NIL-BRAUER CATEGORIFIES THE SPLIT 1-QUANTUM GROUP OF RANK ONE

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

ABSTRACT. We prove that the Grothendieck ring of the monoidal category of finitely generated graded projective modules for the nil-Brauer category is isomorphic to an integral form of the split *i*-quantum group of rank one. Under this isomorphism, the indecomposable graded projective modules correspond to the *i*-canonical basis. We also introduce a new PBW basis for the *i*-quantum group and show that it is categorified by standard modules for the nil-Brauer category. Finally, we derive character formulae for irreducible graded modules and deduce various branching rules.

CONTENTS

1. Introduction	2
2. Bases of the split <i>i</i> -quantum group of rank one	4
2.1. Quantum groups	5
2.2. The <i>i</i> -quantum group and its PBW basis	6
2.3. Combinatorics of chord diagrams	7
2.4. The <i>i</i> -canonical basis	10
2.5. The character ring	12
3. The nil-Brauer category	14
3.1. Definition and basic properties	14
3.2. Generating functions for dots and bubbles	15
3.3. The basis theorem	17
3.4. Central elements	19
3.5. Minimal polynomials	19
4. Primitive idempotents	21
4.1. Extended graphical calculus	21
4.2. Recurrence relation for idempotents	27
4.3. Locally unital graded algebras and modules	34
4.4. Identification of the Grothendieck ring	36
5. Representation theory	39
5.1. Triangular basis	39
5.2. Standard modules and BGG reciprocity	40
5.3. The projective functor <i>B</i> preserves good filtrations	44
5.4. Character formulae	49
5.5. Branching rules	50
References	53

²⁰²⁰ Mathematics Subject Classification. Primary 17B10.

Key words and phrases. Quantum symmetric pair, categorification.

J.B. is supported in part by NSF grant DMS-2101783. W.W. is supported in part by the NSF grant DMS-2001351. B.W. is supported by Discovery Grant RGPIN-2018-03974 from the Natural Sciences and Engineering Research Council of Canada. This research was also supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research and Innovation.

1. INTRODUCTION

In [Let99], Letzter introduced what we now call the *i-quantum groups* associated to symmetric pairs. These can be viewed as a generalization of Drinfeld-Jimbo quantum groups—the latter are the *i*-quantum groups arising from diagonal symmetric pairs. Lusztig's canonical bases for quantum groups, with their favorable positivity properties, provided one source of motivation for the categorification of quantum groups via the *Kac-Moody 2-categories* of Khovanov, Lauda and Rouquier [KL10, Rou08]. A theory of *i-canonical bases* for *i*-quantum groups was developed in [BW18a, BW18b]. In special cases, these again have positive structure constants; see [LW18] which treats the quasi-split types AIII. Therefore, it is reasonable to hope that there should be a categorification of *i*-quantum groups.

In rank 1, there are three quasi-split *i*-quantum groups. First, there is the usual $U_q(\mathfrak{sl}_2)$, which was categorified by Lauda and Rouquier in [Lau10, Rou08]. The second, arising from the Satake diagram of A_2 with non-trivial diagram involution, was categorified in [BSWW18]. In this article, we explain how to categorify the remaining case, the split *i*-quantum group $U_q^i(\mathfrak{sl}_2)$ corresponding to the symmetric pair (SL₂, SO₂). This is a basic building block for general *i*-quantum groups, and it is expected to play a key role in the categorification of quasi-split *i*-quantum groups of higher rank.

Our categorification of $U_q^t(\mathfrak{sl}_2)$ arises from the *nil-Brauer category* \mathcal{NB}_t introduced recently in [**BWW23**]. This is a strict graded k-linear monoidal category defined over a field k of characteristic different from 2. It has one self-dual generating object *B* and four generating morphisms represented diagrammatically by \blacklozenge (degree 2), \bigwedge (degree -2), \bigcap (degree 0), and \bigcup (degree 0), subject to some natural relations recorded in Definition 3.1. The parameter *t* gives the value of \bigcirc : $\mathbb{1} \to \mathbb{1}$, the only admissible choices being t = 0 or t = 1.

To formulate the main results precisely, rather than working in terms of idempotents, as is often done in the categorification literature, we use the language of modules. By a graded \mathcal{NB}_t -module, we mean a graded k-linear functor from \mathcal{NB}_t to graded vector spaces. The endofunctor of \mathcal{NB}_t defined by tensoring with its generating object extends to an exact endofunctor, also denoted *B*, of the category of graded \mathcal{NB}_t -modules. Let $[n] := q^{n-1} + q^{n-3} + \cdots + q^{1-n}$ be the quantum integer, and $V^{\oplus[n]}$ denote the corresponding direct sum of degree-shifted copies of a graded module *V*.

Theorem A. There are unique (up to isomorphism) indecomposable projective graded \mathcal{NB}_t -modules P(n) ($n \ge 0$) such that P(0) is the projective graded module associated to the identity endomorphism of the unit object, and

$$BP(n) \cong \begin{cases} P(n+1)^{\bigoplus[n+1]} \bigoplus P(n-1)^{\bigoplus[n]} & \text{if } n \equiv t \pmod{2} \\ P(n+1)^{\bigoplus[n+1]} & \text{if } n \not\equiv t \pmod{2}. \end{cases}$$

These modules give a full set of indecomposable projective graded NB_t -modules (up to isomorphism and grading shift).

The proof of Theorem A is similar in spirit to Lauda's proof of the analogous result for the 2-category $\mathfrak{U}(\mathfrak{sl}_2)$ obtained in [Lau10]. It involves the explicit construction of appropriate homogeneous primitive idempotents. These resemble primitive idempotents in the nil-Hecke algebra familiar from Schubert calculus, but they are considerably more subtle; see Theorem 4.21 and Corollary 4.24. Another important ingredient needed to establish the indecomposability of P(n) is the identification of the Cartan form on the Grothendieck ring of \mathcal{NB}_t with an explicitly defined sesquilinear form on the *t*-quantum group. This is discussed further after the statement of the next theorem, which is our main categorification result.

Let $\mathbf{U}^{\iota} := \mathbf{U}_{q}^{\iota}(\mathfrak{sl}_{2})$ be the split *i*-quantum group of rank 1. As a $\mathbb{Q}(q)$ -algebra, this is simply a polynomial algebra on one generator *B*, but it has a non-trivial $\mathbb{Z}[q, q^{-1}]$ -form $\mathbb{Z}\mathbf{U}_{t}^{\iota}$ associated to the parameter $t \in \{0, 1\}$. As a $\mathbb{Z}[q, q^{-1}]$ -module, $\mathbb{Z}\mathbf{U}_{t}^{\iota}$ is free with a distinguished basis given by the *i*-canonical basis

 P_n $(n \ge 0)$ that was originally defined in [BW18b] in terms of the finite-dimensional irreducible \mathfrak{sl}_2 modules of highest weight $\lambda \equiv t \pmod{2}$. Let $K_0(\mathcal{NB}_t)$ be the split Grothendieck ring of the monoidal category of finitely generated projective graded \mathcal{NB}_t -modules. In fact, this is a $\mathbb{Z}[q, q^{-1}]$ -algebra, with the action of q arising from the grading shift functor. The recursion for the indecomposable projective graded modules in Theorem A exactly matches the recursion for the *i*-canonical basis P_n $(n \ge 0)$ of $\mathbb{Z}\mathbf{U}_t^t$ calculated in [BW18c]. This coincidence is the essence of our next main theorem; see Theorem 4.23:

Theorem B. There is a unique $\mathbb{Z}[q, q^{-1}]$ -algebra isomorphism

$$\kappa_t: K_0(\mathcal{NB}_t) \xrightarrow{\sim} \mathbb{Z} \mathbf{U}_t^t$$

intertwining the endomorphism of $K_0(\mathcal{NB}_t)$ induced by the endofunctor B with the endomorphism of $\mathbb{Z}\mathbf{U}_t^t$ defined by multiplication by the generator B of the *i*-quantum group. For any $n \ge 0$, κ_t maps the isomorphism class of the indecomposable projective module P(n) to the *i*-canonical basis element P_n .

Under the isomorphism of Theorem B, the non-degenerate symmetric bilinear form $(\cdot, \cdot)^i$ on $\mathbb{Z}U_t^i$ constructed in [BW18a] is equal (after twisting the first argument with the bar involution to make it sesquilinear in the appropriate sense, and some rescaling) to the Cartan form on $K_0(\mathcal{NB}_t)$. The proof of this depends ultimately on the basis theorem for \mathcal{NB}_t from [BWW23] together with some combinatorics of chord diagrams which is of independent interest; see Lemma 2.4, Corollary 2.6, and Theorem 3.7.

The remaining results in the article rely on the observation that the category of graded \mathcal{NB}_t -modules has some useful additional structure: it is an *affine lowest weight category* in a suitably generalized sense. In particular, there are certain graded \mathcal{NB}_t -modules $\Delta(n)$ and $\bar{\Delta}(n)$, the *standard* and *proper standard modules*, equipped with explicit bases. The proper standard module $\bar{\Delta}(n)$ has a unique irreducible quotient denoted L(n), the modules L(n) ($n \ge 0$) give a complete set of graded irreducible \mathcal{NB}_t -modules up to isomorphism and grading shift, and there is a graded analog of the usual BGG reciprocity; see Theorem 5.6. These assertions follow from an application of the general machinery of graded triangular bases developed in [Bru23]—the nil-Brauer category is a perfect example for this theory.

The minimal standard modules $\Delta(0)$ and $\Delta(1)$ are projective and therefore coincide with P(0) and P(1), respectively, but after that the two families of modules diverge. In fact, at the decategorified level, the standard modules correspond to a new orthogonal basis for the *i*-quantum group, the *PBW basis* Δ_n ($n \ge 0$) introduced in section 2. The PBW basis elements satisfy the following recurrence relation:

$$\Delta_0 = 1,$$
 $B\Delta_n = [n+1]\Delta_{n+1} + \frac{q^{n-1}}{1-q^{-2}}\Delta_{n-1},$

interpreting Δ_{-1} as 0. The assertion that the standard module $\Delta(n)$ categorifies Δ_n is justified by the next theorem, which describes the effect of the endofunctor *B* on standard modules:

Theorem C. For $n \ge 0$, there is a short exact sequence of graded \mathcal{NB}_t -modules

$$0 \longrightarrow \bigoplus_{i \ge 0} q^{n-1-2i} \Delta(n-1) \longrightarrow B\Delta(n) \longrightarrow \Delta(n+1)^{\oplus [n+1]} \longrightarrow 0.$$

(In the first term, q denotes the downward grading shift functor, and this term should be interpreted as 0 in case n = 0.)

An interesting feature of Theorem C is the presence of the infinite direct sum in the first term of the short exact sequence—the finitely generated \mathcal{NB}_t -modules $B\Delta(n)$ (n > 0) are *not* Noetherian. This corresponds to the fact that the PBW basis Δ_n $(n \ge 0)$ is a basis for \mathbf{U}^t over $\mathbb{Q}(q)$, but not for $\mathbb{Z}\mathbf{U}_t^t$ over $\mathbb{Z}[q, q^{-1}]$. Theorem C is proved in Theorem 5.14 in the main body of the text. There is also a parallel result for proper standard modules, which categorify the *dual PBW basis* $\overline{\Delta}_n$ $(n \ge 0)$; see Theorem 5.15.

For closed formulae for the transition matrices between the bases P_m ($m \ge 0$) and Δ_n ($n \ge 0$), see Theorem 2.7. Translating to representation theory and using BGG reciprocity, we obtain the following explicit formula for graded decomposition numbers:

Theorem D. The irreducible subquotients of the proper standard module $\overline{\Delta}(n)$ $(n \ge 0)$ are isomorphic (up to grading shifts) to L(n + 2m) for $m \ge 0$ with

$$\left[\bar{\Delta}(n):L(n+2m)\right]_q = \begin{cases} q^{-m(2m-1)} / (1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m}) & \text{if } n \equiv t \pmod{2} \\ q^{-m(2m+1)} / (1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m}) & \text{if } n \not\equiv t \pmod{2}. \end{cases}$$

To formulate one more such combinatorial result, for a finitely generated graded \mathcal{NB}_t -module V, its *graded character* is the formal series

$$\operatorname{ch} V = \sum_{n \ge 0} d_n(V) \xi^n \in \mathbb{N}((q^{-1})) \llbracket \xi \rrbracket$$

where ξ is a formal variable and $d_n(V) \in \mathbb{N}((q^{-1}))$ is the graded dimension of the graded vector space obtained by evaluating the functor *V* on the object $B^{\star n}$.

Theorem E. For $n \ge 0$, we have that

$$\operatorname{ch} L(n) = [n]! \xi^n / \prod_{\substack{1 \le k \le n+1 \\ k \equiv t \pmod{2}}} (1 - [k]^2 \xi^2) \in \mathbb{N}[q, q^{-1}] \llbracket \xi \rrbracket.$$

Finally, we also prove *branching rules* which give complete information about the structure of the modules BL(n) $(n \ge 0)$; see Theorem 5.18. Except in the case that n = t = 0 (when it is zero), these branching rules show that BL(n) is a self-dual uniserial module with irreducible socle and cosocle isomorphic (up to appropriate grading shifts) to L(n-1) if $n \equiv t \pmod{2}$ or to L(n+1) if $n \not\equiv t \pmod{2}$. Moreover,

$$\operatorname{End}_{\mathcal{NB}}(BL(n)) \cong \mathbb{k}[x]/(x^{\beta(n)})$$

where $\beta(n) = n$ if $n \equiv t \pmod{2}$ or n + 1 if $n \not\equiv t \pmod{2}$. The combinatorics arising here is the same as the combinatorics of the underlying *i*-crystal basis described in [Wat23, Ex. 4.1.4].

General conventions. Throughout the article, $t \in \{0, 1\}$ will be a fixed parameter. Given also $n \in \mathbb{N}$, we use the shorthand $\delta_{n\equiv t}$ to denote 1 if $n \equiv t \pmod{2}$ or 0 otherwise. Similarly, $\delta_{n \neq t}$ denotes 1 if $n \neq t \pmod{2}$ or 0 otherwise. We write S_n for the symmetric group on n letters. Let $s_i \in S_n$ be the simple transposition $(i \ i+1)$, let $\ell : S_n \to \mathbb{N}$ be the associated length function, and let w_n be the longest element of S_n . We denote the category of graded vector spaces over the field k by gVec, using q for the downward grading shift functor. So, for a graded vector space $V = \bigoplus_{d \in \mathbb{Z}} V_d$, its grading shift qV is the same underlying vector space with new grading defined via $(qV)_d := V_{d+1}$ for each $d \in \mathbb{Z}$. For a graded vector space $V = \bigoplus_{d \in \mathbb{Z}} V_d$ with finite-dimensional graded pieces, we define its graded dimension to be

$$\dim_q V := \sum_{d \in \mathbb{Z}} (\dim V_d) q^{-d}.$$
(1.1)

For any formal series $f = \sum_{d \in \mathbb{Z}} a_d q^d$ with each $a_d \in \mathbb{N}$, we write $V^{\bigoplus f}$ for $\bigoplus_{d \in \mathbb{Z}} q^d V^{\bigoplus a_d}$.

