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NIL-BRAUER CATEGORIFIES THE SPLIT ı-QUANTUM GROUP OF RANK ONE

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

Abstract. We prove that the Grothendieck ring of the monoidal category of finitely generated graded

projective modules for the nil-Brauer category is isomorphic to an integral form of the split ı-quantum

group of rank one. Under this isomorphism, the indecomposable graded projective modules correspond

to the ı-canonical basis. We also introduce a new PBW basis for the ı-quantum group and show that it

is categorified by standard modules for the nil-Brauer category. Finally, we derive character formulae for

irreducible graded modules and deduce various branching rules.
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1. Introduction

In [Let99], Letzter introduced what we now call the ı-quantum groups associated to symmetric pairs.

These can be viewed as a generalization of Drinfeld-Jimbo quantum groups—the latter are the ı-quantum

groups arising from diagonal symmetric pairs. Lusztig’s canonical bases for quantum groups, with their

favorable positivity properties, provided one source of motivation for the categorification of quantum

groups via the Kac-Moody 2-categories of Khovanov, Lauda and Rouquier [KL10, Rou08]. A theory

of ı-canonical bases for ı-quantum groups was developed in [BW18a, BW18b]. In special cases, these

again have positive structure constants; see [LW18] which treats the quasi-split types AIII. Therefore, it

is reasonable to hope that there should be a categorification of ı-quantum groups.

In rank 1, there are three quasi-split ı-quantum groups. First, there is the usual Uqpsl2q, which was

categorified by Lauda and Rouquier in [Lau10, Rou08]. The second, arising from the Satake diagram of

A2 with non-trivial diagram involution, was categorified in [BSWW18]. In this article, we explain how

to categorify the remaining case, the split ı-quantum group Uı
qpsl2q corresponding to the symmetric pair

pSL2, SO2q. This is a basic building block for general ı-quantum groups, and it is expected to play a key

role in the categorification of quasi-split ı-quantum groups of higher rank.

Our categorification of Uı
qpsl2q arises from the nil-Brauer category NB t introduced recently in

[BWW23]. This is a strict graded k-linear monoidal category defined over a field k of characteristic

different from 2. It has one self-dual generating object B and four generating morphisms represented

diagrammatically by ‚ (degree 2), (degree ´2), (degree 0), and (degree 0), subject to

some natural relations recorded in Definition 3.1. The parameter t gives the value of : 1 Ñ 1, the

only admissible choices being t “ 0 or t “ 1.

To formulate the main results precisely, rather than working in terms of idempotents, as is often

done in the categorification literature, we use the language of modules. By a graded NB t-module, we

mean a graded k-linear functor from NB t to graded vector spaces. The endofunctor of NB t defined by

tensoring with its generating object extends to an exact endofunctor, also denoted B, of the category of

graded NB t-modules. Let rns :“ qn´1 ` qn´3 ` ¨ ¨ ¨ ` q1´n be the quantum integer, and V‘rns denote

the corresponding direct sum of degree-shifted copies of a graded module V .

Theorem A. There are unique (up to isomorphism) indecomposable projective graded NB t-modules

Ppnq pn ě 0q such that Pp0q is the projective graded module associated to the identity endomorphism

of the unit object, and

BPpnq �
"

Ppn ` 1q‘rn`1s ‘ Ppn ´ 1q‘rns if n ” t pmod 2q
Ppn ` 1q‘rn`1s if n ı t pmod 2q.

These modules give a full set of indecomposable projective graded NB t-modules (up to isomorphism

and grading shift).

The proof of Theorem A is similar in spirit to Lauda’s proof of the analogous result for the 2-category

Upsl2q obtained in [Lau10]. It involves the explicit construction of appropriate homogeneous primitive

idempotents. These resemble primitive idempotents in the nil-Hecke algebra familiar from Schubert cal-

culus, but they are considerably more subtle; see Theorem 4.21 and Corollary 4.24. Another important

ingredient needed to establish the indecomposability of Ppnq is the identification of the Cartan form on

the Grothendieck ring of NB t with an explicitly defined sesquilinear form on the ı-quantum group. This

is discussed further after the statement of the next theorem, which is our main categorification result.

Let Uı :“ Uı
qpsl2q be the split ı-quantum group of rank 1. As a Qpqq-algebra, this is simply a polyno-

mial algebra on one generator B, but it has a non-trivial Zrq, q´1s-form ZU
ı
t associated to the parameter

t P t0, 1u. As a Zrq, q´1s-module, ZU
ı
t is free with a distinguished basis given by the ı-canonical basis
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Pn pn ě 0q that was originally defined in [BW18b] in terms of the finite-dimensional irreducible sl2-

modules of highest weight λ ” t pmod 2q. Let K0pNB tq be the split Grothendieck ring of the monoidal

category of finitely generated projective graded NB t-modules. In fact, this is a Zrq, q´1s-algebra, with

the action of q arising from the grading shift functor. The recursion for the indecomposable projective

graded modules in Theorem A exactly matches the recursion for the ı-canonical basis Pn pn ě 0q of ZU
ı
t

calculated in [BW18c]. This coincidence is the essence of our next main theorem; see Theorem 4.23:

Theorem B. There is a unique Zrq, q´1s-algebra isomorphism

κt : K0pNB tq
„Ñ ZU

ı
t

intertwining the endomorphism of K0pNB tq induced by the endofunctor B with the endomorphism of

ZU
ı
t defined by multiplication by the generator B of the ı-quantum group. For any n ě 0, κt maps the

isomorphism class of the indecomposable projective module Ppnq to the ı-canonical basis element Pn.

Under the isomorphism of Theorem B, the non-degenerate symmetric bilinear form p¨, ¨qı on ZU
ı
t

constructed in [BW18a] is equal (after twisting the first argument with the bar involution to make it

sesquilinear in the appropriate sense, and some rescaling) to the Cartan form on K0pNB tq. The proof of

this depends ultimately on the basis theorem for NB t from [BWW23] together with some combinatorics

of chord diagrams which is of independent interest; see Lemma 2.4, Corollary 2.6, and Theorem 3.7.

The remaining results in the article rely on the observation that the category of graded NB t-modules

has some useful additional structure: it is an affine lowest weight category in a suitably generalized sense.

In particular, there are certain graded NB t-modules ∆pnq and ∆̄pnq, the standard and proper standard

modules, equipped with explicit bases. The proper standard module ∆̄pnq has a unique irreducible

quotient denoted Lpnq, the modules Lpnqpn ě 0q give a complete set of graded irreducible NB t-modules

up to isomorphism and grading shift, and there is a graded analog of the usual BGG reciprocity; see

Theorem 5.6. These assertions follow from an application of the general machinery of graded triangular

bases developed in [Bru23]—the nil-Brauer category is a perfect example for this theory.

The minimal standard modules ∆p0q and ∆p1q are projective and therefore coincide with Pp0q and

Pp1q, respectively, but after that the two families of modules diverge. In fact, at the decategorified level,

the standard modules correspond to a new orthogonal basis for the ı-quantum group, the PBW basis

∆n pn ě 0q introduced in section 2. The PBW basis elements satisfy the following recurrence relation:

∆0 “ 1, B∆n “ rn ` 1s∆n`1 ` qn´1

1 ´ q´2
∆n´1,

interpreting ∆´1 as 0. The assertion that the standard module ∆pnq categorifies ∆n is justified by the

next theorem, which describes the effect of the endofunctor B on standard modules:

Theorem C. For n ě 0, there is a short exact sequence of graded NB t-modules

0 ÝÑ
à
iě0

qn´1´2i∆pn ´ 1q ÝÑ B∆pnq ÝÑ ∆pn ` 1q‘rn`1s ÝÑ 0.

(In the first term, q denotes the downward grading shift functor, and this term should be interpreted as

0 in case n “ 0.)

An interesting feature of Theorem C is the presence of the infinite direct sum in the first term of

the short exact sequence—the finitely generated NB t-modules B∆pnq pn ą 0q are not Noetherian. This

corresponds to the fact that the PBW basis ∆n pn ě 0q is a basis for Uı over Qpqq, but not for ZU
ı
t over

Zrq, q´1s. Theorem C is proved in Theorem 5.14 in the main body of the text. There is also a parallel

result for proper standard modules, which categorify the dual PBW basis ∆̄n pn ě 0q; see Theorem 5.15.
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For closed formulae for the transition matrices between the bases Pm pm ě 0q and ∆n pn ě 0q, see

Theorem 2.7. Translating to representation theory and using BGG reciprocity, we obtain the following

explicit formula for graded decomposition numbers:

Theorem D. The irreducible subquotients of the proper standard module ∆̄pnq pn ě 0q are isomorphic

(up to grading shifts) to Lpn ` 2mq for m ě 0 with

r∆̄pnq : Lpn ` 2mqsq “
"

q´mp2m´1q
L

p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq if n ” t pmod 2q
q´mp2m`1q

L
p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq if n ı t pmod 2q.

To formulate one more such combinatorial result, for a finitely generated graded NB t-module V , its

graded character is the formal series

ch V “
ÿ

ně0

dnpVqξn P Nppq´1qq~ξ�

where ξ is a formal variable and dnpVq P Nppq´1qq is the graded dimension of the graded vector space

obtained by evaluating the functor V on the object B‹n.

Theorem E. For n ě 0, we have that

ch Lpnq “ rns! ξn

O ź

1ďkďn`1
k”t pmod 2q

p1 ´ rks2ξ2q P Nrq, q´1s~ξ�.

Finally, we also prove branching rules which give complete information about the structure of the

modules BLpnq pn ě 0q; see Theorem 5.18. Except in the case that n “ t “ 0 (when it is zero),

these branching rules show that BLpnq is a self-dual uniserial module with irreducible socle and cosocle

isomorphic (up to appropriate grading shifts) to Lpn´1q if n ” t pmod 2q or to Lpn`1q if n ı t pmod 2q.

Moreover,

EndNB t
pBLpnqq � krxs{

`
xβpnq

˘

where βpnq “ n if n ” t pmod 2q or n ` 1 if n ı t pmod 2q. The combinatorics arising here is the same

as the combinatorics of the underlying ı-crystal basis described in [Wat23, Ex. 4.1.4].

General conventions. Throughout the article, t P t0, 1u will be a fixed parameter. Given also n P N,

we use the shorthand δn”t to denote 1 if n ” t pmod 2q or 0 otherwise. Similarly, δnıt denotes 1 if

n ı t pmod 2q or 0 otherwise. We write S n for the symmetric group on n letters. Let si P S n be the

simple transposition pi i`1q, let ℓ : S n Ñ N be the associated length function, and let wn be the longest

element of S n. We denote the category of graded vector spaces over the field k by gVec , using q for the

downward grading shift functor. So, for a graded vector space V “
À

dPZ Vd, its grading shift qV is the

same underlying vector space with new grading defined via pqVqd :“ Vd`1 for each d P Z. For a graded

vector space V “
À

dPZ Vd with finite-dimensional graded pieces, we define its graded dimension to be

dimq V :“
ÿ

dPZ

pdim Vdqq´d. (1.1)

For any formal series f “
ř

dPZ adqd with each ad P N, we write V‘ f for
À

dPZ qdV‘ad .

2. Bases of the split ı-quantum group of rank one

In this section, we recall some basic facts about the split ı-quantum group of rank 1 following

[BW18b, BW18c]. Then we introduce a new PBW-type basis, and derive combinatorial formulae for

various transition matrices, including between the PBW basis and the ı-canonical basis. For all of this,

we work over the field Qpqq for an indeterminate q. We write rns for the quantum integer
qn´q´n

q´q´1 , rns!
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for the quantum factorial, and
“

n
r

‰
:“ rnsrn ´ 1s ¨ ¨ ¨ rn ´ r ` 1s{rrs!. The word anti-linear always means

with respect to the bar involution ´ : Qpqq Ñ Qpqq that is the field automorphism taking q to q´1. We

denote the limit of a convergent sequence p fλqλě0 in Qppq´1qq by limλÑ8 fλ.

2.1. Quantum groups. Let U be the usual quantum group Uqpsl2q, the Qpqq-algebra with generators

E, F,K,K´1 satisfying the relations

KEK´1 “ q2E, KFK´1 “ q´2F, rE, Fs “ K ´ K´1

q ´ q´1
.

Our general conventions are the same as in [Lus10], except that we write q in place of Lusztig’s v. The

subalgebras of U generated by F and by E are denoted U´ and U`, respectively, and the divided powers

are Epnq :“ En{rns!, Fpnq :“ Fn{rns!. There are various useful symmetries:

‚ Let ψ : U Ñ U be the usual bar involution on U, that is, the anti-linear algebra involution which

fixes E and F and takes K to K´1.

‚ Let ρ : U Ñ U be the linear algebra anti-involution such that ρpKq “ K, ρpEq “ q´1FK,

ρpFq “ qK´1E.

Let p¨, ¨q´ : U´ ˆ U´ Ñ Qpqq be Lusztig’s form on f from [Lus10, Sec. 1.2.5] transported through the

isomorphism between f and U´. Thus, it is the non-degenerate symmetric bilinear form such that

`
Fpmq, Fpnq

˘´ “ δm,n

p1 ´ q´2qp1 ´ q´4q ¨ ¨ ¨ p1 ´ q´2nq (2.1)

for m, n ě 0.

We denote the irreducible U-module of highest weight λ P N by Vpλq. This is generated by a vector

ηλ such that Eηλ “ 0 and Kηλ “ qληλ. There is an anti-linear involution ψλ : Vpλq Ñ Vpλq such that

ψλpηλq “ ηλ and ψλpuvq “ ψpuqψλpvq for u P U, v P Vpλq. Also let p¨, ¨qλ : Vpλq ˆ Vpλq Ñ Qpqq be

the unique non-degenerate symmetric bilinear form on Vpλq such that

pηλ, ηλqλ “ 1, puv1, v2qλ “ pv1, ρpuqv2qλ (2.2)

for u P U, v1, v2 P Vpλq. The form p¨, ¨q´ on U´ can be recovered from these forms on the modules

Vpλq since we have that

py1, y2q´ “ lim
λÑ8

`
y1ηλ, y2ηλ

˘
λ

(2.3)

for all y1, y2 P U´ by a special case of [Lus10, Prop. 19.3.7]. The vectors Fpnqηλ p0 ď n ď λq give

the canonical basis for Vpλq. In fact, they give a basis for an integral form ZVpλq over Zrq, q´1s. The

anti-involution ψλ restricts to an anti-linear involution of ZVpλq, and the values of the form p¨, ¨qλ on

elements of ZVpλq lie in Zrq, q´1s.
Let R : U´ Ñ U´ be the linear map defined by

Rp1q “ 0, R
`
Fpnq

˘
“ qn´1Fpn´1q

1 ´ q´2
(2.4)

for n ě 1. This map arises naturally as the adjoint of left multiplication by F: we have that

pFy1, y2q´ “ py1,Rpy2qq´ (2.5)

for all y1, y2 P U´. Equivalently, Rpyq “ rpyq{p1 ´ q´2q where r is the map defined in either the

first or the second paragraph of [Lus10, Sec. 1.2.13] (the two maps coincide in rank one). So [Lus10,

Prop. 3.1.6(b)], or an easy induction exercise using (2.4), gives that

Ey ´ yE “ q´1KRpyq ´ q´1RpyqK´1 (2.6)

for any y P U´.
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For the purposes of categorification, one usually replaces U by its modified form 9U, which is a locally

unital algebra 9U “
À

λ,µPZ 1µ 9U1λ with a distinguished system 1λpλ P Zq of mutually orthogonal idem-

potents replacing the diagonal generators K,K´1. The relationship between U and 9U can be expressed

either by saying that 9U is a pU,Uq-bimodule, or that U embeds into the completion of 9U consisting of

matrices paµ,λqλ,µPZ P
ś

λ,µPZ 1µ 9U1λ such that there are only finitely many non-zero entries in each row

and column. The element K P U corresponds to the diagonal matrix with qλ1λ as its λth diagonal entry,

while E, F P U are identified with the matrices whose only non-zero entries are 1λ`2E1λ pλ P Zq and

1λF1λ`2 pλ P Zq, respectively.

2.2. The ı-quantum group and its PBW basis. The ı-quantum group Uıpsl2q is the subalgebra Uı of

U generated by

B :“ F ` ρpFq “ F ` qK´1E. (2.7)

As an algebra, Uı is uninteresting since it is the free Qpqq-algebra on B. However it is an interesting

coideal subalgebra of U for an appropriate choice of comultiplication.

The symmetry ρ of U restricts to a linear anti-involution ρ : Uı Ñ Uı with ρpBq “ B. Also, the bar

involution ψı : Uı Ñ Uı is the unique anti-linear involution such that ψıpBq “ B. We stress a key point:

ψı is not the restriction of the bar involution ψ on U, indeed, the latter does not leave Uı invariant. For

λ P N, there is a unique anti-linear involution ψı
λ

: Vpλq Ñ Vpλq such that

ψıλpηλq “ ηλ, ψıλpuvq “ ψıpuqψıλpvq (2.8)

for all u P Uı, v P Vpλq; see [BW18b, Cor. 3.11] and [BW18a, Prop. 5.1]. Also, by [BW18a, Lem. 6.25],

there is a symmetric bilinear form p¨, ¨qı : Uı ˆ Uı Ñ Qpqq such that

pu1, u2qı “ lim
λÑ8

`
u1ηλ, u2ηλ

˘
λ

(2.9)

for all u1, u2 P Uı. From (2.2), we get that

pBu1, u2qı “ pu1, Bu2qı (2.10)

for any u1, u2 P Uı. In [BW18a, Th. 6.27], it is shown that p¨, ¨qı is non-degenerate. This also follows

from the following theorem together with the non-degeneracy of the form p¨, ¨q´ on U´.

Theorem 2.1. There is a unique isomorphism of Qpqq-vector spaces j : Uı „Ñ U´ such that

lim
λÑ8

`
uηλ, yηλ

˘
λ

“ p jpuq, yq´ (2.11)

for all u P Uı and y P U´. Moreover, the following hold for u, u1, u2 P Uı:

(1) jpBuq “ F jpuq ` Rp jpuqq.

(2) pu1, u2qı “
`

jpu1q, jpu2q
˘´

.

Proof. Uniqueness of a linear map j satisfying (2.11) follows easily from the non-degeneracy of the

form p¨, ¨q´. To prove existence, we can assume that u is a power of B and proceed by induction on

degree. Let jp1q :“ 1, which clearly satisfies (2.11) for all y P U´. Now assume for some u P Uı that

jpuq satisfying (2.11) for all y has been constructed inductively, and consider jpBuq. Using (2.2) and the

identity (2.6) multiplied on the left by qK´1, we have that

lim
λÑ8

`
Buηλ, yηλ

˘
λ

(2.2)“ lim
λÑ8

`
uηλ, Byηλ

˘
λ

“ lim
λÑ8

`
uηλ, Fyηλ ` qK´1Eyηλ

˘
λ

(2.6)“ lim
λÑ8

`
uηλ, Fyηλ ` Rpyqηλ ´ K´1RpyqK´1ηλ

˘
λ

“ lim
λÑ8

`
uηλ, Fyηλ ` Rpyqηλ

˘
λ

“ p jpuq, Fy ` Rpyqq´ (2.5)“ pF jpuq ` Rp jpuqq, yq´.
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So jpBuq :“ F jpuq ` Rp jpuqq satisfies (2.11). This proves the existence of a linear map j satisfying

(2.11), and at the same time we have established (1). To see that j is a linear isomorphism, it follows

easily from (1) that jpBnq is a monic polynomial of degree n in F. Since Uı and U´ are free on B and

on F, respectively, it is now clear that j is an isomorphism.

It remains to prove (2). By the definition (2.9) and (2.11), we need to show that

lim
λÑ8

`
u1ηλ, jpu2qηλ

˘
λ

“ lim
λÑ8

`
u1ηλ, u2ηλ

˘
λ

for all u1, u2 P Uı. Note that the limit on the left hand side exists by what we have proved so far. We

assume that u2 is a power of B and proceed by induction on its degree. The base case u2 “ 1 is clear.

Now assume the result has been proved for all u1 and some u2, and consider Bu2. Using (1), we have

that

lim
λÑ8

`
u1ηλ, jpBu2qηλ

˘
λ

“ lim
λÑ8

`
u1ηλ, F jpu2qηλ ` Rp jpu2qqηλ

˘
λ

“ lim
λÑ8

`
u1ηλ, F jpu2qηλ ` Rp jpu2qqηλ ´ K´1Rp jpu2qqK´1ηλ

˘
λ

(2.6)“ lim
λÑ8

`
u1ηλ, F jpu2qηλ ` qK´1E jpu2q

˘
λ

“ lim
λÑ8

`
u1ηλ, B jpu2qηλ

˘
λ

(2.2)“ lim
λÑ8

`
Bu1ηλ, jpu2qηλ

˘
λ

“ lim
λÑ8

`
Bu1ηλ, u2ηλ

˘
λ

(2.2)“ lim
λÑ8

`
u1ηλ, Bu2ηλ

˘
λ
.

�

Applying Theorem 2.1, we let ∆n P Uı be the unique element such that jp∆nq “ Fpnq. The elements

∆n pn ě 0q give a basis for Uı, which we call the PBW basis. From Theorem 2.1(2) and (2.1), we get

that `
∆m,∆n

˘ı “ δm,n

p1 ´ q´2qp1 ´ q´4q ¨ ¨ ¨ p1 ´ q´2nq (2.12)

for m, n ě 0. Thus, the PBW basis is an orthogonal basis. The following recurrence relation is easily

deduced using Theorem 2.1(1) and (2.4):

∆0 “ 1, B∆n “ rn ` 1s∆n`1 ` qn´1

1 ´ q´2
∆n´1 (2.13)

for n ě 0, interpreting ∆´1 as 0.

