are bijections. The lemma follows by computing the generating function

Tt (q) using this partition to see that T7,,(q) = Tra—1(q) + >0 ¢ Tr—1.+1(q)- m
Theorem 2.5. For 0 < n < m withn = m (mod 2), we have that
(]! T 1 (q%)

Wanlg) = { (=g 2)f Um=n+2fforsome el
0

otherwise.

Proof. 1t is clear from Lemma 2.3 that wy, ,(¢) = 0if n # m (mod 2). Also using Lemma 2.3 it follows
that the rational function 7'z, (g) defined from

Tra(q®) := (1 = ¢ 2 Warapa(q)/[n]!

satisfies the recurrence relation in Lemma 2.4. Hence, Tf,n(qz) = T,(q?) and the result follows. O
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Corollary 2.6. The bilinear form (-,-)" on U' satisfies

Trold®) . _
(Bn’ Bm)l — (l—qu)f l_fm + n = 2ff0r some f € N
0 otherwise.

Proof. This follows from the theorem using also (2.15). m|

For example, Corollary 2.6 implies the following:

2+¢°

1 —q% (T—¢72)7
The generating function 7Ts((q) for ordinary chord diagrams has been studied classically; e.g., see

[Rio75]. Our more general tethered chord diagrams will show up again in a slightly different guise later
in the article; see Example 5.2.

(B,B)' = (1,B%)' = (B*,B*)' = (B,B’) = (1,B*)' = (2.20)

2.4. The i-canonical basis. So far we have not used the parameter ¢ € {0, 1}, but all subsequent results
depend on it. To avoid notational confusion, it is helpful to appeal to the construction from [BW18b,
Chap. 4] and [BW18a, Sec. 3.7], which shows that U’ has a modified form Ut = Utly @ Utl;. We
will denote the summands here simply by Uj, and U] since they are actually unital algebras. In fact, the

map U’ — U;, u — ul, is an algebra isomorphism. We use this to transport all of the results about U’
established so far to Uj, and work only with the latter from now on. In particular, U} is freely generated
by B = Bl,, it has the symmetries p and y' fixing B as before, it possesses a bilinear form (-, -)" as
in (2.9), there is a linear isomorphism j : U. = U~ as in Theorem 2.1, and we have the PBW basis
A, (n = 0) for U} satisfying (2.13). However, one should have in mind that U} is a subalgebra not of
the original quantum group U but rather of the summand of the completion of U consisting of matrices
(@ )urez € [ Laez 1,U1, such that a, 4 = 0if 4,4 % ¢ (mod2). This means that U! should only be
allowed to act on U-modules whose weights satisfy A = ¢ (mod 2). For example, the definition (2.9) of
the form (-, -)* on U} should really be written now as

(ur,u)' = /IILHQO (uimp, uam) (2.21)
A=t (mod?2)

for all uy, up € U;.

By the integrality properties from [BW18b, Th. 4.18] and [BW18a, Th. 5.3], the symmetry ¢/, re-
stricts to an anti-linear involution on 7V (1). Applying [BW18b, Th. 4.20] and [BW18a, Th. 5.7], we
define the 1-canonical basis for V(2) to be the unique Z[g, ¢~ ']-basis P, 1 (0 < n < ) for zV(2) such
that each P, is /,-invariant and

D
Py — Fn, e Z g 'Zlg ' TF"na.
m=0

As the notation suggests, for 4 = ¢ (mod 2), the vector P, 17, is obtained by applying an element P, € U}
to n7;. In fact, there is unique element P, € U} (n > 0) such that P, 1, is the i-canonical basis element
of L(A) for all 0 < n < A with A = ¢ (mod 2); see [BW18b, Chap. 4] and [BW18¢, Th. 2.10, Th. 3.6].
The elements P, (n > 0) thus defined give a remarkable basis for U again called the i-canonical basis.

Closed formulae for the ;-canonical basis elements were worked out in [BW 18¢] (see also [BW18b]):
for n > 0, we have that

goim nl 0 ifniseven
P, = ' H (B2 — [k]z) where oi(n):=< —1 ifnisoddandr=0 (2.22)
]! s 1 ifnisoddandf = 1.
k=t (mod 2)
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This expression can be viewed as the z-analog of the nth divided power of B. Accordingly, P, could also
be denoted B™ and called an i-divided power. This, however, is a special phenomenon in rank 1. It is
straightforward to check from (2.22) that the i-canonical basis satisfies the recurrence relation

Py =1, BP, = [n + 1]Pn+1 + 5n£t[n]Pn71, (2.23)
for any n = 0.

Theorem 2.7. For n = 0, we have that

,_
[STE
—

q—m(2m+1—26,,5,)

Py= ) - - ——Anom, (2.24)
=g H(L—g ) (L —gm)

A l%J( 1y g ") P (2.25)

n — - — — —amy L n—2m- .
= (I=g (1 —g#)- (1 —qgm)

Proof. To prove the first formula, use (2.13) to verify that the expression on the right hand side satisfies
the recurrence relation (2.23). Similarly, (2.25) follows by using (2.23) to verify that the expression on
the right hand side satisfy the recurrence relation (2.13). O

Corollary 2.8. The 1-canonical basis of U, is almost orthonormal in the sense that
(Pis Pn)' € 6+ a~ ' ZIg ™' 10 Q(g)
form,n = 0.
Proof. This is clear from (2.24) and (2.12). O

Remark 2.9. Using (2.12) and (2.24), one can derive the following explicit formula for the pairings
between i-canonical basis elements:

g L (n—i)(n—i+1-26,=,)— 1 (m—i) (m—i+1-26,=)

(PnaPm)l =

o<i<mingna) [Tj_y (1 =g~ ¥) [T,Z,(1 = ¢~ ) [T,Z, (1 — ¢~
i=n=m (mod 2)

for any m,n > 0. This is 0 if m # n (mod 2).

The i-canonical basis in fact gives a basis for an integral form zU! of U over Z[g, ¢~ ']. Equivalently,
we have that

72U, = {ue U |u(zV(2) € zV(A) forall 1 € N with A = t (mod 2) } ,

from which one sees that 7U! is a Z[q, g~ !']-subalgebra of U.. Since both p and ¢ fix each of the
1-canonical basis elements P,, they restrict to symmetries on zUj. Also, the form on Uj restricts to
(-,-)' : zU! x zU! — Z[q,q~']. From (2.13), it is apparent that A, does not lie in the integral form 7 U..
Instead, it is naturally an element of the completion

20 = Z(q7") ®zpyq-1 2U:- (2.26)

As is clear from Theorem 2.7, the elements A, (n = 0) give a topological Z((g~"))-basis for 7 U".
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2.5. The character ring. Let *U’ be the Q(g)-linear dual of U!. The left regular action of U’ on itself
makes *U} naturally into a right U}-module. We twist this action with the anti-automorphism p to make
*Ul into a left U}-module. Since the non-degenerate symmetric bilinear form (-, -)' on U} satisfies (2.10),
we get induced a canonical injective homomorphism of left Ui-modules

U — *U (2.27)

sending u € U! to the linear map U} — Q(q), u’ — (u,u’)". Henceforth, we will always identify U! with
a subspace of *U; via this embedding, thinking of *Uj as a completion of the vector space U!.

We obtain topological bases A, (n = 0) and L, (n > 0) for *U! that are the duals of the PBW and
canonical basis of Uj:

An (Am) = 6m,n, Ln (Pm) = 6m,n- (228)

We call these the dual PBW and the dual i-canonical bases, respectively. The dual canonical basis
element L, is invariant under the dual bar involution *y' : *U; — *U} defined by

W) (u) = [y (u)) (2.29)
for f € *U}, u € Uj. We get from (2.12) and the definition of the embedding (2.27) that
A,
A, = (2.30)

(1=g2)(1—g %) (1—g)
Dualizing Theorem 2.7 gives that

A, = i i L 2.31)
SO0 =g (1—gm) "
0 —m (28,241
b= D G 232
for n = 0. Also the following recurrence relations follow by dualizing (2.13) and (2.23):
B&r—hmm4+Tf%7AHh (2.33)
BL, = [n|L,—1 + 6pze[n + 1]Ly44 (2.34)

for any n = 0.
The character ring is the ring Q(g)[£] for a formal variable £. This is natural to consider from a
representation-theoretic perspective (see subsection 5.4). We view Q(q)[£] as a left Ul-module so that

BY ant" =Y and" . (2.35)
n=0 n=1
There is an injective Uj-module homomorphism
ch: *Ul — Q(q)[£], £ ) f(BYE" (2.36)
n=0

In fact, since U} = Q(g)[B], the map ch is an isomorphism—a special feature of the split rank one case.
We refer to ch, also its restriction ch : U, < Q(q)[[£]], as the character map. It intertwines the dual bar
involution *i' on *U} with the bar involution on the character ring, which is the anti-linear map

® : Q(q)I£1 — Q(g)I£I, D ant" — Y @meE" (2.37)

n=0 n=0

Now we proceed to compute the characters of A, and L,,.
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Lemma 2.10. For n > 0, we have that

2
chA, = [n]! Z Lq)ffnﬂf.

-2
£=0 (1 -9 )
Proof. By (2.14), we have that A,(B™) = wy,(g). This shows that chA, = >}, o wma(q)&™. It
remains to apply Theorem 2.5. O
)1 ift=0
Lemma 2.11. ch Ly = { 1+ 248654 ift— 1.

Proof. Suppose first that 1 = 0. By the definition (2.36), we need to show that Ly(B") = 6, for any
n > 0. This is clear for n = 0 since Py = 1 by (2.22) and Ly(Py) = 1. Also (2.22) shows that all
P, (n > 0) are divisible by B, so we can use (2.22) to express B" (n > 0) as a linear combination of
Py,...,P,. This implies that Lo(B") = 0 for n > 0 as required.

Now suppose that # = 1. We need to show that Lo(B***!) = 0 and Ly(B*") = 1 for n > 0. By (2.22),
Py, is a linear combination of B*"*! for 0 < m < n, and inverting obviously gives that B>**! is a
linear combination of Py, for 0 < m < n. This implies that L0(32"+1) = 0. Also (2.22) gives that
Py = 1and [2n][2n — 1]P,, = (B* — [2n— 1]?)Py,_; for n > 1. Using this, one shows by induction on
n = 0 that B** = a,Py, + - - - + a1 Py + Py for some ay, ...,a, € Q(q). It follows that Ly(B*') = 1. O

Theorem 2.12. We have that

chiL, =[n1e" ] ;:[n]!Z DU e 1P [ + 1] | €2 (238)

—[r2e2
I1<k<n+1 1 [k] 3 m=0 \ aeP;(mxn)
k=t (mod2)
where P.(m x n) is the set of « € N" with0 < a1 < -+ < @ < nand a; # t (mod 2) for each i.

Proof. The second equality follows by expanding the product. To prove the first equality, we proceed
by induction on n. The induction base follows from Lemma 2.11. For the induction step, take n > 0.
The constant term of ch L, is 0 since L, (1) = L,(Pp) = 0 so we have that Bch L, = ch L, /¢ by (2.35).
Suppose first that n = r (mod 2). Then (2.34) shows that

chL, = [n]échL, (2.39)
and we easily get done by induction in this case. When n # ¢ (mod 2), (2.34) gives that
chL, = [n)échL, | +[n+1]¢échL, | = [n]échL, | + [n+ 1]?¢*ch L,.

Hence,
[n]¢
hl,=—————ch[l, |, 2.40
and again the result follows by induction. O
Corollary 2.13. Forn = 0, we have that
15
B"= ) [n—2m]! > [ + 117 [@m + 11> | Po_om.
m=0 @eP;(mx (n—2m))

Proof. The coefficient of P, in the expansion of B" is L¢(B"), i.e., it is the &"-coefficient of ch L;. Now
use Theorem 2.12. O
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3. THE NIL-BRAUER CATEGORY

For the remainder of the article, we will work over a field k of characteristic different from 2. All
algebras, categories, functors, etc. will be assumed to be k-linear without further mention, and we
reserve the symbol ® for tensor products of vector spaces or algebras over k. By a graded category,
graded monoidal category, graded functor, etc. we mean one that is enriched in the closed symmetric
monoidal category g¥ec of graded vector spaces.

In this section, we first recall the definition of the nil-Brauer category AB, and the crucial basis
theorem for its morphism spaces from [BWW23]. Then we relate the graded dimensions of these spaces
to the bilinear form (-, )" on the i-quantum group U!. Finally, we discuss the center of A‘B,, and prove
a useful result about minimal polynomials.

3.1. Definition and basic properties. We use the usual string calculus for morphisms in strict monoidal
categories; our general convention is that f o g denotes composition of f drawn on top of g (“vertical
composition”) and fxg denotes the tensor product of f drawn to the left of g (“horizontal composition”).
We always draw string diagrams so that the underlying strings are smooth curves. Recall the following
definition from [BWW23, Def. 2.1].

Definition 3.1. The nil-Brauer category NB, is the strict graded monoidal category with one generating
object B (whose identity endomorphism will be represented diagrammatically by the unlabeled string
| ) and four generating morphisms

+:B—>B, ><:B*B—>B*B, /N\:B*B—>1, \_J:1—>B*B (.
(degree 2) (degree —2) (degree 0) (degree 0)

subject to the following relations:

ézo, §§<:>§ a2
tal]l, m::m’ (3.3)
Q_o, <N\ =K (3.4)
XA e s

Remark 3.2. One source of motivation for Definition 3.1 is the expected compatibility of A‘B, with
the bilinear form (-,-)" on U, something which will be proved in general in Theorem 3.7. From this
perspective, the formulae (2.20) suggest the existence of generators of the degrees specified in (3.1) and
some of the basic relations. This is similar to Lauda’s approach to categorification of U, (sl») in [Laul0].

The following relations are easily derived from the defining relations in [BWW23, (2.6)—(2.8)]:
W=\, O-0-0C. (.6
8 ~o, ><>< 0, (3.7)

XA U e
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In view of the last relation from (3.4) and the first relation from (3.6), we can unambiguously denote
the morphisms in these two equations by the “pitchforks” m and W respectively. Together with the
last relation of (3.3), it follows that a string diagram with no dots can be deformed under planar isotopy
without changing the morphism that it represents. This is not true in the presence of dots due to the sign
in the last relations of (3.5) and (3.8)—there is a sign change whenever a dot slides across the critical
point of a cup or cap.

The relations discussed so far imply that there are strict graded monoidal functors

R : AB, —> NB™, B~ B, s (—1)*® s, (3.9)
T: NB, — NB/”, B — B, s — st (3.10)

Here, for a string diagram s we use s and s to denote its reflection in a horizontal or vertical axis, and
o(s) denotes the total number of dots and crossings in the diagram, respectively. The category A(B, is
strictly pivotal with duality functor b := R o T = T o R; this rotates a string diagram s through 180° then
scales by (—1)*().