2. Bases of the split *i*-quantum group of rank one

In this section, we recall some basic facts about the split *i*-quantum group of rank 1 following [BW18b, BW18c]. Then we introduce a new PBW-type basis, and derive combinatorial formulae for various transition matrices, including between the PBW basis and the *i*-canonical basis. For all of this, we work over the field $\mathbb{Q}(q)$ for an indeterminate q. We write [n] for the quantum integer $\frac{q^n - q^{-n}}{q - q^{-1}}$, [n]!

for the quantum factorial, and $\binom{n}{r} := [n][n-1]\cdots [n-r+1]/[r]!$. The word *anti-linear* always means with respect to the bar involution $-: \mathbb{Q}(q) \to \mathbb{Q}(q)$ that is the field automorphism taking q to q^{-1} . We denote the limit of a convergent sequence $(f_{\lambda})_{\lambda \ge 0}$ in $\mathbb{Q}((q^{-1}))$ by $\lim_{\lambda \to \infty} f_{\lambda}$.

2.1. Quantum groups. Let U be the usual quantum group $U_q(\mathfrak{sl}_2)$, the $\mathbb{Q}(q)$ -algebra with generators *E*, *F*, *K*, K^{-1} satisfying the relations

$$KEK^{-1} = q^2E,$$
 $KFK^{-1} = q^{-2}F,$ $[E, F] = \frac{K - K^{-1}}{q - q^{-1}}.$

Our general conventions are the same as in [Lus10], except that we write q in place of Lusztig's v. The subalgebras of U generated by F and by E are denoted U^- and U^+ , respectively, and the *divided powers* are $E^{(n)} := E^n/[n]!$, $F^{(n)} := F^n/[n]!$. There are various useful symmetries:

- Let $\psi : \mathbf{U} \to \mathbf{U}$ be the usual *bar involution* on **U**, that is, the anti-linear algebra involution which fixes *E* and *F* and takes *K* to K^{-1} .
- Let $\rho : \mathbf{U} \to \mathbf{U}$ be the linear algebra anti-involution such that $\rho(K) = K$, $\rho(E) = q^{-1}FK$, $\rho(F) = qK^{-1}E$.

Let $(\cdot, \cdot)^- : \mathbf{U}^- \times \mathbf{U}^- \to \mathbb{Q}(q)$ be Lusztig's form on **f** from [Lus10, Sec. 1.2.5] transported through the isomorphism between **f** and **U**⁻. Thus, it is the non-degenerate symmetric bilinear form such that

$$(F^{(m)}, F^{(n)})^{-} = \frac{\delta_{m,n}}{(1-q^{-2})(1-q^{-4})\cdots(1-q^{-2n})}$$
(2.1)

for $m, n \ge 0$.

We denote the irreducible U-module of highest weight $\lambda \in \mathbb{N}$ by $V(\lambda)$. This is generated by a vector η_{λ} such that $E\eta_{\lambda} = 0$ and $K\eta_{\lambda} = q^{\lambda}\eta_{\lambda}$. There is an anti-linear involution $\psi_{\lambda} : V(\lambda) \to V(\lambda)$ such that $\psi_{\lambda}(\eta_{\lambda}) = \eta_{\lambda}$ and $\psi_{\lambda}(uv) = \psi(u)\psi_{\lambda}(v)$ for $u \in \mathbf{U}, v \in V(\lambda)$. Also let $(\cdot, \cdot)_{\lambda} : V(\lambda) \times V(\lambda) \to \mathbb{Q}(q)$ be the unique non-degenerate symmetric bilinear form on $V(\lambda)$ such that

$$(\eta_{\lambda},\eta_{\lambda})_{\lambda} = 1, \qquad (uv_1,v_2)_{\lambda} = (v_1,\rho(u)v_2)_{\lambda} \qquad (2.2)$$

for $u \in \mathbf{U}, v_1, v_2 \in V(\lambda)$. The form $(\cdot, \cdot)^-$ on \mathbf{U}^- can be recovered from these forms on the modules $V(\lambda)$ since we have that

$$(y_1, y_2)^- = \lim_{\lambda \to \infty} \left(y_1 \eta_\lambda, y_2 \eta_\lambda \right)_\lambda$$
(2.3)

for all $y_1, y_2 \in \mathbf{U}^-$ by a special case of [Lus10, Prop. 19.3.7]. The vectors $F^{(n)}\eta_{\lambda}$ ($0 \leq n \leq \lambda$) give the canonical basis for $V(\lambda)$. In fact, they give a basis for an integral form $\mathbb{Z}V(\lambda)$ over $\mathbb{Z}[q, q^{-1}]$. The anti-involution ψ_{λ} restricts to an anti-linear involution of $\mathbb{Z}V(\lambda)$, and the values of the form $(\cdot, \cdot)_{\lambda}$ on elements of $\mathbb{Z}V(\lambda)$ lie in $\mathbb{Z}[q, q^{-1}]$.

Let $R : \mathbf{U}^- \to \mathbf{U}^-$ be the linear map defined by

$$R(1) = 0, R(F^{(n)}) = \frac{q^{n-1}F^{(n-1)}}{1-q^{-2}} (2.4)$$

for $n \ge 1$. This map arises naturally as the adjoint of left multiplication by F: we have that

$$(Fy_1, y_2)^- = (y_1, R(y_2))^-$$
 (2.5)

for all $y_1, y_2 \in \mathbf{U}^-$. Equivalently, $R(y) = r(y)/(1 - q^{-2})$ where *r* is the map defined in either the first or the second paragraph of [Lus10, Sec. 1.2.13] (the two maps coincide in rank one). So [Lus10, Prop. 3.1.6(b)], or an easy induction exercise using (2.4), gives that

$$Ey - yE = q^{-1}KR(y) - q^{-1}R(y)K^{-1}$$
(2.6)

for any $y \in \mathbf{U}^-$.

For the purposes of categorification, one usually replaces **U** by its modified form **Ú**, which is a locally unital algebra $\dot{\mathbf{U}} = \bigoplus_{\lambda,\mu\in\mathbb{Z}} \mathbf{1}_{\mu}\dot{\mathbf{U}}\mathbf{1}_{\lambda}$ with a distinguished system $\mathbf{1}_{\lambda}(\lambda \in \mathbb{Z})$ of mutually orthogonal idempotents replacing the diagonal generators K, K^{-1} . The relationship between **U** and $\dot{\mathbf{U}}$ can be expressed either by saying that $\dot{\mathbf{U}}$ is a (\mathbf{U}, \mathbf{U}) -bimodule, or that **U** embeds into the completion of $\dot{\mathbf{U}}$ consisting of matrices $(a_{\mu,\lambda})_{\lambda,\mu\in\mathbb{Z}} \in \prod_{\lambda,\mu\in\mathbb{Z}} \mathbf{1}_{\mu}\dot{\mathbf{U}}\mathbf{1}_{\lambda}$ such that there are only finitely many non-zero entries in each row and column. The element $K \in \mathbf{U}$ corresponds to the diagonal matrix with $q^{\lambda}\mathbf{1}_{\lambda}$ as its λ th diagonal entry, while $E, F \in \mathbf{U}$ are identified with the matrices whose only non-zero entries are $\mathbf{1}_{\lambda+2}E\mathbf{1}_{\lambda}$ ($\lambda \in \mathbb{Z}$) and $\mathbf{1}_{\lambda}F\mathbf{1}_{\lambda+2}$ ($\lambda \in \mathbb{Z}$), respectively.

2.2. The *i*-quantum group and its PBW basis. The *i*-quantum group $U^{i}(\mathfrak{sl}_{2})$ is the subalgebra U^{i} of U generated by

$$B := F + \rho(F) = F + qK^{-1}E.$$
(2.7)

As an algebra, \mathbf{U}^{\prime} is uninteresting since it is the free $\mathbb{Q}(q)$ -algebra on *B*. However it is an interesting coideal subalgebra of **U** for an appropriate choice of comultiplication.

The symmetry ρ of **U** restricts to a linear anti-involution $\rho : \mathbf{U}^{t} \to \mathbf{U}^{t}$ with $\rho(B) = B$. Also, the *bar involution* $\psi^{t} : \mathbf{U}^{t} \to \mathbf{U}^{t}$ is the unique anti-linear involution such that $\psi^{t}(B) = B$. We stress a key point: ψ^{t} is *not* the restriction of the bar involution ψ on **U**, indeed, the latter does not leave \mathbf{U}^{t} invariant. For $\lambda \in \mathbb{N}$, there is a unique anti-linear involution $\psi^{t}_{\lambda} : V(\lambda) \to V(\lambda)$ such that

$$\psi_{\lambda}^{\iota}(\eta_{\lambda}) = \eta_{\lambda}, \qquad \qquad \psi_{\lambda}^{\iota}(uv) = \psi^{\iota}(u)\psi_{\lambda}^{\iota}(v) \qquad (2.8)$$

for all $u \in \mathbf{U}^{i}$, $v \in V(\lambda)$; see [BW18b, Cor. 3.11] and [BW18a, Prop. 5.1]. Also, by [BW18a, Lem. 6.25], there is a symmetric bilinear form $(\cdot, \cdot)^{i} : \mathbf{U}^{i} \times \mathbf{U}^{i} \to \mathbb{Q}(q)$ such that

$$(u_1, u_2)^{\iota} = \lim_{\lambda \to \infty} \left(u_1 \eta_{\lambda}, u_2 \eta_{\lambda} \right)_{\lambda}$$
(2.9)

for all $u_1, u_2 \in \mathbf{U}^i$. From (2.2), we get that

$$(Bu_1, u_2)^i = (u_1, Bu_2)^i \tag{2.10}$$

for any $u_1, u_2 \in \mathbf{U}^i$. In [BW18a, Th. 6.27], it is shown that $(\cdot, \cdot)^i$ is non-degenerate. This also follows from the following theorem together with the non-degeneracy of the form $(\cdot, \cdot)^-$ on \mathbf{U}^- .

Theorem 2.1. There is a unique isomorphism of $\mathbb{Q}(q)$ -vector spaces $j: \mathbf{U}^{\iota} \xrightarrow{\sim} \mathbf{U}^{-}$ such that

$$\lim_{\lambda \to \infty} (u\eta_{\lambda}, y\eta_{\lambda})_{\lambda} = (j(u), y)^{-}$$
(2.11)

for all $u \in \mathbf{U}^{\iota}$ and $y \in \mathbf{U}^{-}$. Moreover, the following hold for $u, u_1, u_2 \in \mathbf{U}^{\iota}$:

- (1) j(Bu) = Fj(u) + R(j(u)).
- (2) $(u_1, u_2)^i = (j(u_1), j(u_2))^-$.

Proof. Uniqueness of a linear map j satisfying (2.11) follows easily from the non-degeneracy of the form $(\cdot, \cdot)^-$. To prove existence, we can assume that u is a power of B and proceed by induction on degree. Let j(1) := 1, which clearly satisfies (2.11) for all $y \in \mathbf{U}^-$. Now assume for some $u \in \mathbf{U}^i$ that j(u) satisfying (2.11) for all y has been constructed inductively, and consider j(Bu). Using (2.2) and the identity (2.6) multiplied on the left by qK^{-1} , we have that

$$\lim_{\lambda \to \infty} (Bu\eta_{\lambda}, y\eta_{\lambda})_{\lambda}^{(2,2)} \lim_{\lambda \to \infty} (u\eta_{\lambda}, By\eta_{\lambda})_{\lambda} = \lim_{\lambda \to \infty} (u\eta_{\lambda}, Fy\eta_{\lambda} + qK^{-1}Ey\eta_{\lambda})_{\lambda}$$

$$\stackrel{(2,6)}{=} \lim_{\lambda \to \infty} (u\eta_{\lambda}, Fy\eta_{\lambda} + R(y)\eta_{\lambda} - K^{-1}R(y)K^{-1}\eta_{\lambda})_{\lambda}$$

$$= \lim_{\lambda \to \infty} (u\eta_{\lambda}, Fy\eta_{\lambda} + R(y)\eta_{\lambda})_{\lambda} = (j(u), Fy + R(y))^{-} \stackrel{(2.5)}{=} (Fj(u) + R(j(u)), y)^{-}.$$

So j(Bu) := Fj(u) + R(j(u)) satisfies (2.11). This proves the existence of a linear map *j* satisfying (2.11), and at the same time we have established (1). To see that *j* is a linear isomorphism, it follows easily from (1) that $j(B^n)$ is a monic polynomial of degree *n* in *F*. Since U^i and U^- are free on *B* and on *F*, respectively, it is now clear that *j* is an isomorphism.