Remark 2.2. The PBW basis for Uı with the orthogonality property (2.12) is an ı-analogue of the (or-

thogonal) PBW bases for modified quantum groups constructed in [Wan21], and the linear isomorphism

in Theorem 2.1 is an ı-analogue of the linear isomorphism U` b U´ � 9U1ζ in [Wan21, Theorem 2.8].

The PBW basis construction described here can be generalized to ı-quantum groups of higher rank.

2.3. Combinatorics of chord diagrams. Next, we investigate the rational functions wm,npqq P Qpqq
defined from the expansion

Bm “
mÿ

n“0

wm,npqq∆n. (2.14)

One reason to be interested in these is that

pBn, Bmqı (2.10)“ p1, Bm`nqı (2.13)“ p∆0, B
m`nqı (2.12)“ wm`n,0pqq (2.15)

for any m, n ě 0.

Lemma 2.3. For 0 ď n ď m, we have that

w0,0pqq “ 1, wm,npqq “ rnswm´1,n´1pqq ` qnwm´1,n`1pqq
1 ´ q´2

,
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interpreting wm,npqq as 0 if n ă 0 or n ą m.

Proof. Applying j to Bm “
řm

n“0 wm,npqq∆n gives that jpBmq “
řm

n“0 wm,npqqFpnq. Thus, wm,npqq
is the Fpnq-coefficient of jpBmq. Suppose that m ě 1. By Theorem 2.1(1), we have that jpBmq “
F jpBm´1q ` Rp jpBm´1qq. Then we observe using (2.4) that the right hand side equals

mÿ

n“1

rnswm´1,n´1pqqFpnq `
m´2ÿ

n“0

qnwm´1,n`1pqq
1 ´ q´2

Fpnq.

From this, we see that the coefficient wm,npqq of Fpnq in jpBmq satisfies the recurrence relation in the

statement of the lemma. �

We are going to give an elementary combinatorial interpretation of wm,npqq in terms of certain chord

diagrams with n chords tethered to a fixed basepoint and f “ pm ´ nq{2 free chords. In lieu of a formal

definition, we just give an example. The following is a chord diagram with n “ 3 tethered chords, f “ 4

free chords, and c “ 11 crossings:

3

1

2

‚

(2.16)

The three tethered chords are the ones attached to the basepoint. We have also numbered the free

endpoints of the tethered chords in order going clockwise around the circle. Here is one more example

with n “ 4, f “ 3 and c “ 5:

3

4

1

2

‚

(2.17)

In a chord diagram with f free and n tethered chords, the maximum possible number of crossings is

n f ` 1
2

f p f ´ 1q. Counting chord diagrams up to planar isotopy fixing the basepoint, let Np f , n, cq be

the number of chord diagrams with f free chords, n tethered chords, and c crossings, and

T f ,npqq :“
n f ` 1

2 f p f ´1qÿ

c“0

Np f , n, cqqc P Nrqs (2.18)

be the resulting generating function. We obviously have that T0,npqq “ 1, and T1,n´1pqq is equal to the

classical q-integer tnu “ 1 ` q ` q2 ` ¨ ¨ ¨ ` qn´1. Other examples: T2,0pqq “ 2 ` q and T3,0pqq “
5 ` 6q ` 3q2 ` q3. Note also that T f ,np1q “

`
2 f `n

n

˘
p2 f ´ 1q!! (here, n!! denotes the double factorial

defined recursively by n!! “ n ¨ pn ´ 2q!! and 0!! “ p´1q!! “ 1).

Lemma 2.4. The generating function T f ,npqq satisfies the recurrence relation

T0,0 “ 1, T f ,npqq “ T f ,n´1pqq ` tn ` 1uT f ´1,n`1pqq, (2.19)

interpreting Tn, f pqq as 0 if n or f is negative.
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Proof. It is clear that T0,0pqq “ 1. Now suppose that n ą 0. Let Cp f , nq be the set of chord diagrams

with f free and n tethered chords. We are going to construct a set partition

Cp f , nq “ Cp f , nq \
nž

i“0

Cip f , nq.

Take a chord diagram D P Cp f , nq. Consider the chord x in D which has the nearest free endpoint to

the basepoint measured in a clockwise direction around the circumference of the circle. There are two

cases:

‚ If x is a tethered chord then we put D into the set Cp f , nq and let θpDq P Cp f , n´1q be the chord

diagram obtained from d by removing x. Note that θpDq has the same number of crossings as

D. An example of this situation is given by (2.17); for this θpDq is

2

3

1

‚
‚ Otherwise, x is a free chord. Its furthest endpoint from the basepoint lies between the free

endpoints of the ith and pi ` 1qth tethered chords for some 0 ď i ď n. We put D into the set

Cip f , nq and let θipDq P Cp f ´ 1, n ` 1q be the chord diagram obtained from D by replacing x

by a tethered chord y with the same furthest endpoint as x. Note that θipDq has i fewer crossings

than D since y crosses i fewer tethered chords compared to x. An example is given by (2.16);

for this, we have that i “ 2 and θ2pDq is

3

4

1

2

‚
We have now defined the partition of Cp f , nq. It is also clear that θ : Cp f , nq „Ñ Cp f , n ´ 1q and all

θi : Cip f , nq „Ñ Cp f ´ 1, n ` 1q are bijections. The lemma follows by computing the generating function

T f ,npqq using this partition to see that T f ,npqq “ T f ,n´1pqq `
řn

i“0 qiT f ´1,n`1pqq. �

Theorem 2.5. For 0 ď n ď m with n ” m pmod 2q, we have that

wm,npqq “

$
&
%

rns!T f ,npq2q
p1 ´ q´2q f

if m “ n ` 2 f for some f P N
0 otherwise.

Proof. It is clear from Lemma 2.3 that wm,npqq “ 0 if n ı m pmod 2q. Also using Lemma 2.3 it follows

that the rational function rT f ,npqq defined from

rT f ,npq2q :“ p1 ´ q´2q f wn`2 f ,npqq{rns!
satisfies the recurrence relation in Lemma 2.4. Hence, rT f ,npq2q “ T f ,npq2q and the result follows. �
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Corollary 2.6. The bilinear form p¨, ¨qı on Uı satisfies

pBn, Bmqı “
#

T f ,0pq2q

p1´q´2q f if m ` n “ 2 f for some f P N
0 otherwise.

Proof. This follows from the theorem using also (2.15). �

For example, Corollary 2.6 implies the following:

pB, Bqı “ p1, B2qı “ 1

1 ´ q´2
, pB2, B2qı “ pB, B3qı “ p1, B4qı “ 2 ` q2

p1 ´ q´2q2
. (2.20)

The generating function T f ,0pqq for ordinary chord diagrams has been studied classically; e.g., see

[Rio75]. Our more general tethered chord diagrams will show up again in a slightly different guise later

in the article; see Example 5.2.

2.4. The ı-canonical basis. So far we have not used the parameter t P t0, 1u, but all subsequent results

depend on it. To avoid notational confusion, it is helpful to appeal to the construction from [BW18b,

Chap. 4] and [BW18a, Sec. 3.7], which shows that Uı has a modified form 9Uı “ 9Uı10̄ ‘ 9Uı11̄. We

will denote the summands here simply by Uı
0

and Uı
1

since they are actually unital algebras. In fact, the

map Uı Ñ 9Uı
t, u ÞÑ u1t is an algebra isomorphism. We use this to transport all of the results about Uı

established so far to Uı
t, and work only with the latter from now on. In particular, Uı

t is freely generated

by B “ B1t, it has the symmetries ρ and ψı fixing B as before, it possesses a bilinear form p¨, ¨qı as

in (2.9), there is a linear isomorphism j : Uı
t

„Ñ U´ as in Theorem 2.1, and we have the PBW basis

∆n pn ě 0q for Uı
t satisfying (2.13). However, one should have in mind that Uı

t is a subalgebra not of

the original quantum group U but rather of the summand of the completion of 9U consisting of matrices

paµ,λqµ,λPZ P
ś

λ,µPZ 1µ 9U1λ such that aµ,λ “ 0 if λ, µ ı t pmod 2q. This means that Uı
t should only be

allowed to act on U-modules whose weights satisfy λ ” t pmod 2q. For example, the definition (2.9) of

the form p¨, ¨qı on Uı
t should really be written now as

pu1, u2qı “ lim
λÑ8

λ”t pmod 2q

`
u1ηλ, u2ηλ

˘
λ

(2.21)

for all u1, u2 P Uı
t.

By the integrality properties from [BW18b, Th. 4.18] and [BW18a, Th. 5.3], the symmetry ψı
λ

re-

stricts to an anti-linear involution on ZVpλq. Applying [BW18b, Th. 4.20] and [BW18a, Th. 5.7], we

define the ı-canonical basis for Vpλq to be the unique Zrq, q´1s-basis Pn ηλ p0 ď n ď λq for ZVpλq such

that each Pn is ψı
λ
-invariant and

Pn ηλ ´ Fpnqηλ P
λÿ

m“0

q´1Zrq´1sFpmqηλ.

As the notation suggests, for λ ” t pmod 2q, the vector Pn ηλ is obtained by applying an element Pn P Uı
t

to ηλ. In fact, there is unique element Pn P Uı
t pn ě 0q such that Pn ηλ is the ı-canonical basis element

of Lpλq for all 0 ď n ď λ with λ ” t pmod 2q; see [BW18b, Chap. 4] and [BW18c, Th. 2.10, Th. 3.6].

The elements Pn pn ě 0q thus defined give a remarkable basis for Uı
t again called the ı-canonical basis.

Closed formulae for the ı-canonical basis elements were worked out in [BW18c] (see also [BW18b]):

for n ě 0, we have that

Pn “ Bσtpnq

rns!

n´1ź

k“0
k”t pmod 2q

`
B2 ´ rks2

˘
where σtpnq :“

$
&
%

0 if n is even

´1 if n is odd and t “ 0

1 if n is odd and t “ 1.

(2.22)
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This expression can be viewed as the ı-analog of the nth divided power of B. Accordingly, Pn could also

be denoted Bpnq and called an ı-divided power. This, however, is a special phenomenon in rank 1. It is

straightforward to check from (2.22) that the ı-canonical basis satisfies the recurrence relation

P0 “ 1, BPn “ rn ` 1sPn`1 ` δn”trnsPn´1, (2.23)

for any n ě 0.

Theorem 2.7. For n ě 0, we have that

Pn “
t n

2 uÿ

m“0

q´mp2m`1´2δn”tq

p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq∆n´2m, (2.24)

∆n “
t n

2 uÿ

m“0

p´1qm q´mp2δnıt`1q

p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq Pn´2m. (2.25)

Proof. To prove the first formula, use (2.13) to verify that the expression on the right hand side satisfies

the recurrence relation (2.23). Similarly, (2.25) follows by using (2.23) to verify that the expression on

the right hand side satisfy the recurrence relation (2.13). �

Corollary 2.8. The ı-canonical basis of Uı
t is almost orthonormal in the sense that

pPm, Pnqı P δm,n ` q´1Z~q´1
�X Qpqq

for m, n ě 0.

Proof. This is clear from (2.24) and (2.12). �

Remark 2.9. Using (2.12) and (2.24), one can derive the following explicit formula for the pairings

between ı-canonical basis elements:

pPn, Pmqı “
ÿ

0ďiďminpm,nq
i”n”m pmod 2q

q´ 1
2 pn´iqpn´i`1´2δn”tq´ 1

2 pm´iqpm´i`1´2δm”tq

śi
j“1p1 ´ q´2 jqś

n´i
2

k“1
p1 ´ q´4kqś

m´i
2

l“1
p1 ´ q´4lq

for any m, n ě 0. This is 0 if m ı n pmod 2q.

The ı-canonical basis in fact gives a basis for an integral form ZU
ı
t of Uı

t over Zrq, q´1s. Equivalently,

we have that

ZU
ı
t “

 
u P Uı

t

ˇ̌
u pZVpλqq Ď ZVpλq for all λ P N with λ ” t pmod 2q

(
,

from which one sees that ZU
ı
t is a Zrq, q´1s-subalgebra of Uı

t. Since both ρ and ψı fix each of the

ı-canonical basis elements Pn, they restrict to symmetries on ZU
ı
t. Also, the form on Uı

t restricts to

p¨, ¨qı : ZU
ı
t ˆ ZU

ı
t Ñ Zrq, q´1s. From (2.13), it is apparent that ∆n does not lie in the integral form ZU

ı
t.

Instead, it is naturally an element of the completion

ZÛ
ı
t :“ Zppq´1qq bZrq,q´1s ZU

ı
t. (2.26)

As is clear from Theorem 2.7, the elements ∆n pn ě 0q give a topological Zppq´1qq-basis for ZÛ
ı
t.
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2.5. The character ring. Let ˚Uı
t be the Qpqq-linear dual of Uı

t. The left regular action of Uı
t on itself

makes ˚Uı
t naturally into a right Uı

t-module. We twist this action with the anti-automorphism ρ to make
˚Uı

t into a left Uı
t-module. Since the non-degenerate symmetric bilinear form p¨, ¨qı on Uı

t satisfies (2.10),

we get induced a canonical injective homomorphism of left Uı
t-modules

Uı
t ãÑ ˚Uı

t (2.27)

sending u P Uı
t to the linear map Uı

t Ñ Qpqq, u1 ÞÑ pu, u1qı. Henceforth, we will always identify Uı
t with

a subspace of ˚Uı
t via this embedding, thinking of ˚Uı

t as a completion of the vector space Uı
t.

We obtain topological bases ∆̄n pn ě 0q and Ln pn ě 0q for ˚Uı
t that are the duals of the PBW and

canonical basis of Uı
t:

∆̄np∆mq :“ δm,n, LnpPmq :“ δm,n. (2.28)

We call these the dual PBW and the dual ı-canonical bases, respectively. The dual canonical basis

element Ln is invariant under the dual bar involution ˚ψı : ˚Uı
t Ñ ˚Uı

t defined by

˚ψıp f qpuq :“ f pψıpuqq (2.29)

for f P ˚Uı
t, u P Uı

t. We get from (2.12) and the definition of the embedding (2.27) that

∆n “ ∆̄n

p1 ´ q´2qp1 ´ q´4q ¨ ¨ ¨ p1 ´ q´2nq . (2.30)

Dualizing Theorem 2.7 gives that

∆̄n “
8ÿ

m“0

q´mp2m`1´2δn”tq

p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq Ln`2m, (2.31)

Ln “
8ÿ

m“0

p´1qm q´mp2δnıt`1q

p1 ´ q´4qp1 ´ q´8q ¨ ¨ ¨ p1 ´ q´4mq ∆̄n`2m. (2.32)

for n ě 0. Also the following recurrence relations follow by dualizing (2.13) and (2.23):

B∆̄n “ rns∆̄n´1 ` qn

1 ´ q´2
∆̄n`1, (2.33)

BLn “ rnsLn´1 ` δnıtrn ` 1sLn`1 (2.34)

for any n ě 0.

The character ring is the ring Qpqq~ξ� for a formal variable ξ. This is natural to consider from a

representation-theoretic perspective (see subsection 5.4). We view Qpqq~ξ� as a left Uı
t-module so that

B
ÿ

ně0

anξ
n :“

ÿ

ně1

anξ
n´1. (2.35)

There is an injective Uı
t-module homomorphism

ch : ˚Uı
t ãÑ Qpqq~ξ�, f ÞÑ

ÿ

ně0

f pBnqξn. (2.36)

In fact, since Uı
t “ QpqqrBs, the map ch is an isomorphism—a special feature of the split rank one case.

We refer to ch, also its restriction ch : Uı
t ãÑ Qpqq~ξ�, as the character map. It intertwines the dual bar

involution ˚ψı on ˚Uı
t with the bar involution on the character ring, which is the anti-linear map

⊛ : Qpqq~ξ�Ñ Qpqq~ξ�,
ÿ

ně0

anξ
n ÞÑ

ÿ

ně0

anξ
n. (2.37)

Now we proceed to compute the characters of ∆̄n and Ln.
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Lemma 2.10. For n ě 0, we have that

ch ∆̄n “ rns!
ÿ

f ě0

T f ,npq2q
p1 ´ q´2q f

ξn`2 f .

Proof. By (2.14), we have that ∆̄npBmq “ wm,npqq. This shows that ch ∆̄n “
ř

mě0 wm,npqqξm. It

remains to apply Theorem 2.5. �

Lemma 2.11. ch L0 “
"

1 if t “ 0

1 ` ξ2 ` ξ4 ` ξ6 ` ¨ ¨ ¨ if t “ 1.

Proof. Suppose first that t “ 0. By the definition (2.36), we need to show that L0pBnq “ δn,0 for any

n ě 0. This is clear for n “ 0 since P0 “ 1 by (2.22) and L0pP0q “ 1. Also (2.22) shows that all

Pn pn ą 0q are divisible by B, so we can use (2.22) to express Bn pn ą 0q as a linear combination of

P1, . . . , Pn. This implies that L0pBnq “ 0 for n ą 0 as required.

Now suppose that t “ 1. We need to show that L0pB2n`1q “ 0 and L0pB2nq “ 1 for n ě 0. By (2.22),

P2n`1 is a linear combination of B2m`1 for 0 ď m ď n, and inverting obviously gives that B2n`1 is a

linear combination of P2m`1 for 0 ď m ď n. This implies that L0pB2n`1q “ 0. Also (2.22) gives that

P0 “ 1 and r2nsr2n ´ 1sP2n “ pB2 ´ r2n ´ 1s2qP2n´2 for n ě 1. Using this, one shows by induction on

n ě 0 that B2n “ anP2n ` ¨ ¨ ¨ ` a1P2 ` P0 for some a1, . . . , an P Qpqq. It follows that L0pB2nq “ 1. �

Theorem 2.12. We have that

ch Ln “ rns!ξn
ź

1ďkďn`1
k”t pmod 2q

1

1 ´ rks2ξ2
“ rns!

ÿ

mě0

¨
˝ ÿ

αPPtpmˆnq

rα1 ` 1s2 ¨ ¨ ¨ rαm ` 1s2

˛
‚ξn`2m (2.38)

where Ptpm ˆ nq is the set of α P Nm with 0 ď α1 ď ¨ ¨ ¨ ď αm ď n and αi ı t pmod 2q for each i.

Proof. The second equality follows by expanding the product. To prove the first equality, we proceed

by induction on n. The induction base follows from Lemma 2.11. For the induction step, take n ą 0.

The constant term of ch Ln is 0 since Lnp1q “ LnpP0q “ 0 so we have that B ch Ln “ ch Ln{ξ by (2.35).

Suppose first that n ” t pmod 2q. Then (2.34) shows that

ch Ln “ rnsξ ch Ln´1 (2.39)

and we easily get done by induction in this case. When n ı t pmod 2q, (2.34) gives that

ch Ln “ rnsξ ch Ln´1 ` rn ` 1sξ ch Ln`1 “ rnsξ ch Ln´1 ` rn ` 1s2ξ2 ch Ln.

Hence,

ch Ln “ rnsξ
1 ´ rn ` 1s2ξ2

ch Ln´1, (2.40)

and again the result follows by induction. �

Corollary 2.13. For n ě 0, we have that

Bn “
t n

2 uÿ

m“0

rn ´ 2ms!

¨
˝ ÿ

αPPtpmˆpn´2mqq

rα1 ` 1s2 ¨ ¨ ¨ rαm ` 1s2

˛
‚Pn´2m.

Proof. The coefficient of Pℓ in the expansion of Bn is LℓpBnq, i.e., it is the ξn-coefficient of ch Lℓ. Now

use Theorem 2.12. �



14 JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

3. The nil-Brauer category

For the remainder of the article, we will work over a field k of characteristic different from 2. All

algebras, categories, functors, etc. will be assumed to be k-linear without further mention, and we

reserve the symbol b for tensor products of vector spaces or algebras over k. By a graded category,

graded monoidal category, graded functor, etc. we mean one that is enriched in the closed symmetric

monoidal category gVec of graded vector spaces.

In this section, we first recall the definition of the nil-Brauer category NB t and the crucial basis

theorem for its morphism spaces from [BWW23]. Then we relate the graded dimensions of these spaces

to the bilinear form p¨, ¨qı on the ı-quantum group Uı
t. Finally, we discuss the center of NB t, and prove

a useful result about minimal polynomials.

3.1. Definition and basic properties. We use the usual string calculus for morphisms in strict monoidal

categories; our general convention is that f ˝ g denotes composition of f drawn on top of g (“vertical

composition”) and f ‹g denotes the tensor product of f drawn to the left of g (“horizontal composition”).

We always draw string diagrams so that the underlying strings are smooth curves. Recall the following

definition from [BWW23, Def. 2.1].

Definition 3.1. The nil-Brauer category NB t is the strict graded monoidal category with one generating

object B (whose identity endomorphism will be represented diagrammatically by the unlabeled string

) and four generating morphisms

‚ : B Ñ B, : B ‹ B Ñ B ‹ B, : B ‹ B Ñ 1, : 1 Ñ B ‹ B, (3.1)

(degree 2) (degree ´2) (degree 0) (degree 0)

subject to the following relations:

“ 0, “ , (3.2)

“ t1
1

, “ “ , (3.3)

“ 0 , “ , (3.4)

‚ ´ ‚ “ ´ , ‚ “ ´ ‚ . (3.5)

Remark 3.2. One source of motivation for Definition 3.1 is the expected compatibility of NB t with

the bilinear form p¨, ¨qı on Uı
t, something which will be proved in general in Theorem 3.7. From this

perspective, the formulae (2.20) suggest the existence of generators of the degrees specified in (3.1) and

some of the basic relations. This is similar to Lauda’s approach to categorification of Uqpsl2q in [Lau10].