3.2. Generating functions for dots and bubbles. Next we recall the generating function formalism
from [BWW23, Sec. 2]. We denote the rth power of + under vertical composition simply by labeling
the dot with . More generally, given a polynomial f(x) = >, cx" € k[x] and a dot in some string
diagram s, we denote

Z ¢, X (the morphism obtained from s by labeling the dot by r)
r=0

by attaching what we call a pin to the dot, labeling the node at the head of the pin by f(x):

+— =Y + € Endag, (B). (3.11)

r=0

In the drawing of a pin, the arm and the head of the pin can be moved freely around larger diagrams so
long as the point stays put—these are not part of the string calculus. More generally, f(x) here could be
a polynomial with coefficients in the algebra k((u~')) of formal Laurent series in an indeterminate u~!;
then the string s decorated with pin labeled f(x) defines a generating function of morphisms.

We will use the following shorthands for the generating functions of [BWW23, (2.14)—(2.15)]:
The notation here is motivated by the following standard trick: for any f(x) € k[x], we have that

el - ). fwe] - b, G

where [—],- denotes the u"-coefficient of the formal Laurent series inside the brackets. These identities
follow by using linearity to reduce to the case that f(x) = x" for n > 0, then explicitly computing
coefficients on both sides. As we do with ordinary dots, we denote the nth power of one of these “dot
generating functions” by labeling them also by n. This makes sense for any n € Z since we have by the

cfinitions tha 4.e=(e) -t "1

—1

(ufx)*l =u

+u? + +u 3 % +u? $ +"'6End?\[$,<3)|[uil]], (3.12)

-1

(ut+x)"'] =u

_ M—Z + + I/t_3 # _ M_4 $ + ... € EndN,Bt(B)[[u_I]] . (313)

) = u

b (3)' e s
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The endomorphisms (3.12) and (3.13) obviously commute with each other and all other pins. Note also
that T and R satisfy

O S 3 S SR O Y SR ) R S

Another useful trick is to apply the substitution u — —u; this interchanges ¢ and —¢.

It is clear from the last relation in (3.4) that m— = —(\ and similarly for cups, hence,

we have that

(e=¢ )\ [®=¢) \o=& ). (#=0/) a1

Further useful relations involving these generating functions are
WKt KAt em
L N e T Lo

These are also noted in [BWW23, (2.19)—(2.20)]. Equating the coefficients of x~"~!, we obtain

KX 5 (- )

i+j=n—1

><_>< _ i;{) (T lf _ i%}_), (3.20)

i+j=n—1

Now consider the “dotted bubble generating function”

(® =D u"'Or et 1y +u?Endpg (1)[u~'1. (3.21)

r=0

This is often useful, but even more important will be the renormalization

O(u) = Z w0, = (1) (13 — 2u (®) € 11 + u~ ' Endag, (1)[u']. (3.22)

r=0
Its u~"'-coefficients O, are given explicitly by

0p = 14, 0, = =2(=1) o r (3.23)
for r > 1. Note also by (3.15) and (3.16) that O(u) is invariant under R and T.

Theorem 3.3 ((BWW23, Th. 2.5]). The following relations hold in NB,:

24(}:2@@-#—#, (3.24)

®+®=2uo (™, (3.25)
O(u)O(—u) = 1y, (3.26)
O(u) | = [ (42)? —+ O(u) . (3.27)

Corollary 3.4. The following relations hold in NB,:

24(} - _# _ (_1)f+ O(u), 24@ _ JF + (—1)f+ O(—u),  (3.28)
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2u@< = —# - (—1)t©(u)+, 2u@< — % + (—1)t©(—u)+. (3.29)

Proof. The first equality follows from (3.24) and the definition (3.22). The others follow by applying R
or using the substitution u — —u. O

Corollary 3.5. Forn = 0, we have that

n—1
bn+1 = Z(—l)r r+ Onfr — Op=s +n .
r=0
Proof. This follows by equating the coefficients of »~"~! in (3.28). O

3.3. The basis theorem. Let A be the graded algebra of symmetric functions over k. Adopting standard
notation, this is freely generated either by the elementary symmetric functions e, (r > 0) or by the
complete symmetric functions &, (r > 0); our convention for the grading puts these in degree 2r. The
two families of generators are related by the identity

e(—u)h(u) = 1 (3.30)

_ Z u e, h(u) = Z u "h, 3.31)

r=0 r=0

where

are the corresponding generating functions, and ey = hy = 1 by convention. It is also convenient to
interpret e, and A, as 0 when r < 0.

Following [Mac15, Ch. III, Sec. 8], we define a power series g(u) € Allu~'7 and elements g, (r=0)
of A so that

u) = Z u g, :=e(u)h(u). (3.32)
r=0
By (3.30), we have that
q(u)g(—u) =1 (3.33)
Equivalently, go = 1 and
0r = (1) "3q7 + Z ) 5o (3.34)

for r > 1; cf. [Macl5, (II1.8.2)]. As with e, and h,, we adopt the convention that ¢, = 0 for r < 0.

The graded subalgebra of A generated by all g, (r = 0) is denoted I'. As explained in [Macl5], T
is freely generated by ¢, g3, g5, ... (and it has a distinguished basis given by the Schur Q-functions Q,
indexed by all strict partitions). It follows that I is generated by the elements g, (r = 0) subject only
to the relations (3.33). Hence, (3.26) is all that is needed to establish the existence of a graded algebra
homomorphism

ve: T — End?\[@,(l)’ qr — O. (3.35)

By [BWW23, Cor. 5.4], this is actually an isomorphism.

Now we recall the basis theorem for morphism spaces in AB,, which is the main result of [BWW23].
For m,n > 0, any morphism f : B*" — B*" is represented by a linear combination of m x n string
diagrams, i.e., string diagrams with m boundary points at the top and »n boundary points at the bottom
that are obtained by composing the generating morphisms from (3.1). It follows that Homyg, (B*", B*™)
is 0 unless m = n (mod 2). The individual strings in an m x n string diagram s are of four basic types:
generalized cups (with two boundary points on the top edge), generalized caps (with two boundary
points on the bottom edge), propagating strings (with one boundary point at the top and one at the
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bottom), and internal bubbles (no boundary points). We define an equivalence relation ~ on the set of
m x n string diagrams by declaring that s ~ s if their strings define the same matching on the set of
m + n boundary points. We say that s is reduced if the following properties hold:

There are no internal bubbles.

Propagating strings have no critical points (=points of slope 0).

Generalized cups and caps each have exactly one critical point.

There are no double crossings (= two different strings which cross each other at least twice).

These assumptions imply in particular that there are no self-intersections (= crossings of a string with
itself). Fix a set D(m,n) of representatives for the ~-equivalence classes of undotted reduced m x n
string diagrams; the total number of such diagrams is (m+n— 1)!! if m = n (mod 2), and there are none
otherwise. For each of these ~-equivalence class representatives, we also choose distinguished points
in the interior of each of its strings that are away from points of intersection. Then let D(m, n) be the set
of all morphisms f : B** — B*" which can be obtained by taking an element of E(m, n) then adding
dots labeled by non-negative multiplicities at each of the distinguished points on the strings.

Theorem 3.6 ((BWW23, Th. 5.1]). Viewing Homgg (B*", B*™) as a graded T'-module so that p € T
actson f : B — B*" by f - p := f*vy,(p), the space Homag (B*", B*") is free as a graded T-module
with basis D(m, n).

Now we can make the first significant connection between AB, and the i-quantum group. Recall
the bilinear form (-,-)" : Ul x Ul — Q(g) from (2.21). We convert this into a sesquilinear form
()" UL x UL — Q(q) by setting

Curyup)' = (W' (ur), uz)’' (3.36)
for up,uy € U;.
Theorem 3.7. For m,n € N, we have that dim, Homyg (B*", B*") = dim, T - (B", B")".

Proof. Since B" is y'-invariant, we have that (B", B")" = (B",B™)". Now we compare the explicit
combinatorial formula for (B", B")" from Corollary 2.6 with the formula

dim, HomNgt(B*”, B™") = dim, T - Z q deg(s)
seD(m,n)

implied by Theorem 3.6. If m % n (mod2) then (B", B™)" = 0 and D(m, n) is empty, and the result is
clear. Now assume that m = n (mod 2) and let f := (m + n)/2. There is an obvious bijection between
equivalence classes of m x n string diagrams and chord diagrams with f free chords and no tethered
chords. This just arises by identifying the (m + n) boundary points of strings in an m x n string diagram
with the (m + n) endpoints of chords in a chord diagram in some fixed way that preserves the clockwise
ordering, then replacing strings by chords so that the underlying matching of these points is preserved.
In a string diagram, each crossing is of degree —2, so it contributes ¢ to the graded dimension. The
dots placed at the f distinguished points produce the factor 1/(1 — g~2)/, this being dim, k[xi,.. ., x|
with x; in degree 2. Recalling the definition of the generating function T's((g) from (2.18), we deduce
that

dim, Homyg (B™", B*") = dim, T - Z q deg(s) _ dim, T - Tf,o(q2)/(1 _ qu)f,
seD(m,n)

which is dim, I" - (B", B™)" according to Corollary 2.6. o
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3.4. Central elements. Recall that the center Z(A4) of a category 4 means the algebra of endomor-
phisms of its identity endofunctor. Thus, elements of Z(AB,) consist of tuples (z,),>0 for elements
Zn € Endg\@r(B*") such that z,, o f = f oz, forall m,n > 0 and f € Homyg (B*", B*"). In this
subsection, we are going to use the dotted bubbles to construct many—conjecturally, all—elements of

Z(N\B)).

Since O(+u) € 13 + u 'Endyag (1)[~'] and 2 is invertible in k, it makes sense to take the
square roots 4/O(+tu); we choose the ones that are positive in the sense that they again lie in 17 +

-1
u~ ' Endgg (1)[u']. We have that /O(—u) = ( @(u)) by (3.26). Taking the square roots of
both sides of (3.27), both of which are formal power series in 15 + 1~ EndM;t(B)l[ufl]], we obtain

Vol @ = @ V5 Vo =& or. (3.37)

Let €., Ay Grn € K[ X1, .. ., xn]S = be the symmetric polynomials in n variables obtained by special-
izing the symmetric functions e,, 4,, g, from (3.31) and (3.32). We have that

-
qrn = Z esnhr—sn- (3.38)
s=0
Moreover,
mou+ x
DuT g =] Ll 4w kx, x e (3.39)
. u— X
r=0 i=1
In the statement of the next theorem, for a polynomial f € k[x,..., x,,|, we use the notation f1, = 1,f

to denote the endomorphism of B*" defined by interpreting x; as [*("D x ¢ « [*(*=0) 'je_, the dot on the
ith string.

Theorem 3.8. For any r > 0, we have that (qn1,),0 € Z(NB,).

Proof. We need to show that g, n1,,0 f = foq,al, forany f € Homgg (B*, B*"). By (3.37), we have
that

n

I | el 11 :1' :1 = VOl * " /B, (3.40)

u— Xj
r=0 i=1 !

The result follows from this since the expression on the right hand side clearly has the desired property
by the interchange law. O

Corollary 3.9. Let p,, := >/, xl € k[xy,..., x,]5" be the rth power sum. For any odd r > 1, we have
that (pruln)ns0 € Z(NB;).

Proof. It suffices to note that any odd power sum can be written as a polynomial in the symmetric
polynomials g, ,. This can be proved by taking the logarithmic derivative of (3.39). O

3.5. Minimal polynomials. In this subsection, we forget the grading on AB,, viewing it as an ordi-
nary monoidal category. Let ¥ be a strict (left) AB,-module category. This means that we are given
a strict monoidal functor u from A, to the strict monoidal category End (1) whose objects are end-
ofunctors of 4 and whose morphisms are natural transformations. We often denote the endofunctor
u(B) : V — ¥ simply by B. For a string diagram s representing a morphism in Homgg (B*", B*™"),
we denote the morphism u(s)y : B"V — B™V simply by sy. We will use the string calculus extended
to module categories in the manner explained in [BSW20, Sec. 2.3]. For this, we represent the identity
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endomorphism of an object V of ¥ by the labeled string |v , and a morphism f : V. — W between
objects of ¥ by adding a node labeled by f to the middle of this string:

W
éj V->W
%

For a string diagram s representing a morphism in AB,, we represent sy diagrammatically by s | v .
We say that an object L of ¥ is special if Endy(L) = k and Endq (BL) is finite-dimensional. For
example, 7 could be a locally finite Abelian category and then any irreducible object L € 7V is special
by Schur’s Lemma. Let my(x) be the minimal polynomial of the endomorphism + L BL — BL. It
could be that BL = 0, in which case m;(x) = 1. Let B(L) be the degree of my(x). The image under u
of any element z € Endgg (1) is an element of the center Z() of the category ¥. Thus, the generating

function O(u) for dotted bubbles from (3.22) gives rise to an element of Z(9/)[u~']. On an irreducible
object, O(u), : L[u"'] — L[u~'] is given by multiplication by a power series Oy (u) € k[u~'].
The next theorem, which is a counterpart of [BSW20, Lem. 4.4], explains the relationship between the
polynomial my (x) and the power series O (u). It shows in particular that Oy (u) is a rational function.
mL(—u)

mL(u) '
Proof. Let f(u) := 2 (1 — (—1)'Or(u)) € u~"k[u~"] and g(u) := my(u)f(u) € WP ~'k[u"']. By
the definition (3.22), we have that

f)ly=C® | .

We show that g(u) is a polynomial in u. It suffices to show that [#"g(u)],—1 = O for all » > 0. This
follows because

[u"g(u)],1 1o = [u'mp(u) f)1e] 1 = [Wmp(u) (® |2 ]|, = [O~m@) [ ], =0,

where we used (3.14) for the penultimate equality. Using (3.14) again, we have that
L
:| uY

O—ZMb— L= u [mL(u) }@ L]ul - {ZMmL(u) }(}
o,

(.29 [214 () JF ® | - m) # L — mu(n) # : }
u0
~ |28 |1 = o) = m0) |1~ (maf) —mu(0) @
u—l
As g(u) and () m(0) are polynomials in u, we can use (3.14) yet again to deduce that

—Z[g(u)# L mL(”)z_umL(O)# L ’"L(“)z—u’"L(o)%>
2u
m)—m(=) ¢ divisible by my(x). But this polynomial is of

It follows that the polynomial g(—x) — 5
mp (x)—mg (—x)

strictly smaller degree than my(x), so it must in fact be 0. This shows that g(—x) = 5
mp(x)—mg(—x) So

Ou(w) = (=1) <1 - fo:))) - (_1),,725(_”»),)

and the proof is complete. O

Theorem 3.10. For any special object L € V, we have that Op(u) = (—1)

L =0.