It remains to prove (2). By the definition (2.9) and (2.11), we need to show that

$$\lim_{\lambda \to \infty} \left(u_1 \eta_{\lambda}, j(u_2) \eta_{\lambda} \right)_{\lambda} = \lim_{\lambda \to \infty} \left(u_1 \eta_{\lambda}, u_2 \eta_{\lambda} \right)_{\lambda}$$

for all $u_1, u_2 \in \mathbf{U}^l$. Note that the limit on the left hand side exists by what we have proved so far. We assume that u_2 is a power of *B* and proceed by induction on its degree. The base case $u_2 = 1$ is clear. Now assume the result has been proved for all u_1 and some u_2 , and consider Bu_2 . Using (1), we have that

$$\lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, j(Bu_2)\eta_{\lambda})_{\lambda} = \lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, Fj(u_2)\eta_{\lambda} + R(j(u_2))\eta_{\lambda})_{\lambda}$$

$$= \lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, Fj(u_2)\eta_{\lambda} + R(j(u_2))\eta_{\lambda} - K^{-1}R(j(u_2))K^{-1}\eta_{\lambda})_{\lambda}$$

$$\stackrel{(2.6)}{=} \lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, Fj(u_2)\eta_{\lambda} + qK^{-1}Ej(u_2))_{\lambda} = \lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, Bj(u_2)\eta_{\lambda})_{\lambda}$$

$$\stackrel{(2.2)}{=} \lim_{\lambda \to \infty} (Bu_1 \eta_{\lambda}, j(u_2)\eta_{\lambda})_{\lambda} = \lim_{\lambda \to \infty} (Bu_1 \eta_{\lambda}, u_2 \eta_{\lambda})_{\lambda} \stackrel{(2.2)}{=} \lim_{\lambda \to \infty} (u_1 \eta_{\lambda}, Bu_2 \eta_{\lambda})_{\lambda}.$$

Applying Theorem 2.1, we let $\Delta_n \in \mathbf{U}^i$ be the unique element such that $j(\Delta_n) = F^{(n)}$. The elements Δ_n $(n \ge 0)$ give a basis for \mathbf{U}^i , which we call the *PBW basis*. From Theorem 2.1(2) and (2.1), we get that

$$\left(\Delta_m, \Delta_n\right)^i = \frac{\delta_{m,n}}{(1-q^{-2})(1-q^{-4})\cdots(1-q^{-2n})}$$
(2.12)

for $m, n \ge 0$. Thus, the PBW basis is an orthogonal basis. The following recurrence relation is easily deduced using Theorem 2.1(1) and (2.4):

$$\Delta_0 = 1, \qquad B\Delta_n = [n+1]\Delta_{n+1} + \frac{q^{n-1}}{1-q^{-2}}\Delta_{n-1} \qquad (2.13)$$

for $n \ge 0$, interpreting Δ_{-1} as 0.

Remark 2.2. The PBW basis for \mathbf{U}^{i} with the orthogonality property (2.12) is an *i*-analogue of the (orthogonal) PBW bases for modified quantum groups constructed in [Wan21], and the linear isomorphism in Theorem 2.1 is an *i*-analogue of the linear isomorphism $\mathbf{U}^{+} \otimes \mathbf{U}^{-} \cong \dot{\mathbf{U}}_{1\zeta}$ in [Wan21, Theorem 2.8]. The PBW basis construction described here can be generalized to *i*-quantum groups of higher rank.

2.3. Combinatorics of chord diagrams. Next, we investigate the rational functions $w_{m,n}(q) \in \mathbb{Q}(q)$ defined from the expansion

$$B^{m} = \sum_{n=0}^{m} w_{m,n}(q) \Delta_{n}.$$
 (2.14)

One reason to be interested in these is that

$$(B^{n}, B^{m})^{\iota} \stackrel{(2.10)}{=} (1, B^{m+n})^{\iota} \stackrel{(2.13)}{=} (\Delta_{0}, B^{m+n})^{\iota} \stackrel{(2.12)}{=} w_{m+n,0}(q)$$
(2.15)

for any $m, n \ge 0$.

Lemma 2.3. For $0 \le n \le m$, we have that

$$w_{0,0}(q) = 1,$$
 $w_{m,n}(q) = [n]w_{m-1,n-1}(q) + \frac{q^n w_{m-1,n+1}(q)}{1 - q^{-2}},$

interpreting $w_{m,n}(q)$ as 0 if n < 0 or n > m.

Proof. Applying j to $B^m = \sum_{n=0}^m w_{m,n}(q)\Delta_n$ gives that $j(B^m) = \sum_{n=0}^m w_{m,n}(q)F^{(n)}$. Thus, $w_{m,n}(q)$ is the $F^{(n)}$ -coefficient of $j(B^m)$. Suppose that $m \ge 1$. By Theorem 2.1(1), we have that $j(B^m) = Fj(B^{m-1}) + R(j(B^{m-1}))$. Then we observe using (2.4) that the right hand side equals

$$\sum_{n=1}^{m} [n] w_{m-1,n-1}(q) F^{(n)} + \sum_{n=0}^{m-2} \frac{q^n w_{m-1,n+1}(q)}{1-q^{-2}} F^{(n)}.$$

From this, we see that the coefficient $w_{m,n}(q)$ of $F^{(n)}$ in $j(B^m)$ satisfies the recurrence relation in the statement of the lemma.

We are going to give an elementary combinatorial interpretation of $w_{m,n}(q)$ in terms of certain chord diagrams with *n* chords tethered to a fixed basepoint and f = (m - n)/2 free chords. In lieu of a formal definition, we just give an example. The following is a chord diagram with n = 3 tethered chords, f = 4 free chords, and c = 11 crossings:

The three tethered chords are the ones attached to the basepoint. We have also numbered the free endpoints of the tethered chords in order going clockwise around the circle. Here is one more example with n = 4, f = 3 and c = 5:

In a chord diagram with f free and n tethered chords, the maximum possible number of crossings is $nf + \frac{1}{2}f(f-1)$. Counting chord diagrams up to planar isotopy fixing the basepoint, let N(f, n, c) be the number of chord diagrams with f free chords, n tethered chords, and c crossings, and

$$T_{f,n}(q) := \sum_{c=0}^{nf + \frac{1}{2}f(f-1)} N(f,n,c)q^c \in \mathbb{N}[q]$$
(2.18)

be the resulting generating function. We obviously have that $T_{0,n}(q) = 1$, and $T_{1,n-1}(q)$ is equal to the classical *q*-integer $\{n\} = 1 + q + q^2 + \cdots + q^{n-1}$. Other examples: $T_{2,0}(q) = 2 + q$ and $T_{3,0}(q) = 5 + 6q + 3q^2 + q^3$. Note also that $T_{f,n}(1) = \binom{2f+n}{n}(2f-1)!!$ (here, n!! denotes the double factorial defined recursively by $n!! = n \cdot (n-2)!!$ and 0!! = (-1)!! = 1).

Lemma 2.4. The generating function $T_{f,n}(q)$ satisfies the recurrence relation

$$T_{0,0} = 1, T_{f,n}(q) = T_{f,n-1}(q) + \{n+1\}T_{f-1,n+1}(q), (2.19)$$

interpreting $T_{n,f}(q)$ as 0 if n or f is negative.

(2.17)

(2.16)

Proof. It is clear that $T_{0,0}(q) = 1$. Now suppose that n > 0. Let C(f, n) be the set of chord diagrams with f free and n tethered chords. We are going to construct a set partition

$$\mathbf{C}(f,n) = \overline{\mathbf{C}}(f,n) \sqcup \coprod_{i=0}^{n} \mathbf{C}_{i}(f,n).$$

Take a chord diagram $D \in C(f, n)$. Consider the chord x in D which has the nearest free endpoint to the basepoint measured in a clockwise direction around the circumference of the circle. There are two cases:

If x is a tethered chord then we put D into the set C(f, n) and let θ(D) ∈ C(f, n-1) be the chord diagram obtained from d by removing x. Note that θ(D) has the same number of crossings as D. An example of this situation is given by (2.17); for this θ(D) is

Otherwise, x is a free chord. Its furthest endpoint from the basepoint lies between the free endpoints of the *i*th and (*i* + 1)th tethered chords for some 0 ≤ *i* ≤ *n*. We put D into the set C_i(f, n) and let θ_i(D) ∈ C(f − 1, n + 1) be the chord diagram obtained from D by replacing x by a tethered chord y with the same furthest endpoint as x. Note that θ_i(D) has *i* fewer crossings than D since y crosses *i* fewer tethered chords compared to x. An example is given by (2.16); for this, we have that *i* = 2 and θ₂(D) is

We have now defined the partition of C(f, n). It is also clear that $\theta : \overline{C}(f, n) \xrightarrow{\sim} C(f, n-1)$ and all $\theta_i : C_i(f, n) \xrightarrow{\sim} C(f-1, n+1)$ are bijections. The lemma follows by computing the generating function $T_{f,n}(q)$ using this partition to see that $T_{f,n}(q) = T_{f,n-1}(q) + \sum_{i=0}^{n} q^i T_{f-1,n+1}(q)$.

Theorem 2.5. For $0 \le n \le m$ with $n \equiv m \pmod{2}$, we have that

$$w_{m,n}(q) = \begin{cases} \frac{[n]!T_{f,n}(q^2)}{(1-q^{-2})^f} & \text{if } m = n+2f \text{ for some } f \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. It is clear from Lemma 2.3 that $w_{m,n}(q) = 0$ if $n \neq m \pmod{2}$. Also using Lemma 2.3 it follows that the rational function $\widetilde{T}_{f,n}(q)$ defined from

$$\widetilde{T}_{f,n}(q^2) := (1 - q^{-2})^f w_{n+2f,n}(q) / [n]!$$

satisfies the recurrence relation in Lemma 2.4. Hence, $\widetilde{T}_{f,n}(q^2) = T_{f,n}(q^2)$ and the result follows.

Corollary 2.6. The bilinear form $(\cdot, \cdot)^i$ on \mathbf{U}^i satisfies

$$(B^n, B^m)^{\iota} = \begin{cases} \frac{T_{f,0}(q^2)}{(1-q^{-2})^f} & if m+n = 2f \text{ for some } f \in \mathbb{N} \\ 0 & otherwise. \end{cases}$$

Proof. This follows from the theorem using also (2.15).

For example, Corollary 2.6 implies the following:

$$(B,B)^{i} = (1,B^{2})^{i} = \frac{1}{1-q^{-2}}, \qquad (B^{2},B^{2})^{i} = (B,B^{3})^{i} = (1,B^{4})^{i} = \frac{2+q^{2}}{(1-q^{-2})^{2}}.$$
 (2.20)

The generating function $T_{f,0}(q)$ for ordinary chord diagrams has been studied classically; e.g., see [Rio75]. Our more general tethered chord diagrams will show up again in a slightly different guise later in the article; see Example 5.2.

2.4. The *i*-canonical basis. So far we have not used the parameter $t \in \{0, 1\}$, but all subsequent results depend on it. To avoid notational confusion, it is helpful to appeal to the construction from [BW18b, Chap. 4] and [BW18a, Sec. 3.7], which shows that \mathbf{U}^i has a modified form $\dot{\mathbf{U}}^i = \dot{\mathbf{U}}^i \mathbf{1}_{\bar{0}} \oplus \dot{\mathbf{U}}^i \mathbf{1}_{\bar{1}}$. We will denote the summands here simply by \mathbf{U}_0^i and \mathbf{U}_1^i since they are actually unital algebras. In fact, the map $\mathbf{U}^i \to \dot{\mathbf{U}}_t^i, u \mapsto u\mathbf{1}_t$ is an algebra isomorphism. We use this to transport all of the results about \mathbf{U}^i established so far to \mathbf{U}_t^i , and work only with the latter from now on. In particular, \mathbf{U}_t^i is freely generated by $B = B\mathbf{1}_t$, it has the symmetries ρ and ψ^i fixing B as before, it possesses a bilinear form $(\cdot, \cdot)^i$ as in (2.9), there is a linear isomorphism $j : \mathbf{U}_t^i \xrightarrow{\sim} \mathbf{U}^-$ as in Theorem 2.1, and we have the PBW basis Δ_n $(n \ge 0)$ for \mathbf{U}_t^i satisfying (2.13). However, one should have in mind that \mathbf{U}_t^i is a subalgebra not of the original quantum group \mathbf{U} but rather of the summand of the completion of $\dot{\mathbf{U}}$ consisting of matrices $(a_{\mu,\lambda})_{\mu,\lambda\in\mathbb{Z}} \in \prod_{\lambda,\mu\in\mathbb{Z}} \mathbf{1}_{\mu}\dot{\mathbf{U}}\mathbf{1}_{\lambda}$ such that $a_{\mu,\lambda} = 0$ if $\lambda, \mu \not\equiv t \pmod{2}$. This means that \mathbf{U}_t^i should only be allowed to act on \mathbf{U} -modules whose weights satisfy $\lambda \equiv t \pmod{2}$. For example, the definition (2.9) of the form $(\cdot, \cdot)^i$ on \mathbf{U}_t^i should really be written now as

$$(u_1, u_2)^i = \lim_{\substack{\lambda \to \infty \\ \lambda \equiv t \pmod{2}}} (u_1 \eta_\lambda, u_2 \eta_\lambda)_\lambda$$
(2.21)

for all $u_1, u_2 \in \mathbf{U}_t^i$.

By the integrality properties from [BW18b, Th. 4.18] and [BW18a, Th. 5.3], the symmetry ψ_{λ}^{i} restricts to an anti-linear involution on $\mathbb{Z}V(\lambda)$. Applying [BW18b, Th. 4.20] and [BW18a, Th. 5.7], we define the *i*-canonical basis for $V(\lambda)$ to be the unique $\mathbb{Z}[q, q^{-1}]$ -basis $P_n \eta_{\lambda}$ ($0 \le n \le \lambda$) for $\mathbb{Z}V(\lambda)$ such that each P_n is ψ_{λ}^{i} -invariant and

$$P_n \eta_\lambda - F^{(n)} \eta_\lambda \in \sum_{m=0}^{\lambda} q^{-1} \mathbb{Z}[q^{-1}] F^{(m)} \eta_\lambda.$$

As the notation suggests, for $\lambda \equiv t \pmod{2}$, the vector $P_n \eta_\lambda$ is obtained by applying an element $P_n \in \mathbf{U}_t^i$ to η_λ . In fact, there is *unique* element $P_n \in \mathbf{U}_t^i$ $(n \ge 0)$ such that $P_n \eta_\lambda$ is the *i*-canonical basis element of $L(\lambda)$ for all $0 \le n \le \lambda$ with $\lambda \equiv t \pmod{2}$; see [BW18b, Chap. 4] and [BW18c, Th. 2.10, Th. 3.6]. The elements P_n $(n \ge 0)$ thus defined give a remarkable basis for \mathbf{U}_t^i again called the *i*-canonical basis.

Closed formulae for the *i*-canonical basis elements were worked out in [BW18c] (see also [BW18b]): for $n \ge 0$, we have that

$$P_n = \frac{B^{\sigma_t(n)}}{[n]!} \prod_{\substack{k=0\\k\equiv t \pmod{2}}}^{n-1} \left(B^2 - [k]^2\right) \quad \text{where} \quad \sigma_t(n) := \begin{cases} 0 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd and } t = 0 \\ 1 & \text{if } n \text{ is odd and } t = 1. \end{cases}$$
(2.22)

This expression can be viewed as the *i*-analog of the *n*th divided power of *B*. Accordingly, P_n could also be denoted $B^{(n)}$ and called an *i*-divided power. This, however, is a special phenomenon in rank 1. It is straightforward to check from (2.22) that the *i*-canonical basis satisfies the recurrence relation

$$P_0 = 1, \qquad BP_n = [n+1]P_{n+1} + \delta_{n \equiv t}[n]P_{n-1}, \qquad (2.23)$$

for any $n \ge 0$.