The following relations are easily derived from the defining relations in [BWW23, (2.6)–(2.8)]:

“ , “ 0 “ , (3.6)

“ 0, “ 0, (3.7)

‚ ´ ‚ “ ´ , ‚ “ ´ ‚ . (3.8)
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In view of the last relation from (3.4) and the first relation from (3.6), we can unambiguously denote

the morphisms in these two equations by the “pitchforks” and , respectively. Together with the

last relation of (3.3), it follows that a string diagram with no dots can be deformed under planar isotopy

without changing the morphism that it represents. This is not true in the presence of dots due to the sign

in the last relations of (3.5) and (3.8)—there is a sign change whenever a dot slides across the critical

point of a cup or cap.

The relations discussed so far imply that there are strict graded monoidal functors

R : NB t Ñ NB rev
t , B ÞÑ B, s ÞÑ p´1q‚psq sØ, (3.9)

T : NB t Ñ NB
op
t , B ÞÑ B, s ÞÑ sÙ. (3.10)

Here, for a string diagram s we use sÙ and sØ to denote its reflection in a horizontal or vertical axis, and

‚psq denotes the total number of dots and crossings in the diagram, respectively. The category NB t is

strictly pivotal with duality functor D :“ R ˝ T “ T ˝ R; this rotates a string diagram s through 180˝ then

scales by p´1q‚psq.

3.2. Generating functions for dots and bubbles. Next we recall the generating function formalism

from [BWW23, Sec. 2]. We denote the rth power of ‚ under vertical composition simply by labeling

the dot with r. More generally, given a polynomial f pxq “
ř

rě0 cr xr P krxs and a dot in some string

diagram s, we denote
ÿ

rě0

cr ˆ pthe morphism obtained from s by labeling the dot by rq

by attaching what we call a pin to the dot, labeling the node at the head of the pin by f pxq:

‚ f pxq :“
ÿ

rě0

cr ‚ r P EndNB t
pBq. (3.11)

In the drawing of a pin, the arm and the head of the pin can be moved freely around larger diagrams so

long as the point stays put—these are not part of the string calculus. More generally, f pxq here could be

a polynomial with coefficients in the algebra kppu´1qq of formal Laurent series in an indeterminate u´1;

then the string s decorated with pin labeled f pxq defines a generating function of morphisms.

We will use the following shorthands for the generating functions of [BWW23, (2.14)–(2.15)]:

´́́ :“ ‚‚ pu´xq´1 “ u´1 ` u´2 ‚ ` u´3 ‚‚ ` u´4 ‚‚‚ ` ¨ ¨ ¨ P EndNB t
pBq~u´1� , (3.12)

`̀̀ :“ ‚‚ pu`xq´1 “ u´1 ´ u´2 ‚ ` u´3 ‚‚ ´ u´4 ‚‚‚ ` ¨ ¨ ¨ P EndNB t
pBq~u´1� . (3.13)

The notation here is motivated by the following standard trick: for any f pxq P krxs, we have that
”

f puq ´́́

ı
u´1

“ ‚‚ f pxq ,

”
f puq `̀̀

ı
u´1

“ ‚‚ f p´xq , (3.14)

where r´sur denotes the ur-coefficient of the formal Laurent series inside the brackets. These identities

follow by using linearity to reduce to the case that f pxq “ xn for n ě 0, then explicitly computing

coefficients on both sides. As we do with ordinary dots, we denote the nth power of one of these “dot

generating functions” by labeling them also by n. This makes sense for any n P Z since we have by the

definitions that

´́́ ´1 :“
ˆ

´́́

˙´1

“ ‚‚ u´x “ u ´ ‚ , `̀̀ ´1 :“
ˆ

`̀̀

˙´1

“ ‚‚ u`x “ u ` ‚ .
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The endomorphisms (3.12) and (3.13) obviously commute with each other and all other pins. Note also

that T and R satisfy

R

´
`̀̀

¯
“ ´́́ , R

´
´́́

¯
“ `̀̀ , T

´
`̀̀

¯
“ `̀̀ , T

´
´́́

¯
“ ´́́ . (3.15)

Another useful trick is to apply the substitution u ÞÑ ´u; this interchanges ´́́ and ´ `̀̀ .

It is clear from the last relation in (3.4) that ‚ f pxq “ ‚f p´xq and similarly for cups, hence,

we have that

`̀̀ “ ´́́ , ´́́ “ `̀̀ , `̀̀ “ ´́́ , ´́́ “ `̀̀ . (3.16)

Further useful relations involving these generating functions are

`̀̀
´ `̀̀ “

`̀̀

`̀̀ ´ `̀̀

`̀̀
,

´́́ ´
´́́

“
´́́

´́́ ´ ´́́

´́́
, (3.17)

`̀̀ ´
`̀̀

“ `̀̀

`̀̀
´

`̀̀

`̀̀
,

´́́
´ ´́́ “ ´́́

´́́
´

´́́

´́́
. (3.18)

These are also noted in [BWW23, (2.19)–(2.20)]. Equating the coefficients of u´n´1, we obtain

‚n
´ ‚ n “

ÿ

i, jě0
i` j“n´1

ˆ

‚i

‚ j ´ ‚i

‚ j

˙
, (3.19)

‚n ´ ‚ n
“

ÿ

i, jě0
i` j“n´1

ˆ
‚i

‚ j
´ ‚i

‚ j

˙
. (3.20)

Now consider the “dotted bubble generating function”

´́́ “
ÿ

rě0

u´r´1 ‚ r P tu´11
1

` u´2 EndNB t
p1q~u´1�. (3.21)

This is often useful, but even more important will be the renormalization

Opuq “
ÿ

rě0

u´rOr :“ p´1qt
`
1
1

´ 2u ´́́

˘
P 1

1

` u´1 EndNB t
p1q~u´1

�. (3.22)

Its u´r´1-coefficients Or are given explicitly by

O0 “ 1
1

, Or “ ´2p´1qt ‚ r (3.23)

for r ě 1. Note also by (3.15) and (3.16) that Opuq is invariant under R and T.

Theorem 3.3 ([BWW23, Th. 2.5]). The following relations hold in NB t:

2u ´́́ “ 2u ´́́`̀̀ ´ ´́́ ´ `̀̀ , (3.24)

´́́ ` `̀̀ “ 2u `̀̀ ´́́ , (3.25)

OpuqOp´uq “ 1
1

, (3.26)

Opuq “ ‚p u´x
u`x q2

Opuq . (3.27)

Corollary 3.4. The following relations hold in NB t:

2u ´́́ “ ´ ´́́ ´ p´1qt `̀̀ Opuq, 2u `̀̀ “ `̀̀ ` p´1qt ´́́ Op´uq, (3.28)
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2u `̀̀ “ ´ `̀̀ ´ p´1qtOpuq ´́́ , 2u ´́́ “ ´́́ ` p´1qtOp´uq `̀̀ . (3.29)

Proof. The first equality follows from (3.24) and the definition (3.22). The others follow by applying R

or using the substitution u ÞÑ ´u. �

Corollary 3.5. For n ě 0, we have that

‚ n`1 “
n´1ÿ

r“0

p´1qr ‚‚r n´r ´ δn”t ‚n .

Proof. This follows by equating the coefficients of u´n´1 in (3.28). �

3.3. The basis theorem. LetΛ be the graded algebra of symmetric functions over k. Adopting standard

notation, this is freely generated either by the elementary symmetric functions er pr ą 0q or by the

complete symmetric functions hr pr ą 0q; our convention for the grading puts these in degree 2r. The

two families of generators are related by the identity

ep´uqhpuq “ 1 (3.30)

where

epuq “
ÿ

rě0

u´rer, hpuq “
ÿ

rě0

u´rhr (3.31)

are the corresponding generating functions, and e0 “ h0 “ 1 by convention. It is also convenient to

interpret er and hr as 0 when r ă 0.

Following [Mac15, Ch. III, Sec. 8], we define a power series qpuq P Λ~u´1� and elements qr pr ě 0q
of Λ so that

qpuq “
ÿ

rě0

u´rqr :“ epuqhpuq. (3.32)

By (3.30), we have that

qpuqqp´uq “ 1 (3.33)

Equivalently, q0 “ 1 and

q2r “ p´1qr´1 1
2
q2

r `
r´1ÿ

s“1

p´1qs´1qsq2r´s (3.34)

for r ě 1; cf. [Mac15, (III.8.21)]. As with er and hr, we adopt the convention that qr “ 0 for r ă 0.

The graded subalgebra of Λ generated by all qr pr ě 0q is denoted Γ. As explained in [Mac15], Γ

is freely generated by q1, q3, q5, . . . (and it has a distinguished basis given by the Schur Q-functions Qλ

indexed by all strict partitions). It follows that Γ is generated by the elements qr pr ě 0q subject only

to the relations (3.33). Hence, (3.26) is all that is needed to establish the existence of a graded algebra

homomorphism

γt : ΓÑ EndNB t
p1q, qr ÞÑ Or. (3.35)

By [BWW23, Cor. 5.4], this is actually an isomorphism.

Now we recall the basis theorem for morphism spaces in NB t, which is the main result of [BWW23].

For m, n ě 0, any morphism f : B‹n Ñ B‹m is represented by a linear combination of m ˆ n string

diagrams, i.e., string diagrams with m boundary points at the top and n boundary points at the bottom

that are obtained by composing the generating morphisms from (3.1). It follows that HomNB t
pB‹n, B‹mq

is 0 unless m ” n pmod 2q. The individual strings in an m ˆ n string diagram s are of four basic types:

generalized cups (with two boundary points on the top edge), generalized caps (with two boundary

points on the bottom edge), propagating strings (with one boundary point at the top and one at the
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bottom), and internal bubbles (no boundary points). We define an equivalence relation „ on the set of

m ˆ n string diagrams by declaring that s „ s1 if their strings define the same matching on the set of

m ` n boundary points. We say that s is reduced if the following properties hold:

‚ There are no internal bubbles.

‚ Propagating strings have no critical points (“points of slope 0).

‚ Generalized cups and caps each have exactly one critical point.

‚ There are no double crossings (“ two different strings which cross each other at least twice).

These assumptions imply in particular that there are no self-intersections (“ crossings of a string with

itself). Fix a set Dpm, nq of representatives for the „-equivalence classes of undotted reduced m ˆ n

string diagrams; the total number of such diagrams is pm`n´1q!! if m ” n pmod 2q, and there are none

otherwise. For each of these „-equivalence class representatives, we also choose distinguished points

in the interior of each of its strings that are away from points of intersection. Then let Dpm, nq be the set

of all morphisms f : B‹n Ñ B‹m which can be obtained by taking an element of Dpm, nq then adding

dots labeled by non-negative multiplicities at each of the distinguished points on the strings.

Theorem 3.6 ([BWW23, Th. 5.1]). Viewing HomNB t
pB‹n, B‹mq as a graded Γ-module so that p P Γ

acts on f : B‹n Ñ B‹m by f ¨ p :“ f ‹ γtppq, the space HomNB t
pB‹n, B‹mq is free as a graded Γ-module

with basis Dpm, nq.

Now we can make the first significant connection between NB t and the ı-quantum group. Recall

the bilinear form p¨, ¨qı : Uı
t ˆ Uı

t Ñ Qpqq from (2.21). We convert this into a sesquilinear form

x¨, ¨yı : Uı
t ˆ Uı

t Ñ Qpqq by setting

xu1, u2yı :“ pψıpu1q, u2qı (3.36)

for u1, u2 P Uı
t.

Theorem 3.7. For m, n P N, we have that dimq HomNB t
pB‹n, B‹mq “ dimq Γ ¨ xBn, Bmyı.

Proof. Since Bn is ψı-invariant, we have that xBn, Bmyı “ pBn, Bmqı. Now we compare the explicit

combinatorial formula for pBn, Bmqı from Corollary 2.6 with the formula

dimq HomNB t
pB‹n, B‹mq “ dimq Γ ¨

ÿ

sPDpm,nq

q´ degpsq

implied by Theorem 3.6. If m ı n pmod 2q then pBn, Bmqı “ 0 and Dpm, nq is empty, and the result is

clear. Now assume that m ” n pmod 2q and let f :“ pm ` nq{2. There is an obvious bijection between

equivalence classes of m ˆ n string diagrams and chord diagrams with f free chords and no tethered

chords. This just arises by identifying the pm ` nq boundary points of strings in an m ˆ n string diagram

with the pm ` nq endpoints of chords in a chord diagram in some fixed way that preserves the clockwise

ordering, then replacing strings by chords so that the underlying matching of these points is preserved.

In a string diagram, each crossing is of degree ´2, so it contributes q2 to the graded dimension. The

dots placed at the f distinguished points produce the factor 1{p1 ´ q´2q f , this being dimq krx1, . . . , x f s
with xi in degree 2. Recalling the definition of the generating function T f ,0pqq from (2.18), we deduce

that

dimq HomNB t
pB‹n, B‹mq “ dimq Γ ¨

ÿ

sPDpm,nq

q´ degpsq “ dimq Γ ¨ T f ,0pq2q{p1 ´ q´2q f ,

which is dimq Γ ¨ pBn, Bmqı according to Corollary 2.6. �
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3.4. Central elements. Recall that the center ZpAq of a category A means the algebra of endomor-

phisms of its identity endofunctor. Thus, elements of ZpNB tq consist of tuples pznqně0 for elements

zn P EndNB t
pB‹nq such that zm ˝ f “ f ˝ zn for all m, n ě 0 and f P HomNB t

pB‹n, B‹mq. In this

subsection, we are going to use the dotted bubbles to construct many—conjecturally, all—elements of

ZpNB tq.

Since Op˘uq P 1
1

` u´1 EndNB t
p1q~u´1� and 2 is invertible in k, it makes sense to take the

square roots
a
Op˘uq; we choose the ones that are positive in the sense that they again lie in 1

1

`
u´1 EndNB t

p1q~u´1�. We have that
a
Op´uq “

´a
Opuq

¯´1

by (3.26). Taking the square roots of

both sides of (3.27), both of which are formal power series in 1B ` u´1 EndNB t
pBq~u´1�, we obtain

?
Opuq ´́́ “ `̀̀

?
Opuq ,

?
Op´uq `̀̀ “ ´́́

?
Op´uq . (3.37)

Let er,n, hr,n, qr,n P krx1, . . . , xnsS n be the symmetric polynomials in n variables obtained by special-

izing the symmetric functions er, hr, qr from (3.31) and (3.32). We have that

qr,n “
rÿ

s“0

es,nhr´s,n. (3.38)

Moreover,

ÿ

rě0

u´rqr,n “
nź

i“1

u ` xi

u ´ xi

P 1 ` u´1krx1, . . . , xns~u´1
�. (3.39)

In the statement of the next theorem, for a polynomial f P krx1, . . . , xns, we use the notation f 1n “ 1n f

to denote the endomorphism of B‹n defined by interpreting xi as |‹pi´1q ‹ ‚ ‹ |‹pn´iq, i.e., the dot on the

ith string.

Theorem 3.8. For any r ě 0, we have that pqr,n1nqně0 P ZpNB tq.

Proof. We need to show that qr,m1m ˝ f “ f ˝ qr,n1n for any f P HomNB t
pB‹n, B‹mq. By (3.37), we have

that
ÿ

rě0

u´rqr,n1n “
nź

i“1

u ` xi

u ´ xi

1n “
´1 ´1

¨ ¨ ¨
´1`̀̀ `̀̀ `̀̀

´́́ ´́́´́́ “ ?
Op´uq ‹ |‹n ‹ ?

Opuq, (3.40)

The result follows from this since the expression on the right hand side clearly has the desired property

by the interchange law. �

Corollary 3.9. Let pr,n :“
řn

i“1 xr
i

P krx1, . . . , xnsS n be the rth power sum. For any odd r ě 1, we have

that ppr,n1nqně0 P ZpNB tq.

Proof. It suffices to note that any odd power sum can be written as a polynomial in the symmetric

polynomials qr,n. This can be proved by taking the logarithmic derivative of (3.39). �

3.5. Minimal polynomials. In this subsection, we forget the grading on NB t, viewing it as an ordi-

nary monoidal category. Let V be a strict (left) NB t-module category. This means that we are given

a strict monoidal functor µ from NB t to the strict monoidal category End pV q whose objects are end-

ofunctors of V and whose morphisms are natural transformations. We often denote the endofunctor

µpBq : V Ñ V simply by B. For a string diagram s representing a morphism in HomNB t
pB‹n, B‹mq,

we denote the morphism µpsqV : BnV Ñ BmV simply by sV . We will use the string calculus extended

to module categories in the manner explained in [BSW20, Sec. 2.3]. For this, we represent the identity
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endomorphism of an object V of V by the labeled string V , and a morphism f : V Ñ W between

objects of V by adding a node labeled by f to the middle of this string:

f

V

W

: V Ñ W.

For a string diagram s representing a morphism in NB t, we represent sV diagrammatically by s V .

We say that an object L of V is special if EndV pLq “ k and EndV pBLq is finite-dimensional. For

example, V could be a locally finite Abelian category and then any irreducible object L P V is special

by Schur’s Lemma. Let mLpxq be the minimal polynomial of the endomorphism ‚L : BL Ñ BL. It

could be that BL “ 0, in which case mLpxq “ 1. Let βpLq be the degree of mLpxq. The image under µ

of any element z P EndNB t
p1q is an element of the center ZpV q of the category V . Thus, the generating

function Opuq for dotted bubbles from (3.22) gives rise to an element of ZpV q~u´1�. On an irreducible

object, OpuqL : L~u´1� Ñ L~u´1� is given by multiplication by a power series OLpuq P k~u´1�.

The next theorem, which is a counterpart of [BSW20, Lem. 4.4], explains the relationship between the

polynomial mLpxq and the power series OLpuq. It shows in particular that OLpuq is a rational function.

Theorem 3.10. For any special object L P V , we have that OLpuq “ p´1qt mLp´uq
mLpuq .

Proof. Let f puq :“ 1
2u

p1 ´ p´1qtOLpuqq P u´1k~u´1� and gpuq :“ mLpuq f puq P uβpLq´1k~u´1�. By

the definition (3.22), we have that

f puq1L “ ´́́ L .

We show that gpuq is a polynomial in u. It suffices to show that rurgpuqsu´1 “ 0 for all r ě 0. This

follows because

rurgpuqsu´1 1L “ rurmLpuq f puq1Lsu´1 “
“
urmLpuq ´́́ L

‰
u´1 “

“
‚ xrmLpxq L

‰
u´1 “ 0,

where we used (3.14) for the penultimate equality. Using (3.14) again, we have that

0 “ 2u ‚ mLpxq L “ 2u

„
mLpuq ´́́ L



u´1

“
„

2u mLpuq ´́́ L



u0

(3.24)“
„

2u mLpuq ´́́`̀̀ L ´ mLpuq ´́́ L ´ mLpnq `̀̀ L



u0

“
„

2u gpuq `̀̀ L ´ pmLpuq ´ mLp0qq ´́́ L ´ pmLpuq ´ mLp0qq `̀̀ L



u0

“ 2

„
gpuq `̀̀ L ´ mLpuq ´ mLp0q

2u
´́́ L ´ mLpuq ´ mLp0q

2u
`̀̀ L



u´1

.

As gpuq and
mLpuq´mLp0q

2u
are polynomials in u, we can use (3.14) yet again to deduce that

‚gp´xq L ´ ‚mLpxq´mLp0q
2x

L ` ‚mLp´xq´mLp0q
2x

L “ ‚gp´xq´
mL pxq´mLp´xq

2x
L “ 0.

It follows that the polynomial gp´xq ´ mLpxq´mLp´xq
2x

is divisible by mLpxq. But this polynomial is of

strictly smaller degree than mLpxq, so it must in fact be 0. This shows that gp´xq “ mLpxq´mLp´xq
2x

.

Equivalently, gpxq “ mLpxq´mLp´xq
2x

. So

OLpuq “ p´1qt

ˆ
1 ´ 2ugpuq

mLpuq

˙
“ p´1qt mLp´uq

mLpuq ,

and the proof is complete. �
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Corollary 3.11. For any special object L P V , we have that βpLq ” t pmod 2q.

Proof. As power series in u´1, the constant terms of OLpuq and p´1qt mLp´uq
mLpuq

are 1 and p´1qβpLq`t,

respectively. These are equal by the lemma. �

Remark 3.12. Theorem 3.10 also holds in the graded setting, i.e., when we don’t forget the grading

on NB t and V is a strict graded NB t-module category. In that case, for a special object L, we have

simply that mLpxq “ xβpLq and OLpuq “ 1, so that Theorem 3.10 is not so interesting—it gives no more

information than Corollary 3.11. Nevertheless, this will be useful later on; see Lemma 5.11 and the

proof of Theorem 5.18.

4. Primitive idempotents

In this section, we work out the structure of the primitive homogeneous idempotents in NB t and

prove Theorems A and B. We continue to work over the field k of characteristic different from 2.

4.1. Extended graphical calculus. We begin by introducing some further diagrammatical shorthands

in the spirit of the “thick calculus” of [KLMS12]. We denote the tensor product |‹a of a strings by a

single thick string labeled by a. A thick cup or cap labeled by a denotes that number of nested ordinary

cups or caps (no crossings). Sometimes it is notationally convenient to be able to split thick strings into

thinner ones or to merge thinner strings to obtain thicker ones: the diagrams

a b

n

,

a b

n

simply represent the identity morphisms B‹n Ñ B‹a ‹ B‹b and B‹a ‹ B‹b Ñ B‹n for a ` b “ n. We will

often omit a thickness label on a thick string when it can be inferred from others in the diagram.