Equivalently, g(x) =

>
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Corollary 3.11. For any special object L € V, we have that (L) = t (mod 2).

Proof. As power series in u~!, the constant terms of Oy (u) and (—1)' % are 1 and (—1)F(0)+,

respectively. These are equal by the lemma. O
Remark 3.12. Theorem 3.10 also holds in the graded setting, i.e., when we don’t forget the grading
on AB, and V is a strict graded A‘B,-module category. In that case, for a special object L, we have
simply that m; (x) = ¥*() and O (u) = 1, so that Theorem 3.10 is not so interesting—it gives no more
information than Corollary 3.11. Nevertheless, this will be useful later on; see Lemma 5.11 and the
proof of Theorem 5.18.

4. PRIMITIVE IDEMPOTENTS

In this section, we work out the structure of the primitive homogeneous idempotents in AB, and
prove Theorems A and B. We continue to work over the field k of characteristic different from 2.

4.1. Extended graphical calculus. We begin by introducing some further diagrammatical shorthands
in the spirit of the “thick calculus” of [KLMS12]. We denote the tensor product |** of a strings by a
single thick string labeled by a. A thick cup or cap labeled by a denotes that number of nested ordinary
cups or caps (no crossings). Sometimes it is notationally convenient to be able to split thick strings into
thinner ones or to merge thinner strings to obtain thicker ones: the diagrams

a b n
Y- A
n a b

simply represent the identity morphisms B** — B*¢ x B*’ and B** x B** — B*" for a + b = n. We will
often omit a thickness label on a thick string when it can be inferred from others in the diagram.

For a + b = n, the thick crossing
X? %

denotes the morphism B** x B** — B* » B*¢ obtained by composing ordinary crossings according
to a reduced expression for the longest of the minimal length S,,/(S, x Sj)-coset representatives. We
use a thick string decorated with a cross to denote the composition of thin crossings corresponding to a
reduced expression for the longest element w,. For example:

N

1
When working with these morphisms, we will often make implicit use of various obvious consequences
of the braid relations, such as

a+b a b a+b+1 a b

In view of the pitchfork relations, one can also draw this cross at the critical point of a thick cup or cap
without there being any ambiguity as to the meaning:

M- Wi
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We use a dot on a string of thickness n labeled by @ € N” to denote the tensor product of dots on
ordinary strings labeled by the parts of a:

The n-tuples p, := (n — 1,n —2,---,1,0) € N" and w,,, := (1,...,1,0,...,0) € N” with r entries
equal to 1 followed by (n — r) entries equal to O will appear often. To simplify notation, we allow the
subscript n to be omitted in these when used to label a node on a string of thickness n:

fo = 4o for i fou

Generalizing the notation (3.11), given a polynomial f = >} CoX]' -+~ X;" € N[x1, ..., Xx,], the pin
*— = Z Cq *a
n r=0 n

denotes the endomorphism f1, = 1,f of B*. Often for this f will be the elementary symmetric
polynomial e, := >} iy <-<ip<n Xiy *** Xi,. Again, if this is pinned to a string of thickness n, we allow
the subscript 7 to be dropped, writing simply

lo-|a

n n

since the number 7 of variables in the elementary symmetric polynomial can be inferred from the thick-
ness of the string.

Lemma 4.1. For 0 < r < n, we have that

| = 2(_1)HH_Y” : *—= 20(—1)” \(_ @.1)

n+1 n+1

r—s

Proof. The first equality is the well-known identity e,, = > i_,(—1) 'x;jr‘;es,nH. Then the second
equality follows on applying Rr. O

Lemma 4.2. For 0 < i < n, we have that

i§ = Sin 1|{ , §i = Sin(—1)" 1|{ . 4.2)

n n+1 n n+1

Proof. We just prove the first identity; the second then follows on applying R. By Theorem 3.6, the
lowest non-zero degree of EndM;t(B*("“)) is —n(n + 1), and the diagram on the left hand side of the
identity is of degree —n(n — 1) —4n + 2i. If i < nthen —n(n — 1) —4n + 2i < —n(n + 1) so the
expression is 0.
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To prove the result in the remaining case that i = n, we proceed by induction on n. Assume the result
is true for n and consider the next case

(3.8)
n+1 =, =" n + Z n — n .
>
n+1 n+1 ab>0 a b a b

n+l1 a+b=n

In this expression, the term before the summation is 0 by the degree argument given already, the first
term in the summation is O unless a = 0 by the defining relations (3.2), and similarly the second term in
the summation is O unless » = 0. So

n+1 n +2
where we used the induction hypothesis for the second equality. O

Corollary 4.3. For0 < i < n+ 1, we have that

}@i :6i,n+15nzt<_1)n+l + ) i{H :5i,n+16nzt % . (43)

n n+1 n n+1

Proof. As usual, we just prove the first equality. By the braid relation then Corollary 3.5 and Lemma 4.2,

we get that
ﬁ} i = @ i = _5i,n+l5nzt Q” = _5i+1,n5nzt(_1)n +
n n

n n+1
O
Corollary 4.4. For any n = 1, we have that Ip = 1|{ .
Proof. This follows by induction on n. For the induction step, we have that
n+1 n n+1
using Lemma 4.2 for the first equality and the induction hypothesis for the second one. O

Corollary 4.5. For 0 < r < n, we have that

wr+p§ = Orn + ’ gwr"'p :5’:"(_1)" + . @

n n+1 n n+1

Proof. We just prove the first equality. If » < n then the expression on the left hand side is O by degree
considerations like in the first paragraph of the proof of Lemma 4.2. If r = n then the left hand side is
equal to ip , and the conclusion follows from Corollary 4.4. O

n+1
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The remaining relations to be established in this subsection are more complicated. The guiding
principle here is that relations in the nil-Hecke algebra can be ported to the nil-Brauer category providing
there enough additional strings to eliminate the cup/cap term in the dot sliding relation (3.8).

Lemma 4.6. For 0 <i < n+ 1, we have that

n n+1

i = 5i,n+15nzt . (45)

n n+1

Proof. We first slide both sets of i dots downwards past the crossing using (3.19) and (3.20) to see that

B g (B-40)- 5 (85

i,i2=0 llm i1,i2=0 i UT 2
i +ir=i—1 i1+ip=i—1
So
=Y e %’y Jg
i1,i=0 i+iy ll
i1 +i=i—1

) n
L f"\ n+l1

= 5i,n B = 5i,n+15nzt \ , .
n n+1 ;

These are consequences of Lemma 4.2 and Corollary 4.3. O
Lemma 4.7. Fori, j = Owithi+ j < 2n + 3, we have that

n+1

n n
§ + § = Sit jont20n=2(— 1)1 m (4.6)
n n

n+1

Proof. We assume that i < j, and proceed by induction on j — i. The base case j — i = 0 follows by
Lemma 4.6. For the induction step, suppose that i < jand i + j < 2n + 3. By induction, we have that

\ \ nt1
o\
§1 + /§ = 0it jons30n=2(— 1)1 ‘
M
! " n+1
Then we vertically compose on top with e 2,12 = %611,2n+2(x1, ..., X2p42), using the centrality from

Theorem 3.8 to commute this down to the middle; it becomes e;» = x; + x; in the middle on the left
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hand side and e 9 = O in the middle on the right hand side. We deduce that

n n n n
n n n n

If j — i = 1, the last two terms are the same as the first two terms, and the result follows on dividing by
2. If j —i > 1 we use the induction hypothesis to simplify the last two terms to obtain

n+1

n n
§ + J§ + Sit jont20n=2(— 1)1 m = 0.
n n

n+1

The result follows. O

Corollary 4.8. For a € N"*! and 1 < i < nsuch that a; + @iy < 2n + 1, we have that

*a/ = 5ai+ai+1,2n5n¢t(_l)ai-‘rl_[z i@ — * sia | (47)

n+1 n—1 n+1

where @ := (@1,...,Qi—1,Q42,..,Apy]) € N~ and s;a is the tuple obtained from a by permuting
the ith and (i + 1)th entries.

Proof. LetB = (a1,...,a;—1) and y := (@j42,...,@+1). By Lemma 4.7, we have that

@+ Y+ B Y :5ai+ai+1,2n6n¢t2(_1)ai—H_tﬁ

n+1

Corollary 4.9. Fora € N and 1 < i < n such that a; = @iy < n, we have that

i" = 5ai,n5n§ét Ia s (4.8)

n+1 n—1
where @ := ((ll, e X1, X2, e, (ln+1) e N1,
Proof. This follows from Corollary 4.8. O

Lemma 4.10. The following relation holds for anyn = 1 and 0 < r < n:

%ﬂr-‘rp - i_ - 6n_tf ’ (4.9)

n—2
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interpreting the final term as 0 in case r < 1.

Proof. We proceed by induction on n. The result is trivial when n = 1. It is also clear when r = 0
thanks to Corollary 4.4. Now suppose that n > 1 and 0 < r < n, and consider

b a b a
Trp1tp = n wtp = n wtp + Z — .
n n
a,b=0 @,r+p @ +p
a+b=n—1
n n n n

n+1

Here, we commuted the single dot upward through the thick string. In the summation, the second term
is 0 always, and the first term is O unless a = 0. So the expression simplifies to give

n—1
oty = :§;+p +%ﬁp : (4.10)
n n

n+1

If r = 0, we simplify this using Corollary 4.4, then Lemma 4.2, then induction to obtain

n—1
@i+ = " + n = + n = + i!
>
n+1 n n n n—1 n n—1
n n n n n n n+1

as required for the induction step. Now suppose that » > 1 and consider (4.10) again. Letting o :=
Wrilntl — Tl + Pot1 = (n,n,...), we use Corollary 4.8 and induction to simplify the first term:

n
— _ _ _ er—
:§;r+p B \\Tj = Ot lwr|+p = Onztt l = 5n¢t\i‘f ’
n n+1 n—1 n—1 n—1

which is the second term we need to prove the induction step. Turning our attention to the second term
on the right hand side of (4.10), it remains to show that

n—1
S5
n n+1
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assuming r > 1. By the induction hypothesis plus the identities e,, = €,,—1 + ¢,—1 ,—1X, then e, 1, +
€rnXn+1 = €r41n+1, We have that

kS
et

Corollary 4.11. The following relation holds foranyn > 1 and 0 < r < n:

j}ﬁp = j:_ 4.11)

Proof. Add a cap at the bottom of the relation from Lemma 4.10. The second term then disappears. O

4.2. Recurrence relation for idempotents. Corollary 4.4 obviously implies that

€, = 1{’) 4.12)

n

is a homogeneous idempotent for each n > 0. For example:

’ e2_><, e3: >§, e4: %‘

These are likely already familiar expressions, since the same diagrams are often used to represent dis-
tinguished primitive idempotents in the nil-Hecke algebra.

In the remainder of the section, we are going to show that the idempotents e, (n = 0) give a full
set of primitive homogeneous idempotents in NB,. The first step, accomplished in this subsection, is to
decompose Bxe, as a sum of mutually orthogonal conjugates of e, .| and e,,_;. We begin by introducing
two more families of endomorphisms of B*("+1): for 0 < r < n let

n—r B n—r
) o >< I =18 @.13)
n n—2
n—r n—r
£ = (—1)" Ip S :E - 722 , (4.14)
n n—1 n—2

e =1, e =
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Recalling the convention that the elementary symmetric function e, = 0 for r < 0 and, of course,
eo = 1, we have that

€0 = €11, fon = 0. (4.15)
By Lemma 4.10 and Corollary 4.11, the definitions (4.13) and (4.14) can be written equivalently as
n—1 n
n—r n—r P
_(_1\F — (1)
€rn = ( 1) p o ><zm+p ( 1) T +p ’ (4'16)
n n n
n—r n—r
£, = (_1)r—1 Ip © E"“J’VD — On=r EZﬁD 4.17)
n n—1 n—2

n
L P n—r p
=(-1)" @ 1+p + Op=(—1)" @y aip (4.18)
n

where we interpret terms involving the undefined symbols @, for r = 0 and @w,_, for r = O or 1 as 0.

Example 4.12. If n = 0 then eg = \ and fop = 0. If n = 1 then

U/
ey, = , e = — , fo. =0, fi1=
X X -

If n = 2 then

€ = , ep = — — , € = - 5[’071/,
foo =0, fi,= >T< £, = —% + 5:,071/-
M

If n = 3 then

€0,3 —Bg, €13 = —22 —Xg —XS )
D DD B i R
fos =0, fi3= ﬁ

- \jf 'ffm% f3,3:j:”_5t,1%.

Lemma 4.13. Forn > 0, we have that Bx e, = >."_,(e., + f.,).
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Proof. For this calculation, it is convenient to drop the p from the top of the diagrams, so we set

n—r n—r
’ n n—2
-r n—r
D 4 sy o),
n—1

n—2

n—r n—r
ér,n + i"r,n = (_l)r ><_ + (_l)ril jfer—l :

n n—1

s
Il

rn -

Notice that

We in fact show that B €, = >./_ (&, + fr,,) The first step is the same as in the proof of [KLMS12,

Lem. 2.13]:
B*én — % (4:4) (_l)nfl gwnl‘i’P (4:11) (—1)"71 §
n—1 n—1

R e
X

n—1

The last two terms in this expression are equal to &,, + fnn It remains to show that the first term is
—1/0 o
equal to " (&, + f,.,):

n—1
-1 '/\E ;— “.D Z(_l)r nl\]-?{
n—1 r=0 n a
(320) n—1 n—2 n—1 nes s
= -1 _ — —1—r
};)( >§_._‘_r 0 5= r+1( ) ' ﬁ_ S j §
n—1 e n—1s—1 ne s s
= -1 _ — —1—r
) P S !
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_':Zi (—1) "’><+(—1)’l "_r: +nZl(—1)“' —+ ({

s=1
n—1 $

The first summation gives the remaining terms Z;’;& (&0 ~|—t°'r,,,) that we want, and the second summation
is O thanks to Corollaries 4.5 and 4.11. |

Now we introduce several more families of morphisms in A/B, for0 < r <mnand 1 < s < n:

n+1 n
P n—r P
.« r P .«
W, = <_1) wrtp Vin i= ) Wypn =W, — W,y OV, (419)
n+1
n—1 n—1 n
] P P n—s p
.« §— s .«
Xs’n = <_1) ws—1+p + (_1) 6}15[ Ws—2+p » YS,n L s (420)
n n—1 n—1

again interpreting the undefined term involving @w,_, when s = 1 as 0. Note that up,, = vo, = €,
thanks to Corollary 4.4, hence, wo, = 0. The same corollary also implies easily that e,41 o w,, = u,,,
Vin O€ut1 = Vi, €1 0 X5 n = Xgn and Ysn©€1—1 = Ysa-

Lemma4.14. ForO <r <nand1 < s < n, we have that V., oW, , = €., and ys, © X, = ;.