Theorem 2.7. For $n \ge 0$, we have that

....

$$P_n = \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{q^{-m(2m+1-2\delta_{n\equiv t})}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m})} \Delta_{n-2m},$$
(2.24)

$$\Delta_n = \sum_{m=0}^{\lfloor \frac{d}{2} \rfloor} (-1)^m \frac{q^{-m(2\delta_{n \neq t}+1)}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m})} P_{n-2m}.$$
(2.25)

Proof. To prove the first formula, use (2.13) to verify that the expression on the right hand side satisfies the recurrence relation (2.23). Similarly, (2.25) follows by using (2.23) to verify that the expression on the right hand side satisfy the recurrence relation (2.13).

Corollary 2.8. The *i*-canonical basis of \mathbf{U}_t^i is almost orthonormal in the sense that

$$(P_m, P_n)^{\iota} \in \delta_{m,n} + q^{-1} \mathbb{Z}\llbracket q^{-1} \rrbracket \cap \mathbb{Q}(q)$$

for $m, n \ge 0$.

Proof. This is clear from (2.24) and (2.12).

Remark 2.9. Using (2.12) and (2.24), one can derive the following explicit formula for the pairings between *i*-canonical basis elements:

$$(P_n, P_m)^l = \sum_{\substack{0 \le i \le \min(m, n) \\ i \equiv n \equiv m \pmod{2}}} \frac{q^{-\frac{1}{2}(n-i)(n-i+1-2\delta_{n \equiv t}) - \frac{1}{2}(m-i)(m-i+1-2\delta_{m \equiv t})}}{\prod_{j=1}^i (1-q^{-2j}) \prod_{k=1}^{\frac{n-i}{2}} (1-q^{-4k}) \prod_{l=1}^{\frac{m-i}{2}} (1-q^{-4l})}$$

for any $m, n \ge 0$. This is 0 if $m \ne n \pmod{2}$.

The *i*-canonical basis in fact gives a basis for an integral form $_{\mathbb{Z}}\mathbf{U}_{t}^{i}$ of \mathbf{U}_{t}^{i} over $\mathbb{Z}[q, q^{-1}]$. Equivalently, we have that

$$_{\mathbb{Z}}\mathbf{U}_{t}^{\iota} = \left\{ u \in \mathbf{U}_{t}^{\iota} \mid u\left(_{\mathbb{Z}}V(\lambda)\right) \subseteq _{\mathbb{Z}}V(\lambda) \text{ for all } \lambda \in \mathbb{N} \text{ with } \lambda \equiv t \pmod{2} \right\},\$$

from which one sees that $_{\mathbb{Z}}\mathbf{U}_{t}^{i}$ is a $\mathbb{Z}[q, q^{-1}]$ -subalgebra of \mathbf{U}_{t}^{i} . Since both ρ and ψ^{i} fix each of the *i*-canonical basis elements P_{n} , they restrict to symmetries on $_{\mathbb{Z}}\mathbf{U}_{t}^{i}$. Also, the form on \mathbf{U}_{t}^{i} restricts to $(\cdot, \cdot)^{i} : _{\mathbb{Z}}\mathbf{U}_{t}^{i} \times _{\mathbb{Z}}\mathbf{U}_{t}^{i} \to \mathbb{Z}[q, q^{-1}]$. From (2.13), it is apparent that Δ_{n} does not lie in the integral form $_{\mathbb{Z}}\mathbf{U}_{t}^{i}$. Instead, it is naturally an element of the completion

$$\mathbb{Z}\widehat{\mathbf{U}}_{t}^{\prime} := \mathbb{Z}((q^{-1})) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{Z}\mathbf{U}_{t}^{\prime}.$$
(2.26)

As is clear from Theorem 2.7, the elements Δ_n $(n \ge 0)$ give a topological $\mathbb{Z}((q^{-1}))$ -basis for $\mathbb{Z}\hat{\mathbf{U}}_t^i$.

2.5. The character ring. Let ${}^{*}\mathbf{U}_{t}^{i}$ be the $\mathbb{Q}(q)$ -linear dual of \mathbf{U}_{t}^{i} . The left regular action of \mathbf{U}_{t}^{i} on itself makes ${}^{*}\mathbf{U}_{t}^{i}$ naturally into a right \mathbf{U}_{t}^{i} -module. We twist this action with the anti-automorphism ρ to make ${}^{*}\mathbf{U}_{t}^{i}$ into a left \mathbf{U}_{t}^{i} -module. Since the non-degenerate symmetric bilinear form $(\cdot, \cdot)^{i}$ on \mathbf{U}_{t}^{i} satisfies (2.10), we get induced a canonical injective homomorphism of left \mathbf{U}_{t}^{i} -modules

$$\mathbf{U}_t^{\prime} \hookrightarrow ^* \mathbf{U}_t^{\prime} \tag{2.27}$$

sending $u \in \mathbf{U}_t^i$ to the linear map $\mathbf{U}_t^i \to \mathbb{Q}(q), u' \mapsto (u, u')^i$. Henceforth, we will always identify \mathbf{U}_t^i with a subspace of $^*\mathbf{U}_t^i$ via this embedding, thinking of $^*\mathbf{U}_t^i$ as a completion of the vector space \mathbf{U}_t^i .

We obtain topological bases Δ_n ($n \ge 0$) and L_n ($n \ge 0$) for ${}^*\mathbf{U}_t^i$ that are the duals of the PBW and canonical basis of \mathbf{U}_t^i :

$$\bar{\Delta}_n(\Delta_m) := \delta_{m,n}, \qquad \qquad L_n(P_m) := \delta_{m,n}. \tag{2.28}$$

We call these the *dual PBW* and the *dual i-canonical bases*, respectively. The dual canonical basis element L_n is invariant under the *dual bar involution* ${}^*\psi^i : {}^*\mathbf{U}_t^i \to {}^*\mathbf{U}_t^i$ defined by

$$^{*}\psi^{\iota}(f)(u) := \overline{f(\psi^{\iota}(u))}$$
(2.29)

for $f \in {}^*\mathbf{U}_t^i, u \in \mathbf{U}_t^i$. We get from (2.12) and the definition of the embedding (2.27) that

$$\Delta_n = \frac{\bar{\Delta}_n}{(1-q^{-2})(1-q^{-4})\cdots(1-q^{-2n})}.$$
(2.30)

Dualizing Theorem 2.7 gives that

$$\bar{\Delta}_n = \sum_{m=0}^{\infty} \frac{q^{-m(2m+1-2\delta_{n\equiv t})}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m})} L_{n+2m},$$
(2.31)

$$L_n = \sum_{m=0}^{\infty} (-1)^m \frac{q^{-m(2\delta_{n \neq t}+1)}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4m})} \bar{\Delta}_{n+2m}.$$
 (2.32)

for $n \ge 0$. Also the following recurrence relations follow by dualizing (2.13) and (2.23):

$$B\bar{\Delta}_n = [n]\bar{\Delta}_{n-1} + \frac{q^n}{1 - q^{-2}}\bar{\Delta}_{n+1}, \qquad (2.33)$$

$$BL_n = [n]L_{n-1} + \delta_{n \neq t} [n+1]L_{n+1}$$
(2.34)

for any $n \ge 0$.

The *character ring* is the ring $\mathbb{Q}(q)[\![\xi]\!]$ for a formal variable ξ . This is natural to consider from a representation-theoretic perspective (see subsection 5.4). We view $\mathbb{Q}(q)[\![\xi]\!]$ as a left \mathbf{U}_t^t -module so that

$$B\sum_{n\geq 0}a_n\xi^n := \sum_{n\geq 1}a_n\xi^{n-1}.$$
(2.35)

There is an injective \mathbf{U}_t^l -module homomorphism

ch:
$$^{*}\mathbf{U}_{t}^{i} \hookrightarrow \mathbb{Q}(q)\llbracket \xi \rrbracket, \qquad f \mapsto \sum_{n \ge 0} f(B^{n})\xi^{n}.$$
 (2.36)

In fact, since $\mathbf{U}_t^i = \mathbb{Q}(q)[B]$, the map ch is an *isomorphism*—a special feature of the split rank one case. We refer to ch, also its restriction ch : $\mathbf{U}_t^i \hookrightarrow \mathbb{Q}(q)[\![\xi]\!]$, as the *character map*. It intertwines the dual bar involution $*\psi^i$ on $*\mathbf{U}_t^i$ with the bar involution on the character ring, which is the anti-linear map

$$\circledast: \mathbb{Q}(q)\llbracket \xi \rrbracket \to \mathbb{Q}(q)\llbracket \xi \rrbracket, \qquad \sum_{n \ge 0} a_n \xi^n \mapsto \sum_{n \ge 0} \overline{a_n} \xi^n.$$
(2.37)

Now we proceed to compute the characters of $\overline{\Delta}_n$ and L_n .

Lemma 2.10. For $n \ge 0$, we have that

ch
$$\bar{\Delta}_n = [n]! \sum_{f \ge 0} \frac{T_{f,n}(q^2)}{(1-q^{-2})^f} \xi^{n+2f}.$$

Proof. By (2.14), we have that $\overline{\Delta}_n(B^m) = w_{m,n}(q)$. This shows that $\operatorname{ch} \overline{\Delta}_n = \sum_{m \ge 0} w_{m,n}(q) \xi^m$. It remains to apply Theorem 2.5.

Lemma 2.11. ch
$$L_0 = \begin{cases} 1 & \text{if } t = 0 \\ 1 + \xi^2 + \xi^4 + \xi^6 + \cdots & \text{if } t = 1. \end{cases}$$

Proof. Suppose first that t = 0. By the definition (2.36), we need to show that $L_0(B^n) = \delta_{n,0}$ for any $n \ge 0$. This is clear for n = 0 since $P_0 = 1$ by (2.22) and $L_0(P_0) = 1$. Also (2.22) shows that all P_n (n > 0) are divisible by B, so we can use (2.22) to express B^n (n > 0) as a linear combination of P_1, \ldots, P_n . This implies that $L_0(B^n) = 0$ for n > 0 as required.

Now suppose that t = 1. We need to show that $L_0(B^{2n+1}) = 0$ and $L_0(B^{2n}) = 1$ for $n \ge 0$. By (2.22), P_{2n+1} is a linear combination of B^{2m+1} for $0 \le m \le n$, and inverting obviously gives that B^{2n+1} is a linear combination of P_{2m+1} for $0 \le m \le n$. This implies that $L_0(B^{2n+1}) = 0$. Also (2.22) gives that $P_0 = 1$ and $[2n][2n-1]P_{2n} = (B^2 - [2n-1]^2)P_{2n-2}$ for $n \ge 1$. Using this, one shows by induction on $n \ge 0$ that $B^{2n} = a_n P_{2n} + \cdots + a_1 P_2 + P_0$ for some $a_1, \ldots, a_n \in \mathbb{Q}(q)$. It follows that $L_0(B^{2n}) = 1$. \Box

Theorem 2.12. We have that

$$\operatorname{ch} L_{n} = [n]! \xi^{n} \prod_{\substack{1 \le k \le n+1 \\ k \equiv t \pmod{2}}} \frac{1}{1 - [k]^{2} \xi^{2}} = [n]! \sum_{m \ge 0} \left(\sum_{\alpha \in \mathcal{P}_{t}(m \times n)} [\alpha_{1} + 1]^{2} \cdots [\alpha_{m} + 1]^{2} \right) \xi^{n+2m}$$
(2.38)

where $\mathcal{P}_t(m \times n)$ is the set of $\alpha \in \mathbb{N}^m$ with $0 \leq \alpha_1 \leq \cdots \leq \alpha_m \leq n$ and $\alpha_i \not\equiv t \pmod{2}$ for each *i*.

Proof. The second equality follows by expanding the product. To prove the first equality, we proceed by induction on *n*. The induction base follows from Lemma 2.11. For the induction step, take n > 0. The constant term of ch L_n is 0 since $L_n(1) = L_n(P_0) = 0$ so we have that $B \operatorname{ch} L_n = \operatorname{ch} L_n/\xi$ by (2.35). Suppose first that $n \equiv t \pmod{2}$. Then (2.34) shows that

$$\operatorname{ch} L_n = [n]\xi \operatorname{ch} L_{n-1} \tag{2.39}$$

and we easily get done by induction in this case. When $n \neq t \pmod{2}$, (2.34) gives that

ch
$$L_n = [n]\xi$$
 ch $L_{n-1} + [n+1]\xi$ ch $L_{n+1} = [n]\xi$ ch $L_{n-1} + [n+1]^2\xi^2$ ch L_n .

Hence,

ch
$$L_n = \frac{[n]\xi}{1 - [n+1]^2 \xi^2}$$
 ch L_{n-1} , (2.40)

and again the result follows by induction.

Corollary 2.13. For $n \ge 0$, we have that

$$B^{n} = \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} [n-2m]! \left(\sum_{\alpha \in \mathcal{P}_{t}(m \times (n-2m))} [\alpha_{1}+1]^{2} \cdots [\alpha_{m}+1]^{2} \right) P_{n-2m}.$$

Proof. The coefficient of P_{ℓ} in the expansion of B^n is $L_{\ell}(B^n)$, i.e., it is the ξ^n -coefficient of ch L_{ℓ} . Now use Theorem 2.12.

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

3. The NIL-BRAUER CATEGORY

For the remainder of the article, we will work over a field k of characteristic different from 2. All algebras, categories, functors, etc. will be assumed to be k-linear without further mention, and we reserve the symbol \otimes for tensor products of vector spaces or algebras over k. By a *graded* category, *graded* monoidal category, *graded* functor, etc. we mean one that is enriched in the closed symmetric monoidal category *gVec* of graded vector spaces.

In this section, we first recall the definition of the nil-Brauer category \mathcal{NB}_t and the crucial basis theorem for its morphism spaces from [BWW23]. Then we relate the graded dimensions of these spaces to the bilinear form $(\cdot, \cdot)^t$ on the *i*-quantum group \mathbf{U}_t^t . Finally, we discuss the center of \mathcal{NB}_t , and prove a useful result about minimal polynomials.

3.1. **Definition and basic properties.** We use the usual string calculus for morphisms in strict monoidal categories; our general convention is that $f \circ g$ denotes composition of f drawn on top of g ("vertical composition") and $f \star g$ denotes the tensor product of f drawn to the left of g ("horizontal composition"). We always draw string diagrams so that the underlying strings are smooth curves. Recall the following definition from [BWW23, Def. 2.1].