For a ` b “ n, the thick crossing

a b

:“
a b

denotes the morphism B‹a ‹ B‹b Ñ B‹b ‹ B‹a obtained by composing ordinary crossings according

to a reduced expression for the longest of the minimal length S n{pS a ˆ S bq-coset representatives. We

use a thick string decorated with a cross to denote the composition of thin crossings corresponding to a

reduced expression for the longest element wn. For example:

1

“ ,

2

“ ,

3

“ ,

4

“ .

When working with these morphisms, we will often make implicit use of various obvious consequences

of the braid relations, such as

a b

“
a b

,
a b

“
a b

,
a`b

“
a b

,
a`b`1

“
a b

.

In view of the pitchfork relations, one can also draw this cross at the critical point of a thick cup or cap

without there being any ambiguity as to the meaning:

a
:“

a
“

a
,

a
:“ a “ a

.
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We use a dot on a string of thickness n labeled by α P Nn to denote the tensor product of dots on

ordinary strings labeled by the parts of α:

‚
n

α :“ α1 α2 αn. . .‚ ‚ ‚

The n-tuples ρn :“ pn ´ 1, n ´ 2, ¨ ¨ ¨ , 1, 0q P Nn and ̟r,n :“ p1, . . . , 1, 0, . . . , 0q P Nn with r entries

equal to 1 followed by pn ´ rq entries equal to 0 will appear often. To simplify notation, we allow the

subscript n to be omitted in these when used to label a node on a string of thickness n:

‚
n

ρ :“ ‚
n

ρn , ‚
n

̟r :“ ‚
n

̟r,n .

Generalizing the notation (3.11), given a polynomial f “
ř
αPNn cαx

α1

1
¨ ¨ ¨ x

αn
n P Nrx1, . . . , xns, the pin

‚ f

n

:“
ÿ

rě0

cα ‚ α

n

denotes the endomorphism f 1n “ 1n f of B‹n. Often for this f will be the elementary symmetric

polynomial er,n :“
ř

1ďi1ă¨¨¨ăirďn xi1 ¨ ¨ ¨ xir . Again, if this is pinned to a string of thickness n, we allow

the subscript n to be dropped, writing simply

n

‚ er :“
n

‚ er,n

since the number n of variables in the elementary symmetric polynomial can be inferred from the thick-

ness of the string.

Lemma 4.1. For 0 ď r ď n, we have that

‚er

n

“
rÿ

s“0

p´1qr´s ‚ r´s

‚es

n

n`1

, ‚ er

n

“
rÿ

s“0

p´1qr´s ‚r´s

‚ es

n

n`1

. (4.1)

Proof. The first equality is the well-known identity er,n “
řr

s“0p´1qr´sxr´s
n`1

es,n`1. Then the second

equality follows on applying R. �

Lemma 4.2. For 0 ď i ď n, we have that

‚i

n

“ δi,n

n`1

, ‚ i

n

“ δi,np´1qn

n`1

. (4.2)

Proof. We just prove the first identity; the second then follows on applying R. By Theorem 3.6, the

lowest non-zero degree of EndNB t
pB‹pn`1qq is ´npn ` 1q, and the diagram on the left hand side of the

identity is of degree ´npn ´ 1q ´ 4n ` 2i. If i ă n then ´npn ´ 1q ´ 4n ` 2i ă ´npn ` 1q so the

expression is 0.
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To prove the result in the remaining case that i “ n, we proceed by induction on n. Assume the result

is true for n and consider the next case

‚n`1

n`1

“ ‚‚n

n`1

(3.8)“ ‚
‚

n

n`1

`
ÿ

a,bě0
a`b“n

¨
˚̋ ‚n

a b

´ ‚n

a b

˛
‹‚ .

In this expression, the term before the summation is 0 by the degree argument given already, the first

term in the summation is 0 unless a “ 0 by the defining relations (3.2), and similarly the second term in

the summation is 0 unless b “ 0. So

‚n`1

n`1

“ ‚n

n

´ ‚n

n

“
n`1

´
n

(3.2)“
n`2

,

where we used the induction hypothesis for the second equality. �

Corollary 4.3. For 0 ď i ď n ` 1, we have that

‚ i

n

“ δi,n`1δn”tp´1qn`1

n`1

, ‚i

n

“ δi,n`1δn”t

n`1

. (4.3)

Proof. As usual, we just prove the first equality. By the braid relation then Corollary 3.5 and Lemma 4.2,

we get that

‚ i

n

“ ‚ i

n

“ ´δi,n`1δn”t ‚ n

n

“ ´δi`1,nδn”tp´1qn

n`1

.

�

Corollary 4.4. For any n ě 1, we have that ‚ρ
n

“
n

.

Proof. This follows by induction on n. For the induction step, we have that

‚ ρ
n`1

“ ‚n ‚ ρ
n

“
n`1

,

using Lemma 4.2 for the first equality and the induction hypothesis for the second one. �

Corollary 4.5. For 0 ď r ď n, we have that

‚̟r`ρ

n

“ δr,n

n`1

, ‚̟r`ρ

n

“ δr,np´1qn

n`1

. (4.4)

Proof. We just prove the first equality. If r ă n then the expression on the left hand side is 0 by degree

considerations like in the first paragraph of the proof of Lemma 4.2. If r “ n then the left hand side is

equal to ‚ρ
n`1

, and the conclusion follows from Corollary 4.4. �
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The remaining relations to be established in this subsection are more complicated. The guiding

principle here is that relations in the nil-Hecke algebra can be ported to the nil-Brauer category providing

there enough additional strings to eliminate the cup/cap term in the dot sliding relation (3.8).

Lemma 4.6. For 0 ď i ď n ` 1, we have that

‚i‚ i

n

n

“ δi,n`1δn”t

n`1

n`1

. (4.5)

Proof. We first slide both sets of i dots downwards past the crossing using (3.19) and (3.20) to see that

‚i‚ i “
‚i
‚i `

ÿ

i1 ,i2ě0
i1`i2“i´1

¨
˝ ‚i‚ i2

‚i1

´ ‚i‚ i2

‚i1

˛
‚“ ´

ÿ

i1 ,i2ě0
i1`i2“i´1

¨
˝

‚
i1‚

i2‚i

` ‚i‚ i2

‚i1

˛
‚.

So

‚i‚ i

n

n

“
ÿ

i1,i2ě0
i1`i2“i´1

p´1qi2`1

¨
˚̊
˚̊
˝

‚i1

‚i`i2

n

n

` ‚i`i2

‚i1

n

n

˛
‹‹‹‹‚
.

Now the lemma follows using also the identities

‚i

n

“ δi,n
n`1

,

n

‚i

“ δi,n`1δn”t

n`1
.

These are consequences of Lemma 4.2 and Corollary 4.3. �

Lemma 4.7. For i, j ě 0 with i ` j ď 2n ` 3, we have that

‚i‚ j

n

n

` ‚i‚j

n

n

“ δi` j,2n`2δn”t2p´1qi`1´t

n`1

n`1

. (4.6)

Proof. We assume that i ď j, and proceed by induction on j ´ i. The base case j ´ i “ 0 follows by

Lemma 4.6. For the induction step, suppose that i ă j and i ` j ď 2n ` 3. By induction, we have that

‚i‚ j´1

n

n

` ‚i‚j´1

n

n

“ δi` j,2n`3δn”t2p´1qi`1´t

n`1

n`1

.

Then we vertically compose on top with e1,2n`2 “ 1
2
q1,2n`2px1, . . . , x2n`2q, using the centrality from

Theorem 3.8 to commute this down to the middle; it becomes e1,2 “ x1 ` x2 in the middle on the left
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hand side and e1,0 “ 0 in the middle on the right hand side. We deduce that

‚i‚ j

n

n

` ‚i‚j

n

n

` ‚i`1‚ j´1

n

n

` ‚i`1‚j´1

n

n

“ 0.

If j ´ i “ 1, the last two terms are the same as the first two terms, and the result follows on dividing by

2. If j ´ i ą 1 we use the induction hypothesis to simplify the last two terms to obtain

‚i‚ j

n

n

` ‚i‚j

n

n

` δi` j,2n`2δn”t2p´1qi`2´t

n`1

n`1

“ 0.

The result follows. �

Corollary 4.8. For α P Nn`1 and 1 ď i ď n such that αi ` αi`1 ď 2n ` 1, we have that

‚

n`1

α “ δαi`αi`1,2nδnıtp´1qαi`1´t2 ‚

n´1

pα ´ ‚

n`1

siα , (4.7)

where pα :“ pα1, . . . , αi´1, αi`2, . . . , αn`1q P Nn´1 and siα is the tuple obtained from α by permuting

the ith and pi ` 1qth entries.

Proof. Let β :“ pα1, . . . , αi´1q and γ :“ pαi`2, . . . , αn`1q. By Lemma 4.7, we have that

‚

n`1

α ` ‚

n`1

siα “ ‚β ‚ γ‚αi ‚ αi`1

i´1n´i

i´1n´i

` ‚ γ‚β ‚ αi‚αi`1

i´1n´i

i´1n´i

“ δαi`αi`1,2nδnıt2p´1qαi`1´t ‚ γ‚β .

�

Corollary 4.9. For α P Nn`1 and 1 ď i ď n such that αi “ αi`1 ď n, we have that

‚

n`1

α “ δαi ,nδnıt ‚

n´1

pα , (4.8)

where pα :“ pα1, . . . , αi´1, αi`2, . . . , αn`1q P Nn´1.

Proof. This follows from Corollary 4.8. �

Lemma 4.10. The following relation holds for any n ě 1 and 0 ď r ď n:

‚
n

̟r`ρ “ ‚ er

n

´ δn”t
‚ er´2

n´2

, (4.9)
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interpreting the final term as 0 in case r ď 1.

Proof. We proceed by induction on n. The result is trivial when n “ 1. It is also clear when r “ 0

thanks to Corollary 4.4. Now suppose that n ě 1 and 0 ď r ď n, and consider

‚

n`1

̟r`1`ρ “ ‚‚‚n
̟r`ρ

n

“
‚

‚n ̟r`ρ

n

‚ `
ÿ

a,bě0
a`b“n´1

¨
˚̊
˚̊
˝ ‚‚n

̟r`ρ

n

b a

´
‚‚n
̟r`ρ

n

b a
˛
‹‹‹‹‚
.

Here, we commuted the single dot upward through the thick string. In the summation, the second term

is 0 always, and the first term is 0 unless a “ 0. So the expression simplifies to give

‚

n`1

̟r`1`ρ “
‚

‚n ̟r`ρ

n

‚ ` ‚n ̟r`ρ

n

n´1

‚ . (4.10)

If r “ 0, we simplify this using Corollary 4.4, then Lemma 4.2, then induction to obtain

‚

n`1

̟1`ρ “
‚

‚n

n

` ‚n

n

n´1

“
‚

n

` ‚n

n´1

“
‚

n

` n ‚ρ‚

n´1

“
‚

n

` ‚̟1`ρ

n

“
‚

n

` ‚e1

n

“
‚

n

`

n

‚e1

“ ‚e1

n`1

,

as required for the induction step. Now suppose that r ě 1 and consider (4.10) again. Letting α :“
̟r`1,n`1 ´ ̟1,n`1 ` ρn`1 “ pn, n, . . . q, we use Corollary 4.8 and induction to simplify the first term:

‚
‚n ̟r`ρ

n

‚ “
‚

‚ α

n`1

n

“ δnıt ‚̟r´1`ρ

‚

n´1

“ δnıt

‚

n´1

‚ er´1 “ ´δnıt

n´1

‚ er´1 ,

which is the second term we need to prove the induction step. Turning our attention to the second term

on the right hand side of (4.10), it remains to show that

‚n ̟r`ρ

n

n´1

‚ “ ‚ er`1

n`1
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assuming r ě 1. By the induction hypothesis plus the identities er,n “ er,n´1 ` er´1,n´1xn then er`1,n `
er,nxn`1 “ er`1,n`1, we have that

‚n ̟r`ρ

n

n´1

‚ “ ‚n
‚ er

n

n´1

“ ‚ er‚n

n´1

` ‚ er´1 ‚‚n

n´1

“ ‚̟r`ρ‚n

n´1

` ‚‚̟r´1`ρ‚n

n´1

“ ‚̟r`1`ρ

n

` ‚‚̟r`ρ

n

“ ‚ er`1

n

` ‚‚ er

n

“ ‚ er`1

n`1

.

�

Corollary 4.11. The following relation holds for any n ě 1 and 0 ď r ď n:

‚

n

̟r`ρ “ ‚ er

n

. (4.11)

Proof. Add a cap at the bottom of the relation from Lemma 4.10. The second term then disappears. �

4.2. Recurrence relation for idempotents. Corollary 4.4 obviously implies that

en :“ ‚ ρ

n

(4.12)

is a homogeneous idempotent for each n ě 0. For example:

e0 “ 1, e1 “ , e2 “ ‚
, e3 “

‚‚‚
, e4 “

‚ ‚ ‚‚‚‚ .

These are likely already familiar expressions, since the same diagrams are often used to represent dis-

tinguished primitive idempotents in the nil-Hecke algebra.

In the remainder of the section, we are going to show that the idempotents en pn ě 0q give a full

set of primitive homogeneous idempotents in NBt. The first step, accomplished in this subsection, is to

decompose B‹en as a sum of mutually orthogonal conjugates of en`1 and en´1. We begin by introducing

two more families of endomorphisms of B‹pn`1q: for 0 ď r ď n let

er,n :“ p´1qr ‚ ρ

n

˝

¨
˚̊
˝

‚
‚ er

n´r

n

n´1

´ δn”t

‚
‚ er´2

n´r

n´2

˛
‹‹‚ , (4.13)

fr,n :“ p´1qr´1 ‚ ρ

n

˝

¨
˚̊
˝

‚
‚ er´1

n´r

n´1

´ δn”t

‚
‚ er´2

n´r

n´2

˛
‹‹‚ , (4.14)
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Recalling the convention that the elementary symmetric function er “ 0 for r ă 0 and, of course,

e0 “ 1, we have that

e0,n “ en`1, f0,n “ 0. (4.15)

By Lemma 4.10 and Corollary 4.11, the definitions (4.13) and (4.14) can be written equivalently as

er,n “ p´1qr ‚ ρ

n

˝
‚

‚ ̟r`ρ

n´r

n

n´1

“ p´1qr

n

n

‚n´r ‚ ρ

‚̟r`ρ
, (4.16)

fr,n “ p´1qr´1 ‚ ρ

n

˝

¨
˚̊
˝

‚
‚̟r´1`ρ

n´r

n´1

´ δn”t

‚
‚̟r´2`ρ

n´r

n´2

˛
‹‹‚ (4.17)

“ p´1qr´1
‚
‚

‚ ρ

̟r´1`ρ

n´r

n

n

` δn”tp´1qr
‚
‚

‚ ρ

̟r´2`ρ

n´r

n´1

n

, (4.18)

where we interpret terms involving the undefined symbols ̟r´1 for r “ 0 and ̟r´2 for r “ 0 or 1 as 0.

Example 4.12. If n “ 0 then e0,0 “ and f0,0 “ 0. If n “ 1 then

e0,1 “ ‚
, e1,1 “ ´ ‚ , f0,1 “ 0, f1,1 “ .

If n “ 2 then

e0,2 “
‚‚‚

, e1,2 “ ´
‚‚
‚ ´

‚‚
‚ , e2,2 “

‚
‚ ‚ ´ δt,0

‚
,

f0,2 “ 0, f1,2 “
‚‚

, f2,2 “ ´
‚
‚ ` δt,0

‚
.

If n “ 3 then

e0,3 “
‚ ‚ ‚‚‚‚

, e1,3 “ ´ ‚
‚ ‚ ‚‚‚

´ ‚
‚ ‚ ‚‚‚

´ ‚‚ ‚ ‚‚‚
,

e2,3 “ ‚‚
‚ ‚ ‚‚

` ‚
‚‚ ‚ ‚‚

` ‚‚
‚ ‚ ‚‚

´ δt,1

‚‚‚‚
, e3,3 “ ´ ‚‚‚

‚ ‚‚
` δt,1

‚‚ ‚
‚ ,

f0,3 “ 0, f1,3 “
‚‚ ‚‚‚

,

f2,3 “ ´
‚‚ ‚
‚

‚
´

‚‚ ‚
‚

‚
` δt,1

‚‚ ‚ ‚
, f3,3 “

‚‚ ‚
‚‚ ´ δt,1

‚‚ ‚
‚ .

Lemma 4.13. For n ě 0, we have that B ‹ en “ řn
r“0per,n ` fr,nq.
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Proof. For this calculation, it is convenient to drop the ρ from the top of the diagrams, so we set

e̊n :“
n

, e̊r,n :“ p´1qr
‚

‚ er

n´r

n

` δn”tp´1qr´1

‚
‚ er´2

n´r

n´2

,

f̊r,n :“ p´1qr´1
‚

‚ er´1

n´r

n´1

` δn”tp´1qr

‚
‚ er´2

n´r

n´2

.

Notice that

e̊r,n ` f̊r,n :“ p´1qr
‚

‚ er

n´r

n

` p´1qr´1
‚

‚ er´1

n´r

n´1

.

We in fact show that B ‹ e̊n “ řn
r“0pe̊r,n ` f̊r,nq. The first step is the same as in the proof of [KLMS12,

Lem. 2.13]:

B ‹ e̊n “
n

(4.4)“ p´1qn´1 ‚̟n´1`ρ

n´1

(4.11)“ p´1qn´1 ‚ en´1

n´1

(3.5)“ p´1qn´1 ‚ ‚ en´1

n´1

` p´1qn ‚ ‚ en´1

n´1

` p´1qn´1 ‚ en´1

n´1

“ p´1qn´1 ‚ ‚ en´1

n´1

` p´1qn
‚ en

n

` p´1qn´1 ‚ en´1

n´1

.

The last two terms in this expression are equal to e̊n,n ` f̊n,n. It remains to show that the first term is

equal to
řn´1

r“0pe̊r,n ` f̊r,nq:

p´1qn´1 ‚ ‚ en´1

n´1

(4.1)“
n´1ÿ

r“0

p´1qr ‚ ‚n´1´r ‚ er

n

(3.20)“
n´1ÿ

r“0

p´1qr ‚n´r

‚ er

n

`
n´2ÿ

r“0

n´1ÿ

s“r`1

p´1qr

¨
˚̋ ‚n´s ‚s´1´r ‚ er

n

´ ‚‚n´s
s´1´r ‚ er

n

˛
‹‚

“
n´1ÿ

r“0

p´1qr ‚n´r

‚ er

n

`
n´1ÿ

s“1

s´1ÿ

r“0

p´1qr

¨
˚̋ ‚n´s ‚s´1´r ‚ er

n

´ ‚‚n´s
s´1´r ‚ er

n

˛
‹‚

(4.1)“
n´1ÿ

r“0

p´1qr ‚n´r

‚ er

n

`
n´1ÿ

s“1

p´1qs´1

¨
˚̋ ‚n´s ‚ es´1

n

´ ‚n´s
‚ es´1

n

˛
‹‚
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“
n´1ÿ

r“0

¨
˚̋p´1qr ‚n´r

‚ er

n

` p´1qr´1 ‚ er´1

n´1

‚n´r

˛
‹‚`

n´1ÿ

s“1

p´1qs ‚n´s ‚ es´1

n´1

.

The first summation gives the remaining terms
řn´1

r“0pe̊r,n ` f̊r,nq that we want, and the second summation

is 0 thanks to Corollaries 4.5 and 4.11. �

Now we introduce several more families of morphisms in NB t for 0 ď r ď n and 1 ď s ď n:

ur,n :“ p´1qr
‚ ρ

‚̟r`ρ

n`1

n

, vr,n :“ ‚n´r

n`1

n

‚ ρ
, wr,n :“ ur,n ´ ur,n ˝ v0,n, (4.19)

xs,n :“ p´1qs´1 ‚̟s´1`ρ

‚ρ

n

n´1

` p´1qsδn”t

‚
‚
ρ

̟s´2`ρ

n´1

n´1

, ys,n :“
‚‚ ρ

n´s

n´1

n

, (4.20)

again interpreting the undefined term involving ̟s´2 when s “ 1 as 0. Note that u0,n “ v0,n “ en`1

thanks to Corollary 4.4, hence, w0,n “ 0. The same corollary also implies easily that en`1 ˝ ur,n “ ur,n,

vr,n ˝ en`1 “ vr,n, en´1 ˝ xs,n “ xs,n and ys,n ˝ en´1 “ ys,n.

Lemma 4.14. For 0 ď r ď n and 1 ď s ď n, we have that vr,n ˝ ur,n “ er,n and ys,n ˝ xs,n “ fs,n.

Proof. This follows from the definitions just given, using Corollary 4.4 and the alternative forms of the

definitions of er,n and fs,n from (4.16) and (4.18). �

Lemma 4.15. For 0 ď r, s ď n, we have that

ur,n ˝ vs,n “

$
’’&
’’%

´ ‚r

n

˝ fr,n if s “ 0 ă r and n ı t pmod 2q

δr,sen`1 otherwise.