Proof. This follows from the definitions just given, using Corollary 4.4 and the alternative forms of the
definitions of e, and f;, from (4.16) and (4.18). O

Lemma 4.15. For 0 < r, s < n, we have that

of,, ifs=0<randn#1t(mod2)

UrpnOVsp = B r+ “4.21)

n

Or.s€n+1 otherwise.

Proof. This is clear for n = 0 so assume n > 1. By the definitions and Corollary 4.4, we have that

n+1 n+1
0 0
wr+p p
r r r . r
Uy, 0 Vsp = (—1) nse ¥, =(-1) n—s TP = (—1) @
n n n+1
wherea = (n—s,n,n—1,--- ,;n—r+1,n—r—1,...,1,0) € N"*! If s = r then « is a rearrangement

of p,+1, so this is equal to e, thanks to Corollary 4.8. If 0 < s # r then «a has two entries equal to
n— s < n, so this is 0 by Corollaries 4.8 and 4.9. Finally if 0 = s # rthen @ = (n,n,n —1,...,n—r+
I,n—r—1,...,1,0) and Corollary 4.9 gives the exceptional formula in this case, referring to (4.17) to
see the appropriate form of f, . O

Corollary 4.16. For 0 < r, s < n, we have that

|ty ifs=0<randn#t(mod2)
€rn © €sn = { O.s€n Otherwise. (4.22)
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Proof. By Lemma 4.14, we have thate,, oe;, = v,,ou,, 0V, ouy,. Exceptin the case s = 0 < r and
n # t (mod 2), we have that u,, 0v,, = 6, €, by Lemma4.15, and e, ou,,, = u,, by Corollary 4.4.
The conclusion then follows using that v, ou,,, = e,, once again. Suppose from now on that s = 0 < r
and n # t (mod 2). Then, using the form of f, , from (4.18), Lemma 4.15 gives instead that

n n n
n—r P n—r P n—r\.\ P
n P " o nC(
€nC€n = Vin O (ur,n 0 Vo) 0 gy = <_1)r @1 +p (-1’ Tr_1dp <_1)r b T, 1+p "
n P n P HQ(
n+1 n n—1

It remains to apply Corollary 4.3 to see that this is equal to —f, ,; for this (4.17) is most convenient. O
Lemma 4.17. Assume that n =t (mod2). For 1 < r, s < n, we have that X, , © Ys, = Or.5€n—_1.

Proof. When n =t = 1 this follows immediately from the first relation from (3.3). Now suppose that
n = 2. Since X, is a sum of two terms (the second being 0 in case r = 1), S0 t00 iS X;;, 0 Y5,. We
compute the two terms separately. The first term is

n—1 n—1 n—1
P Y 0
@r—1tp
(_l)rfl - p' _ (_l)rfln_Y @Tr—1tp _ (_l)rfl T—1+p  _ (_l)rfl(ss’l @4p
n—s
n—1 n—1 n—2 n—1

where we used Corollary 4.4 for the first equality and Corollary 4.3 for the last one. If r = 1 (when we
already know that the second term is 0) this is d5,1e,—; by Corollary 4.4, and we are done. Assuming
from now on that r > 2, the second term is

n—1

n—1 n—1
p 4 p
wr_2+p r—2+ r—
(=1)" =y @: ey @F\ﬁp
n—s p n—s n—s
n—2 n—2 n—3
n—1 n—I1
p 4 p
4.3) wr—2+p wr—2+p
Dy = (-1, = ],
n—2 n—2

n—1

where« = n—s,n—2,....n—r+1ln—r—1,...,1,0) € N*=1 Tf § = 1 this cancels with the
first term to give 0, and we are done. Assuming from now on that s > 2, the first term is 0, and it just
remains to apply Corollaries 4.8 and 4.9 to rewrite the second term, noting that n = ¢ (mod 2) so the
first term on the right hand side of (4.7) is 0, as is the right hand side of (4.8). We get O if r # s and,
after one more application of Corollary 4.4, we get e,,_; if r = s, as claimed. O
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Corollary 4.18. Assume that n =t (mod?2). For 1 < r, s < n, we have that f,, o £, = 6, ,f,.,,.
Proof. This follows by Lemmas 4.14 and 4.17. O

Lemma 4.19. Assume that n = t (mod2). For0 < r < nand 1 < s < n, we have that u,,, 0y, =
Xsn O Vin = 0.

Proof. We first consider X, , © V,.,. Since X;, is a sum of two terms, so too is X, © V,,. We show that
both of these terms are 0. The first term is

n—1 n—1 n—1 n—1

P P 14 P
1 W—1+p B i1 Ws—1+p B s—1 Ws_1+p s—1 Ws—1+p
<_1) n—r 0 - <_1) n—r P - (_1) n—r ! ( 1) ner ’ .
n+1 n n n—1

This is 0 by Corollary 4.3 since n — 1 # ¢t (mod 2). The second term is 0 automatically if s = 1, so we
are done in this case. When s > 2, the second term equals

n—1 n—1 n

—1
p p p
ws—1+p ws—1+p ws—1+p
(~1)'ner T = e T = e .
P P
n+1 n—1 n—2
n—1 n—1
p P
4.3 Ws—1+p ws—1+p
Sy “””’Qk |
n—1 n—2

which is 0 by the second relation from (3.7).
Now consider u,, oy, for0 < r < nand 1 < s < n. For notational convenience, we in fact show
n+1
that w,, oy, = 0, where 4, , := (—1)" /‘E,,ﬂ) . Applying Corollary 4.4 as usual, we have that

n

n+1 n
lolr,n O¥sn = <_1)r dwr-i-/? = (—l)r n—s Ci/wﬂrp .
n—s
n—1 n—1

This is of degree 2(r—s)—n(n—1) while by Theorem 3.6 the lowest non-zero degree of the graded vector
space HomM;[(B*("*l), B*"+1)) is —n(n — 1), so it is automatically 0 if r < 5. Assume henceforth that
r=s.Whenn=1t=1,s0r=s =1, itis easy to see that we get 0 using Corollary 3.5, so assume also
that n > 2.

In this paragraph, we treat the case that r > s. We have that w,, +p, = (n,n—1,...,n—s,...,n—
r+l,n—r—1,...,1,0) e N". Leta := (n—s,n,n—l,...,n/—\s,...,n—r~|—1,n—r—1,...,1,0) e N,
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i.e., we have moved the entry n — s to the beginning. Let 8 := (n — s, y,...,@,—1). We have that

n

ﬁr,n O¥Vsn = (_l)r q/wﬂrp ¢ 7) r+s n— @/ r+s ﬁ\b

n—1

In checking the second equality here, one also needs to observe that the term arising from the first term
on the right hand side of (4.7) (which can definitely appear as n — 1 # 7 (mod 2)) is 0 due to the second
relation from (3.7). Now we have that 81 = 8, = n— s, so this is 0 by Corollary 4.9; again, when s = 1,
the term arising from the right hand side of (4.8) vanishes due to (3.7).

Finally, we need to treat the case that r = s (and n > 2 still). We let @ := @, + p, = (n,n —
lL...on—r+1ln—r—1,...,1,00 e N, B:= (n— s,@1,...,p—1),and y := (n — s, @2, ..., ). As
r = s = 1, the tuple vy is a permutation of p,, and @; = n. Using Corollary 4.8 several more times like
in the previous paragraph, we get that

n

n
ﬁr’n OYsn = (_l)r n—s é/a \ban = r+1 slﬁ\ban
n—1

n—1

n n n n—1
:(_1)r+1n®/y = né/p - nd/ — nd{j/.
n—1 n—1 n—1 n—1

This is 0 by Corollary 4.3, using that n — 1 % ¢ (mod 2). i

Corollary 4.20. Assume that n =t (mod2). For 0 < r < nand 1 < s < n, we have that e, o f;, =
fs,n C€pn = 0.

Proof. This is clear from Lemmas 4.14 and 4.19. O

Theorem 4.21. The following hold for n = 0

(1) If n = t (mod?2) then {e,,,f;, |0 < r < n,1 < s < n} is a set of mutually orthogonal
homogeneous idempotents whose sum is B  e,. Each of the idempotents e,, (0 < r < n) is

conjugate to €,,1 = €y, Since €,41 = W, O Vpepand €., = VepoU,, forr = 1,...,n. Each of
the idempotents £, (1 < s < n) is conjugate to e,_; since €,_| = X;, 0y, and £, = y;,0X;
fors=1,...,n

(2) If n # t (mod?2) then {e,, + f,, | 0 < r < n} is a set of mutually orthogonal homogeneous
idempotents whose sum is B x e,. Each of these idempotents is conjugate to e, = ey, Since,
recalling that W, = W, —W,, 0 Vo, we have that e, | = W, oV, and e., +1., = v, ,ow,,
forr=1,...,n

Proof. (1) The fact that e,, (0 < r < n) are mutually orthogonal idempotents follows from Corol-
lary 4.16. The fact that f;,, (1 < s < n) are mutually orthogonal idempotents follows from Corol-
lary 4.18. The orthogonality of each e,, (0 < r < n) with each f;,, (1 < s < n) follows from Corol-
lary 4.20. These idempotents sum to B * e, by Lemma 4.13. Alsou,, ov,, = e, by Lemma 4.15,
and v, ou,, = e, by Lemma 4.14. Finally, X;, 0y, = €,—1 by Lemma4.17, and y, , 0 X, , = f;, by
Lemma 4.14.

(2) We first show that e, + f,,, (0 < r < n) are mutually orthogonal idempotents by checking that
(er,n + fr,n) o (ex,n + fs,n) = 6r,x (er,n + frn)
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for 0 < r,s < n. If r = 0 this follows because fy, = 0, ey, 0 €5, = ¢ s€0,, and, assuming s > 0, we
have that ey, of;, = —ep, 0es, 0eg, = 0, all by Corollary 4.16. If r > 0 and s = 0 it follows because
e.,oey, = —f,andf. ,o0e, = —e.,0ey,0e, = —e., 0ey, = f., by Corollary 4.16. Finally
suppose that 1 < r, s < n. Then by Corollary 4.16 we have that

(er,n + fr,n) © (eS,n + fSJl) = er,n © es,n + er,n o S,n + fr,n o es,n + fr,n o fs,n
=€,0€, —€,0€,0€, —€,0€,0€,+€,0€,0e;, 0y,
= 5r,xer,n - 5r,ser,n C€pn = 5r,s(er,n + frn)

We have that >."_(e,, + f.,) = B x e, by Lemma 4.13. Finally, using Lemmas 4.14 and 4.15, Corol-
lary 4.16 and uy,, = vo,, = €g,, we have that

WinOVip =Wy OV — W, OU0, O Ve = €41,
VinOWrp =V OWyyp — V00, ,0€0,, = €, —€,,0€,, = €, + fr,n

forl <r<n. O

4.3. Locally unital graded algebras and modules. Before explaining the full significance of Theo-
rem 4.21, we need to review some basic terminology. Suppose that 4 is any small graded category and
let I be its object set. The path algebra of 4 is the graded algebra
A=@1;Al;  where  1;Al;:=Homg(j,i),
i,jel

with multiplication induced by composition in 4. In general, this is locally unital rather than unital,
equipped with the distinguished system 1; (i € I) of mutually orthogonal idempotents arising from the
identity endomorphisms of the objects of 4. By a graded left A-module, we mean a module V as usual
which is itself locally unital in the sense that V = @,; 1;V. We sometimes refer to 1,V as the i-weight
space of V. There are also the obvious notions of graded right A-modules and, given another locally
unital graded algebra B, graded (A, B)-bimodules.

For graded left A-modules V and W and d € Z, we write Homy(V, W), for the vector space of all
ordinary A-module homomorphisms f : V — W such that f(V,) € W4 for each n € Z. Then the
graded vector space

Homy (V, W) := P Homy (V, W)y
dez
is a morphism space in the graded category A-gMod of graded left A-modules. We denote the underlying
category consisting of the same objects but just the degree-preserving morphisms by A-gmod. This is
the usual Abelian category of graded left A-modules. It is equipped with the downward grading shift
functor g defined as in the General conventions, and we have that

Homy (V, W), = Homy(V, qu)o = HomA(q_dV, W)o. (4.23)

We use the symbol = to denote (degree-preserving) isomorphism in A-gmod.