Definition 3.1. The *nil-Brauer category* \mathcal{NB}_t is the strict graded monoidal category with one generating object *B* (whose identity endomorphism will be represented diagrammatically by the unlabeled string |) and four generating morphisms

$$\bullet : B \to B, \qquad : B \star B \to B \star B, \qquad \bigcirc : B \star B \to 1, \qquad \bigcup : 1 \to B \star B, \qquad (3.1)$$
(degree 2) (degree -2) (degree 0) (degree 0)

subject to the following relations:

Remark 3.2. One source of motivation for Definition 3.1 is the expected compatibility of \mathcal{MB}_t with the bilinear form $(\cdot, \cdot)^t$ on \mathbf{U}_t^t , something which will be proved in general in Theorem 3.7. From this perspective, the formulae (2.20) suggest the existence of generators of the degrees specified in (3.1) and some of the basic relations. This is similar to Lauda's approach to categorification of $\mathbf{U}_q(\mathfrak{sl}_2)$ in [Lau10].

The following relations are easily derived from the defining relations in [BWW23, (2.6)–(2.8)]:

In view of the last relation from (3.4) and the first relation from (3.6), we can unambiguously denote the morphisms in these two equations by the "pitchforks" $\uparrow \downarrow$ and \lor , respectively. Together with the last relation of (3.3), it follows that a string diagram with no dots can be deformed under planar isotopy without changing the morphism that it represents. This is not true in the presence of dots due to the sign in the last relations of (3.5) and (3.8)—there is a sign change whenever a dot slides across the critical point of a cup or cap.

The relations discussed so far imply that there are strict graded monoidal functors

$$\mathbf{R}: \mathcal{N}\mathcal{B}_t \to \mathcal{N}\mathcal{B}_t^{\text{rev}}, \qquad \qquad B \mapsto B, \qquad \qquad s \mapsto (-1)^{\bullet(s)} s^\leftrightarrow, \qquad (3.9)$$

$$T: \mathcal{N}\mathcal{B}_t \to \mathcal{N}\mathcal{B}_t^{\mathrm{op}}, \qquad B \mapsto B, \qquad s \mapsto s^{\uparrow}. \tag{3.10}$$

Here, for a string diagram *s* we use s^{\ddagger} and s^{\leftrightarrow} to denote its reflection in a horizontal or vertical axis, and $\bullet(s)$ denotes the total number of dots and crossings in the diagram, respectively. The category \mathcal{NB}_t is *strictly pivotal* with duality functor $D := R \circ T = T \circ R$; this rotates a string diagram *s* through 180° then scales by $(-1)^{\bullet(s)}$.

3.2. Generating functions for dots and bubbles. Next we recall the generating function formalism from [BWW23, Sec. 2]. We denote the *r*th power of \oint under vertical composition simply by labeling the dot with *r*. More generally, given a polynomial $f(x) = \sum_{r \ge 0} c_r x^r \in \Bbbk[x]$ and a dot in some string diagram *s*, we denote

$$\sum_{r \ge 0} c_r \times \text{ (the morphism obtained from } s \text{ by labeling the dot by } r)$$

by attaching what we call a *pin* to the dot, labeling the node at the head of the pin by f(x):

$$\oint -\underline{f(x)} := \sum_{r \ge 0} c_r \quad \oint r \in \operatorname{End}_{\mathcal{MB}_t}(B).$$
(3.11)

In the drawing of a pin, the arm and the head of the pin can be moved freely around larger diagrams so long as the point stays put—these are not part of the string calculus. More generally, f(x) here could be a polynomial with coefficients in the algebra $k((u^{-1}))$ of formal Laurent series in an indeterminate u^{-1} ; then the string *s* decorated with pin labeled f(x) defines a generating function of morphisms.

We will use the following shorthands for the generating functions of [BWW23, (2.14)–(2.15)]:

$$\Phi := \Phi_{\mathcal{N}_{\mathcal{B}_{t}}}(B)[[u^{-1}]], \quad (3.12)$$

$$\bullet := \bullet - (u+x)^{-1} = u^{-1} | -u^{-2} + u^{-3} + u^{-3} + \cdots \in \operatorname{End}_{\mathcal{NB}_t}(B) \llbracket u^{-1} \rrbracket.$$
 (3.13)

The notation here is motivated by the following standard trick: for any $f(x) \in k[x]$, we have that

$$\left[f(u)\phi\right]_{u^{-1}} = \phi - f(x), \qquad \left[f(u)\phi\right]_{u^{-1}} = \phi - f(-x), \qquad (3.14)$$

where $[-]_{u^r}$ denotes the u^r -coefficient of the formal Laurent series inside the brackets. These identities follow by using linearity to reduce to the case that $f(x) = x^n$ for $n \ge 0$, then explicitly computing coefficients on both sides. As we do with ordinary dots, we denote the *n*th power of one of these "dot generating functions" by labeling them also by *n*. This makes sense for any $n \in \mathbb{Z}$ since we have by the definitions that

The endomorphisms (3.12) and (3.13) obviously commute with each other and all other pins. Note also that T and R satisfy

$$R\left(\mathbf{\phi}\right) = \mathbf{\phi}, \qquad R\left(\mathbf{\phi}\right) = \mathbf{\phi}, \qquad T\left(\mathbf{\phi}\right) = \mathbf{\phi}, \qquad T\left(\mathbf{\phi}\right) = \mathbf{\phi}. \qquad (3.15)$$

Another useful trick is to apply the substitution $u \mapsto -u$; this interchanges \blacklozenge and $-\diamondsuit$.

It is clear from the last relation in (3.4) that f(x) = f(-x) and similarly for cups, hence, we have that

$$\mathbf{\Phi} = \mathbf{\Phi}, \qquad \mathbf{\Phi} = \mathbf{\Phi}, \qquad \mathbf{\Phi} = \mathbf{\Phi}. \tag{3.16}$$

Further useful relations involving these generating functions are

These are also noted in [BWW23, (2.19)–(2.20)]. Equating the coefficients of u^{-n-1} , we obtain

$$n - \bigwedge^{n} = \sum_{\substack{i,j \ge 0\\i+j=n-1}} \left(\begin{array}{c} i \\ i \\ i \end{array} \right)^{j} - \begin{array}{c} i \\ i \\ i \\ i \end{array} \right), \quad (3.19)$$

$$\stackrel{n}{\longrightarrow} - \underset{\substack{i,j \ge 0\\i+j=n-1}}{\sum} \left(\begin{array}{c} i \\ \downarrow \\ j \end{array} - \begin{array}{c} i \\ \frown \\ \frown \\ \downarrow \end{array} \right).$$
(3.20)

Now consider the "dotted bubble generating function"

$$= \sum_{r \ge 0} u^{-r-1} \bigcirc r \in tu^{-1} \mathbb{1}_{1} + u^{-2} \operatorname{End}_{\mathcal{MB}_{t}}(\mathbb{1}) \llbracket u^{-1} \rrbracket.$$
 (3.21)

This is often useful, but even more important will be the renormalization

$$\mathbb{O}(u) = \sum_{r \ge 0} u^{-r} \mathbb{O}_r := (-1)^t \left(\mathbb{1}_{\mathbb{I}} - 2u \bigoplus \right) \in \mathbb{1}_{\mathbb{I}} + u^{-1} \operatorname{End}_{\mathcal{MB}_t}(\mathbb{1}) \llbracket u^{-1} \rrbracket.$$
(3.22)

Its u^{-r-1} -coefficients \mathbb{O}_r are given explicitly by

$$\mathbb{O}_0 = \mathbb{1}_1, \qquad \qquad \mathbb{O}_r = -2(-1)^t \bigcirc r \qquad (3.23)$$

for $r \ge 1$. Note also by (3.15) and (3.16) that $\mathbb{O}(u)$ is invariant under R and T.

Theorem 3.3 ([BWW23, Th. 2.5]). *The following relations hold in* \mathcal{NB}_t :

$$2u \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right| = 2u \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right| - \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right| - \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right|, \quad (3.24)$$

$$(\mathbf{P} + \mathbf{P} = 2u \mathbf{P} \mathbf{P}, \qquad (3.25)$$

$$\mathbb{O}(u)\mathbb{O}(-u) = 1_{\mathbb{1}},\tag{3.26}$$

$$\mathbb{O}(u) = \underbrace{\left(\frac{u-x}{u+x}\right)^2}_{\bullet} \to \mathbb{O}(u) . \tag{3.27}$$

Corollary 3.4. *The following relations hold in* \mathcal{NB}_t :

$$2u \left| \mathbf{\Phi} = -\mathbf{\phi} - (-1)^t \mathbf{\phi} \, \mathbb{O}(u), \qquad \qquad 2u \left| \mathbf{\Phi} = \mathbf{\phi} + (-1)^t \mathbf{\phi} \, \mathbb{O}(-u), \qquad (3.28)\right|$$

$$2u = - - (-1)^t \mathbb{O}(u) , \qquad 2u = + (-1)^t \mathbb{O}(-u) . \qquad (3.29)$$

Proof. The first equality follows from (3.24) and the definition (3.22). The others follow by applying R or using the substitution $u \mapsto -u$.

Corollary 3.5. For $n \ge 0$, we have that

$$\left| \bigcirc n+1 \right| = \sum_{r=0}^{n-1} (-1)^r r \phi \bigcirc n-r - \delta_{n \equiv t} \phi n .$$

Proof. This follows by equating the coefficients of u^{-n-1} in (3.28).

3.3. The basis theorem. Let Λ be the graded algebra of symmetric functions over k. Adopting standard notation, this is freely generated either by the elementary symmetric functions e_r (r > 0) or by the complete symmetric functions h_r (r > 0); our convention for the grading puts these in degree 2r. The two families of generators are related by the identity

$$e(-u)h(u) = 1 (3.30)$$

where

$$e(u) = \sum_{r \ge 0} u^{-r} e_r, \qquad h(u) = \sum_{r \ge 0} u^{-r} h_r \qquad (3.31)$$

are the corresponding generating functions, and $e_0 = h_0 = 1$ by convention. It is also convenient to interpret e_r and h_r as 0 when r < 0.

Following [Mac15, Ch. III, Sec. 8], we define a power series $q(u) \in \Lambda[[u^{-1}]]$ and elements q_r $(r \ge 0)$ of Λ so that

$$q(u) = \sum_{r \ge 0} u^{-r} q_r := e(u)h(u).$$
(3.32)

By (3.30), we have that

$$q(u)q(-u) = 1 (3.33)$$

Equivalently, $q_0 = 1$ and

$$q_{2r} = (-1)^{r-1} \frac{1}{2} q_r^2 + \sum_{s=1}^{r-1} (-1)^{s-1} q_s q_{2r-s}$$
(3.34)

for $r \ge 1$; cf. [Mac15, (III.8.2')]. As with e_r and h_r , we adopt the convention that $q_r = 0$ for r < 0.

The graded subalgebra of Λ generated by all q_r ($r \ge 0$) is denoted Γ . As explained in [Mac15], Γ is freely generated by q_1, q_3, q_5, \ldots (and it has a distinguished basis given by the *Schur Q-functions* Q_{λ} indexed by all strict partitions). It follows that Γ is generated by the elements q_r ($r \ge 0$) subject only to the relations (3.33). Hence, (3.26) is all that is needed to establish the existence of a graded algebra homomorphism

$$\gamma_t: \Gamma \to \operatorname{End}_{\mathcal{WB}}(\mathbb{1}), \qquad \qquad q_r \mapsto \mathbb{O}_r. \tag{3.35}$$

By [BWW23, Cor. 5.4], this is actually an *isomorphism*.

Now we recall the basis theorem for morphism spaces in \mathcal{NB}_t , which is the main result of [BWW23]. For $m, n \ge 0$, any morphism $f : B^{*n} \to B^{*m}$ is represented by a linear combination of $m \times n$ string diagrams, i.e., string diagrams with m boundary points at the top and n boundary points at the bottom that are obtained by composing the generating morphisms from (3.1). It follows that $\operatorname{Hom}_{\mathcal{NB}_t}(B^{*n}, B^{*m})$ is 0 unless $m \equiv n \pmod{2}$. The individual strings in an $m \times n$ string diagram s are of four basic types: generalized cups (with two boundary points on the top edge), generalized caps (with two boundary points on the bottom edge), propagating strings (with one boundary point at the top and one at the

17

bottom), and internal bubbles (no boundary points). We define an equivalence relation \sim on the set of $m \times n$ string diagrams by declaring that $s \sim s'$ if their strings define the same matching on the set of m + n boundary points. We say that s is *reduced* if the following properties hold:

- There are no internal bubbles.
- Propagating strings have no critical points (=points of slope 0).
- Generalized cups and caps each have exactly one critical point.
- There are no *double crossings* (= two different strings which cross each other at least twice).

These assumptions imply in particular that there are no *self-intersections* (= crossings of a string with itself). Fix a set $\overline{D}(m, n)$ of representatives for the ~-equivalence classes of *undotted* reduced $m \times n$ string diagrams; the total number of such diagrams is (m+n-1)!! if $m \equiv n \pmod{2}$, and there are none otherwise. For each of these ~-equivalence class representatives, we also choose distinguished points in the interior of each of its strings that are away from points of intersection. Then let D(m, n) be the set of all morphisms $f : B^{\star n} \to B^{\star m}$ which can be obtained by taking an element of $\overline{D}(m, n)$ then adding dots labeled by non-negative multiplicities at each of the distinguished points on the strings.

Theorem 3.6 ([BWW23, Th. 5.1]). Viewing Hom_{\mathcal{MB}_t} ($B^{\star n}, B^{\star m}$) as a graded Γ -module so that $p \in \Gamma$ acts on $f : B^{\star n} \to B^{\star m}$ by $f \cdot p := f \star \gamma_t(p)$, the space Hom_{\mathcal{MB}_t} ($B^{\star n}, B^{\star m}$) is free as a graded Γ -module with basis D(m, n).

Now we can make the first significant connection between \mathcal{NB}_t and the *i*-quantum group. Recall the bilinear form $(\cdot, \cdot)^i : \mathbf{U}_t^i \times \mathbf{U}_t^i \to \mathbb{Q}(q)$ from (2.21). We convert this into a sesquilinear form $\langle \cdot, \cdot \rangle^i : \mathbf{U}_t^i \times \mathbf{U}_t^i \to \mathbb{Q}(q)$ by setting

$$\langle u_1, u_2 \rangle^{\iota} := (\psi^{\iota}(u_1), u_2)^{\iota}$$
 (3.36)

for $u_1, u_2 \in \mathbf{U}_t^i$.