(4.21)

Proof. This is clear for n “ 0 so assume n ě 1. By the definitions and Corollary 4.4, we have that

ur,n ˝ vs,n “ p´1qr

‚ρ
‚̟r`ρ

‚ρ

‚n´s

n`1

n

“ p´1qr ‚̟r`ρ

‚ρ

‚n´s

n`1

n

“ p´1qr ‚
‚

n`1

α

ρ

where α “ pn ´ s, n, n ´ 1, ¨ ¨ ¨ , n ´ r ` 1, n ´ r ´ 1, . . . , 1, 0q P Nn`1. If s “ r then α is a rearrangement

of ρn`1, so this is equal to en`1 thanks to Corollary 4.8. If 0 ă s , r then α has two entries equal to

n ´ s ă n, so this is 0 by Corollaries 4.8 and 4.9. Finally if 0 “ s , r then α “ pn, n, n ´ 1, . . . , n ´ r `
1, n ´ r ´ 1, . . . , 1, 0q and Corollary 4.9 gives the exceptional formula in this case, referring to (4.17) to

see the appropriate form of fr,n. �

Corollary 4.16. For 0 ď r, s ď n, we have that

er,n ˝ es,n “
"

´fr,n if s “ 0 ă r and n ı t pmod 2q
δr,ser,n otherwise.

(4.22)
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Proof. By Lemma 4.14, we have that er,n ˝es,n “ vr,n ˝ur,n ˝vs,n ˝us,n. Except in the case s “ 0 ă r and

n ı t pmod 2q, we have that ur,n ˝vs,n “ δr,sen`1 by Lemma 4.15, and en`1 ˝ur,n “ ur,n by Corollary 4.4.

The conclusion then follows using that vr,n ˝ur,n “ er,n once again. Suppose from now on that s “ 0 ă r

and n ı t pmod 2q. Then, using the form of fr,n from (4.18), Lemma 4.15 gives instead that

er,n ˝ e0,n “ vr,n ˝ pur,n ˝ v0,nq ˝ u0,n “ p´1qr

‚n

‚n ‚ρ

‚ρ

‚ ‚

‚̟r´1`ρ

n´r ρ

n`1

n

“ p´1qr

‚n

‚n ‚ρ

‚ρ

‚ ‚

‚̟r´1`ρ

n´r ρ

n

n

“ p´1qr

‚n

‚n

‚ ‚

‚̟r´1`ρ

n´r ρ

n´1

n

.

It remains to apply Corollary 4.3 to see that this is equal to ´fr,n; for this (4.17) is most convenient. �

Lemma 4.17. Assume that n ” t pmod 2q. For 1 ď r, s ď n, we have that xr,n ˝ ys,n “ δr,sen´1.

Proof. When n “ t “ 1 this follows immediately from the first relation from (3.3). Now suppose that

n ě 2. Since xr,n is a sum of two terms (the second being 0 in case r “ 1), so too is xr,n ˝ ys,n. We

compute the two terms separately. The first term is

p´1qr´1

‚ρ
‚̟r´1`ρ

n´1

‚‚ ρn´s

n´1

“ p´1qr´1

‚ρ
‚̟r´1`ρ

n´1

‚n´s

n´1

“ p´1qr´1

‚ρ
‚̟r´1`ρ

n´1

‚n´s

n´2

“ p´1qr´1δs,1

‚ρ
‚̟r´1`ρ

n´1

,

where we used Corollary 4.4 for the first equality and Corollary 4.3 for the last one. If r “ 1 (when we

already know that the second term is 0) this is δs,1en´1 by Corollary 4.4, and we are done. Assuming

from now on that r ě 2, the second term is

p´1qr

‚ ρ

‚̟r´2`ρ

n´1

‚‚‚ ρn´1n´s

n´2

“ p´1qr

‚ ρ

‚̟r´2`ρ

n´1

‚‚ n´1n´s

n´2

“ p´1qr

‚ ρ

‚̟r´2`ρ

n´1

‚‚ n´1n´s

n´3

(4.3)“ p´1qr

‚ ρ

‚̟r´2`ρ

n´1

‚n´s

n´2

“ p´1qr

‚ ρ

‚̟r´2`ρ

n´1

‚n´s

n´2

“ p´1qr

‚ ρ

‚ α

n´1

where α “ pn ´ s, n ´ 2, . . . , n ´ r ` 1, n ´ r ´ 1, . . . , 1, 0q P Nn´1. If s “ 1 this cancels with the

first term to give 0, and we are done. Assuming from now on that s ě 2, the first term is 0, and it just

remains to apply Corollaries 4.8 and 4.9 to rewrite the second term, noting that n ” t pmod 2q so the

first term on the right hand side of (4.7) is 0, as is the right hand side of (4.8). We get 0 if r , s and,

after one more application of Corollary 4.4, we get en´1 if r “ s, as claimed. �
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Corollary 4.18. Assume that n ” t pmod 2q. For 1 ď r, s ď n, we have that fr,n ˝ fs,n “ δr,sfr,n.

Proof. This follows by Lemmas 4.14 and 4.17. �

Lemma 4.19. Assume that n ” t pmod 2q. For 0 ď r ď n and 1 ď s ď n, we have that ur,n ˝ ys,n “
xs,n ˝ vr,n “ 0.

Proof. We first consider xs,n ˝ vr,n. Since xs,n is a sum of two terms, so too is xs,n ˝ vr,n. We show that

both of these terms are 0. The first term is

p´1qs´1

‚ρ
‚̟s´1`ρ

n´1

‚‚
ρ

n´r

n`1

“ p´1qs´1

‚ρ
‚̟s´1`ρ

n´1

‚‚ ρn´r

n

“ p´1qs´1

‚ρ
‚̟s´1`ρ

n´1

‚n´r

n

“ p´1qs´1

‚ρ
‚̟s´1`ρ

n´1

‚n´r

n´1

.

This is 0 by Corollary 4.3 since n ´ 1 ı t pmod 2q. The second term is 0 automatically if s “ 1, so we

are done in this case. When s ě 2, the second term equals

p´1qs

‚ρ
‚̟s´1`ρ

n´1

‚‚‚
ρn´1

n´r

n`1

“ p´1qs

‚ρ
‚̟s´1`ρ

n´1

‚‚‚
ρn´1

n´r

n´1

“ p´1qs

‚ρ
‚̟s´1`ρ

n´1

‚‚
n´1

n´r

n´2

(4.3)“ p´1qs

‚ρ

‚̟s´1`ρ

n´1

‚n´r

n´1

“ p´1qs

‚ρ

‚̟s´1`ρ

n´1

‚n´r

n´2

,

which is 0 by the second relation from (3.7).

Now consider ur,n ˝ ys,n for 0 ď r ď n and 1 ď s ď n. For notational convenience, we in fact show

that ůr,n ˝ ys,n “ 0, where ůr,n :“ p´1qr ‚̟r`ρ

n`1

n

. Applying Corollary 4.4 as usual, we have that

ůr,n ˝ ys,n “ p´1qr ‚̟r`ρ
‚n´s

n`1

n´1

“ p´1qr ‚̟r`ρ‚n´s

n

n´1

.

This is of degree 2pr´sq´npn´1q while by Theorem 3.6 the lowest non-zero degree of the graded vector

space HomNB t
pB‹pn´1q, B‹pn`1qq is ´npn ´ 1q, so it is automatically 0 if r ă s. Assume henceforth that

r ě s. When n “ t “ 1, so r “ s “ 1, it is easy to see that we get 0 using Corollary 3.5, so assume also

that n ě 2.

In this paragraph, we treat the case that r ą s. We have that ̟r,n ` ρn “ pn, n ´ 1, . . . , n ´ s, . . . , n ´
r`1, n´r´1, . . . , 1, 0q P Nn. Let α :“ pn´ s, n, n´1, . . . , zn ´ s, . . . , n´r`1, n´r´1, . . . , 1, 0q P Nn,
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i.e., we have moved the entry n ´ s to the beginning. Let β :“ pn ´ s, α1, . . . , αn´1q. We have that

ůr,n ˝ ys,n “ p´1qr ‚̟r`ρ‚n´s

n

n´1

(4.7)“ p´1qr`s ‚ α‚n´s

n

n´1

“ p´1qr`s ‚β ‚αn

n

n´1

.

In checking the second equality here, one also needs to observe that the term arising from the first term

on the right hand side of (4.7) (which can definitely appear as n ´ 1 ı t pmod 2q) is 0 due to the second

relation from (3.7). Now we have that β1 “ β2 “ n ´ s, so this is 0 by Corollary 4.9; again, when s “ 1,

the term arising from the right hand side of (4.8) vanishes due to (3.7).

Finally, we need to treat the case that r “ s (and n ě 2 still). We let α :“ ̟r,n ` ρn “ pn, n ´
1, . . . , n ´ r ` 1, n ´ r ´ 1, . . . , 1, 0q P Nn, β :“ pn ´ s, α1, . . . , αn´1q, and γ :“ pn ´ s, α2, . . . , αnq. As

r “ s ě 1, the tuple γ is a permutation of ρn, and α1 “ n. Using Corollary 4.8 several more times like

in the previous paragraph, we get that

ůr,n ˝ ys,n “ p´1qr ‚ α‚n´s

n

n´1

“ p´1qr ‚β ‚αn

n

n´1

“ p´1qr`1 ‚s1β ‚αn

n

n´1

“ p´1qr`1 ‚ γ‚n

n

n´1

“ ‚ ρ‚n

n

n´1

“ ‚n

n

n´1

“ ‚n

n´1

n´1

.

This is 0 by Corollary 4.3, using that n ´ 1 ı t pmod 2q. �

Corollary 4.20. Assume that n ” t pmod 2q. For 0 ď r ď n and 1 ď s ď n, we have that er,n ˝ fs,n “
fs,n ˝ er,n “ 0.

Proof. This is clear from Lemmas 4.14 and 4.19. �

Theorem 4.21. The following hold for n ě 0:

(1) If n ” t pmod 2q then ter,n, fs,n | 0 ď r ď n, 1 ď s ď nu is a set of mutually orthogonal

homogeneous idempotents whose sum is B ‹ en. Each of the idempotents er,n p0 ď r ď nq is

conjugate to en`1 “ e0,n since en`1 “ ur,n ˝ vr,n and er,n “ vr,n ˝ ur,n for r “ 1, . . . , n. Each of

the idempotents fs,n p1 ď s ď nq is conjugate to en´1 since en´1 “ xs,n ˝ys,n and fs,n “ ys,n ˝xs,n

for s “ 1, . . . , n.

(2) If n ı t pmod 2q then ter,n ` fr,n | 0 ď r ď nu is a set of mutually orthogonal homogeneous

idempotents whose sum is B ‹ en. Each of these idempotents is conjugate to en`1 “ e0,n since,

recalling that wr,n “ ur,n ´ ur,n ˝ v0,n, we have that en`1 “ wr,n ˝ vr,n and er,n ` fr,n “ vr,n ˝ wr,n

for r “ 1, . . . , n.

Proof. (1) The fact that er,n p0 ď r ď nq are mutually orthogonal idempotents follows from Corol-

lary 4.16. The fact that fs,n p1 ď s ď nq are mutually orthogonal idempotents follows from Corol-

lary 4.18. The orthogonality of each er,n p0 ď r ď nq with each fs,n p1 ď s ď nq follows from Corol-

lary 4.20. These idempotents sum to B ‹ en by Lemma 4.13. Also ur,n ˝ vr,n “ en`1 by Lemma 4.15,

and vr,n ˝ ur,n “ er,n by Lemma 4.14. Finally, xs,n ˝ ys,n “ en´1 by Lemma 4.17, and ys,n ˝ xs,n “ fs,n by

Lemma 4.14.

(2) We first show that er,n ` fr,n p0 ď r ď nq are mutually orthogonal idempotents by checking that

per,n ` fr,nq ˝ pes,n ` fs,nq “ δr,sper,n ` fr,nq
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for 0 ď r, s ď n. If r “ 0 this follows because f0,n “ 0, e0,n ˝ es,n “ δ0,se0,n and, assuming s ą 0, we

have that e0,n ˝ fs,n “ ´e0,n ˝ es,n ˝ e0,n “ 0, all by Corollary 4.16. If r ą 0 and s “ 0 it follows because

er,n ˝ e0,n “ ´fr,n and fr,n ˝ e0,n “ ´er,n ˝ e0,n ˝ e0,n “ ´er,n ˝ e0,n “ fr,n by Corollary 4.16. Finally

suppose that 1 ď r, s ď n. Then by Corollary 4.16 we have that

per,n ` fr,nq ˝ pes,n ` fs,nq “ er,n ˝ es,n ` er,n ˝ fs,n ` fr,n ˝ es,n ` fr,n ˝ fs,n

“ er,n ˝ es,n ´ er,n ˝ es,n ˝ e0,n ´ er,n ˝ e0,n ˝ es,n ` er,n ˝ e0,n ˝ es,n ˝ e0,n

“ δr,ser,n ´ δr,ser,n ˝ e0,n “ δr,sper,n ` fr,nq.
We have that

řn
r“0per,n ` fr,nq “ B ‹ en by Lemma 4.13. Finally, using Lemmas 4.14 and 4.15, Corol-

lary 4.16 and u0,n “ v0,n “ e0,n, we have that

wr,n ˝ vr,n “ ur,n ˝ vr,n ´ ur,n ˝ u0,n ˝ vr,n “ en`1,

vr,n ˝ wr,n “ vr,n ˝ ur,n ´ vr,n ˝ ur,n ˝ e0,n “ er,n ´ er,n ˝ e0,n “ er,n ` fr,n

for 1 ď r ď n. �

4.3. Locally unital graded algebras and modules. Before explaining the full significance of Theo-

rem 4.21, we need to review some basic terminology. Suppose that A is any small graded category and

let I be its object set. The path algebra of A is the graded algebra

A “
à
i, jPI

1i A1 j where 1i A1 j :“ HomA p j, iq,

with multiplication induced by composition in A . In general, this is locally unital rather than unital,

equipped with the distinguished system 1i pi P Iq of mutually orthogonal idempotents arising from the

identity endomorphisms of the objects of A . By a graded left A-module, we mean a module V as usual

which is itself locally unital in the sense that V “
À

iPI 1iV . We sometimes refer to 1iV as the i-weight

space of V . There are also the obvious notions of graded right A-modules and, given another locally

unital graded algebra B, graded pA, Bq-bimodules.

For graded left A-modules V and W and d P Z, we write HomApV,Wqd for the vector space of all

ordinary A-module homomorphisms f : V Ñ W such that f pVnq Ď Wn`d for each n P Z. Then the

graded vector space

HomApV,Wq :“
à
dPZ

HomApV,Wqd

is a morphism space in the graded category A-gMod of graded left A-modules. We denote the underlying

category consisting of the same objects but just the degree-preserving morphisms by A-gmod. This is

the usual Abelian category of graded left A-modules. It is equipped with the downward grading shift

functor q defined as in the General conventions, and we have that

HomApV,Wqd “ HomApV, qdWq0 “ HomApq´dV,Wq0. (4.23)

We use the symbol � to denote (degree-preserving) isomorphism in A-gmod.

Let A-pgmod be the full subcategory of A-gmod consisting of finitely generated projective graded

modules. Also let K0pAq denote the split Grothendieck group of the additive category A-pgmod. This

is naturally a Zrq, q´1s-module with the action of q induced by the grading shift functor. One could

also define K0pAq equivalently as the split Grothendieck group of the graded Karoubi envelope of A ,

since the latter category is contravariantly equivalent to A-pgmod by Yoneda’s Lemma. We will not

take this point of view here, but note that some care is needed in the identification since contravariant

equivalences interchange q with q´1.

Assume in this paragraph that A is locally finite-dimensional and bounded below, meaning that for

every i, j P I, the graded vector space 1i A1 j is locally finite-dimensional, i.e., each of its graded pieces

1i Ad1 j are finite-dimensional, and 1i Ad1 j “ 0 for d ! 0. Then K0pAq can be understood in purely
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combinatorial terms. To explain what we mean, referring to [Bru23, Sec. 2] for more details, we note to

start with that the weight spaces of any irreducible graded left A-module L are finite-dimensional, and

Schur’s Lemma holds:

EndApLq “ k. (4.24)

We say that a graded left A-module V is locally finite-dimensional if 1iVd is finite-dimensional for

each i P I and d P Z, and bounded below if for each i P I we have that 1iVd “ 0 for d ! 0. Since the

distinguished projective modules A1i pi P Iq are locally finite-dimensional and bounded below, it follows

that any finitely generated graded left A-module also has these properties. Any graded left A-module has

an injective hull in A-gmod, and any finitely generated graded left A-module has a projective cover in

A-gmod, the latter being a summand of a finite direct sum of degree-shifted copies of the distinguished

projective modules A1i pi P Iq. Let Lpbqpb P Bq be a full set of representatives for the irreducible graded

left A-modules (up to isomorphism and grading shift), and define Ppbq to be a projective cover of Lpbq.

The graded multiplicity of Lpbq in a locally finite-dimensional graded module V is the formal series

rV : Lpbqsq :“
ÿ

dPZ

max

ˆ ˇ̌
tr “ 1, . . . , n | Vr{Vr´1 � qdLpbqu

ˇ̌ ˇ̌ˇ̌ for all finite graded filtrations

0 “ V0 Ď ¨ ¨ ¨ Ď Vn “ V

˙
qd.

Schur’s Lemma implies that

rV : Lpbqsq “ dimq HomApPpbq,Vq. (4.25)

Note also that this belongs to Nppq´1qq when V is finitely generated. Finally, any finitely generated

projective graded left A-module P satisfies

P �
à
bPB

Ppbq‘dimq HomApP,Lpbqq. (4.26)

Now it follows that that K0pAq is a free Zrq, q´1s-module with basis rPpbqs pb P Bq.

Another basic notion involves induction and restriction. For this, we start with a pair of small graded

categories, A and B , with object sets denoted I and J, respectively. Let A and B be their path algebras.

Given a graded functor F : A Ñ B , there is a graded functor

ResF : B-gMod Ñ A-gMod (4.27)

called restriction along F. This takes a graded left B-module V to the graded vector space

1FV :“
à
iPI

1FiV

with θ P 1iA1 j “ HomA p j, iq acting as the linear map Fθ : 1F jV Ñ 1FiV between the summands

indexed by j and i, and as 0 on all other summands. This notation is for graded left B-modules, but it is

readily adapted to a graded right B-module V , letting

V1F :“
à
iPA

V1Fi

which is a graded right A-module. The functor ResF is isomorphic to
À

iPI HomBpB1Fi,´q. Hence, by

adjointness of tensor and hom for locally unital algebras (e.g., see [BS18, Lem. 2.7]), it has a left adjoint

IndF :“ B1F bA ´ : A-gMod ÝÑ B-gMod, (4.28)

where B1F is the graded pB, Aq-bimodule obtained by restricting the regular pB, Bq-bimodule B on

the right. We refer to IndF as induction along F. If α : F ñ G is a graded natural transformation

between graded functors F,G : A Ñ B , we obtain graded bimodule homomorphisms B1G Ñ B1F and

1F B Ñ 1G B defined by the linear maps 1 jB1Gi Ñ 1 jB1Fi, θ ÞÑ θ ˝αi and 1FiB1 j Ñ 1GiB1 j, θ ÞÑ αi ˝ θ,
respectively, for i P I, j P J. These bimodule homomorphisms define graded natural transformations

Indα : IndG ñ IndF and Resα : ResF ñ ResG .
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Suppose finally that the small graded category A is monoidal, with tensor product bifunctor

´ ‹´ : A ⊠ A Ñ A , (4.29)

where we are using ⊠ to denote linearized Cartesian product. Then there is an induced tensor product

bifunctor making A-gMod into a graded monoidal category in its own right. We call this the induction

product; it is also known as Day convolution. To define it, observe that the graded algebra A b A is the

path algebra of the graded category A ⊠ A . The induction product is the graded bifunctor

´ �‹ ´ : A-gMod⊠A-gMod Ñ A-gMod (4.30)

that is the composition of the usual tensor product ´b´ : A-gMod⊠A-gMod Ñ A b A-gMod followed

by the functor Ind´‹´ : NB b A-gMod Ñ A-gMod defined by induction along (4.29). Note that ´�‹ ´
is right exact in each argument but it is not necessarily exact. It is clear from the definition that

A1i �‹ A1 j � A1i‹ j (4.31)

for i, j P I. From this, one deduces that the restriction of ´�‹ ´ makes A-pgmod into a monoidal

category. Consequently, K0pAq is actually a Zrq, q´1s-algebra with multiplication satisfying

rA1isrA1 js “ rA1i �‹ A1 js “ rA1i‹ js. (4.32)

4.4. Identification of the Grothendieck ring. Now we apply the general setup just explained to the

nil-Brauer category. We denote the path algebra of NB t for the fixed value of t simply by NB. Its

distinguished idempotents arising from the identity endomorphisms of B‹n pn P Nq will be denoted by

1n pn P Nq. So we have that

NB “
à

m,nPN

1mNB1n where 1mNB1n “ HomNB t
pB‹n, B‹mq.

Theorem 3.6 implies that NB is locally finite-dimensional and bounded below, so that we are in the sit-

uation discussed in the third paragraph of subsection 4.3. Since NB t is monoidal, we have the induction

product ´�‹ ´ : NB-gMod⊠NB-gMod Ñ NB-gMod defined as in (4.30). It makes K0pNBq into a

Zrq, q´1s-algebra. Our goal is to identify this with the integral form ZU
ı
t of the ı-quantum group.