Let A-pgmod be the full subcategory of A-gmod consisting of finitely generated projective graded
modules. Also let Ky(A) denote the split Grothendieck group of the additive category A-pgmod. This
is naturally a Z[q, ¢~ ']-module with the action of ¢ induced by the grading shift functor. One could
also define K((A) equivalently as the split Grothendieck group of the graded Karoubi envelope of 4,
since the latter category is contravariantly equivalent to A-pgmod by Yoneda’s Lemma. We will not
take this point of view here, but note that some care is needed in the identification since contravariant
equivalences interchange ¢ with g~

Assume in this paragraph that A is locally finite-dimensional and bounded below, meaning that for
every i, j € I, the graded vector space 1; Al is locally finite-dimensional, i.e., each of its graded pieces
1;A41; are finite-dimensional, and 1;A41; = O for d « 0. Then Ko(A) can be understood in purely
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combinatorial terms. To explain what we mean, referring to [Bru23, Sec. 2] for more details, we note to
start with that the weight spaces of any irreducible graded left A-module L are finite-dimensional, and
Schur’s Lemma holds:

End4 (L) = k. (4.24)
We say that a graded left A-module V is locally finite-dimensional if 1;V, is finite-dimensional for
each i € I and d € Z, and bounded below if for each i € I we have that 1;V; = 0 for d « 0. Since the
distinguished projective modules A1; (i € I) are locally finite-dimensional and bounded below, it follows
that any finitely generated graded left A-module also has these properties. Any graded left A-module has
an injective hull in A-gmod, and any finitely generated graded left A-module has a projective cover in
A-gmod, the latter being a summand of a finite direct sum of degree-shifted copies of the distinguished
projective modules A1; (i € I). Let L(b) (b € B) be a full set of representatives for the irreducible graded
left A-modules (up to isomorphism and grading shift), and define P(b) to be a projective cover of L(b).
The graded multiplicity of L(b) in a locally finite-dimensional graded module V is the formal series

for all finite graded filtrations
. - _ ~ 4 g d
[V:L(b)], = dZ:Zmax <‘{r— L...,n|V,/V,_y = ¢°L(b)}| O=Voc -.CV, =V )q .
€

Schur’s Lemma implies that

[V : L(b)], = dim, Homy (P(b), V). (4.25)
Note also that this belongs to N((¢~!)) when V is finitely generated. Finally, any finitely generated
projective graded left A-module P satisfies

P = @ P(b)®dimsHoma (PLE)). (4.26)
beB
Now it follows that that Ky(A) is a free Z[g, ¢~ ']-module with basis [P(b)] (b € B).
Another basic notion involves induction and restriction. For this, we start with a pair of small graded
categories, 4 and B, with object sets denoted I and J, respectively. Let A and B be their path algebras.
Given a graded functor F : 4 — B, there is a graded functor

Resp : B-gMod — A-gMod 4.27)
called restriction along F. This takes a graded left B-module V to the graded vector space
1FV = @ lFiV
i€l
with 6 € 1;A1; = Homg(/, i) acting as the linear map F6 : 15;V — 1p;V between the summands

indexed by j and i, and as O on all other summands. This notation is for graded left B-modules, but it is
readily adapted to a graded right B-module V, letting

VIF = (—B VlF,'
€A
which is a graded right A-module. The functor Res is isomorphic to @),y Homp(B1;, —). Hence, by
adjointness of tensor and hom for locally unital algebras (e.g., see [BS18, Lem. 2.7]), it has a left adjoint

Indr := Blp ®4 — : A-gMod — B-gMod, (4.28)

where Blp is the graded (B,A)-bimodule obtained by restricting the regular (B, B)-bimodule B on
the right. We refer to Indy as induction along F. If @ : F = G is a graded natural transformation
between graded functors F, G : 4 — B, we obtain graded bimodule homomorphisms Bl — Bly and
1B — 1B defined by the linear maps 1;Blg; — 1;BlF;,6 — 6o, and 15;Bl; — 16,B1;,6 — «a;080,
respectively, for i € I, j € J. These bimodule homomorphisms define graded natural transformations
Ind, : Indg = Indr and Res,, : Resp = Resg.
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Suppose finally that the small graded category A4 is monoidal, with tensor product bifunctor
—*x— AR A — 4, 4.29)

where we are using ® to denote linearized Cartesian product. Then there is an induced tensor product
bifunctor making A-gMod into a graded monoidal category in its own right. We call this the induction
product; it is also known as Day convolution. To define it, observe that the graded algebra A ® A is the
path algebra of the graded category 4 ® 4. The induction product is the graded bifunctor

— ® — : A-gMod ®A-gMod — A-gMod (4.30)

that is the composition of the usual tensor product —® — : A-gMod RA-gMod — A ®A-gMod followed
by the functor Ind_,_ : NB ® A-gMod — A-gMod defined by induction along (4.29). Note that — ® —
is right exact in each argument but it is not necessarily exact. It is clear from the definition that

Al,’@AleAli*j 4.31)
for i, j € I. From this, one deduces that the restriction of —&® — makes A-pgmod into a monoidal

category. Consequently, Ko(A) is actually a Z[q, g~ ']-algebra with multiplication satisfying
[A1][A1;] = [Al;® Al;] = [Alu;]. (4.32)

4.4. Identification of the Grothendieck ring. Now we apply the general setup just explained to the
nil-Brauer category. We denote the path algebra of A(B, for the fixed value of ¢ simply by NB. Its
distinguished idempotents arising from the identity endomorphisms of B*" (n € N) will be denoted by
1, (n € N). So we have that

NB= P 1,NBl,  where  1,NBIl, = Homyg (B*", B™").
m,neN

Theorem 3.6 implies that NB is locally finite-dimensional and bounded below, so that we are in the sit-

uation discussed in the third paragraph of subsection 4.3. Since AB, is monoidal, we have the induction

product —® — : NB-gMod RNB-gMod — NB-gMod defined as in (4.30). It makes Ky(NB) into a

Z[q,q']-algebra. Our goal is to identify this with the integral form zU; of the i-quantum group.
Recalling the idempotent e, € 1,NB1,, from (4.12), we define

P(n) := ¢ """ DNBe,. (4.33)

This is a finitely generated projective graded left NB-module. In particular, we have that P(0) = NB1,
and P(1) = NB1;. Also let

B:= P(1) ® — : NB-gMod — NB-gMod (4.34)

be the endofunctor defined by taking the induction product with the projective module P(1) associated
to the generating object B of A‘B,. From (4.31), we have that

B(NB1,) = NBl,.,. (4.35)

Since it is clearly additive, it follows that B takes finitely generated projectives to finitely generated
projectives, i.e., it restricts to an endofunctor of NB-pgmod. This is all that we need for now, but we will
say more about B viewed as an endofunctor of the Abelian category NB-gmod in subsection 5.3 below.

Lemma 4.22. For n € N, we have that

f Pn+ 1)@t @ p(n—1)® jfn =1 (mod?2)
BP(n) = { P(n + 1)®+1] ifn # t (mod?2).
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Proof. First consider the case that n % t (mod2). By the first part of Theorem 4.21(2), we have that
Bxe, = Zf:o(er,n + f,.,) as a sum of mutually orthogonal idempotents. As in (4.31), we deduce that

n
BP(n) = ¢ 2"""UNB1, ® NBe, = @D ¢~ 7" UNB(e, + f..).
r=0
To complete the proof, we claim that q*%"("*l)NB(enn +f,,) = ¢ P(n+1) forany 0 < r < n. The
second part of Theorem 4.21(2) shows that right multiplication by v,., defines an invertible NB-module
homomorphism NB(e,, + f.,) — NBe,,; with inverse given by right multiplication by w,.,. By its
definition (4.19), v, , is of degree —2r. Recalling (4.23), this shows that

qf%n(nfl)NB(er’n +fr,n) & qf%n(nfl)beB €l = q%(nJrl)n*%n(n*l)*er(n + 1) _ qanrP(n + 1),

as claimed.
Instead, suppose that n =t (mod 2). Then the first part of Theorem 4.21(1) gives that

n n

BP(n) = ¢ *"""UNBI1, ® NBe, = D ¢ """ INBe,, ® P g """ UNBf,,.
r=0 s=1
To complete the proof, it suffices to show that q_%"("_l)NB en = q ¥Pn+1)for0 <r<n
and that q*%"(”*l)NB f,, = ¢""172P(n — 1) for 1 < s < n. The first assertion here follows from
the second part of Theorem 4.21(1) just like in the previous paragraph (replacing w,, with u,,). To
prove the second assertion, right multiplication by y; , defines an invertible NB-module homomorphism
NBf;, — NBe,_; with inverse given by right multiplication by X; ,. By its definition (4.20), yy, is of
degree 2n — 2s, so this shows that

q—%n(n—l)NB f,, = q—%n(n—l)-i-Zn—ZSNB e, | = q%(n—l)(n—Z)—%n(n—1)+2n—25P(n_1) _ qn-H_ZSP(n—l).
o
Recall the sesquilinear form (-, -)" on U} from (3.36).

Theorem 4.23. The modules P(n) (n = 0) give a complete set of indecomposable projective graded
left NB-modules (up to isomorphism and grading shift). Moreover, there is a unique Z|q,q~']-algebra
isomorphism
Kk : Ko(NB) = zU!

such that

(1) k([BP]) = Bk/([P]) for any finitely generated projective graded module P.
The following properties also hold for finitely generated projective graded modules P, Q and n = 0:

(2) x([NB1,]) = B";

() ([P()]) = P |

(4) dim, Homng (P, Q) = dim, T - {x,([P]), x([Q]))".

Proof. Let 4, : zU! — Ko(NB) be the Z[g, g~ ']-module homomorphism taking P, to [P(n)] for each
n = 0. By (2.23) and Lemma 4.22, it follows that A, intertwines the endomorphism of z7Uj; defined by
left multiplication by B with the endomorphism of Ky(NB) induced by the functor B : NB-pgmod —
NB-pgmod. Hence, also using (4.35), we have that

A(B") = 4(B"Py) = [B"P(0)] = [B"NB1y] = [NB1,]. (4.36)

‘We also have that
dim, Homng (P(m), P(n)) = dimy I" - {(Py,, Pp)' (4.37)
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for any m,n > 0. To see this, since both 7U! and K(NB) are free Z[g, ¢~ ']-modules, it is harmless to
extend scalars from Z[g, g~ '] to Q(g). Then P,, and P, are Q(q)-linear combinations of the elements
B* (k = 0) (see (2.22) for the explicit formula which is not needed here). Applying A; gives that [P(m)]
and [P(n)] are corresponding linear combinations of [NB1;] (k > 0). In this way, the proof of (4.37) is
reduced to checking that

dim, Homyg (NB1,,,NB1,,) = dim,I" - (B", B")’ (4.38)

for all m,n > 0. Since Homyg(NB1,,,NB1,) = 1,NBl, = HomN@t(B*”,B*’"), this follows from
Theorem 3.7.

Now we prove that the finitely generated projective graded module P(n) is indecomposable: by
Corollary 2.8 and the y'-invariance of P,, we have that (P,, P, € 1 + q_IZ[[q_l]], hence, by (4.37),
we have that Endng(P(n))o = k. This implies the indecomposability of P(n). Moreover, the isomor-
phism classes [P(n)] (n > 0) are linearly independent over Z[g, g~ !]. This follows because the matrix
(dimy Homng (P(n), P(m))mn=0 is invertible by (4.37) and Corollary 2.8 (or the non-degeneracy of the
form (-, -)"). Hence, for m # n the module P(n) is not isomorphic to any grading shift of P(m). Finally,
we observe that any indecomposable projective graded left NB-module is isomorphic to ¢?P(n) for
unique d € Z,n € N. This is true because each left ideal NB1,, is isomorphic to a direct sum of grading
shifts of the modules P(m) for m > n, as follows by induction on 7 using (4.35) and Lemma 4.22.

We have now proved the first sentence in the statement of the theorem. It follows that the iso-
morphism classes [P(n)] (n = 0) give a basis for Ko(NB) as a free Z[¢, g~ ']-module. We deduce
immediately that 4, is an isomorphism of free Z[g, ¢~ ']-modules. Let x; := A, ! This satisfies the
property (1). Moreover,

k(B" - B") = k;(B"*") = [NBl,,1s] = [NB1,,®NB1,] = [NB1,,][NB1,].

It follows that the Q(¢)-module isomorphism Q(¢)®z(, ;- 112U} = Q(q) ®z(,4-1] Ko(NB) induced by «;
is actually a Q(g)-algebra isomorphism. Hence, «; itself is a Q(g)-algebra isomorphism. The uniqueness
of an algebra isomorphism «; satisfying the property (1) is clear. We also get (2) and (3) since A; satisfies
the appropriate inverse properties by the definition of A, and (4.36). Finally, (4) follows from (4.37), the
Y'-invariance of each P,, and the sesquilinearity of the forms on either side of the statement of (4). O

Corollary 4.24. The idempotents e, (n = 0) from (4.12) give a complete set of primitive homogeneous
idempotents in the nil-Brauer category (up to conjugacy).

Proof. We need to establish the following two assertions:

e cach e, is a primitive homogeneous idempotent in the path algebra NB;
e given a primitive homogeneous idempotent e € 1,,NB1,,, there is a unique n > 0 and elements
x e 1,,NB1,,y € 1,NB1,, such that e = xy and e, = yx.

The first of these is equivalent to the indecomposability of the projective graded module NB e, estab-
lished in Theorem 4.23. To prove the second assertion, NB e is an indecomposable projective graded
module, hence, it isomorphic to ¢?NB e, for unique d € Z,n € N by the definition of P(n) and The-
orem 4.23 again. Let 6 : NBe — quB e, be an isomorphism. Since Homng(NBe, quB €)o =
Homng (NBe,NBe,); = eNB,e,, there is a unique x € eNB e, such that 6 is right multiplication by x.
Similarly, there is a unique y € €,NB_ge such that #~! is right multiplication by y. We then have that
xy = e and yx = e, as required. O

Corollary 4.25. Forn = 0, we have that

15
NBln ~ <_2B P(n _ 2m)®([n72m]!Zne?’,(nlx(n72m))[al+l]2"'[am+l]2).

m=0
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Proof. This follows from the theorem together with Corollary 2.13. O

Theorems A and B as formulated in the introduction follow from Lemma 4.22 and Theorem 4.23.

5. REPRESENTATION THEORY

In this section, we introduce an explicit graded triangular basis for the path algebra NB of the nil-
Brauer category AB,, which fits well with the general machinery developed in [Bru23]. This allows us
to define standard and proper standard modules, and to classify irreducible graded NB-modules by their
lowest weights. Then, in Theorem 5.13, we establish the existence of a certain short exact sequence of
functors which can be viewed as a categorification of part of Theorem 2.1. We use this to describe the
effect of the functor B on standard and proper standard modules, thereby proving Theorem C from the
introduction. Finally, we prove character formulae for proper standard and irreducible modules, thereby
proving Theorems D and E, and derive further branching rules.

5.1. Triangular basis. The center Z(A) of a locally unital graded algebra A = @), ;¢ 1iA1; is the
commutative subalgebra of the unital graded algebra | [, 1;A1; consisting of tuples (z;);cr such that
fzj = zi@foralli,j € Iand § € 1;A1;. Assuming that A is the path algebra of a small graded
category A4, this is a direct translation of the definition of the center of the category 4. Given a (unital)
commutative graded algebra R, we say that A is a locally unital graded R-algebra if we are given a
unital graded algebra homomorphism 7 : R — Z(A). Then each subspace 1;A1; is naturally a graded
R-module. Recalling the algebra I' from subsection 3.3, the path algebra NB of A%, is a locally unital
graded I'-algebra in this sense, with the structure map 7 : ' — Z(NB) mapping p € I'to (1, *x¥,(p) )nen-
The resulting I'-module structure on 1,,NB1,, is the same as in Theorem 3.6.