Theorem 3.7. For $m, n \in \mathbb{N}$, we have that $\dim_q \operatorname{Hom}_{\mathcal{MB}_t}(B^{\star n}, B^{\star m}) = \dim_q \Gamma \cdot \langle B^n, B^m \rangle^t$.

Proof. Since B^n is ψ^i -invariant, we have that $\langle B^n, B^m \rangle^i = (B^n, B^m)^i$. Now we compare the explicit combinatorial formula for $(B^n, B^m)^i$ from Corollary 2.6 with the formula

$$\dim_q \operatorname{Hom}_{\mathcal{NB}_t}(B^{\star n}, B^{\star m}) = \dim_q \Gamma \cdot \sum_{s \in D(m,n)} q^{-\deg(s)}$$

implied by Theorem 3.6. If $m \neq n \pmod{2}$ then $(B^n, B^m)^i = 0$ and D(m, n) is empty, and the result is clear. Now assume that $m \equiv n \pmod{2}$ and let f := (m + n)/2. There is an obvious bijection between equivalence classes of $m \times n$ string diagrams and chord diagrams with f free chords and no tethered chords. This just arises by identifying the (m + n) boundary points of strings in an $m \times n$ string diagram with the (m + n) endpoints of chords in a chord diagram in some fixed way that preserves the clockwise ordering, then replacing strings by chords so that the underlying matching of these points is preserved. In a string diagram, each crossing is of degree -2, so it contributes q^2 to the graded dimension. The dots placed at the f distinguished points produce the factor $1/(1 - q^{-2})^f$, this being $\dim_q \Bbbk[x_1, \ldots, x_f]$ with x_i in degree 2. Recalling the definition of the generating function $T_{f,0}(q)$ from (2.18), we deduce that

$$\dim_q \operatorname{Hom}_{\mathcal{NB}_t}(B^{\star n}, B^{\star m}) = \dim_q \Gamma \cdot \sum_{s \in D(m,n)} q^{-\deg(s)} = \dim_q \Gamma \cdot T_{f,0}(q^2) / (1 - q^{-2})^f$$

which is dim_{*a*} $\Gamma \cdot (B^n, B^m)^i$ according to Corollary 2.6.

3.4. Central elements. Recall that the *center* $Z(\mathcal{A})$ of a category \mathcal{A} means the algebra of endomorphisms of its identity endofunctor. Thus, elements of $Z(\mathcal{NB}_t)$ consist of tuples $(z_n)_{n\geq 0}$ for elements $z_n \in \operatorname{End}_{\mathcal{NB}_t}(B^{\star n})$ such that $z_m \circ f = f \circ z_n$ for all $m, n \geq 0$ and $f \in \operatorname{Hom}_{\mathcal{NB}_t}(B^{\star n}, B^{\star m})$. In this subsection, we are going to use the dotted bubbles to construct many—conjecturally, all—elements of $Z(\mathcal{NB}_t)$.

Since $\mathbb{O}(\pm u) \in \mathbb{1}_{\mathbb{I}} + u^{-1} \operatorname{End}_{\mathcal{NB}_{l}}(\mathbb{1})[[u^{-1}]]$ and 2 is invertible in \mathbb{k} , it makes sense to take the square roots $\sqrt{\mathbb{O}(\pm u)}$; we choose the ones that are positive in the sense that they again lie in $\mathbb{1}_{\mathbb{I}} + u^{-1} \operatorname{End}_{\mathcal{NB}_{l}}(\mathbb{1})[[u^{-1}]]$. We have that $\sqrt{\mathbb{O}(-u)} = (\sqrt{\mathbb{O}(u)})^{-1}$ by (3.26). Taking the square roots of both sides of (3.27), both of which are formal power series in $\mathbb{1}_{B} + u^{-1} \operatorname{End}_{\mathcal{NB}_{l}}(B)[[u^{-1}]]$, we obtain

$$\sqrt{\mathbb{O}(u)} \, \mathbf{\phi} = \mathbf{\phi} \, \sqrt{\mathbb{O}(u)} \,, \qquad \qquad \sqrt{\mathbb{O}(-u)} \, \mathbf{\phi} = \mathbf{\phi} \, \sqrt{\mathbb{O}(-u)} \,. \tag{3.37}$$

Let $e_{r,n}, h_{r,n}, q_{r,n} \in \mathbb{k}[x_1, \dots, x_n]^{S_n}$ be the symmetric polynomials in *n* variables obtained by specializing the symmetric functions e_r, h_r, q_r from (3.31) and (3.32). We have that

$$q_{r,n} = \sum_{s=0}^{r} e_{s,n} h_{r-s,n}.$$
(3.38)

Moreover,

$$\sum_{r \ge 0} u^{-r} q_{r,n} = \prod_{i=1}^{n} \frac{u + x_i}{u - x_i} \in 1 + u^{-1} \mathbb{k}[x_1, \dots, x_n] \llbracket u^{-1} \rrbracket.$$
(3.39)

In the statement of the next theorem, for a polynomial $f \in \mathbb{k}[x_1, \ldots, x_n]$, we use the notation $f1_n = 1_n f$ to denote the endomorphism of $B^{\star n}$ defined by interpreting x_i as $|^{\star(i-1)} \star \phi \star |^{\star(n-i)}$, i.e., the dot on the *i*th string.

Theorem 3.8. For any $r \ge 0$, we have that $(q_{r,n}1_n)_{n\ge 0} \in Z(\mathcal{NB}_t)$.

Proof. We need to show that $q_{r,m} 1_m \circ f = f \circ q_{r,n} 1_n$ for any $f \in \text{Hom}_{\mathcal{NB}_l}(B^{\star n}, B^{\star m})$. By (3.37), we have that

$$\sum_{r\geq 0} u^{-r} q_{r,n} \mathbf{1}_n = \prod_{i=1}^n \frac{u+x_i}{u-x_i} \mathbf{1}_n = \begin{array}{c} \bullet \bullet \\ -1 \bullet \bullet \\ \bullet -1 \bullet \bullet \end{array} = \sqrt{\mathbb{O}(-u)} \star |^{\star n} \star \sqrt{\mathbb{O}(u)}, \tag{3.40}$$

The result follows from this since the expression on the right hand side clearly has the desired property by the interchange law. \Box

Corollary 3.9. Let $p_{r,n} := \sum_{i=1}^{n} x_i^r \in \mathbb{k}[x_1, \ldots, x_n]^{S_n}$ be the rth power sum. For any odd $r \ge 1$, we have that $(p_{r,n}1_n)_{n\ge 0} \in Z(\mathcal{NB}_t)$.

Proof. It suffices to note that any odd power sum can be written as a polynomial in the symmetric polynomials $q_{r,n}$. This can be proved by taking the logarithmic derivative of (3.39).

3.5. **Minimal polynomials.** In this subsection, we forget the grading on \mathcal{NB}_t , viewing it as an ordinary monoidal category. Let \mathcal{V} be a strict (left) \mathcal{NB}_t -module category. This means that we are given a strict monoidal functor μ from \mathcal{NB}_t to the strict monoidal category $\mathcal{End}(\mathcal{V})$ whose objects are endofunctors of \mathcal{V} and whose morphisms are natural transformations. We often denote the endofunctor $\mu(B) : \mathcal{V} \to \mathcal{V}$ simply by B. For a string diagram s representing a morphism in $\operatorname{Hom}_{\mathcal{NB}_t}(B^{*n}, B^{*m})$, we denote the morphism $\mu(s)_V : B^n V \to B^m V$ simply by s_V . We will use the string calculus extended to module categories in the manner explained in [BSW20, Sec. 2.3]. For this, we represent the identity endomorphism of an object V of \mathcal{V} by the labeled string |v|, and a morphism $f: V \to W$ between objects of \mathcal{V} by adding a node labeled by f to the middle of this string:

For a string diagram s representing a morphism in \mathcal{NB}_t , we represent s_V diagrammatically by $s \mid v$.

We say that an object L of \mathcal{V} is *special* if $\operatorname{End}_{\mathcal{V}}(L) = \Bbbk$ and $\operatorname{End}_{\mathcal{V}}(BL)$ is finite-dimensional. For example, \mathcal{V} could be a locally finite Abelian category and then any irreducible object $L \in \mathcal{V}$ is special by Schur's Lemma. Let $m_L(x)$ be the minimal polynomial of the endomorphism $\oint_L : BL \to BL$. It could be that BL = 0, in which case $m_L(x) = 1$. Let $\beta(L)$ be the *degree* of $m_L(x)$. The image under μ of any element $z \in \operatorname{End}_{\mathcal{MB}_t}(\mathbb{1})$ is an element of the center $Z(\mathcal{V})$ of the category \mathcal{V} . Thus, the generating function $\mathbb{O}(u)$ for dotted bubbles from (3.22) gives rise to an element of $Z(\mathcal{V})[[u^{-1}]]$. On an irreducible object, $\mathbb{O}(u)_L : L[[u^{-1}]] \to L[[u^{-1}]]$ is given by multiplication by a power series $\mathbb{O}_L(u) \in \Bbbk[[u^{-1}]]$. The next theorem, which is a counterpart of [BSW20, Lem. 4.4], explains the relationship between the polynomial $m_L(x)$ and the power series $\mathbb{O}_L(u)$. It shows in particular that $\mathbb{O}_L(u)$ is a rational function.

Theorem 3.10. For any special object $L \in \mathcal{V}$, we have that $\mathbb{O}_L(u) = (-1)^t \frac{m_L(-u)}{m_L(u)}$.

Proof. Let $f(u) := \frac{1}{2u} (1 - (-1)^t \mathbb{O}_L(u)) \in u^{-1} \mathbb{k}[[u^{-1}]]$ and $g(u) := m_L(u) f(u) \in u^{\beta(L)-1} \mathbb{k}[[u^{-1}]]$. By the definition (3.22), we have that

$$f(u)\mathbf{1}_L = \bigcirc |L|.$$

We show that g(u) is a polynomial in u. It suffices to show that $[u^r g(u)]_{u^{-1}} = 0$ for all $r \ge 0$. This follows because

$$[u^{r}g(u)]_{u^{-1}} 1_{L} = [u^{r}m_{L}(u)f(u)1_{L}]_{u^{-1}} = [u^{r}m_{L}(u) \bigoplus |L|]_{u^{-1}} = \left[\bigcirc -x^{r}m_{L}(x) |L| \right]_{u^{-1}} = 0,$$

where we used (3.14) for the penultimate equality. Using (3.14) again, we have that

$$0 = 2u \left| \begin{array}{c} & -m_L(x) \\ & = 2u \\ \end{array} \right|_{L} = 2u \left| m_L(u) \right|_{\Phi} \left| L \right|_{u^{-1}} = \left[2u m_L(u) \right|_{\Phi} \left| L \right|_{u^0} \right|_{u^0}$$

$$(3.24) = \left[2u m_L(u) \left|_{\Phi} \right|_{L} - m_L(u) \left|_{\Phi} \right|_{L} - m_L(u) \left|_{\Phi} \right|_{L} - m_L(u) \left|_{u^0} \right|_{u^0} \right|_{u^0}$$

$$= \left[2u g(u) \left|_{\Phi} \right|_{L} - (m_L(u) - m_L(0)) \left|_{\Phi} \right|_{L} - (m_L(u) - m_L(0)) \left|_{\Phi} \right|_{L} \right]_{u^0}$$

$$= 2 \left[g(u) \left|_{\Phi} \right|_{L} - \frac{m_L(u) - m_L(0)}{2u} \left|_{\Phi} \right|_{L} - \frac{m_L(u) - m_L(0)}{2u} \left|_{\Phi} \right|_{L} \right]_{u^{-1}}$$

As g(u) and $\frac{m_L(u)-m_L(0)}{2u}$ are polynomials in *u*, we can use (3.14) yet again to deduce that

$$\underbrace{g(-x)}_{2x} \quad \models \quad \left| L - \underbrace{\frac{m_L(x) - m_L(0)}{2x}}_{2x} \right| \quad \models \quad \left| L + \underbrace{\frac{m_L(-x) - m_L(0)}{2x}}_{2x} \right| \quad \models \quad \left| L = \underbrace{g(-x) - \frac{m_L(x) - m_L(-x)}{2x}}_{2x} \right| \quad \models \quad \left| L = 0. \right|$$

It follows that the polynomial $g(-x) - \frac{m_L(x) - m_L(-x)}{2x}$ is divisible by $m_L(x)$. But this polynomial is of strictly smaller degree than $m_L(x)$, so it must in fact be 0. This shows that $g(-x) = \frac{m_L(x) - m_L(-x)}{2x}$. Equivalently, $g(x) = \frac{m_L(x) - m_L(-x)}{2x}$. So

$$\mathbb{O}_{L}(u) = (-1)^{t} \left(1 - \frac{2ug(u)}{m_{L}(u)} \right) = (-1)^{t} \frac{m_{L}(-u)}{m_{L}(u)}$$

and the proof is complete.

Corollary 3.11. For any special object $L \in \mathcal{V}$, we have that $\beta(L) \equiv t \pmod{2}$.

Proof. As power series in u^{-1} , the constant terms of $\mathbb{O}_L(u)$ and $(-1)^t \frac{m_L(-u)}{m_L(u)}$ are 1 and $(-1)^{\beta(L)+t}$, respectively. These are equal by the lemma.

Remark 3.12. Theorem 3.10 also holds in the graded setting, i.e., when we don't forget the grading on \mathcal{NB}_t and \mathcal{V} is a strict graded \mathcal{NB}_t -module category. In that case, for a special object *L*, we have simply that $m_L(x) = x^{\beta(L)}$ and $\mathbb{O}_L(u) = 1$, so that Theorem 3.10 is not so interesting—it gives no more information than Corollary 3.11. Nevertheless, this will be useful later on; see Lemma 5.11 and the proof of Theorem 5.18.

4. PRIMITIVE IDEMPOTENTS

In this section, we work out the structure of the primitive homogeneous idempotents in \mathcal{NB}_t and prove Theorems A and B. We continue to work over the field k of characteristic different from 2.

4.1. Extended graphical calculus. We begin by introducing some further diagrammatical shorthands in the spirit of the "thick calculus" of [KLMS12]. We denote the tensor product $|^{\star a}$ of *a* strings by a single thick string labeled by *a*. A thick cup or cap labeled by *a* denotes that number of nested ordinary cups or caps (no crossings). Sometimes it is notationally convenient to be able to split thick strings into thinner ones or to merge thinner strings to obtain thicker ones: the diagrams

simply represent the identity morphisms $B^{\star n} \to B^{\star a} \star B^{\star b}$ and $B^{\star a} \star B^{\star b} \to B^{\star n}$ for a + b = n. We will often omit a thickness label on a thick string when it can be inferred from others in the diagram.