Recalling the idempotent en P 1nNB1n from (4.12), we define

Ppnq :“ q´ 1
2 npn´1qNB en. (4.33)

This is a finitely generated projective graded left NB-module. In particular, we have that Pp0q “ NB10

and Pp1q “ NB11. Also let

B :“ Pp1q ⊛´ : NB-gMod Ñ NB-gMod (4.34)

be the endofunctor defined by taking the induction product with the projective module Pp1q associated

to the generating object B of NB t. From (4.31), we have that

BpNB1nq � NB1n`1. (4.35)

Since it is clearly additive, it follows that B takes finitely generated projectives to finitely generated

projectives, i.e., it restricts to an endofunctor of NB-pgmod. This is all that we need for now, but we will

say more about B viewed as an endofunctor of the Abelian category NB-gmod in subsection 5.3 below.

Lemma 4.22. For n P N, we have that

BPpnq �
"

Ppn ` 1q‘rn`1s ‘ Ppn ´ 1q‘rns if n ” t pmod 2q
Ppn ` 1q‘rn`1s if n ı t pmod 2q.
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Proof. First consider the case that n ı t pmod 2q. By the first part of Theorem 4.21(2), we have that

B ‹ en “ řn
r“0per,n ` fr,nq as a sum of mutually orthogonal idempotents. As in (4.31), we deduce that

BPpnq “ q´ 1
2 npn´1qNB11 �‹ NB en �

nà
r“0

q´ 1
2 npn´1qNBper,n ` fr,nq.

To complete the proof, we claim that q´ 1
2 npn´1qNBper,n ` fr,nq � qn´2rPpn ` 1q for any 0 ď r ď n. The

second part of Theorem 4.21(2) shows that right multiplication by vr,n defines an invertible NB-module

homomorphism NBper,n ` fr,nq „Ñ NB en`1 with inverse given by right multiplication by wr,n. By its

definition (4.19), vr,n is of degree ´2r. Recalling (4.23), this shows that

q´ 1
2 npn´1qNBper,n ` fr,nq � q´ 1

2 npn´1q´2rNB en`1 � q
1
2 pn`1qn´ 1

2 npn´1q´2rPpn ` 1q “ qn´2rPpn ` 1q,
as claimed.

Instead, suppose that n ” t pmod 2q. Then the first part of Theorem 4.21(1) gives that

BPpnq “ q´ 1
2 npn´1qNB11 �‹ NB en �

nà
r“0

q´ 1
2 npn´1qNB er,n ‘

nà
s“1

q´ 1
2 npn´1qNB fs,n.

To complete the proof, it suffices to show that q´ 1
2 npn´1qNB er,n � qn´2rPpn ` 1q for 0 ď r ď n

and that q´ 1
2 npn´1qNB fs,n � qn`1´2sPpn ´ 1q for 1 ď s ď n. The first assertion here follows from

the second part of Theorem 4.21(1) just like in the previous paragraph (replacing wr,n with ur,n). To

prove the second assertion, right multiplication by ys,n defines an invertible NB-module homomorphism

NB fs,n
„Ñ NB en´1 with inverse given by right multiplication by xs,n. By its definition (4.20), ys,n is of

degree 2n ´ 2s, so this shows that

q´ 1
2 npn´1qNB fs,n � q´ 1

2 npn´1q`2n´2sNB en´1 � q
1
2 pn´1qpn´2q´ 1

2 npn´1q`2n´2sPpn´1q “ qn`1´2sPpn´1q.
�

Recall the sesquilinear form x¨, ¨yı on Uı
t from (3.36).

Theorem 4.23. The modules Ppnq pn ě 0q give a complete set of indecomposable projective graded

left NB-modules (up to isomorphism and grading shift). Moreover, there is a unique Zrq, q´1s-algebra

isomorphism

κt : K0pNBq „Ñ ZU
ı
t

such that

(1) κtprBPsq “ BκtprPsq for any finitely generated projective graded module P.

The following properties also hold for finitely generated projective graded modules P,Q and n ě 0:

(2) κtprNB1nsq “ Bn;

(3) κtprPpnqsq “ Pn;

(4) dimq HomNBpP,Qq “ dimq Γ ¨
@
κtprPsq, κtprQsq

Dı
.

Proof. Let λt : ZU
ı
t Ñ K0pNBq be the Zrq, q´1s-module homomorphism taking Pn to rPpnqs for each

n ě 0. By (2.23) and Lemma 4.22, it follows that λt intertwines the endomorphism of ZU
ı
t defined by

left multiplication by B with the endomorphism of K0pNBq induced by the functor B : NB-pgmod Ñ
NB-pgmod. Hence, also using (4.35), we have that

λtpBnq “ λtpBnP0q “ rBnPp0qs “ rBnNB10s “ rNB1ns. (4.36)

We also have that

dimq HomNBpPpmq, Ppnqq “ dimq Γ ¨ xPm, Pnyı (4.37)
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for any m, n ě 0. To see this, since both ZU
ı
t and K0pNBq are free Zrq, q´1s-modules, it is harmless to

extend scalars from Zrq, q´1s to Qpqq. Then Pm and Pn are Qpqq-linear combinations of the elements

Bk pk ě 0q (see (2.22) for the explicit formula which is not needed here). Applying λt gives that rPpmqs
and rPpnqs are corresponding linear combinations of rNB1ks pk ě 0q. In this way, the proof of (4.37) is

reduced to checking that

dimq HomNBpNB1m,NB1nq “ dimq Γ ¨ xBm, Bnyı (4.38)

for all m, n ě 0. Since HomNBpNB1m,NB1nq � 1mNB1n “ HomNB t
pB‹n, B‹mq, this follows from

Theorem 3.7.

Now we prove that the finitely generated projective graded module Ppnq is indecomposable: by

Corollary 2.8 and the ψı-invariance of Pn, we have that xPn, Pnyı P 1 ` q´1Z~q´1�, hence, by (4.37),

we have that EndNBpPpnqq0 � k. This implies the indecomposability of Ppnq. Moreover, the isomor-

phism classes rPpnqs pn ě 0q are linearly independent over Zrq, q´1s. This follows because the matrix

pdimq HomNBpPpnq, Ppmqqm,ně0 is invertible by (4.37) and Corollary 2.8 (or the non-degeneracy of the

form p¨, ¨qı). Hence, for m , n the module Ppnq is not isomorphic to any grading shift of Ppmq. Finally,

we observe that any indecomposable projective graded left NB-module is isomorphic to qdPpnq for

unique d P Z, n P N. This is true because each left ideal NB1n is isomorphic to a direct sum of grading

shifts of the modules Ppmq for m ě n, as follows by induction on n using (4.35) and Lemma 4.22.

We have now proved the first sentence in the statement of the theorem. It follows that the iso-

morphism classes rPpnqs pn ě 0q give a basis for K0pNBq as a free Zrq, q´1s-module. We deduce

immediately that λt is an isomorphism of free Zrq, q´1s-modules. Let κt :“ λ´1
t . This satisfies the

property (1). Moreover,

κtpBm ¨ Bnq “ κtpBm`nq “ rNB1m`ns “ rNB1m �‹ NB1ns “ rNB1msrNB1ns.
It follows that theQpqq-module isomorphism QpqqbZrq,q´1sZU

ı
t

„Ñ QpqqbZrq,q´1s K0pNBq induced by κt

is actually aQpqq-algebra isomorphism. Hence, κt itself is aQpqq-algebra isomorphism. The uniqueness

of an algebra isomorphism κt satisfying the property (1) is clear. We also get (2) and (3) since λt satisfies

the appropriate inverse properties by the definition of λt and (4.36). Finally, (4) follows from (4.37), the

ψı-invariance of each Pn, and the sesquilinearity of the forms on either side of the statement of (4). �

Corollary 4.24. The idempotents en pn ě 0q from (4.12) give a complete set of primitive homogeneous

idempotents in the nil-Brauer category (up to conjugacy).

Proof. We need to establish the following two assertions:

‚ each en is a primitive homogeneous idempotent in the path algebra NB;

‚ given a primitive homogeneous idempotent e P 1mNB1m, there is a unique n ě 0 and elements

x P 1mNB1n, y P 1nNB1m such that e “ xy and en “ yx.

The first of these is equivalent to the indecomposability of the projective graded module NB en estab-

lished in Theorem 4.23. To prove the second assertion, NB e is an indecomposable projective graded

module, hence, it isomorphic to qdNB en for unique d P Z, n P N by the definition of Ppnq and The-

orem 4.23 again. Let θ : NB e
„Ñ qdNB en be an isomorphism. Since HomNBpNB e, qdNB enq0 “

HomNBpNB e,NB enqd � eNBden, there is a unique x P eNBden such that θ is right multiplication by x.

Similarly, there is a unique y P enNB´de such that θ´1 is right multiplication by y. We then have that

xy “ e and yx “ en as required. �

Corollary 4.25. For n ě 0, we have that

NB1n �

t n
2 uà

m“0

Ppn ´ 2mq‘prn´2ms!
ř
αPPtpmˆpn´2mqqrα1`1s2¨¨¨rαm`1s2q.
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Proof. This follows from the theorem together with Corollary 2.13. �

Theorems A and B as formulated in the introduction follow from Lemma 4.22 and Theorem 4.23.

5. Representation theory

In this section, we introduce an explicit graded triangular basis for the path algebra NB of the nil-

Brauer category NB t, which fits well with the general machinery developed in [Bru23]. This allows us

to define standard and proper standard modules, and to classify irreducible graded NB-modules by their

lowest weights. Then, in Theorem 5.13, we establish the existence of a certain short exact sequence of

functors which can be viewed as a categorification of part of Theorem 2.1. We use this to describe the

effect of the functor B on standard and proper standard modules, thereby proving Theorem C from the

introduction. Finally, we prove character formulae for proper standard and irreducible modules, thereby

proving Theorems D and E, and derive further branching rules.

5.1. Triangular basis. The center ZpAq of a locally unital graded algebra A “
À

i, jPI 1iA1 j is the

commutative subalgebra of the unital graded algebra
ś

iPI 1iA1i consisting of tuples pziqiPI such that

θ z j “ zi θ for all i, j P I and θ P 1iA1 j. Assuming that A is the path algebra of a small graded

category A , this is a direct translation of the definition of the center of the category A . Given a (unital)

commutative graded algebra R, we say that A is a locally unital graded R-algebra if we are given a

unital graded algebra homomorphism η : R Ñ ZpAq. Then each subspace 1iA1 j is naturally a graded

R-module. Recalling the algebra Γ from subsection 3.3, the path algebra NB of NB t is a locally unital

graded Γ-algebra in this sense, with the structure map η : ΓÑ ZpNBq mapping p P Γ to p1n ‹γtppqqnPN.

The resulting Γ-module structure on 1mNB1n is the same as in Theorem 3.6.

Recall that Dpm, nq is a set of representatives for the „-equivalence classes of reduced m ˆ n string

diagrams, two such diagrams being equivalent if they define the same matchings on their boundaries.

Theorem 3.6 shows moreover that NB is free as a Γ-algebra with basis
Ť

m,ně0 Dpm, nq. We now distin-

guish three special types of reduced string diagrams:

(X) Reduced string diagrams which only involve generalized cups and non-crossing propagating

strings.

(H) Reduced string diagrams with no generalized cups or caps, just propagating strings (which are

allowed to cross).

(Y) Reduced string diagrams which only involve generalized caps and non-crossing propagating

strings.

From now on, we actually only need representatives for the „-equivalence classes of undotted reduced

string diagrams of these three types. For types X or Y, we also choose a distinguished point on each

generalized cup or cup. For type H, we choose a distinguished point on each propagating string. Then

let Xpa, nq Ă 1aNB1n, H̊pnq Ă 1nNB1n and Ypn, bq Ă 1nNB1b be the sets obtained from the chosen

„-equivalence class representatives of a ˆ n string diagrams of type X, of n ˆ n string diagrams of

type H, and of n ˆ b string diagrams of type Y, respectively, obtained by adding closed dots labeled by

non-negative multiplicities at each of the distinguished points. Clearly, Xpa, nq “ Ypn, bq “ ∅ unless

a ě n ď b, and Xpn, nq “ t1nu “ Ypn, nq. Shorthand:

Xpnq :“
ď

aěn

Xpa, nq, Ypnq :“
ď

běn

Ypn, bq.

Also let Hpnq be the set of morphisms obtained from the ones in H̊pnq by placing ordered monomials

O
m1

1
O

m3

3
O

m5

5
¨ ¨ ¨ in the odd Or at the right hand boundary (recall (3.23)). The latter are the images of a

basis for Γ under the isomorphism γt : Γ
„Ñ EndNB t

p1q from (3.35).
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Example 5.1. The following diagram is a typical product xhy P 114 NB 112:

O1

O3

O3

‚2 ‚4 ‚1

‚2

‚1

‚9

‚3

‚2 ‚3‚1

h

x

y

Example 5.2. Equivalence classes of undotted reduced string diagrams of type X with f generalized

cups and n propagating strings are in bijection with the set of chord diagrams with f free chords and n

tethered ones as discussed in subsection 2.3. For example, the chord diagram (2.16) corresponds to the

string diagram

x

1 2 3

We hope the bijection here is apparent; it is similar to the bijection described in the proof of Theorem 3.7

but now the propagating strings become chords that are tethered to the bottom node.

Theorem 5.3. The products xhy for px, h, yq P
Ť

nPN XpnqˆHpnqˆYpnq give a graded triangular basis

for NB in the sense of [Bru23, Def. 1.1] (taking the sets I, S and Λ there all to be equal to N ordered in

the natural way).

Proof. We can choose the set Dpa, bq in Theorem 3.6 so that it consists of the products xhy for px, h, yq PŤ
nPNXpa, nq ˆ H̊pnq ˆ Ypn, bq. These give a basis for 1aNB1b as a free Γ-module. Since elements

of Hpnq are elements of H̊pnq multiplied by basis elements of Γ, it follows that the products xhy for

px, h, yq P
Ť

nPN Xpa, nq ˆ Hpnq ˆ Ypn, bq give a linear basis for 1aNB1b. The remaining axioms of

graded triangular basis are trivial to check. �

5.2. Standard modules and BGG reciprocity. Theorem 5.3 is significant because it means we can

apply the general theory developed in [Bru23]. We recall some of the basic constructions made there.

For n P N, let NBěn be the quotient of NB by the two-sided ideal generated by 1m pm � nq. Writing ū for

the canonical image of u P NB in the quotient NBěn, we let NBn :“ 1̄nNBěn1̄n. This is a unital graded

Γ-algebra with basis h̄
`
h P H̊pnq

˘
as a free Γ-module. These h̄ are the usual diagrams for elements

of a basis of the nil-Hecke algebra associated to the symmetric group. In fact, NBn is precisely this

nil-Hecke algebra over the ground ring Γ. Put somewhat informally, this follows because the following

“local relations” hold:

“ 0, “ ,
‚ ´ ‚ “ “ ‚ ´ ‚

. (5.1)

These are derived easily from the defining relations (3.2), (3.5) and (3.8), noting that the final cup/cap

terms in (3.5) and (3.8) become 0 in the quotient algebra. Because of this term, the nil-Hecke algebra

NBn is not a subalgebra of NB—one really does need to pass first to the quotient NBěn. In proper
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algebraic language, NBn is the Γ-algebra generated by x1, . . . , xn all of degree 2 and τ1, . . . , τn´1 all of

degree ´2, with τi and xi denoting the crossing of the ith and pi ` 1qth strings and the dot on the ith

string, respectively (numbering strings by 1, . . . , n from left to right). A complete set of relations is

xix j “ x jxi, (5.2)

τ2
i “ 0, (5.3)

τiτ j “ τ jτi for |i ´ j| ą 1, (5.4)

τiτi`1τi “ τi`1τiτi`1, (5.5)

xiτi ´ τixi`1 “ 1 “ τixi ´ xi`1τi. (5.6)

One possible basis for NBn as a free graded Γ-module is given by

x
r1

1
¨ ¨ ¨ x

rn
n τw pw P S n, r1, . . . , rn ě 0q (5.7)

Here, τw is the element of NBn defined by multiplying the generators τi according to some reduced

expression of w. Recall also that the center of the nil-Hecke algebra NBn is the algebra

Zn :“ Γrx1, . . . , xnsS n Ď NBn (5.8)

of symmetric polynomials over Γ.

The polynomial representation of NBn is the graded NBn-module Γrx1, . . . , xns, with xi acting in the

obvious way by multiplication and τi acting as the Demazure operator

τi f “ f ´ sip f q
xi ´ xi`1

, (5.9)

using si for the basic transposition pi i ` 1q P S n. Incorporating also a grading shift, we obtain the

indecomposable projective graded NBn-module Pnpnq :“ q
1
2 npn´1qΓrx1, . . . , xns. Using (5.7), it is easy

to see that Pnpnq is generated by the polynomial un :“ 1 (which is of degree ´ 1
2
npn ´ 1q) subject just

to the relations that τiun “ 0 for i “ 1, . . . , n ´ 1.

Let Lnpnq :“ hd Pnpnq. This is an irreducible graded NBn-module, and every irreducible graded

NBn-module is isomorphic to Lnpnq up to a grading shift. Writing ūn for the image of un in the quotient

Lnpnq, the monomials

x
r1

1
¨ ¨ ¨ x

rn
n ūn p0 ď ri ď n ´ iq (5.10)

give a homogeneous linear basis for Lnpnq. In particular,

dimq Lnpnq “ rns!. (5.11)

It is well known that

τwn
pxn´1

1
xn´2

2
¨ ¨ ¨ xn´1qūn “ ūn. (5.12)

Note also that any homogeneous element in Zn of positive degree acts as 0 on ūn, as does any τi p1 ď
i ď n ´ 1q. This is a full set of relations for Lnpnq.

We identify NBěn-gMod with a subcategory of NB-gMod in the obvious way. Trunctation with

the idempotent 1̄n defines a quotient functor jn : NBěn-gMod Ñ NBn-gMod. This has left and right

adjoints called the standardization and costandardization functors:

jn! :“ NBěn1̄n bNBn
´ : NBn-gMod ÝÑ NB-gMod, (5.13)

jn˚ :“
à
měn

HomNBn
p1̄nNBěn1m,´q : NBn-gMod ÝÑ NB-gMod . (5.14)

The following lemma implies that both of these functors are exact; see also [Bru23, Lem. 4.1].

Lemma 5.4. For n P N, NBěn1̄n is free as a right NBn-module with basis x̄ px P Xpnqq, and 1̄nNBěn is

free as a left NBn-module with basis ȳ py P Ypnqq.
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Proof. This is an instance of [Bru23, (4.4)–(4.5)]. �

For n P N, we define the standard and proper standard modules for NB to be the induced modules

∆pnq :“ jn! Pnpnq, ∆̄pnq :“ jn! Lnpnq. (5.15)

These are cyclic graded NB-modules generated by the vectors vn :“ 1bun and v̄n :“ 1būn, respectively.

Since we have in hand a basis for Lnpnq, Lemma 5.4 implies that the following vectors give a linear basis

for ∆̄pnq:

xpx
r1

1
¨ ¨ ¨ x

rn
n qv̄n px P Xpnq and r1, . . . , rn with 0 ď ri ď n ´ i for each iq . (5.16)

In particular, the lowest weight space 1nLpnq is naturally identified with Lnpnq. Vectors in Lpnq can be

represented diagrammatically by putting v̄n into a labeled node at the bottom, with the left action of NH

being by attaching diagrams to the n strings at the top of that node. For example, the following is a

vector in 1m∆̄pnq for any u P 1mNB1n:

¨ ¨ ¨

¨ ¨ ¨

v̄n

u
(5.17)

It is clear this vector is 0 if u has some Or pr ą 0q on its right boundary. In view of (3.27), this is also

true if u has some Or pr ą 0q on its left boundary.

Lemma 5.5. We have that EndNBp∆pnqq � Zn and EndNBp∆̄pnqq � k.
Proof. The homomorphism from Zn to EndNBp∆pnqq defined by its action on the lowest weight space

1n∆pnq � Pnpnq is an isomorphism because

EndNBp∆pnqq � HomNBěn
p jn! Pnpnq, jn! Pnpnqq � HomNBn

pPnpnq, jn jn! Pnpnqq � EndNBn
pPnpnqq � Zn.

The argument for ∆̄n is similar, reducing to Schur’s Lemma (4.24). �

There are also the costandard and proper costandard modules

∇pnq :“ jn˚Inpnq, ∇̄pnq :“ jn˚Lnpnq. (5.18)

We will not use these so often, but note that they can also be obtained from ∆pnq and ∆̄pnq, respectively,

by applying the contravariant graded functor

?⊛ : NB-gMod Ñ NB-gMod (5.19)

which takes a graded module V “
À

nPN

À
dPZ 1nVd to the graded dual V⊛ “

À
nPN

À
dPZp1nV´dq˚

viewed as a graded NB-module so that pa f qpvq :“ f pTpaqvq for a P NB, f P V⊛ and v P V , where

T : NB Ñ NB is the Γ-algebra anti-automorphism arising from (3.10). The proof of this assertion, i.e.,

∇pnq � ∆pnq⊛, ∇̄pnq � ∆̄pnq⊛, (5.20)

follows from the general discussion of duality in [Bru23, Sec 5], specifically, the formula (5.3) there.

One just needs to note that T fixes the idempotents 1npn P Nq, hence, it descends to an anti-automorphism

Tn : NBn Ñ NBn fixing the generators x1, . . . , xn, τ1, . . . , τn´1. Moreover, the irreducible NBn-module

Lnpnq is self-dual with respect to the resulting duality ?⊛ on NBn-gMod. This last statement is clear

because dimq Lnpnq is invariant under the bar involution by (5.11), and Lnpnq is the unique irreducible

graded left NBn-module of this graded dimension.

For the basic notions of ∆-flags, ∆̄-flags, ∇-flags and ∇̄-flags, we refer to [Bru23, Def. 6.3, Def. 6.4].