Recall that D(m, n) is a set of representatives for the ~-equivalence classes of reduced m x n string
diagrams, two such diagrams being equivalent if they define the same matchings on their boundaries.
Theorem 3.6 shows moreover that NB is free as a I'-algebra with basis ( J,,, ,~ D(m, n). We now distin-
guish three special types of reduced string diagrams:

(X) Reduced string diagrams which only involve generalized cups and non-crossing propagating
strings.
(H) Reduced string diagrams with no generalized cups or caps, just propagating strings (which are
allowed to cross).
(Y) Reduced string diagrams which only involve generalized caps and non-crossing propagating
strings.
From now on, we actually only need representatives for the ~-equivalence classes of undotted reduced
string diagrams of these three types. For types X or Y, we also choose a distinguished point on each
generalized cup or cup. For type H, we choose a distinguished point on each propagating string. Then
let X(a,n) < 1,NB1,, H(n) < 1,NB1, and Y(n,b) < 1,NB1, be the sets obtained from the chosen
~-equivalence class representatives of a x n string diagrams of type X, of n x n string diagrams of
type H, and of n x b string diagrams of type Y, respectively, obtained by adding closed dots labeled by
non-negative multiplicities at each of the distinguished points. Clearly, X(a,n) = Y(n,b) = @ unless
a>n<b,and X(n,n) = {1,} = Y(n,n). Shorthand:

X(n) := | J X(a,n), Y(n) := ] Y(n.b).
a=n b=n

Also let H(n) be the set of morphisms obtained from the ones in Fl(n) by placing ordered monomials
oy'og® @'5"5 .-+ in the odd O, at the right hand boundary (recall (3.23)). The latter are the images of a

basis for I' under the isomorphism y, : I’ = Endg\@;t(]l) from (3.35).
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Example 5.1. The following diagram is a typical product xiy € 114 NB 1;5:

Example 5.2. Equivalence classes of undotted reduced string diagrams of type X with f generalized
cups and n propagating strings are in bijection with the set of chord diagrams with f free chords and »
tethered ones as discussed in subsection 2.3. For example, the chord diagram (2.16) corresponds to the
string diagram

1 2 3

We hope the bijection here is apparent; it is similar to the bijection described in the proof of Theorem 3.7
but now the propagating strings become chords that are tethered to the bottom node.

Theorem 5.3. The products xhy for (x,h,y) € | e X(n) x H(n) x Y (n) give a graded triangular basis
for NB in the sense of [Bru23, Def. 1.1] (taking the sets I, S and A there all to be equal to N ordered in
the natural way).

Proof. We can choose the set D(a, b) in Theorem 3.6 so that it consists of the products xhy for (x, h,y) €
U, X(a,n) x H(n) x Y(n,b). These give a basis for 1,NB1}, as a free [-module. Since elements
of H(n) are elements of H(n) multiplied by basis elements of T, it follows that the products xhy for
(x,h,y) € Uen X(a,n) x H(n) x Y(n,b) give a linear basis for 1,NB1,. The remaining axioms of
graded triangular basis are trivial to check. O

5.2. Standard modules and BGG reciprocity. Theorem 5.3 is significant because it means we can
apply the general theory developed in [Bru23]. We recall some of the basic constructions made there.
For n € N, let NB>, be the quotient of NB by the two-sided ideal generated by 1,, (m # n). Writing & for
the canonical image of u € NB in the quotient NB>,,, we let NB,, := 1,NB>,1,. This is a unital graded
I-algebra with basis h (h € H(n)) as a free [-module. These & are the usual diagrams for elements
of a basis of the nil-Hecke algebra associated to the symmetric group. In fact, NB,, is precisely this
nil-Hecke algebra over the ground ring I". Put somewhat informally, this follows because the following
“local relations” hold:

RS IR OO

These are derived easily from the defining relations (3.2), (3.5) and (3.8), noting that the final cup/cap
terms in (3.5) and (3.8) become 0 in the quotient algebra. Because of this term, the nil-Hecke algebra
NB, is not a subalgebra of NB—one really does need to pass first to the quotient NB>,. In proper
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algebraic language, NB,, is the I'-algebra generated by xi, ..., x, all of degree 2 and 74, ...,7,— all of
degree —2, with 7; and x; denoting the crossing of the ith and (i + 1)th strings and the dot on the ith

string, respectively (numbering strings by 1, ..., n from left to right). A complete set of relations is
XiXj = XjX;, (5.2)
7 =0, (5.3)
77; =11 for |i — j| > 1, (5.4)
TiTip1Ti = Tit 1 TiTit 1, (5.5)
XiTi — TiXit1 = 1 = TiX; — X175 (5.6)

One possible basis for NB,, as a free graded ['-module is given by
XXy, (WeSu,r,....,r, = 0) (5.7)

Here, 7,, is the element of NB,, defined by multiplying the generators 7; according to some reduced
expression of w. Recall also that the center of the nil-Hecke algebra NB,, is the algebra

Z, :=T[x1,...,x,]" < NB, (5.8)
of symmetric polynomials over I.
The polynomial representation of NB,, is the graded NB,,-module I'[x], ..., x,], with x; acting in the
obvious way by multiplication and 7; acting as the Demazure operator
— s
nf = f z(f), (5.9)
Xi — Xit+1

using s; for the basic transposition (i i+1) € §,. Incorporating also a grading shift, we obtain the
indecomposable projective graded NB,,-module P,(n) := q%”(”_l)l"[xl, ... Xy]. Using (5.7), it is easy
to see that P,(n) is generated by the polynomial u, := 1 (which is of degree —%n(n — 1)) subject just
to the relations that r;u, = O0fori=1,...,n— 1.

Let L,(n) := hd P,(n). This is an irreducible graded NB,-module, and every irreducible graded
NB,,-module is isomorphic to L,(n) up to a grading shift. Writing i, for the image of u,, in the quotient
L,(n), the monomials

X exti, (0<ri<n—i) (5.10)
give a homogeneous linear basis for L, (n). In particular,
dim, L,(n) = [n]!. (5.11)
It is well known that
‘rwn(x'l’_lxg_2 Ce X )iy = Uy, (5.12)

Note also that any homogeneous element in Z,, of positive degree acts as 0 on ii,, as does any 7; (1 <
i <n—1). This is a full set of relations for L,(n).

We identify NB>,-gMod with a subcategory of NB-gMod in the obvious way. Trunctation with
the idempotent 1, defines a quotient functor j* : NBx,-gMod — NB,-gMod. This has left and right
adjoints called the standardization and costandardization functors:

Jt == NBx,1, ®s, — : NB,-gMod — NB-gMod, (5.13)
Ja = €|—> Homyg, (1,NB>,1,,, —) : NB,-gMod — NB-gMod . (5.14)

m=n

The following lemma implies that both of these functors are exact; see also [Bru23, Lem. 4.1].

Lemma 5.4. Forn € N, NBy, 1, is free as a right NB,-module with basis % (x € X(n)), and 1,NBx,, is
free as a left NB,,-module with basis y (y € Y (n)).
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Proof. This is an instance of [Bru23, (4.4)-(4.5)]. O

For n € N, we define the standard and proper standard modules for NB to be the induced modules
A(n) 1= jIPy(n), A(n) := jLy(n). (5.15)

These are cyclic graded NB-modules generated by the vectors v, := 1®u, and v, := 1®ii,, respectively.
Since we have in hand a basis for L, (n), Lemma 5.4 implies that the following vectors give a linear basis
for A(n):

x(x) X ) (xe X(n) and ry,...,r, with0 < r; < n —ifor each ). (5.16)

In particular, the lowest weight space 1,L(n) is naturally identified with L, (n). Vectors in L(n) can be
represented diagrammatically by putting v, into a labeled node at the bottom, with the left action of NH
being by attaching diagrams to the n strings at the top of that node. For example, the following is a
vector in 1,,A(n) for any u € 1,,NB1,:

5.17)

It is clear this vector is O if u has some O, (r > 0) on its right boundary. In view of (3.27), this is also
true if u has some O, (r > 0) on its left boundary.

Lemma 5.5. We have that Endng (A(n)) = Z, and Endng (A(n)) = k.

Proof. The homomorphism from Z, to Endng(A(n)) defined by its action on the lowest weight space
1,A(n) = P,(n) is an isomorphism because

Endng(A(n)) = Homng.., (/) Pn(n), jY Pu(n)) = Homng, (Py(n), j" jyPn(n)) = Endng, (Py(n)) = Z,.
The argument for A, is similar, reducing to Schur’s Lemma (4.24). O
There are also the costandard and proper costandard modules
V(n) := jilu(n), V(n) := jalLa(n). (5.18)

We will not use these so often, but note that they can also be obtained from A(n) and A(n), respectively,
by applying the contravariant graded functor

7 : NB-gMod — NB-gMod (5.19)

which takes a graded module V = @, .y @ ez 11 V4 to the graded dual V® = @, ¢ D ez (11V-a)*
viewed as a graded NB-module so that (af)(v) := f(1(a)v) fora € NB,f € V® and v € V, where
T : NB — NB is the I'-algebra anti-automorphism arising from (3.10). The proof of this assertion, i.e.,

V(n) = A(n)®, V(n) = A(n)®, (5.20)

follows from the general discussion of duality in [Bru23, Sec 5], specifically, the formula (5.3) there.
One just needs to note that T fixes the idempotents 1, (n € N), hence, it descends to an anti-automorphism
T, : NB,, — NB,, fixing the generators xi,..., X,,71,...,Th—1. Moreover, the irreducible NB,,-module
L,(n) is self-dual with respect to the resulting duality ?® on NB,-gMod. This last statement is clear
because dim, L,(n) is invariant under the bar involution by (5.11), and L,(n) is the unique irreducible
graded left NB,,-module of this graded dimension.

For the basic notions of A-flags, A-flags, V-flugs and V-flags, we refer to [Bru23, Def. 6.3, Def. 6.4].
In particular, a A-flag in a graded NB-module V is a graded filtration 0 = Vo < V;--- < V,, such that
Vi/Vi_y = A(n;)®/ for distinct ny,...,n, € Nand f; € N(g~!)). Multiplicities in these four types of
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filtration are denoted (V : A(n))g, (V : A(n))g, (V : V(n)), and (V : V(n)),. For example, the standard
module A(n) has a A-flag with the multiplicities
dim, I’

() : B(w))y = [Palm) = Ln(ly = ==y (T

and (A(n) : A(m)), = 0 for m # n. This follows from exactness of ;' and the well-known representation
theory of NH,,. It should be compared with (2.30).

Now we can formulate the fundamental theorem about the structure of NB-gMod. It follows by an
application the general theory developed in [Bru23], specifically, [Bru23, Th. 4.3, Sec. 5, Cor. 8.4], and
is analogous to the basic structural results about Verma and dual Verma modules in Lie theory.

(5.21)

Theorem 5.6. The following properties hold:

(1) The standard module A(n) has a unique irreducible graded quotient L(n). Also, L(n)® = L(n),
so that L(n) is also the unique irreducible graded submodule of V(n).

(2) The NB-modules L(n) (n € N) give a complete set of irreducible graded NB-modules up to
isomorphism and grading shift.

(3) Let P(n) be the projective cover of L(n) in NB-gmod and I(n) = P(n)® be its injective hull.
Then P(n) has a A-flag and 1(n) has a V-flag, with multiplicities satisfying the usual graded
BGG reciprocity formulae

(P(n) : A(m))g = [A(m) : L(n)]g = [V(m) : L(n)],-1 = (I(n) : V(m)),1 € N(g™")

for all m,n € N. These multiplicities are 1 if m = n and 0 unless m < n.

We denote the canonical image of v, in the irreducible quotient L(n) of A(n) by ¥,. Vectors in L(n)
can be denoted diagrammatically just like in (5.17) putting ¥, into the node at the bottom of the diagram
instead of v,. Again, the lowest weight space 1,L(n) is naturally identified with the NB,-module L,(n).

Theorem 5.6 gives a classification of irreducible graded left NB-modules via their lowest weights.
The proof just explained is completely independent of any of the results from section 4. It follows
that the modules P(n) (n > 0) defined in Theorem 5.6(3) give a complete set of pairwise inequivalent
indecomposable graded projective left NB-modules. Such a classification was already established in
Theorem 4.23 by a more sophisticated method involving Theorems 3.7 and 4.21. The following shows
that the two approaches are consistent with each other:

Lemma 5.7. For n > 0, the graded module P(n) defined in Theorem 5.6(3), that is, the projec-
tive cover of L(n) is isomorphic to the graded module denoted P(n) in the previous section, that is,

g ""=1)NBe,.

Proof. Since q_%”("_l)

fices to prove that

NB e, is an indecomposable projective graded module by Theorem 4.23, it suf-

Homyg ( — ¢2"""UNBe,, L(n)), = e,L(n)1,

0 = ) # 0.

n—1

This follows because (x’l’_lxg_2 .

e,,(x'f_lxg_2 e X))V = (x'f_lx;_z -+ Xy—1)Vn, as follows from the definition (4.12) of the idempo-
tent e, together with (5.12). m|

-+ Xy—1)¥, € L(n) is a non-zero vector of degree 3n(n — 1) such that

Remark 5.8. For convenience, we have worked with the natural total ordering on N. However, the basis
in Theorem 5.3 is in fact a graded triangular basis with respect to the partial ordering < on N defined by
m<n < n—m € 2N; this is clear since X (a,n) and Y (n, a) are empty unless @ = n (mod 2). Everything
established so far is also true for this order. In particular, both 0 and 1 are minimal with respect to <, so
by Theorem 5.6(3) we have that P(0) = A(0) and P(1) = A(1).
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5.3. The projective functor B preserves good filtrations. Recall the endofunctor B of NB-gMod
introduced in (4.34). Using the construction (4.28), it can be defined equivalently as the induction
functor Indg.— where B x — : ANB, — AB, is the graded functor defined by tensoring with B. This
follows easily from the definitions; see [BV22, Lem. 2.4] for details in a similar situation. In fact,
we can go a step further to make NB-gMod into a strict graded A‘B,-module category, i.e., there is a
strict graded monoidal functor u from A, to the strict graded monoidal category gEnd (NB-gMod)
consisting of graded endofunctors and graded natural transformations. This takes the generating object
B of AB, to the graded endofunctor Indp,._ and the generating morphisms +, ><, () and | J to the
graded natural transformations Ind o Ind><*_, Ind | j,_ and Ind ,_, respectively. Notice we have

switched the cap and the cup here; this is the usual price for choosing to work with left modules rather
than right modules—we are using the contravariant Yoneda Embedding.

Lemma 5.9. The functor Indp,_ : NB-gMod — NB-gMod is isomorphic to the restriction functor
Resp.— : NB-gMod — NB-gMod. The isomorphism can be chosen so that it intertwines the endomor-
phism Ind oe : Indp,_ = Indg,_ with — Res e : Respg.— = Resp,_.

Proof. The functor Indp,— is defined by tensoring with the bimodule NB1p,_ and the functor Resp,_ is
defined by tensoring with the bimodule 15._NB. The functors are isomorphic because there is a graded
(NB, NB)-bimodule isomorphism ¢ : 15, NB — NB1p,_ such that

Remembering the sign in the nil-Brauer relations (3.5) and (3.8), the resulting isomorphism intertwines
Ind +*7 with — Res b ]

From now on, we denote the endofunctor Indg,_ simply by B (as we did in the previous section).
We often use x to denote the endomorphism of B defined by Ind o The same letter is used to denote

elements of X(n), but we think it is always clear from context which we mean.