For a + b = n, the thick crossing

denotes the morphism $B^{\star a} \star B^{\star b} \to B^{\star b} \star B^{\star a}$ obtained by composing ordinary crossings according to a reduced expression for the longest of the minimal length $S_n/(S_a \times S_b)$ -coset representatives. We use a thick string decorated with a cross to denote the composition of thin crossings corresponding to a reduced expression for the longest element w_n . For example:

When working with these morphisms, we will often make implicit use of various obvious consequences of the braid relations, such as

In view of the pitchfork relations, one can also draw this cross at the critical point of a thick cup or cap without there being any ambiguity as to the meaning:

$$a^{a} := a^{a} = a^{a}, \qquad a^{a} := a^{a} = a^{a},$$

We use a dot on a string of thickness *n* labeled by $\alpha \in \mathbb{N}^n$ to denote the tensor product of dots on ordinary strings labeled by the parts of α :

$$\mathbf{a} := \alpha_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf$$

The *n*-tuples $\rho_n := (n - 1, n - 2, \dots, 1, 0) \in \mathbb{N}^n$ and $\varpi_{r,n} := (1, \dots, 1, 0, \dots, 0) \in \mathbb{N}^n$ with *r* entries equal to 1 followed by (n - r) entries equal to 0 will appear often. To simplify notation, we allow the subscript *n* to be omitted in these when used to label a node on a string of thickness *n*:

$$\oint_n \rho := \oint_n \rho_n , \qquad \qquad \oint_n \overline{\sigma}_r := \oint_n \overline{\sigma}_{r,n} .$$

Generalizing the notation (3.11), given a polynomial $f = \sum_{\alpha \in \mathbb{N}^n} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{N}[x_1, \dots, x_n]$, the pin

$$\oint_{n} \underbrace{f} := \sum_{r \ge 0} c_{\alpha} \oint_{n} \alpha$$

denotes the endomorphism $f1_n = 1_n f$ of $B^{\star n}$. Often for this f will be the elementary symmetric polynomial $e_{r,n} := \sum_{1 \le i_1 < \cdots < i_r \le n} x_{i_1} \cdots x_{i_r}$. Again, if this is pinned to a string of thickness n, we allow the subscript n to be dropped, writing simply

$$e_r := e_{r,n}$$

since the number *n* of variables in the elementary symmetric polynomial can be inferred from the thickness of the string.

Lemma 4.1. For $0 \le r \le n$, we have that

$$\underbrace{e_r}_{n} = \sum_{s=0}^{r} (-1)^{r-s} \underbrace{e_s}_{n+1}^{n} \underbrace{e_r}_{n+1}^{r-s} = \sum_{s=0}^{r} (-1)^{r-s} \underbrace{e_s}_{n+1}^{n} \underbrace{e_s}_{n+1}^{n} .$$
(4.1)

Proof. The first equality is the well-known identity $e_{r,n} = \sum_{s=0}^{r} (-1)^{r-s} x_{n+1}^{r-s} e_{s,n+1}$. Then the second equality follows on applying R.

Lemma 4.2. For $0 \le i \le n$, we have that

Proof. We just prove the first identity; the second then follows on applying R. By Theorem 3.6, the lowest non-zero degree of $\operatorname{End}_{\mathcal{NB}_t}(B^{\star(n+1)})$ is -n(n+1), and the diagram on the left hand side of the identity is of degree -n(n-1) - 4n + 2i. If i < n then -n(n-1) - 4n + 2i < -n(n+1) so the expression is 0.

To prove the result in the remaining case that i = n, we proceed by induction on n. Assume the result is true for *n* and consider the next case

,

$$n+1 \underbrace{\longrightarrow}_{n+1} = \underbrace{\longrightarrow}_{n+1} \stackrel{(3.8)}{=} \underbrace{\longrightarrow}_{n+1} + \underbrace{\sum}_{\substack{a,b \ge 0\\a+b=n}} \left(\underbrace{\bigwedge}_{a \ b} - \underbrace{\bigwedge}_{a \ b} \right).$$

In this expression, the term before the summation is 0 by the degree argument given already, the first term in the summation is 0 unless a = 0 by the defining relations (3.2), and similarly the second term in the summation is 0 unless b = 0. So

$$n+1 \underbrace{\longrightarrow}_{n+1} = \underbrace{n \underbrace{\longrightarrow}_{n}}_{n} - \underbrace{n \underbrace{\longrightarrow}_{n}}_{n} = \underbrace{\bigwedge_{n+1}}_{n+1} - \underbrace{\bigoplus}_{n} \underbrace{(3.2)}_{n+2}$$

where we used the induction hypothesis for the second equality.

Corollary 4.3. For $0 \le i \le n + 1$, we have that

$$\left| \underbrace{\bullet}_{n} i = \delta_{i,n+1} \delta_{n \equiv t} (-1)^{n+1} \underbrace{\bullet}_{n+1} , \qquad i \underbrace{\bullet}_{n} \right| = \delta_{i,n+1} \delta_{n \equiv t} \underbrace{\bullet}_{n+1} .$$
(4.3)

Proof. As usual, we just prove the first equality. By the braid relation then Corollary 3.5 and Lemma 4.2, we get that

Corollary 4.4. For any $n \ge 1$, we have that $\mathbf{1} = \mathbf{1}$.

Proof. This follows by induction on *n*. For the induction step, we have that

$$\mathbf{x}^{\rho}_{n+1} = n \mathbf{x}^{\rho}_{n} = \mathbf{x}^{\rho}_{n+1} ,$$

using Lemma 4.2 for the first equality and the induction hypothesis for the second one. **Corollary 4.5.** For $0 \le r \le n$, we have that

$$\varpi_r + \rho \bigotimes_n = \delta_{r,n} \underset{n+1}{\bigstar} , \qquad \qquad \bigotimes_n \varpi_r + \rho = \delta_{r,n} (-1)^n \underset{n+1}{\bigstar} . \qquad (4.4)$$

Proof. We just prove the first equality. If r < n then the expression on the left hand side is 0 by degree considerations like in the first paragraph of the proof of Lemma 4.2. If r = n then the left hand side is equal to \mathbf{k}_{ρ} , and the conclusion follows from Corollary 4.4. n+1

,

The remaining relations to be established in this subsection are more complicated. The guiding principle here is that relations in the nil-Hecke algebra can be ported to the nil-Brauer category providing there enough additional strings to eliminate the cup/cap term in the dot sliding relation (3.8).

Lemma 4.6. For $0 \le i \le n + 1$, we have that

 $\sum_{i=1}^{n} \delta_{i,n+1} \delta_{n\equiv t} \sum_{n+1}^{n+1} \delta_{n=1} (4.5)$

Proof. We first slide both sets of i dots downwards past the crossing using (3.19) and (3.20) to see that

$$i \bigvee_{i} i = i \bigvee_{i_1,i_2 \ge 0} + \sum_{\substack{i_1,i_2 \ge 0\\i_1+i_2 = i-1}} \left(i \bigvee_{i_1 \bigoplus i_2} - i \bigvee_{i_1 \bigoplus i_2} \right) = -\sum_{\substack{i_1,i_2 \ge 0\\i_1+i_2 = i-1}} \left(i \bigvee_{i_1 \bigoplus i_2} + i \bigvee_{i_1 \bigoplus i_2} \right).$$

So

$$\stackrel{n}{\underset{i_{1},i_{2}\geq0}{i_{1}+i_{2}=i-1}} = \sum_{\substack{i_{1},i_{2}\geq0\\i_{1}+i_{2}=i-1}} (-1)^{i_{2}+1} \begin{pmatrix} n & n \\ i_{1} & i_{1} \\ i_{1} & i_{2} \\ i_{1} & i_{1} \\ i_{$$

Now the lemma follows using also the identities

$$\sum_{n=1}^{i} \delta_{i,n} \prod_{n+1}^{n+1} , \qquad \qquad \sum_{i=1}^{n} \delta_{i,n+1} \delta_{n\equiv t} \prod_{n+1}^{n+1} .$$

These are consequences of Lemma 4.2 and Corollary 4.3.

Lemma 4.7. For $i, j \ge 0$ with $i + j \le 2n + 3$, we have that

$$\prod_{i=1}^{n} j + j = \delta_{i+j,2n+2} \delta_{n\equiv t} 2(-1)^{i+1-t} \prod_{n+1}^{n+1} (4.6)$$

Proof. We assume that $i \leq j$, and proceed by induction on j - i. The base case j - i = 0 follows by Lemma 4.6. For the induction step, suppose that i < j and $i + j \leq 2n + 3$. By induction, we have that

Then we vertically compose on top with $e_{1,2n+2} = \frac{1}{2}q_{1,2n+2}(x_1, \dots, x_{2n+2})$, using the centrality from Theorem 3.8 to commute this down to the middle; it becomes $e_{1,2} = x_1 + x_2$ in the middle on the left

hand side and $e_{1,0} = 0$ in the middle on the right hand side. We deduce that

If j - i = 1, the last two terms are the same as the first two terms, and the result follows on dividing by 2. If j - i > 1 we use the induction hypothesis to simplify the last two terms to obtain

The result follows.

Corollary 4.8. For $\alpha \in \mathbb{N}^{n+1}$ and $1 \leq i \leq n$ such that $\alpha_i + \alpha_{i+1} \leq 2n + 1$, we have that

$$\mathbf{a}_{n+1} = \delta_{\alpha_i + \alpha_{i+1}, 2n} \delta_{n \neq t} (-1)^{\alpha_i + 1 - t} 2 \mathbf{a}_{n-1} \mathbf{a}_{n+1} \mathbf{b}_{n+1} \mathbf{a}_{n+1} ,$$

$$(4.7)$$

where $\hat{\alpha} := (\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+2}, \ldots, \alpha_{n+1}) \in \mathbb{N}^{n-1}$ and $s_i \alpha$ is the tuple obtained from α by permuting the *i*th and (i + 1)th entries.

Proof. Let $\beta := (\alpha_1, \ldots, \alpha_{i-1})$ and $\gamma := (\alpha_{i+2}, \ldots, \alpha_{n+1})$. By Lemma 4.7, we have that

Corollary 4.9. For $\alpha \in \mathbb{N}^{n+1}$ and $1 \leq i \leq n$ such that $\alpha_i = \alpha_{i+1} \leq n$, we have that

$$\alpha = \delta_{\alpha_i,n} \delta_{n \neq t} \prod_{n=1}^{\infty} \hat{\alpha} , \qquad (4.8)$$

where $\hat{\alpha} := (\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+2}, \ldots, \alpha_{n+1}) \in \mathbb{N}^{n-1}$.

Proof. This follows from Corollary 4.8.

Lemma 4.10. *The following relation holds for any* $n \ge 1$ *and* $0 \le r \le n$ *:*

$$\underbrace{\underbrace{}}_{n} \overline{\omega}_{r+\rho} = \underbrace{\underbrace{}}_{n} \overline{e_{r}} - \delta_{n \equiv t} \underbrace{\underbrace{}}_{n-2} \overline{e_{r-2}},$$
(4.9)

interpreting the final term as 0 in case $r \leq 1$.

Proof. We proceed by induction on *n*. The result is trivial when n = 1. It is also clear when r = 0 thanks to Corollary 4.4. Now suppose that $n \ge 1$ and $0 \le r \le n$, and consider

Here, we commuted the single dot upward through the thick string. In the summation, the second term is 0 always, and the first term is 0 unless a = 0. So the expression simplifies to give

If r = 0, we simplify this using Corollary 4.4, then Lemma 4.2, then induction to obtain

as required for the induction step. Now suppose that $r \ge 1$ and consider (4.10) again. Letting $\alpha := \varpi_{r+1,n+1} - \varpi_{1,n+1} + \rho_{n+1} = (n, n, ...)$, we use Corollary 4.8 and induction to simplify the first term:

which is the second term we need to prove the induction step. Turning our attention to the second term on the right hand side of (4.10), it remains to show that

assuming $r \ge 1$. By the induction hypothesis plus the identities $e_{r,n} = e_{r,n-1} + e_{r-1,n-1}x_n$ then $e_{r+1,n} + e_{r,n}x_{n+1} = e_{r+1,n+1}$, we have that

$$\frac{n-1}{n} = \frac{n-1}{n} = \frac{e_r}{n-1} + \frac{e_r}{n-1} = \frac{1}{n-1} = \frac{1}{n-1} + \frac{1}{n-1} = \frac{1}{n-1} + \frac{1}{n-1} = \frac{1}{n-1} + \frac{1}{n-1} + \frac{1}{n-1} = \frac{1}{n-1} + \frac{1}{n-1} + \frac{1}{n-1} = \frac{1}{n-1} + \frac{1}{n-1} +$$

Corollary 4.11. *The following relation holds for any* $n \ge 1$ *and* $0 \le r \le n$ *:*

Proof. Add a cap at the bottom of the relation from Lemma 4.10. The second term then disappears. \Box

4.2. Recurrence relation for idempotents. Corollary 4.4 obviously implies that

$$\mathbf{e}_n := \prod_{n=1}^{p} (4.12)$$

is a homogeneous idempotent for each $n \ge 0$. For example:

$$\mathbf{e}_0 = \mathbb{1}, \qquad \mathbf{e}_1 = |, \qquad \mathbf{e}_2 = \mathbf{e}_2, \qquad \mathbf{e}_3 = \mathbf{e}_3, \qquad \mathbf{e}_4 = \mathbf{e}_4.$$

These are likely already familiar expressions, since the same diagrams are often used to represent distinguished primitive idempotents in the nil-Hecke algebra.