In particular, a ∆-flag in a graded NB-module V is a graded filtration 0 “ V0 Ď V1 ¨ ¨ ¨ Ď Vm such that

Vi{Vi´1 � ∆pniq‘ fi for distinct n1, . . . , nm P N and fi P Nppq´1qq. Multiplicities in these four types of
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filtration are denoted pV : ∆pnqqq, pV : ∆̄pnqqq, pV : ∇pnqqq and pV : ∇̄pnqqq. For example, the standard

module ∆pnq has a ∆̄-flag with the multiplicities

p∆pnq : ∆̄pnqqq “ rPnpnq : Lnpnqsq “
dimq Γ

p1 ´ q´2qp1 ´ q´4q ¨ ¨ ¨ p1 ´ q´2nq (5.21)

and p∆pnq : ∆̄pmqqq “ 0 for m , n. This follows from exactness of jn
!

and the well-known representation

theory of NHn. It should be compared with (2.30).

Now we can formulate the fundamental theorem about the structure of NB-gMod. It follows by an

application the general theory developed in [Bru23], specifically, [Bru23, Th. 4.3, Sec. 5, Cor. 8.4], and

is analogous to the basic structural results about Verma and dual Verma modules in Lie theory.

Theorem 5.6. The following properties hold:

(1) The standard module ∆pnq has a unique irreducible graded quotient Lpnq. Also, Lpnq⊛ � Lpnq,

so that Lpnq is also the unique irreducible graded submodule of ∇pnq.

(2) The NB-modules Lpnq pn P Nq give a complete set of irreducible graded NB-modules up to

isomorphism and grading shift.

(3) Let Ppnq be the projective cover of Lpnq in NB-gmod and Ipnq � Ppnq⊛ be its injective hull.

Then Ppnq has a ∆-flag and Ipnq has a ∇-flag, with multiplicities satisfying the usual graded

BGG reciprocity formulae

pPpnq : ∆pmqqq “ r∆̄pmq : Lpnqsq “ r∇̄pmq : Lpnqsq´1 “ pIpnq : ∇pmqqq´1 P Nppq´1qq
for all m, n P N. These multiplicities are 1 if m “ n and 0 unless m ď n.

We denote the canonical image of vn in the irreducible quotient Lpnq of ∆pnq by ṽn. Vectors in Lpnq
can be denoted diagrammatically just like in (5.17) putting ṽn into the node at the bottom of the diagram

instead of v̄n. Again, the lowest weight space 1nLpnq is naturally identified with the NBn-module Lnpnq.

Theorem 5.6 gives a classification of irreducible graded left NB-modules via their lowest weights.

The proof just explained is completely independent of any of the results from section 4. It follows

that the modules Ppnq pn ě 0q defined in Theorem 5.6(3) give a complete set of pairwise inequivalent

indecomposable graded projective left NB-modules. Such a classification was already established in

Theorem 4.23 by a more sophisticated method involving Theorems 3.7 and 4.21. The following shows

that the two approaches are consistent with each other:

Lemma 5.7. For n ě 0, the graded module Ppnq defined in Theorem 5.6(3), that is, the projec-

tive cover of Lpnq is isomorphic to the graded module denoted Ppnq in the previous section, that is,

q´ 1
2 npn´1qNB en.

Proof. Since q´ 1
2 npn´1qNB en is an indecomposable projective graded module by Theorem 4.23, it suf-

fices to prove that

HomNB

`
´ q

1
2 npn´1qNB en, Lpnq

˘
0
� enLpnq 1

2 npn´1q , 0.

This follows because pxn´1
1

xn´2
2

¨ ¨ ¨ xn´1qṽn P Lpnq is a non-zero vector of degree 1
2
npn ´ 1q such that

enpxn´1
1

xn´2
2

¨ ¨ ¨ xn´1qṽn “ pxn´1
1

xn´2
2

¨ ¨ ¨ xn´1qṽn, as follows from the definition (4.12) of the idempo-

tent en together with (5.12). �

Remark 5.8. For convenience, we have worked with the natural total ordering onN. However, the basis

in Theorem 5.3 is in fact a graded triangular basis with respect to the partial ordering E on N defined by

mEn ô n´m P 2N; this is clear since Xpa, nq and Ypn, aq are empty unless a ” n pmod 2q. Everything

established so far is also true for this order. In particular, both 0 and 1 are minimal with respect to E, so

by Theorem 5.6(3) we have that Pp0q “ ∆p0q and Pp1q “ ∆p1q.
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5.3. The projective functor B preserves good filtrations. Recall the endofunctor B of NB-gMod

introduced in (4.34). Using the construction (4.28), it can be defined equivalently as the induction

functor IndB‹´ where B ‹ ´ : NB t Ñ NB t is the graded functor defined by tensoring with B. This

follows easily from the definitions; see [BV22, Lem. 2.4] for details in a similar situation. In fact,

we can go a step further to make NB-gMod into a strict graded NB t-module category, i.e., there is a

strict graded monoidal functor µ from NB t to the strict graded monoidal category gEnd pNB-gModq
consisting of graded endofunctors and graded natural transformations. This takes the generating object

B of NB t to the graded endofunctor IndB‹´ and the generating morphisms ‚ , , and to the

graded natural transformations Ind‚‹´
, Ind ‹´, Ind ‹´ and Ind ‹´, respectively. Notice we have

switched the cap and the cup here; this is the usual price for choosing to work with left modules rather

than right modules—we are using the contravariant Yoneda Embedding.

Lemma 5.9. The functor IndB‹´ : NB-gMod Ñ NB-gMod is isomorphic to the restriction functor

ResB‹´ : NB-gMod Ñ NB-gMod. The isomorphism can be chosen so that it intertwines the endomor-

phism Ind ‚‹´
: IndB‹´ ñ IndB‹´ with ´ Res ‚‹´

: ResB‹´ ñ ResB‹´.

Proof. The functor IndB‹´ is defined by tensoring with the bimodule NB1B‹´ and the functor ResB‹´ is

defined by tensoring with the bimodule 1B‹´NB. The functors are isomorphic because there is a graded

pNB,NBq-bimodule isomorphism φ : 1B‹´NB
„Ñ NB1B‹´ such that

φ

¨
˝

¨ ¨ ¨

¨ ¨ ¨
u

˛
‚“

¨ ¨ ¨

¨ ¨ ¨
u , φ´1

¨
˚̋

¨ ¨ ¨

¨ ¨ ¨
v

˛
‹‚“

¨ ¨ ¨

¨ ¨ ¨
v . (5.22)

Remembering the sign in the nil-Brauer relations (3.5) and (3.8), the resulting isomorphism intertwines

Ind ‚‹´
with ´ Res ‚‹´

. �

From now on, we denote the endofunctor IndB‹´ simply by B (as we did in the previous section).

We often use x to denote the endomorphism of B defined by Ind ‚‹´
. The same letter is used to denote

elements of Xpnq, but we think it is always clear from context which we mean.

Lemma 5.10. The endofunctor B : NB-gMod Ñ NB-gMod is self-adjoint. Hence, on the Abelian cate-

gory NB-gmod, it is exact, cocontinuous, and preserves finitely generated projectives. Also B commutes

with the duality (5.19), i.e., we have that B˝?⊛ �?⊛B.

Proof. Lemma 5.9 shows that B is isomorphic to a right adjoint to B. Hence, it is self-adjoint. The fact

that B commutes with duality follows because Res|‹´ clearly does so. �

Lemma 5.11. For n ě 0, the degree βpnq of the minimal polynomial of xLpnq : BLpnq Ñ BLpnq satisfies

βpnq ” t pmod 2q.

Proof. We are in exactly the situation discussed in Remark 3.12. Moreover, Lpnq is a special object in

the sense there: we have that EndNBpLpnqq “ k by (4.24), and EndNBpBLpnqq � HomNBpB2Lpnq, Lpnqq
which is finite-dimensional since B2Lpnq is finitely generated. Now the lemma follows from the graded

analog of Corollary 3.11. �

Let ι1,n : NBn ãÑ NBn`1 be the (unital) graded Γ-algebra homomorphism mapping xi ÞÑ xi`1

and τ j ÞÑ τ j`1. We denote the restriction of a graded left (resp., right) NBn`1-module along the

homomorphism ι1,n by ι˚
1,n

V (resp., Vι˚
1,n

). Let pI1,n,R1,nq be the resulting adjoint pair of induction and

restriction functors between NBn-gmod and NBn`1-gmod. We have that I1,n “ NBn`1ι
˚
1,n

bNBn
´ and

R1,n � ι
˚
1,n

NBn`1 bNBn`1
´.
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Lemma 5.12. The vectors xr
1
τ1 ¨ ¨ ¨ τi´1 p1 ď i ď n ` 1, r ě 0q give a basis for ι˚

1,n
NBn`1 as a free

graded left NBn-module. Similarly, the vectors τi´1 ¨ ¨ ¨ τ1xr
1

p1 ď i ď n ` 1, r ě 0q give a basis for

NBn`1ι
˚
1,n

as a free graded right NBn-module. Hence, the functors I1,n and R1,n are exact.

Proof. This is well known. The first statement follows easily from (5.7), and the second statement may

be deduced from the first by applying an anti-automorphism. �

Note that Theorem 2.1(1) can be rephrased in terms of the inverse map j´1 : U´ „Ñ Uı as

B j´1pyq “ j´1pFyq ` j´1pRpyqq, for y P U´. (5.23)

The next important theorem can be interpreted as a categorification of this identity, with jn
!

pn ě 0q
corresponding to j´1, I1,n pn ě 0q corresponding to multiplication by F, and the functors R1,n pn ą 0q
corresponding to the map R. The fact that the restriction functors R1,n categorify R was first pointed out

in [KK12].

Theorem 5.13. For n ě 0, there is a short exact sequence of functors1

0 ÝÑ jn´1
!

˝ R1,n´1
αÝÑ B ˝ jn!

βÝÑ jn`1
!

˝ I1,n ÝÑ 0, (5.24)

interpreting the first term as the zero functor in the case n “ 0. Moreover, letting x1 : R1,n ñ R1,n

and x2 : I1,n ñ I1,n be the degree 2 endomorphisms induced by the endomorphisms of the bimod-

ules ι˚
1,n

NBn`1 and NBn`1ι
˚
1,n

defined by left multiplication by ´x1 and by right multiplication by x1,

respectively, we have that

α ˝
`

jn´1
!

x1
˘

“
`

x jn!

˘
˝ α, β ˝

`
x jn!

˘
“

`
jn`1
!

x2
˘

˝ β. (5.25)

Proof. All three functors appearing in the short exact sequence are defined by tensoring with certain

graded pNB,NBnq-bimodules: jn´1
!

˝ R1,n´1 is tensoring with the bimodule NBěpn´1q1̄n´1 bNBn´1

ι˚
1,n´1

NBn, B˝ jn
!

is tensoring with the bimodule 1B‹´NBěn1̄n (here we have used Lemma 5.9 to realize B

as restriction rather than induction), and jn`1
!

˝ I1,n is tensoring with NBěpn`1q1̄n`1 bNBn`1
NBn`1ι

˚
1,n

. In

the next two paragraphs, we construct a short exact sequence of graded bimodules and degree-preserving

bimodule homomorphisms:

0 ÝÑ NBěpn´1q1̄n´1 bNBn´1
ι˚1,n´1NBn

aÝÑ 1B‹´NBěn1̄n
bÝÑ NBěpn`1q1̄n`1 bNBn`1

NBn`1ι
˚
1,n ÝÑ 0.

As ι˚
1,n´1

NBn is free by Lemma 5.12, the graded right NBn-module NBěpn´1q1̄n´1 bNBn´1
ι˚
1,n´1

NBn is

projective. Hence,

TorNBn

1

`
NBěpn´1q1̄n´1 bNBn´1

ι˚1,n´1NBn,V
˘

“ 0

for any graded left NBn-module V . So this short exact sequence of bimodules remains exact when we

apply the functor ´ bNBn
V . Thus, we have constructed the short exact sequence of functors in the

statement of the theorem.

To construct the short exact sequence of bimodules, take m ě 0. We can assume the set Xpm ` 1, nq
is chosen to be

Xpm ` 1, nq “
# ¨ ¨ ¨

¨ ¨ ¨
x

ˇ̌
ˇ̌
ˇ x P Xpm, n ´ 1q

+
\
# ¨ ¨ ¨

¨¨¨
i´1
‚r

x

ˇ̌
ˇ̌
ˇ

x P Xpm, n ` 1q
1 ď i ď n ` 1

r ě 0

+
. (5.26)

The first set on the right hand side here (which should be interpreted as ∅ in case n “ 0) gives the

elements of Xpm ` 1, nq which have a propagating string at the top left boundary point. The second set

gives all remaining elements of Xpm ` 1, nq. These have a generalized cup at the top left boundary point

1We mean that one obtains a short exact sequence in NB-gmod after evaluating on any graded left NBn-module V .
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with pi ´ 1q propagating strings between that and its other boundary point for some 1 ď i ď n ` 1; these

are represented in the diagram by the single thick string labeled i ´ 1. We can assume the set Hpn ` 1q
is chosen to be

Hpn ` 1q “
# i´1

‚r

¨ ¨ ¨

¨ ¨ ¨
h

ˇ̌
ˇ̌
ˇ

h P Hpnq
1 ď i ď n ` 1

r ě 0

+
. (5.27)

In these diagrams, the propagating string with the bottom left boundary point has pi ´ 1q other strings to

the left of its other boundary point for some 1 ď i ď n`1. The vectors xbh px P Xpm, n ´ 1q, h P Hpnqq
give a linear basis for 1̄mNBěpn´1q1̄n´1 bNBn´1

ι˚
1,n´1

NBn by Lemma 5.4 again. We define an injective

linear map am : 1̄mNBěpn´1q1̄n´1 bNBn´1
ι˚
1,n´1

NBn ãÑ 1̄m`1NBěn1̄n on basis vectors by

am :
¨ ¨ ¨

¨ ¨ ¨
x b

¨ ¨ ¨

¨ ¨ ¨
h ÞÑ

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

x

h

for x P Xpm, n ´ 1q, h P Hpnq. The image of am is the subspace of 1̄m`1NBěn1̄n with basis given

by the vectors xh px P Xpm ` 1, nq, h P Hpnqq, i.e., the basis vectors with x in the first set on the right

hand side of (5.26). We define bm : 1̄m`1NBěn1̄n ։ 1̄mNBěpn`1q1̄n`1 bNBn`1
NBn`1ι

˚
1,n

to be the

surjective linear map that is 0 on these basis vectors and is defined on the remaining basis vectors

xh px P Xpm ` 1, nq, h P Hpnqq for x in the second set on the right hand side of (5.26) by

bm :

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

i´1‚r
x

h

ÞÑ
¨ ¨ ¨

¨ ¨ ¨
x b

i´1

‚r

¨ ¨ ¨

¨ ¨ ¨
h

for x P Xpm, n ` 1q, 1 ď i ď n ` 1 and r ě 0. In view of (5.27) and Lemma 5.4, the image vectors here

are a basis for 1̄mNBěpn`1q1̄n`1 bNBn`1
NBn`1ι

˚
1,n

. Now we have that am is injective, bm is surjective

and im am “ ker bm. Then we define a :“ À
mě0 am and b :“ À

mě0 bm. This gives the linear maps in

the short exact sequence that we are after, and we have checked the exactness.

Next, we show that a and b are graded bimodule homomorphisms. The map a is given equiva-

lently by multiplication NBěn1̄n´1 bNBn´1
ι˚
1,n´1

NBn´1 Ñ NBěn1̄nι
˚
1,n´1

, u b v ÞÑ uι1,n´1pvq for any

u P NBěn1̄n´1, v P NBn´1. This is obviously a graded bimodule homomorphism. For b, we show

equivalently that the map NBěpn`1q1̄n`1 bNBn`1
NBn`1ι

˚
1,n

Ñ coker a that is the inverse of the linear

map induced by b is a graded bimodule homomorphism. This inverse map is defined explicitly by

NBěpn`1q1̄n`1 bNBn`1 NBn`1ι
˚
1,n Ñ 1B‹´NBěn1̄n{ im a,

¨ ¨ ¨

¨ ¨ ¨
u b

¨ ¨ ¨

¨ ¨ ¨
v ÞÑ

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

u

v

` im a

for any u P NBěpn`1q1̄n`1, v P NBn`1, which is a graded bimodule homomorphism

It remains to check (5.25). Take m ě 0. By its definition, am : 1̄mNBěpn´1q1̄n´1 bNBn´1
ι˚
1,n´1

NBn Ñ
1̄m`1NBěn1̄n intertwines left multiplication by 1bx1 with left multiplication by ‚‹1m. This implies the

statement about α, noting that a sign appears since x : B ñ B corresponds to ´ Res ‚‹´
in Lemma 5.9.
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Similarly, for β, one checks from the definition that bm : 1̄m`1NBěn1̄n Ñ 1̄mNBěpn`1q1̄n`1 bNBn`1

NBn`1ι
˚
1,n

intertwines left multiplication by ‚ ‹ 1m with right multiplication by 1 b x1. �

Theorem 5.13 implies that the functor B preserves modules with ∆-flags and with ∆̄-flags. The next

two theorems makes this more precise. The combinatorics that emerges here matches (2.13) and (2.33).

Theorem 5.14. Consider the short exact sequence

0 ÝÑ Kpnq ÝÑ B∆pnq ÝÑ Qpnq ÝÑ 0

obtained by applying Theorem 5.13 to the NBn-module Pnpnq pn ě 0q. We denote the endomorphisms

jn´1
!

x1
∆pnq

: Kpnq Ñ Kpnq and jn`1
!

x2
∆pnq

: Qpnq Ñ Qpnq from (5.25) by y and z, respectively.

(1) Assuming that n ą 0 so that Kpnq , 0, we have that Kpnq � ∆pn ´ 1q‘qn´1{p1´q´2q. More

precisely, we have that

Kpnq � qn´1Γrys bΓ ∆pn ´ 1q
with the action of NB being on the second tensor factor. This isomorphism may be chosen so

that the endomorphism y of Kpnq corresponds to multiplication by y on the first tensor factor.

(2) We have that Qpnq � ∆pn ` 1q‘rn`1s. More precisely, recalling also Lemma 5.5,

Qpnq � qnZn`1rzs{
`
pz ´ x1q ¨ ¨ ¨ pz ´ xn`1q

˘
bZn`1

∆pn ` 1q
with the action of NB being on the second tensor factor. This isomorphism may be chosen so

that the endomorphism z of Qpnq corresponds to multiplication by z on the first tensor factor.

Proof. (1) According to Theorem 5.13, we have that Kpnq “ jn´1
!

pR1,n´1Pnpnqq, and the endomorphism

y of Kpnq is obtained by applying the functor jn´1
!

to the endomorphism we also denote y :“ x1
Pnpnq

of

R1,n´1Pnpnq defined by left multiplication by ´x1. Therefore, by exactness of jn´1
!

, it suffices to prove

that R1,n´1Pnpnq � qn´1Γrys bΓ Pn´1pn ´ 1q as a graded NB1 bk NBn´1-module, identifying NB1 with

Γrys so y “ ´x1. This follows because

Pnpnq “ q
1
2 npn´1qΓrx1, x2, . . . , xns � qn´1Γrys bΓ q

1
2 pn´1qpn´2qΓrx2, . . . , xns.

(2) By Theorem 5.13, we have that Qpnq “ jn`1
!

pI1,nPnpnqq, and the endomorphism z of Qpnq is ob-

tained by applying jn`1
!

to the endomorphism also denoted z :“ x2
Pnpnq

of I1,nPnpnq defined by right

multiplication by x1. Therefore, it suffices to show that

I1,nPnpnq � qnZn`1rzs{
`
pz ´ x1q ¨ ¨ ¨ pz ´ xn`1q

˘
bZn`1

Pn`1pn ` 1q
as a graded NBn`1-module, where the action is on the second tensor factor. Using Lemma 5.12, it

is easy to check that both sides have the same graded dimensions. Hence, it suffices to construct a

degree-preserving surjective homomorphism

θ̄ : qnZn`1rzs{
`
pz ´ x1q ¨ ¨ ¨ pz ´ xn`1q

˘
bZn`1

Pn`1pn ` 1q։ NBn`1ι
˚
1,n bNBn

Pnpnq. (5.28)

Recall that Pn`1pn ` 1q is generated by un`1 subject to the relations τiun`1 “ 0 for i “ 1, . . . , n. It is

easy to see that τn ¨ ¨ ¨ τ2τ1xr
1
bun is annihilated by all τi. Hence, there is a unique graded NBn`1-module

homomorphism such that

θ : qnZn`1rzs bZn`1
Pn`1pn ` 1q Ñ NBn`1ι

˚
1,n bNBn

Pnpnq, zr b un`1 ÞÑ τn ¨ ¨ ¨ τ2τ1xr
1 b un

for any r ě 0. This takes pz ´ x1q ¨ ¨ ¨ pz ´ xn`1q b un`1 to τn ¨ ¨ ¨ τ2τ1px1 ´ x1q ¨ ¨ ¨ px1 ´ xn`1q b un “ 0.

Hence, we get induced a graded NBn`1-module homomorphism θ̄ as in (5.28). It remains to show that

this is surjective. The module on the right hand side is cyclic with generator 1 b un, so we just need to

see that it is in the image of θ̄. To see this, we show by induction on m “ 0, 1, . . . , n that 1 b un lies in
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the submodule generated by τm ¨ ¨ ¨ τ2τ1xr
1

b un p0 ď r ď mq; the m “ n case of this gives what we need.