Lemma 5.10. The endofunctor B : NB-gMod — NB-gMod is self-adjoint. Hence, on the Abelian cate-
gory NB-gmod, it is exact, cocontinuous, and preserves finitely generated projectives. Also B commutes
with the duality (5.19), i.e., we have that Bo?® =7®B.

Proof. Lemma 5.9 shows that B is isomorphic to a right adjoint to B. Hence, it is self-adjoint. The fact
that B commutes with duality follows because Res, _ clearly does so. O

Lemma 5.11. For n = 0, the degree 3(n) of the minimal polynomial of xy,) : BL(n) — BL(n) satisfies
B(n) =t (mod?2).

Proof. We are in exactly the situation discussed in Remark 3.12. Moreover, L(n) is a special object in
the sense there: we have that Endng (L(n)) = k by (4.24), and Endng (BL(n)) = Homyg (B>L(n), L(n))
which is finite-dimensional since B>L(n) is finitely generated. Now the lemma follows from the graded
analog of Corollary 3.11. O

Let ¢;, : NB, — NB,;; be the (unital) graded I'-algebra homomorphism mapping x; — X1
and 7; — 7;41. We denote the restriction of a graded left (resp., right) NB,,{-module along the
homomorphism ¢; , by LT’nV (resp., VLT’n). Let (1) », R1,,) be the resulting adjoint pair of induction and
restriction functors between NB,,-gmod and NB,,;-gmod. We have that [, = NB,,HLTJL ®nB, — and
Riyp =, NByy1 ®nB,, —
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Lemma 5.12. The vectors x|ty Ti—1 (1<i<n+1,r=0) give a basis for L’l"nNBnH as a free
graded left NB,-module. Similarly, the vectors 7,_1---T1x] (1<i<n+1,r> 0) give a basis for
NB,, 1], as a free graded right NB,,-module. Hence, the functors 11, and R, , are exact.

Proof. This is well known. The first statement follows easily from (5.7), and the second statement may
be deduced from the first by applying an anti-automorphism. O

Note that Theorem 2.1(1) can be rephrased in terms of the inverse map j~!' : U~ 5 U as
Bj~'(y) =j '(Fy) +j'(R(y).  foryeU~. (5.23)
The next important theorem can be interpreted as a categorification of this identity, with j (n > 0)
corresponding to j~!, I}, (n = 0) corresponding to multiplication by F, and the functors R, (n > 0)

corresponding to the map R. The fact that the restriction functors Ry, categorify R was first pointed out
in [KK12].

Theorem 5.13. For n > 0, there is a short exact sequence of functors'

0— /i oR, 1 -5 Boji B o, — 0, (5.24)

interpreting the first term as the zero functor in the case n = 0. Moreover, letting X' : Ry, = Ry,
and X" : I, = I, be the degree 2 endomorphisms induced by the endomorphisms of the bimod-
ules L’l“’nNB,,Jr | and NBn+1LT,n defined by left multiplication by —x| and by right multiplication by x;,
respectively, we have that

ao (f7¥) = (x/t) o, Bo(xff) = (7"1x") 0. (5:25)

Proof. All three functors appearing in the short exact sequence are defined by tensoring with certain
graded (NB,NB,)-bimodules: j?’fl o Ry ,—1 is tensoring with the bimodule NB>(n,1)Tn,1 ®NB,_,
L’f 11 NBy, Boj is tensoring with the bimodule 15, NB, 1,, (here we have used Lemma 5.9 to realize B

as restriction rather than induction), and j?’“ ol , is tensoring with NB> (1) [ ®nNB,; NBy+ 1L’1“n. In

the next two paragraphs, we construct a short exact sequence of graded bimodules and degree-preserving

bimodule homomorphisms:
— — h —
0 —> NB>(,_1) L, 1®xB,_, ¢, NB, % 15,_NB3,1, — NB: (4 1) Lot 1®NB, NByy1t],, — 0.

As LTnilNBn is free by Lemma 5.12, the graded right NB,-module NB> (-1 1,1 ®nB NB,, is
projective. Hence,

n+1

ES
n—1 Lln—1

Tor\™ (NB> (,—1) -1 ®ng,_, ¢f,_NBs, V) =0
for any graded left NB,,-module V. So this short exact sequence of bimodules remains exact when we
apply the functor — ®ng, V. Thus, we have constructed the short exact sequence of functors in the
statement of the theorem.
To construct the short exact sequence of bimodules, take m > 0. We can assume the set X(m + 1,n)

is chosen to be
xeX(mn+1)
xeX(m,n—l)}u{ I<i<n+l1 } (5.26)
T
i—1

X(m+1,n)={ :
r=

The first set on the right hand side here (which should be interpreted as @ in case n = 0) gives the
elements of X(m + 1,n) which have a propagating string at the top left boundary point. The second set
gives all remaining elements of X(m + 1, n). These have a generalized cup at the top left boundary point

1 We mean that one obtains a short exact sequence in NB-gmod after evaluating on any graded left NB,-module V.
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with (i — 1) propagating strings between that and its other boundary point for some 1 < i < n+ 1; these
are represented in the diagram by the single thick string labeled i — 1. We can assume the set H(n + 1)

is chosen to be
i—1

H<n+1>_{

In these diagrams, the propagating string with the bottom left boundary point has (i — 1) other strings to
the left of its other boundary point for some 1 < i < n+ 1. The vectors x®h (x € X(m,n — 1), h € H(n))
give a linear basis for TmNB>(n,1) 1 ®NB,_, LTnilNBn by Lemma 5.4 again. We define an injective

I<is<n+1
r=0

h € H(n) }
(5.27)

linear map @, : 1,,NBx(,—1)1,—1 ®ns,_, ¢}, NB, — 1,,-1NB>,1, on basis vectors by

el o] H
|

for x € X(m,n — 1),h € H(n). The image of a,, is the subspace of 1, ;NB>,1, with basis given
by the vectors xi (x € X(m + 1,n),h € H(n)), i.e., the basis vectors with x in the first set on the right
hand side of (5.26). We define by, : 1,4 1NBz,1, » 1,NBs(yi1)1ns1 ®xB,,, NB,+ 1], to be the
surjective linear map that is 0 on these basis vectors and is defined on the remaining basis vectors
xh (x € X(m + 1,n),h € H(n)) for x in the second set on the right hand side of (5.26) by

forxe X(m,n+1),1 <i<n+ landr > 0. In view of (5.27) and Lemma 5.4, the image vectors here
are a basis for imNBZ(H I)In+ 1 ONB,4; NBy ILT’n. Now we have that a,, is injective, b, is surjective
and im a,, = ker b,,. Then we define a := (—szo a, and b := (—szo b,,. This gives the linear maps in
the short exact sequence that we are after, and we have checked the exactness.

Next, we show that a and b are graded bimodule homomorphisms. The map a is given equiva-
lently by multiplication NB>,1,_1 ®ns,_, LT,n—lNBn_l — NanInt’f’n_l,u ®Vv — uty ,—1(v) for any
u € NB>,1,_1,v € NB,_1. This is obviously a graded bimodule homomorphism. For b, we show
equivalently that the map NBZ(n+1)in+1 ®NB,4 1 NB,,+1L’1"’n — coker a that is the inverse of the linear

map induced by b is a graded bimodule homomorphism. This inverse map is defined explicitly by

NB> (441)Int1 ®NB,,; NBuy1t],, — 1g.-NBx,1,/ima,

for any u € NBZ(n+1)In+1’ v € NB,,11, which is a graded bimodule homomorphism

It remains to check (5.25). Take m > 0. By its definition, a,, : lmNB>(n,1) 1,-1®n8,_, LT,nleB" —
1,n+1NB>, 1, intertwines left multiplication by 1®x; with left multiplication by +* 1,,,. This implies the
statement about «, noting that a sign appears since x : B = B corresponds to — Res b in Lemma 5.9.



NIL-BRAUER CATEGORY AND :-QUANTUM GROUPS 47

Similarly, for B, one checks from the definition that b, : 1,4 1NB>,1, — 1uNBx(,11)1nt1 ®ns,,,
NB,, ;1] intertwines left multiplication by + * 1,, with right multiplication by 1 & x;. O

Theorem 5.13 implies that the functor B preserves modules with A-flags and with A-flags. The next
two theorems makes this more precise. The combinatorics that emerges here matches (2.13) and (2.33).

Theorem 5.14. Consider the short exact sequence
0 — K(n) — BA(n) — Q(n) — 0

obtained by applying Theorem 5.13 to the NB,-module P,(n) (n = 0). We denote the endomorphisms

j?’*lx’A(n) : K(n) — K(n) and j?’“xg(n) : Q(n) — Q(n) from (5.25) by y and z, respectively.

(1) Assuming that n > 0 so that K(n) # 0, we have that K(n) = A(n — 1)®"/0=4")_ More
precisely, we have that
K(n) =¢"'Ty] ®r Afn — 1)
with the action of NB being on the second tensor factor. This isomorphism may be chosen so
that the endomorphism y of K (n) corresponds to multiplication by y on the first tensor factor.
(2) We have that Q(n) = A(n + 1)@+ 1 More precisely, recalling also Lemma 5.5,

On) = ¢"Zy[2/ (e — x1) -+ (2 = Xu41)) Bz, Aln + 1)

with the action of NB being on the second tensor factor. This isomorphism may be chosen so
that the endomorphism z of Q(n) corresponds to multiplication by z on the first tensor factor.

Proof. (1) According to Theorem 5.13, we have that K (n) = j?’fl (R} n—1P,(n)), and the endomorphism

y of K(n) is obtained by applying the functor j?_l to the endomorphism we also denote y := x}, ) of

R} ,—1P,(n) defined by left multiplication by —x;. Therefore, by exactness of jf’fl, it suffices to prove
that Ry ,_1P,(n) = ¢"~'T[y] ®r P,_1(n — 1) as a graded NB; ®; NB,,_;-module, identifying NB; with
I'[y] so y = —x;. This follows because

P,(n) = q%”(”_l)l"[xl, X2y ey Xy] = q”_ll"[y] ®r q%("_l)(”_z)l"[xz, ey Xn
(2) By Theorem 5.13, we have that Q(n) = j?’“(ll,nPn(n)), and the endomorphism z of Q(n) is ob-
tained by applying j?’“ to the endomorphism also denoted z := x}, ) of I) ,P,(n) defined by right
multiplication by x;. Therefore, it suffices to show that

LinPa(n) = ¢'Zy[2]/ (@ = x1) -+ (2= Xur1)) @z, Puga(n + 1)

as a graded NB,;1-module, where the action is on the second tensor factor. Using Lemma 5.12, it
is easy to check that both sides have the same graded dimensions. Hence, it suffices to construct a
degree-preserving surjective homomorphism

0:4"Zu1[2]/((z—x1) - (2= Xut1)) ®z,4y Pus1(n+ 1) > NByy 1], ®ns, Pa(n). (5.28)

Recall that P, (n + 1) is generated by u, subject to the relations 7;u,+; = Ofori = 1,...,n. Itis
easy to see that 7, - - - 771 x| ®u, is annihilated by all 7;. Hence, there is a unique graded NB,,; 1-module
homomorphism such that

0:q"Zn1102) ®z,,, Puy1(n+1) = NBui1(y,, ®ng, Pu(n), 2 @py1 = Ty 12710 @ iy

for any r > 0. This takes (z—x1) -+ (2— Xpt+1) ®Upi1 tO Ty - - T2T1(x] — X1) -+ - (X] — Xpt1) ®uy = 0.
Hence, we get induced a graded NB,,; {-module homomorphism 6 as in (5.28). It remains to show that
this is surjective. The module on the right hand side is cyclic with generator 1 ® u,, so we just need to
see that it is in the image of #. To see this, we show by induction on m = 0, 1,...,n that 1 ® u, lies in
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the submodule generated by 7, - - - 7271 X @ uy (0 < r < m); the m = n case of this gives what we need.
The base case m = 0 of the induction is trivial. The induction step follows from the relation

T+ ToTIX] @ Uy = X 1Ty - - -me’ln_l ® Uy + Tp1 -+ T2TIX] 'Qu,, (5.29)
which follows using (5.6). m|
Theorem 5.15. Consider the short exact sequence

0 — K(n) — BA(n) — Q(n) — 0
obtained by applying Theorem 5.13 to the NB,-module L,(n) (n = 0). We denote the endomorphisms

- 1x/A( ) : K(n) — K(n) and ]"H ”(n) : O(n) — QO(n) from (5.25) by ¥ and Z, respectively.

(1) Assuming that n > 0 so that K (n)_ is non-zero, the module K(n) is a A-layer that is equal
in the Grothendieck group to [n] [A(n - 1)] More precisely, letting K;(n) be the image of
3 : K(n) — K(n) defines a graded filtration

K(n) = Ko(n) > Ki(n) > -+ > K,(n) =0
such that K;_1(n)/K;(n) = ¢"H'=%A(n— 1) fori=1,...,n. Also
dim, Homyg (K (1), L(n — 1)) = ¢' ™. (5.30)
(2) The module Q(n) is a A-layer equal in the Grothendieck group to ¢" [A(n+ 1)] /(1 — ¢7?%).
More precisely, letting Q;(n) be the image of 7 : Q(n) — Q(n) defines a graded filtration
Q(n) = Qo(n) > Qi(n) > Oa(n) >
such that Q;_1(n)/Qi(n) = ¢"*>~2A(n + 1) fori > 1. Also

dim, Homng(Q(n),L(n + 1)) = g~ ". (5.31)
Proof. (1) Let V := Ry,_1L,(n) and y : V — V be the endomorphism defined by multiplication by
—x1. Let V; := im¥'. Like in the proof of the previous theorem, the proof of the first assertion in (1)

reduces to showing that V;_1/V; = ¢"*1=%L, |(n — 1) as a graded NB,,_;-module fori = 1,...,n, and
that V,, = 0. We have that

n

DU X e = (x1 — x1)(x1 — x2) (31 — x) = O,

r=0
where e, is the rth elementary symmetric polynomial in xy, ..., x,. Also let ¢/, be the rth elementary
symmetric polynomial in xy, ..., x,. Since e, acts as 0 on L, ( ) for r = 1, it follows that x acts as 0

too. This implies that V,, = 0. Now take 1 < i < n. We claim that there is a graded NB,_;-module
homomorphism

00 q" " T H Ly (n— 1) = Vit [V, fin—y — X ity + Vi,
This follows using the generators and relations for L,_;(n — 1) discussed earlier since 75,..., 7,1
annihilate x‘l_lﬁ,,, as does e , for each r > 1. To see the latter assertion, We have that
er = epp — xle . (5.32)

The first term on the right-hand side of (5.32) is O on x‘ 1u,,, and the second term maps it to V;. This
proves the claim. Finally, each 6; is actually an 1s0rn0rph1sm. This follows by considering the explicit
bases for L,(n) and L,_;(n — 1) from (5.10).