The base case m “ 0 of the induction is trivial. The induction step follows from the relation

τm ¨ ¨ ¨ τ2τ1xm
1 b un “ xm`1τm ¨ ¨ ¨ τ2τ1xm´1

1
b un ` τm´1 ¨ ¨ ¨ τ2τ1xm´1

1
b un, (5.29)

which follows using (5.6). �

Theorem 5.15. Consider the short exact sequence

0 ÝÑ K̄pnq ÝÑ B∆̄pnq ÝÑ Q̄pnq ÝÑ 0

obtained by applying Theorem 5.13 to the NBn-module Lnpnq pn ě 0q. We denote the endomorphisms

jn´1
!

x1
∆̄pnq

: K̄pnq Ñ K̄pnq and jn`1
!

x2
∆̄pnq

: Q̄pnq Ñ Q̄pnq from (5.25) by ȳ and z̄, respectively.

(1) Assuming that n ą 0 so that K̄pnq is non-zero, the module K̄pnq is a ∆̄-layer that is equal

in the Grothendieck group to rns
“
∆̄pn ´ 1q

‰
. More precisely, letting K̄ipnq be the image of

ȳi : K̄pnq Ñ K̄pnq defines a graded filtration

K̄pnq “ K̄0pnq ą K̄1pnq ą ¨ ¨ ¨ ą K̄npnq “ 0

such that K̄i´1pnq{K̄ipnq � qn`1´2i∆̄pn ´ 1q for i “ 1, . . . , n. Also

dimq HomNBpK̄pnq, L̄pn ´ 1qq “ q1´n. (5.30)

(2) The module Q̄pnq is a ∆̄-layer equal in the Grothendieck group to qn
“
∆̄pn ` 1q

‰
{p1 ´ q´2q.

More precisely, letting Q̄ipnq be the image of z̄i : Q̄pnq Ñ Q̄pnq defines a graded filtration

Q̄pnq “ Q̄0pnq ą Q̄1pnq ą Q̄2pnq ą ¨ ¨ ¨
such that Q̄i´1pnq{Q̄ipnq � qn`2´2i∆̄pn ` 1q for i ě 1. Also

dimq HomNBpQ̄pnq, L̄pn ` 1qq “ q´n. (5.31)

Proof. (1) Let V :“ R1,n´1Lnpnq and ȳ : V Ñ V be the endomorphism defined by multiplication by

´x1. Let Vi :“ im ȳi. Like in the proof of the previous theorem, the proof of the first assertion in (1)

reduces to showing that Vi´1{Vi � qn`1´2iLn´1pn ´ 1q as a graded NBn´1-module for i “ 1, . . . , n, and

that Vn “ 0. We have that
nÿ

r“0

p´1qr xn´r
1

er,n “ px1 ´ x1qpx1 ´ x2q ¨ ¨ ¨ px1 ´ xnq “ 0,

where er,n is the rth elementary symmetric polynomial in x1, . . . , xn. Also let e1
r,n be the rth elementary

symmetric polynomial in x2, . . . , xn. Since er,n acts as 0 on Lnpnq for r ě 1, it follows that xn
1

acts as 0

too. This implies that Vn “ 0. Now take 1 ď i ď n. We claim that there is a graded NBn´1-module

homomorphism

θi : qn`1´2iLn´1pn ´ 1q Ñ Vi´1{Vi, ūn´1 ÞÑ xi´1
1

ūn ` Vi.

This follows using the generators and relations for Ln´1pn ´ 1q discussed earlier since τ2, . . . , τn´1

annihilate xi´1
1

ūn, as does e1
r,n for each r ě 1. To see the latter assertion, We have that

e1
r “ er,n ´ x1e1

r´1. (5.32)

The first term on the right-hand side of (5.32) is 0 on xi´1
1

ūn, and the second term maps it to Vi. This

proves the claim. Finally, each θi is actually an isomorphism. This follows by considering the explicit

bases for Lnpnq and Ln´1pn ´ 1q from (5.10).

It remains to prove (5.30). We have that

HomNBpK̄pnq, Lpn ´ 1qq “ HomNBěpn´1q

`
jn´1
!

pR1,nLnpnqq, Lpn ´ 1q
˘
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� HomNBn´1

`
R1,nLnpnq, jn´1Lpn ´ 1q

˘

� HomNBn´1
pR1,nLnpnq, Ln´1pn ´ 1qq.

Let f : R1,nLnpnq Ñ Ln´1pn ´ 1q be an NBn´1-module homomorphism. Since x1 “ px1 ` ¨ ¨ ¨ ` xnq ´
px2 ` ¨ ¨ ¨ ` xnq and x1 ` ¨ ¨ ¨ ` xn annihilates Lnpnq as it is central of positive degree, we see that

f pxi
1ūnq “ p´1qi f

`
px2 ` ¨ ¨ ¨ ` xnqiūn

˘
“ p´1qipx1 ` ¨ ¨ ¨ ` xn´1qi f pūnq.

This is 0 for i ě 1. It follows that f sends the submodule V1 defined in the previous paragraph to 0.

Thus, it factors through the quotient V0{V1 � qn´1Ln´1pn ´ 1q. Using Schur’s Lemma, we deduce that

dimq HomNBn´1
pR1,nLnpnq, Ln´1pn ´ 1qq “

dimq HomNBn´1

`
qn´1Ln´1pn ´ 1q, Ln´1pn ´ 1q

˘
“ q1´n. (5.33)

(2) Let W :“ I1,nLnpnq “ NBn`1ι
˚
1,n

bNBn
Lnpnq and z̄ : W Ñ W be the endomorphism defined by

right multiplying the bimodule NBn`1ι
˚
1,n

by x1. Let Wi :“ im z̄i. For the first assertion, we need to

show that Wi´1{Wi � qn`2´2iLn`1pn ` 1q for each i ě 1. The argument using (5.29) explained at

the end of the proof of Theorem 5.14 shows that W is generated as an NBn`1-module by the vectors

τn ¨ ¨ ¨ τ2τ1x
j

1
b ūn for all j ě 0 (actually, one just needs them for 0 ď j ď n). It follows that Wi

is generated by the vectors τn ¨ ¨ ¨ τ2τ1x
j

1
b ūn for all j ě i, and Wi´1{Wi is a cyclic NBn`1-module

generated by τn ¨ ¨ ¨ τ2τ1xi´1
1

b ūn ` Wi. For any i ě 1, we claim that there is a surjective graded

NBn`1-module homomorphism

θi : q2n`2´2iLn`1pn ` 1q։ Wi´1{Wi, ūn`1 ÞÑ τn ¨ ¨ ¨ τ2τ1xi´1
1

b ūn ` Wi.

To see this, it just remains to check the relations: each of τ1, . . . , τn annihilates τn ¨ ¨ ¨ τ2τ1xi´1
1

b ūn ` Wi

by some easy commutation relations using (5.3) to (5.5), and er,n`1 does too for r ě 1, as may be

deduced using (5.32). Finally, one checks graded dimensions using (5.11) and Lemma 5.4 to see that

each θi must actually be an isomorphism.

Now consider (5.31). This reduces like before to showing that dimq HomNBn`1
pI1,nLnpnq, Ln`1pn `

1qq “ q´n. For this, we note using adjointness and duality that

HomNBn`1
pI1,nLnpnq, Ln`1pn ` 1qq � HomNBn`1

pLnpnq,R1,nLn`1pn ` 1qq
� HomNBn`1

pR1,nLn`1pn ` 1q, Lnpnqq.
This is of graded dimension q´n by (5.33). �

5.4. Character formulae. The graded character of a locally finite-dimensional graded left NB-module

V is defined by

ch V :“
ÿ

ně0

pdimq 1nVqξn. (5.34)

In general, this is a power series in the formal variable ξ with coefficients that are themselves formal

series of the form
ř

nPZ anqn for an P N. The graded character of any finitely generated graded module

belongs to Zppq´1qq~ξ�. This is an integral form for the completion Qppq´1qq~ξ� of the character ring

from subsection 2.5.

We obviously have that

chpV⊛q “ pch Vq⊛ (5.35)

where the ⊛ on the right-hand side is the bar involution on the character ring from (2.37). Also

chpBVq “ Bpch Vq (5.36)
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where the action of B on Zppq´1qq~ξ� on the right-hand side is defined as in (2.35). This identity is easy

to see if one views B as the functor Res|‹´ as explained in Lemma 5.9.

The irreducible module Lpnq has (globally) finite-dimensional weight spaces by general theory, so

its graded character actually lies in Zrq, q´1s~ξ�, as does the formal character of any graded module of

finite length. By lowest weight theory, we clearly have that

ch Lpnq ” rns!ξn
`
mod ξn`1Zrq, q´1s~ξ�

˘
, (5.37)

which implies that the irreducible characters are linearly independent. They are also invariant under ⊛

since Lpnq is self-dual. Now recall the following expressions defined/computed in Lemma 2.10 and The-

orem 2.12:

ch ∆̄n “ rns!
ÿ

f ě0

T f ,npq2q
p1 ´ q´2q f

ξn`2 f , (5.38)

ch Ln “ rns!
ÿ

mě0

¨
˝ ÿ

αPPtpmˆnq

rα1 ` 1s2 ¨ ¨ ¨ rαm ` 1s2

˛
‚ξn`2m. (5.39)

These are the graded characters of proper standard and irreducible modules:

Theorem 5.16. For any n P N, we have that ch ∆̄pnq “ ch ∆̄n and ch Lpnq “ ch Ln.

Proof. The equality ch ∆̄pnq “ ch ∆̄n follows on computing the graded character of ∆̄pnq by counting

vectors of each degree in the basis (5.16), using also the combinatorics discussed in Example 5.2. To

prove that ch Lpnq “ ch Ln, Corollary 4.25 implies that

dimq 1nLpn ´ 2mq “ dimq HomNBpNB1n, Lpn ´ 2mqq
“ rn ´ 2ms!

ÿ

αPPtpmˆpn´2mqq

rα1 ` 1s2 ¨ ¨ ¨ rαm ` 1s2.

Replacing n by n ` 2m throughout, this shows that the ξn`2m-coefficient of ch Lpnq is the same as this

coefficient in the formula (5.39) for ch Ln. �

Using also the identity (2.38), Theorem 5.16 proves Theorem E from the introduction, and Theo-

rem D follows from (2.31).

5.5. Branching rules. We end by describing the effect of the projective functor B on the irreducible

module Lpnq. In view of Theorem 5.16 and (5.36), we can reinterpret (2.34) as

ch BLpnq “ rns ch Lpn ´ 1q ` δnıtrn ` 1s ch Lpn ` 1q. (5.40)

Since the irreducible characters are linearly independent, this provides complete information about the

composition factors of BLpnq. In particular, we see that

BLp0q �
"

Lp1q if t “ 1

0 if t “ 0.
(5.41)

Note also that ∆̄p0q “ ∆p0q so, by Theorem 5.14 and the fact from Lemma 5.10 that B commutes with

duality, we have that

B∆̄p0q � ∆p1q, B∇̄p0q � ∇p1q. (5.42)

In the proof of the next lemma, we appeal to these identities to treat the degenerate case n “ 0.

Lemma 5.17. Interpreting Lp´1q as 0, the following hold for all n ě 0:

(1) hd B∆̄pnq �
"

qnLpn ` 1q ‘ qn´1Lpn ´ 1q if n ” t pmod 2q
qnLpn ` 1q if n ı t pmod 2q.
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(2) soc B∇̄pnq �
"

q´nLpn ` 1q ‘ q1´nLpn ´ 1q if n ” t pmod 2q
q´nLpn ` 1q if n ı t pmod 2q.

(3) hd BLpnq �
"

qn´1Lpn ´ 1q if n ” t pmod 2q
qnLpn ` 1q if n ı t pmod 2q.

(4) soc BLpnq �
"

q1´nLpn ´ 1q if n ” t pmod 2q
q´nLpn ` 1q if n ı t pmod 2q.

Proof. The case n “ 0 follows by the remarks just made. Assume for the rest of the proof that n ě 1.

By duality, (1) and (2) are equivalent, as are (3) and (4). By Theorem 5.15, especially (5.30) and (5.31),

it is clear that hd B∆̄pnq is isomorphic either to qnLpn ` 1q ‘ qn´1Lpn ´ 1q or to qnLpn ` 1q. The

following claim completes the proof of (1) and (2) when n ı t pmod 2q.

Claim. If n ı t pmod 2q then HomNBpB∆̄pnq, Lpn ´ 1qq “ 0.

To prove this, we let V :“ Res|‹´ ∆̄pnq, this being isomorphic to B∆̄pnq by Lemma 5.9. In this incarna-

tion, the submodule K̄pnq from Theorem 5.15(1) is identified with the submodule K of V generated by

the vectors xi´1
1

v̄n for 1 ď i ď n. This is apparent from the proofs of Theorem 5.13 and Theorem 5.15(1).

Any non-zero homomorphism f : K Ñ Lpn´1q resulting from (5.30) is necessarily homogeneous of de-

gree n´1, and must take v̄n to a non-zero vector of the minimal degree ´ 1
2
pn´1qpn´2q in 1n´1Lpn´1q.

We are trying to show that f does not extend to a homogeneous homomorphism f̂ : V Ñ Lpn ´ 1q.

Suppose for a contradiction that there is such an extension. Consider the vectors

v :“ ¨ ¨ ¨
¨ ¨ ¨

v̄n

w :“ ¨ ¨ ¨
¨ ¨ ¨ ‚n

v̄n

The vector v is of degree ´ 1
2
npn ´ 1q ´ 2n, so f̂ pvq is of degree ´ 1

2
pn ´ 1qpn ´ 2q ´ 2n, which is smaller

than the degree of any non-zero vector in 1n`1∆̄pn ´ 1q, hence, in 1n`1Lpn ´ 1q. So f̂ pvq “ 0. Since w

is obtained from v by acting with some element of NB, we deduce that f̂ pwq “ 0 too. Now we calculate

using Corollary 3.5 and (3.17) and the defining relations of Lnpnq to see that

w “ ¨ ¨ ¨
¨ ¨ ¨ ‚ n

v̄n

“ ´ ¨ ¨ ¨
¨ ¨ ¨

‚ n´1

v̄n

“ p´1qn ¨ ¨ ¨
v̄n

“ p´1qnv̄n.

The first equality here requires n ı t pmod 2q—otherwise, it would be 0. Now we have that f̂ pwq “
p´1qn f̂ pv̄nq “ 0 but f̂ pv̄nq , 0. This contradiction proves the claim.

Next, consider hd BLpnq. For m ě 0, HomNBpBLpnq, Lpmqq embeds naturally into both of the spaces

HomNBpB∆̄pnq, Lpmqq and HomNBpBLpnq, ∇̄pmqq � HomNBpLpnq, B∇̄pmqq. So the parts of (1)–(2)

proved so far imply:

‚ dimq HomNBpBLpnq, Lpmqq “ 0 if m , n ˘ 1.

‚ dimq HomNBpBLpnq, Lpn ` 1qq “ 0 or q´n.

‚ dimq HomNBpBLpnq, Lpn ´ 1qq “ 0 or q1´n.

If n ı t pmod 2q then HomNBpBLpnq, Lpn ´ 1qq “ 0 as HomNBpB∆̄pnq, Lpn ´ 1qq “ 0. Since BLpnq ,
0 by (5.40), we must therefore have that HomNBpBLpnq, Lpn ` 1qq , 0, so its graded dimension is

q´n. Hence, hd BLpnq � qnLpn ` 1q in this situation. Instead, if n ” t pmod 2q then we have that

HomNBpBLpnq, Lpn ` 1qq “ 0 as HomNBpLpnq, B∇̄pn ` 1qq “ 0. Since BLpnq , 0, we must therefore

have that HomNBpBLpnq, Lpn ´ 1qq , 0. So it has graded dimension q1´n, and we have proved that

hd BLpnq � qn´1Lpn ´ 1q. Now (3) and (4) are proved.
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Finally, we complete the proof of (1) and (2) in the remaining case that n ” t pmod 2q. We need to

show that HomNBpB∆̄pnq, Lpn ´ 1qq and HomNBpLpn ´ 1q, B∇̄pnqq are non-zero. This follows because

HomNBpBLpnq, Lpn ´ 1qq and HomNBpLpn ´ 1q, BLpnqq are non-zero by (3)–(4). �

Theorem 5.18. For n ě 0, the module V :“ BLpnq is uniserial. To describe its unique composition

series, let x : V Ñ V denote the nilpotent endomorphism xLpnq, Vi :“ im xi and V i :“ ker xi.

(1) If n ” t pmod 2q then the unique composition series is

V “ V0 “ Vn ą V1 “ Vn´1 ą V2 “ Vn´2 ą ¨ ¨ ¨ ą V1 ą Vn “ V0 “ 0

with Vi´1{Vi “ Vn`1´i{Vn´i � qn`1´2iLpn ´ 1q for each i “ 1, . . . , n.

(2) If n ı t pmod 2q then the unique composition series is

V “ V0 ą Vn ą V1 ą Vn´1 ą V2 ą Vn´2 ą ¨ ¨ ¨ ą V1 ą Vn ą V0 “ 0

with Vi´1{Vn`1´i � qn`2´2iLpn ` 1q for i “ 1, . . . , n ` 1 and Vn`1´i{Vi � qn`1´2iLpn ´ 1q for

i “ 1, . . . , n.

Moreover, EndNBpVq “ krxs{
`

xβpnq
˘

with βpnq “ n if n ” t pmod 2q or n ` 1 if n ı t pmod 2q.

Proof. Since V is a quotient of B∆̄pnq, Theorem 5.15 implies that there is a short exact sequence

0 ÝÑ K ÝÑ V ÝÑ Q ÝÑ 0

where K is a quotient of K̄pnq and Q is a quotient of Q̄pnq. The filtrations of K̄pnq and Q̄pnq described

in Theorem 5.15 induce filtrations K “ K0 ě K1 ě ¨ ¨ ¨ ě Kn “ 0 and Q “ Q0 ě Q1 ě ¨ ¨ ¨ ě ¨ ¨ ¨
with Ki´1{Ki being a (possibly zero) quotient of qn`1´2i∆̄pn ´ 1q for i “ 1, . . . , n, and Qi´1{Qi being a

(possibly zero) quotient of qn`2´2i∆̄pn ` 1q for i ě 1. By (5.40), we know that rV : Lpn ´ 1qsq “ rns.
Since rQ : Lpn ´ 1qsq “ 0, these composition factors can only come from the heads of Ki´1{Ki for

i “ 1, . . . , n. So we must have that K0 ą K1 ą ¨ ¨ ¨ ą Kn “ 0. Since Ki “ xiK by definition, this shows

that xn´1 , 0.

Now suppose that n ” t pmod 2q. Then all composition factors of V are isomorphic (up to degree

shift) to Lpn ´ 1q by (5.40) again. We deduce that V “ K, Vi “ Ki and Vi´1{Vi � qn`1´2iLpn ´ 1q for

each i. Thus, we have constructed the filtration described in (1). We also know from Lemma 5.17(3) that

hd V � qn´1Lpn ´ 1q so that dim EndNBpVq ď rV : Lpn ´ 1qs “ n. As xn´1 , 0, the endomorphisms

1, x, . . . , xn´1 are linearly independent. So we have that EndNBpVq “ krxs{pxnq as at the end of the

statement of the lemma. Moreover, V is uniserial because V , hence, each Vi “ xiV has irreducible head,

i.e., Vi is the unique maximal submodule rad Vi´1 of Vi´1 for i “ 1, . . . , n.

It remains to treat the case n ı t pmod 2q. Since hd V � qnLpn ` 1q and rV : Lpn ` 1qsq “ rn ` 1s,
we have that dim EndNBpVq ď rV : Lpn ` 1qs “ n ` 1. We know already that xn´1 , 0. We

cannot have xn “ 0 as this would contradict Lemma 5.11. So the nilpotency degree of x is exactly

n ` 1, and EndNBpVq “ krxs{pxn`1q as required for the final statement of the theorem. It follows

that V “ V0 ą V1 ą ¨ ¨ ¨ ą Vn ą Vn`1 “ 0. Since hd V � qnLpn ` 1q, each Vi has irreducible

head qn´2iLpn ` 1q. Since soc V � q´nLpn ` 1q we have that Vn “ im xn “ soc V . This is also

the image of the restriction of xn`1´i to Vi´1, and xn`1´iVi “ 0, so xn`1´i induces a homomorphism

Vi´1{Vi ։ qn`2´2iLpn ` 1q. It follows that Vn`1´i “ rad Vi´1. We have now shown that

V “ V0 ą Vn ě V1 ě Vn´1 ą V2 ě ¨ ¨ ¨ ą V1 ě Vn ą V0 “ 0

with Vi´1{Vn`1´i � qn`2´2iLpn`2q for i “ 1, . . . , n`1. We claim that Vn`1´i{Vi has qn`1´2iLpn´1q as

a composition factor. This follows because hd Ki´1 � qn`1´2iLpn´1q, xn`1´iKi´1 “ 0 and xn´iKi´1 ,

0, so Vn`1´i{Vn´i has qn`1´2iLpn ´ 1q as a composition factor. Combined with the information from

(5.40), the claim implies that Vn`1´i{Vi � qn`1´2iLpn ´ 1q, and we have constructed the filtration
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in (2). Finally, we observe that V is uniserial because Vi´1 has irreducible head qn`2´2iLpn ` 1q for

i “ 1, . . . , n ` 1, hence, Vi´1{Vi is uniserial of length 2 for i “ 1, . . . , n or length 1 for i “ n ` 1. �
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