It remains to prove (5.30). We have that

Homyg (K (n), L(n — 1)) = Homng_, (i~ YRy aLn(n)),L(n — 1))
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=~ Homyg, | (RL,,L,,(n),j”*lL(n — 1))
= HOII’INBVH1 (Rl,nLn(l’l), Ln_l(n — 1))

Let f : Ry ,L,(n) — L,—;(n — 1) be an NB,,_;-module homomorphism. Since x; = (x; + -+ + x,) —
(x2+ -+ x,) and x + - - - + x,, annihilates L,(n) as it is central of positive degree, we see that

Fxig) = (=1 f (2 4+ x) @) = (=1)'(x1 + -+ + x0—1) f(itn).

This is O for i > 1. It follows that f sends the submodule V; defined in the previous paragraph to 0.
Thus, it factors through the quotient Vo/Vy = ¢"~'L,_1(n — 1). Using Schur’s Lemma, we deduce that

dim, Homng, | (Ri xLy(n), Ly—1(n — 1)) =
dim, Homng, | (¢" 'Ly—i(n = 1), Ly (n — 1)) = ¢' " (5.33)

(2) Let W := I, ,L,(n) = NB,11¢],, ®nB, L,(n) and Z : W — W be the endomorphism defined by
right multiplying the bimodule NB,,+1L’1’" , by x1. Let W; := im 7. For the first assertion, we need to
show that W;_;/W; = q"+2*2"L,,+1(n + 1) for each i > 1. The argument using (5.29) explained at
the end of the proof of Theorem 5.14 shows that W is generated as an NB,,-module by the vectors
Ty~ 'T2T1x{ ® i, for all j > O (actually, one just needs them for 0 < j < n). It follows that W;
is generated by the vectors 7, - - 'T2T1x{ ® @, for all j > i, and W;_; /W, is a cyclic NB, 1 -module
generated by 7, - - 'Tzrlx"l_l ® i, + W;. For any i > 1, we claim that there is a surjective graded
NB,,. 1-module homomorphism

0i: " L (n 4+ 1) » Wi /W, fipp1 — T ToTI X @y + W

To see this, it just remains to check the relations: each of 7y, ..., 7, annihilates 7, - - - T2T1xi171 Qu, + W;
by some easy commutation relations using (5.3) to (5.5), and e, 4 does too for r > 1, as may be
deduced using (5.32). Finally, one checks graded dimensions using (5.11) and Lemma 5.4 to see that
each 6; must actually be an isomorphism.

Now consider (5.31). This reduces like before to showing that dim, Homng, ., (/1,,Ls(n), Lyy1(n +
1)) = g~ ". For this, we note using adjointness and duality that

Homng, ,, (I1.4La(n), Lyy1(n + 1)) = Homyg, ,, (Ly (1), R nLy1(n + 1))
= HomNBn+1 (Rl,nLn+1 (n + 1), Ly, (”))

This is of graded dimension ¢~" by (5.33). O

5.4. Character formulae. The graded character of a locally finite-dimensional graded left NB-module
V is defined by

chV := ) (dim, 1,V)¢". (5.34)

n=0
In general, this is a power series in the formal variable & with coefficients that are themselves formal
series of the form ), _, a,q" for a, € N. The graded character of any finitely generated graded module
belongs to Z((g~"))[£]. This is an integral form for the completion Q((g~"))[£] of the character ring
from subsection 2.5.
We obviously have that

ch(V®) = (chV)® (5.35)
where the @ on the right-hand side is the bar involution on the character ring from (2.37). Also

ch(BV) = B(chV) (5.36)
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where the action of B on Z((g~"))[£] on the right-hand side is defined as in (2.35). This identity is easy
to see if one views B as the functor Res|,_ as explained in Lemma 5.9.

The irreducible module L(n) has (globally) finite-dimensional weight spaces by general theory, so
its graded character actually lies in Z[g, g~ '][£], as does the formal character of any graded module of
finite length. By lowest weight theory, we clearly have that

chL(n) = [n]!¢" (mod &"'Z[q, ¢ I€1), (5.37)
which implies that the irreducible characters are linearly independent. They are also invariant under &

since L(n) is self-dual. Now recall the following expressions defined/computed in Lemma 2.10 and The-
orem 2.12:

_ Tf,n(qz) nt2f
by = [t 3 (D) iy, 5.38
C [l’l] j;o (1 — q72)j§ ( )
chL, = [n]! ) >, o 17 [a + 17 | &2 (5.39)

m=0 \ aeP;(mxn)

These are the graded characters of proper standard and irreducible modules:
Theorem 5.16. For any n € N, we have that ch A(n) = ch A, and ch L(n) = ch L,.

Proof. The equality ch A(n) = ch A, follows on computing the graded character of A(n) by counting
vectors of each degree in the basis (5.16), using also the combinatorics discussed in Example 5.2. To
prove that ch L(n) = ch L,, Corollary 4.25 implies that

dim, 1,L(n — 2m) = dim, Homng (NB1,, L(n — 2m))
= [n—2m]! > [ + 1% [ + 1]%
@eP;(mx (n—2m))
Replacing n by n + 2m throughout, this shows that the £"*?"-coefficient of ch L(n) is the same as this
coefficient in the formula (5.39) for ch L,. m|

Using also the identity (2.38), Theorem 5.16 proves Theorem E from the introduction, and Theo-
rem D follows from (2.31).

5.5. Branching rules. We end by describing the effect of the projective functor B on the irreducible
module L(n). In view of Theorem 5.16 and (5.36), we can reinterpret (2.34) as

chBL(n) = [n]chL(n — 1) + 6,[n + 1]chL(n + 1). (5.40)
Since the irreducible characters are linearly independent, this provides complete information about the
composition factors of BL(n). In particular, we see that

L) ifr=1
BL(0) ;{ 0( ) ;fizo. (5.41)

Note also that A(0) = A(0) so, by Theorem 5.14 and the fact from Lemma 5.10 that B commutes with
duality, we have that

BA(0) = A(1), BV(0) = V(1). (5.42)
In the proof of the next lemma, we appeal to these identities to treat the degenerate case n = 0.

Lemma 5.17. Interpreting L(—1) as 0, the following hold for all n = 0:
F'Lin+1)®q¢" 'L(n—1)  ifn=1t(mod2)

(1) hd BA(n) = { q'L(n+ 1) ifn # t (mod?2).
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=« [ qg"Lin+1)@®¢""L(n—1) ifn=t(mod2)

(2) soc BV(n) = { g "L(n+1) ifn# t(mod?2).
g 'L(n—-1) ifn=1t(mod?2)

(3) hd BL(n) = { ¢'Lin+1) ifn # t (mod?2).
[ g¢Lin—-1) ifn=t(mod?2)

(4) soc BL(n) = { g "L(n+1) ifn#t(mod2)

Proof. The case n = 0 follows by the remarks just made. Assume for the rest of the proof that n > 1.
By duality, (1) and (2) are equivalent, as are (3) and (4). By Theorem 5.15, especially (5.30) and (5.31),
it is clear that hd BA(n) is isomorphic either to ¢"L(n + 1) ® ¢"~'L(n — 1) or to ¢"L(n + 1). The
following claim completes the proof of (1) and (2) when n % t (mod 2).

Claim. [fn # t (mod 2) then Homng(BA(n), L(n — 1)) = 0.

To prove this, we let V := Res|, _ A(n), this being isomorphic to BA(n) by Lemma 5.9. In this incarna-
tion, the submodule K (n) from Theorem 5.15(1) is identified with the submodule K of V generated by
the vectors x’.lfl\'/,, for 1 < i < n. This is apparent from the proofs of Theorem 5.13 and Theorem 5.15(1).
Any non-zero homomorphism f : K — L(n—1) resulting from (5.30) is necessarily homogeneous of de-
gree n— 1, and must take ¥, to a non-zero vector of the minimal degree —%(n—1)(n—2) in 1, L(n—1).

We are trying to show that f does not extend to a homogeneous homomorphism f : V — Ln—1).
Suppose for a contradiction that there is such an extension. Consider the vectors

The vector v is of degree —1n(n— 1) —2n, so f(v) is of degree —2(n—1)(n—2) —2n, which is smaller
than the degree of any non-zero vector in 1, {A(n — 1), hence, in 1, ;L(n — 1). So f(v) = 0. Since w
is obtained from v by acting with some element of NB, we deduce that f(w) = 0 too. Now we calculate

using Corollary 3.5 and (3.17) and the defining relations of L, (n) to see that

The first equality here requires n # ¢ (mod 2)—otherwise, it would be 0. Now we have that f(w) =
(=1)"f(%,) = 0 but £(¥,) # 0. This contradiction proves the claim.

Next, consider hd BL(n). For m > 0, Homng (BL(n), L(m)) embeds naturally into both of the spaces
Homg (BA(n), L(m)) and Homyg (BL(n),V(m)) = Homg(L(n), BV(m)). So the parts of (1)—(2)
proved so far imply:

o dimy Homng(BL(n), L(m)) = 0if m # n £ 1.
e dim, Homyg(BL(n),L(n + 1)) = 0org~".
e dimy Homng (BL(n),L(n — 1) "

) =0orqg' ™.
If n % t (mod 2) then Homyg (BL(n), L(n — 1)) = 0 as Homng(BA(n), L(n — 1)) = 0. Since BL(n) #
0 by (5.40), we must therefore have that Homng(BL(n), L(n + 1)) # 0, so its graded dimension is
g~ ". Hence, hd BL(n) = ¢"L(n + 1) in this situation. Instead, if n = ¢ (mod2) then we have that
Homyg (BL(n), L(n + 1)) = 0 as Homxg(L(n), BV(n + 1)) = 0. Since BL(n) # 0, we must therefore
have that Homyng(BL(n), L(n — 1)) # 0. So it has graded dimension ¢' =", and we have proved that
hd BL(n) = ¢"~'L(n — 1). Now (3) and (4) are proved.
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Finally, we complete the proof of (1) and (2) in the remaining case that n = ¢ (mod2). We need to
show that Homng (BA(n), L(n — 1)) and Homng (L(n — 1), BV(n)) are non-zero. This follows because
Homng (BL(n), L(n — 1)) and Homng (L(n — 1), BL(n)) are non-zero by (3)—(4). o

Theorem 5.18. For n > 0, the module V := BL(n) is uniserial. To describe its unique composition
series, let x : V — V denote the nilpotent endomorphism xp,, Vi := im x' and V' := ker x'.

(1) If n =t (mod 2) then the unique composition series is
V=Vo=V'>Vi=V"l>V=v"2>...5>V >y, =v"=0

with V;_1/V; = V1= jyn—i = gnt 1221 (y — 1) for each i = 1,...,n.
(2) If n % t (mod 2) then the unique composition series is

V=Vo>V'>V,>V"l>Vy,>yv" 2> ...>vlisy >v0=0

with Vi )V =l = 22 L (n 4 V) fori = 1,...,n+ Land V" =1V, = ¢"T1=2L(n — 1) for
i=1,...,n

Moreover, Endng (V) = k[x]/ (x*™) with f(n) = nifn =t (mod2) orn + 1 ifn # t (mod 2).
Proof. Since V is a quotient of BA(n), Theorem 5.15 implies that there is a short exact sequence
0—K—>V-—0—0

where K is a quotient of K(n) and Q is a quotient of Q(n). The filtrations of K(n) and Q(n) described
in Theorem 5.15 induce filtrations K = Ky > K; =2 --- 2 K, =0and Q= Qo =2 Q1 = -+ = -+~
with K;_;/K; being a (possibly zero) quotient of ¢"*'=2A(n — 1) fori = 1,...,n, and Q;_{/Q; being a
(possibly zero) quotient of ¢"*>~2A(n + 1) for i > 1. By (5.40), we know that [V:L(n—1)], = [n].
Since [Q : L(n — 1)], = 0, these composition factors can only come from the heads of K;_;/K; for
i=1,...,n. Sowe must have that Ky > K; > --- > K,, = 0. Since K; = XK by definition, this shows
that x*~! # 0.

Now suppose that n = ¢ (mod2). Then all composition factors of V are isomorphic (up to degree
shift) to L(n — 1) by (5.40) again. We deduce that V = K, V; = K; and V;_/V; = ¢"*'=%L(n — 1) for
each i. Thus, we have constructed the filtration described in (1). We also know from Lemma 5.17(3) that
hdV = ¢"~'L(n — 1) so that dimEndng (V) < [V : L(n — 1)] = n. As x*~! # 0, the endomorphisms
1,x,...,x" ! are linearly independent. So we have that Endng(V) = k[x]/(x") as at the end of the
statement of the lemma. Moreover, V is uniserial because V, hence, each V; = x'V has irreducible head,
i.e., V; is the unique maximal submodule rad V;_; of V;_; fori =1,...,n.

It remains to treat the case n # ¢ (mod2). Since hdV = ¢"L(n + 1) and [V : L(n + )]q [n+ 1],
we have that dimEndng(V) < [V : L(n + 1)] = n+ 1. We know already that x"~! # 0. We
cannot have x" = 0 as this would contradict Lemma 5.11. So the nilpotency degree of x is exactly
n + 1, and Endnp(V) = k[x]/(x"*!) as required for the final statement of the theorem. It follows
that V.= Vy >V > -+ >V, > V,; = 0. Since hdV = ¢"L(n + 1), each V; has irreducible
head ¢"~%L(n + 1). Since socV = ¢~ "L(n + 1) we have that V, = imx" = soc V. This is also
the image of the restriction of X"+~ to V;_;, and x"*!1=1V; = 0, so x"*'~¥ induces a homomorphism
Vii1/Vi » ¢""272L(n + 1). It follows that V"**!1~/ = rad V;_;. We have now shown that

V=Vo>V'z2Vi=2V"!lsV,>...>Vvizy, >V =0
with V;_y /V" =1 = g+ 2721 (n42) fori = 1,...,n+1. We claim that V"'~ /V; has ¢"* =% L(n—1) as
a composition factor. This follows because hd K; | = ¢" =2 L(n—1), ¥"T!7'K; | = 0 and " 'K;_| #

0, so V1= /yn=ihag ¢"*1=2[(n — 1) as a composition factor. Combined with the information from
(5.40), the claim implies that V**!1=1/V; = ¢"*1=2L(n — 1), and we have constructed the filtration
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in (2). Finally, we observe that V is uniserial because V;_; has irreducible head q"”*z"L(n + 1) for
i=1,...,n+ 1, hence, V;_/V; is uniserial of length 2 fori = 1,...,nor length 1 fori = n + 1. |
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