In the remainder of the section, we are going to show that the idempotents \mathbf{e}_n $(n \ge 0)$ give a full set of primitive homogeneous idempotents in NB_t. The first step, accomplished in this subsection, is to decompose $B \star \mathbf{e}_n$ as a sum of mutually orthogonal conjugates of \mathbf{e}_{n+1} and \mathbf{e}_{n-1} . We begin by introducing two more families of endomorphisms of $B^{\star(n+1)}$: for $0 \le r \le n$ let

$$\mathbf{e}_{r,n} := (-1)^r \left| \begin{array}{c} \bullet \\ n \end{array} \circ \left(\begin{array}{c} n-r \\ \bullet \\ n \end{array} - \left(\begin{array}{c} n-r \\ \bullet \\ n \end{array} \right) - \left(\begin{array}{c} n-r \\ \bullet \\ n \end{array} \right) - \left(\begin{array}{c} n-r \\ \bullet \\ n-r \end{array} \right) \right), \quad (4.13)$$

$$\mathbf{f}_{r,n} := (-1)^{r-1} \left| \begin{array}{c} \bullet \\ n \end{array} \right|_{n} \circ \left(\begin{array}{c} n-r \bullet \\ \bullet \\ n-1 \end{array} - \delta_{n \equiv t} \begin{array}{c} n-r \bullet \\ \bullet \\ n-2 \end{array} \right), \quad (4.14)$$

Recalling the convention that the elementary symmetric function $e_r = 0$ for r < 0 and, of course, $e_0 = 1$, we have that

$$\mathbf{e}_{0,n} = \mathbf{e}_{n+1}, \qquad \mathbf{f}_{0,n} = 0.$$
 (4.15)

By Lemma 4.10 and Corollary 4.11, the definitions (4.13) and (4.14) can be written equivalently as

$$\mathbf{e}_{r,n} = (-1)^r \left| \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$\mathbf{f}_{r,n} = (-1)^{r-1} \left| \begin{array}{c} \bullet \\ n \end{array} \circ \left(\begin{array}{c} n-r \bullet \\ \bullet \\ n-1 \end{array} - \delta_{n \equiv t} \begin{array}{c} n-r \bullet \\ \bullet \\ n-2 \end{array} \right) \right.$$
(4.17)

$$= (-1)^{r-1} \stackrel{n-r}{\longrightarrow} \stackrel{n}{\longrightarrow} \sigma_{r-1+\rho} + \delta_{n\equiv t} (-1)^r \stackrel{n-r}{\longrightarrow} \stackrel{n}{\longrightarrow} \sigma_{m-2+\rho}, \qquad (4.18)$$

where we interpret terms involving the undefined symbols ϖ_{r-1} for r = 0 and ϖ_{r-2} for r = 0 or 1 as 0. **Example 4.12.** If n = 0 then $\mathbf{e}_{0,0} = |$ and $\mathbf{f}_{0,0} = 0$. If n = 1 then

$$\mathbf{e}_{0,1} = \mathbf{e}_{1,1} = -\mathbf{e}_{0,1}, \qquad \mathbf{f}_{0,1} = 0, \qquad \mathbf{f}_{1,1} = \mathbf{e}_{0,1}$$

If n = 2 then

$$\mathbf{e}_{0,2} = \mathbf{e}_{1,2} = -\mathbf{e}_{1,2} = -\mathbf{e}_{1,2} + \mathbf{e}_{1,2} = \mathbf{e}_{1,2} = -\mathbf{e}_{1,2} + \mathbf{e}_{1,2} = \mathbf{e}_{1,2} + \mathbf{e}_{1,2} = -\mathbf{e}_{1,2} + \mathbf{e}_{1$$

If n = 3 then

Lemma 4.13. For $n \ge 0$, we have that $B \star \mathbf{e}_n = \sum_{r=0}^n (\mathbf{e}_{r,n} + \mathbf{f}_{r,n})$.

Proof. For this calculation, it is convenient to drop the ρ from the top of the diagrams, so we set

$$\overset{\bullet}{\mathbf{e}}_{n} := \prod_{n}^{n}, \qquad \overset{\bullet}{\mathbf{e}}_{r,n} := (-1)^{r} \xrightarrow{n-r} \cdots \xrightarrow{n-r} + \delta_{n \equiv t} (-1)^{r-1} \xrightarrow{n-r} \cdots \xrightarrow{e_{r-2}},$$
$$\overset{\bullet}{\mathbf{f}}_{r,n} := (-1)^{r-1} \xrightarrow{n-r} \cdots \xrightarrow{e_{r-1}} + \delta_{n \equiv t} (-1)^{r} \xrightarrow{n-r} \cdots \xrightarrow{e_{r-2}}.$$

Notice that

$$\mathbf{\mathring{e}}_{r,n} + \mathbf{\mathring{f}}_{r,n} := (-1)^r \xrightarrow[n-r]{n-r} + (-1)^{r-1} \xrightarrow[n-1]{n-r} \underbrace{e_{r-1}}_{n-1}.$$

We in fact show that $B \star \mathring{\mathbf{e}}_n = \sum_{r=0}^n (\mathring{\mathbf{e}}_{r,n} + \mathring{\mathbf{f}}_{r,n})$. The first step is the same as in the proof of [KLMS12, Lem. 2.13]:

$$B \star \mathring{\mathbf{e}}_{n} = \left| \begin{array}{c} \downarrow \\ \downarrow \\ = \\ \end{array} \left(-1 \right)^{n-1} \right| \underbrace{\bigtriangledown}_{n-1}^{\varpi_{n-1}+\rho} \overset{(4.11)}{=} (-1)^{n-1} \left| \underbrace{\bigtriangledown}_{n-1}^{e_{n-1}} \right|_{n-1}^{e_{n-1}} \\ \overset{(3.5)}{=} (-1)^{n-1} \underbrace{\checkmark}_{n-1}^{e_{n-1}} + (-1)^{n} \underbrace{\checkmark}_{n-1}^{e_{n-1}} + (-1)^{n-1} \underbrace{\checkmark}_{n-1}^{e_{n-1}} \\ = (-1)^{n-1} \underbrace{\checkmark}_{n-1}^{e_{n-1}} + (-1)^{n} \underbrace{\checkmark}_{n}^{e_{n}} + (-1)^{n-1} \underbrace{\checkmark}_{n-1}^{e_{n-1}} .$$

The last two terms in this expression are equal to $\mathring{\mathbf{e}}_{n,n} + \mathring{\mathbf{f}}_{n,n}$. It remains to show that the first term is equal to $\sum_{r=0}^{n-1} (\mathring{\mathbf{e}}_{r,n} + \mathring{\mathbf{f}}_{r,n})$:

$$(-1)^{n-1} \underbrace{\sum_{n=1}^{n-1}}_{n=1}^{(4,1)} \underbrace{\sum_{r=0}^{n-1}}_{r=0}^{(-1)^{r}} \underbrace{\sum_{r=0}^{n-1}}_{r=0}^{(-1)^{r}} \underbrace{\sum_{r=0}^{n-1}}_{n=1}^{(-1)^{r}} \underbrace{\sum_{r=0}^{n-1}}_{n=1}^{(-1)^{$$

$$=\sum_{r=0}^{n-1}\left((-1)^{r} \xrightarrow{n-r} (-1)^{r-1} \xrightarrow{n-r} (-1)^{r-1} + \sum_{s=1}^{n-1} (-1)^{s} - s \right)$$

The first summation gives the remaining terms $\sum_{r=0}^{n-1} (\mathbf{\mathring{e}}_{r,n} + \mathbf{\mathring{f}}_{r,n})$ that we want, and the second summation is 0 thanks to Corollaries 4.5 and 4.11.

Now we introduce several more families of morphisms in \mathcal{NB}_t for $0 \leq r \leq n$ and $1 \leq s \leq n$:

$$\mathbf{u}_{r,n} := (-1)^r \bigwedge_{n}^{n+1} \phi_{r,n}, \qquad \mathbf{v}_{r,n} := \prod_{n+1}^{n-r} \phi_{n}, \qquad \mathbf{w}_{r,n} := \mathbf{u}_{r,n} - \mathbf{u}_{r,n} \circ \mathbf{v}_{0,n}, \qquad (4.19)$$

$$\mathbf{x}_{s,n} := (-1)^{s-1} \bigcap_{n}^{n-1} \sigma_{s-1} + \rho + (-1)^s \delta_{n \equiv t} \bigcap_{n-1}^{n-1} \sigma_{s-2} + \rho , \qquad \mathbf{y}_{s,n} := \bigcap_{n-1}^{n-s} \bigcap_{n-1}^{n} \rho , \qquad (4.20)$$

again interpreting the undefined term involving ϖ_{s-2} when s = 1 as 0. Note that $\mathbf{u}_{0,n} = \mathbf{v}_{0,n} = \mathbf{e}_{n+1}$ thanks to Corollary 4.4, hence, $\mathbf{w}_{0,n} = 0$. The same corollary also implies easily that $\mathbf{e}_{n+1} \circ \mathbf{u}_{r,n} = \mathbf{u}_{r,n}$, $\mathbf{v}_{r,n} \circ \mathbf{e}_{n+1} = \mathbf{v}_{r,n}$, $\mathbf{e}_{n-1} \circ \mathbf{x}_{s,n} = \mathbf{x}_{s,n}$ and $\mathbf{y}_{s,n} \circ \mathbf{e}_{n-1} = \mathbf{y}_{s,n}$.

Lemma 4.14. For $0 \leq r \leq n$ and $1 \leq s \leq n$, we have that $\mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} = \mathbf{e}_{r,n}$ and $\mathbf{y}_{s,n} \circ \mathbf{x}_{s,n} = \mathbf{f}_{s,n}$.

Proof. This follows from the definitions just given, using Corollary 4.4 and the alternative forms of the definitions of $\mathbf{e}_{r,n}$ and $\mathbf{f}_{s,n}$ from (4.16) and (4.18).

Lemma 4.15. For $0 \le r, s \le n$, we have that

$$\mathbf{u}_{r,n} \circ \mathbf{v}_{s,n} = \begin{cases} -r \oint_{n} \circ \mathbf{f}_{r,n} & \text{if } s = 0 < r \text{ and } n \neq t \pmod{2} \\ \delta_{r,s} \mathbf{e}_{n+1} & \text{otherwise.} \end{cases}$$
(4.21)

Proof. This is clear for n = 0 so assume $n \ge 1$. By the definitions and Corollary 4.4, we have that

$$\mathbf{u}_{r,n} \circ \mathbf{v}_{s,n} = (-1)^r \prod_{n-s}^{n+1} \varphi_{\rho}^{\sigma_r+\rho} = (-1)^r \prod_{n-s}^{n+1} \varphi_{\rho}^{\sigma_r+\rho} = (-1)^r \prod_{n+1}^{n+1} \varphi_{\rho}^{\sigma_r+\rho}$$

where $\alpha = (n - s, n, n - 1, \dots, n - r + 1, n - r - 1, \dots, 1, 0) \in \mathbb{N}^{n+1}$. If s = r then α is a rearrangement of ρ_{n+1} , so this is equal to \mathbf{e}_{n+1} thanks to Corollary 4.8. If $0 < s \neq r$ then α has two entries equal to n - s < n, so this is 0 by Corollaries 4.8 and 4.9. Finally if $0 = s \neq r$ then $\alpha = (n, n, n - 1, \dots, n - r + 1, n - r - 1, \dots, 1, 0)$ and Corollary 4.9 gives the exceptional formula in this case, referring to (4.17) to see the appropriate form of $\mathbf{f}_{r,n}$.

Corollary 4.16. For $0 \le r, s \le n$, we have that

$$\mathbf{e}_{r,n} \circ \mathbf{e}_{s,n} = \begin{cases} -\mathbf{f}_{r,n} & \text{if } s = 0 < r \text{ and } n \not\equiv t \pmod{2} \\ \delta_{r,s} \mathbf{e}_{r,n} & \text{otherwise.} \end{cases}$$
(4.22)

Proof. By Lemma 4.14, we have that $\mathbf{e}_{r,n} \circ \mathbf{e}_{s,n} = \mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} \circ \mathbf{v}_{s,n} \circ \mathbf{u}_{s,n}$. Except in the case s = 0 < r and $n \neq t \pmod{2}$, we have that $\mathbf{u}_{r,n} \circ \mathbf{v}_{s,n} = \delta_{r,s} \mathbf{e}_{n+1}$ by Lemma 4.15, and $\mathbf{e}_{n+1} \circ \mathbf{u}_{r,n} = \mathbf{u}_{r,n}$ by Corollary 4.4. The conclusion then follows using that $\mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} = \mathbf{e}_{r,n}$ once again. Suppose from now on that s = 0 < r and $n \neq t \pmod{2}$. Then, using the form of $\mathbf{f}_{r,n}$ from (4.18), Lemma 4.15 gives instead that

$$\mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} = \mathbf{v}_{r,n} \circ (\mathbf{u}_{r,n} \circ \mathbf{v}_{0,n}) \circ \mathbf{u}_{0,n} = (-1)^r \qquad n = ($$

It remains to apply Corollary 4.3 to see that this is equal to $-\mathbf{f}_{r,n}$; for this (4.17) is most convenient. \Box

Lemma 4.17. Assume that $n \equiv t \pmod{2}$. For $1 \leq r, s \leq n$, we have that $\mathbf{x}_{r,n} \circ \mathbf{y}_{s,n} = \delta_{r,s} \mathbf{e}_{n-1}$.

Proof. When n = t = 1 this follows immediately from the first relation from (3.3). Now suppose that $n \ge 2$. Since $\mathbf{x}_{r,n}$ is a sum of two terms (the second being 0 in case r = 1), so too is $\mathbf{x}_{r,n} \circ \mathbf{y}_{s,n}$. We compute the two terms separately. The first term is

$$(-1)^{r-1} \underset{n-s}{\overset{n-1}{\bigcap}} \underset{\rho}{\overset{\rho}{=}} = (-1)^{r-1} \underset{n-s}{\overset{n-1}{\bigcap}} \underset{n-1}{\overset{\rho}{=}} = (-1)^{r-1} \underset{n-s}{\overset{n-1}{\bigcap}} \underset{n-2}{\overset{\rho}{=}} = (-1)^{r-1} \delta_{s,1} \underset{n-1}{\overset{\rho}{=}} \underset{n-1}{\overset{\rho}{=}} ,$$

where we used Corollary 4.4 for the first equality and Corollary 4.3 for the last one. If r = 1 (when we already know that the second term is 0) this is $\delta_{s,1}\mathbf{e}_{n-1}$ by Corollary 4.4, and we are done. Assuming from now on that $r \ge 2$, the second term is

where $\alpha = (n - s, n - 2, ..., n - r + 1, n - r - 1, ..., 1, 0) \in \mathbb{N}^{n-1}$. If s = 1 this cancels with the first term to give 0, and we are done. Assuming from now on that $s \ge 2$, the first term is 0, and it just remains to apply Corollaries 4.8 and 4.9 to rewrite the second term, noting that $n \equiv t \pmod{2}$ so the first term on the right hand side of (4.7) is 0, as is the right hand side of (4.8). We get 0 if $r \neq s$ and, after one more application of Corollary 4.4, we get \mathbf{e}_{n-1} if r = s, as claimed.

Corollary 4.18. Assume that $n \equiv t \pmod{2}$. For $1 \leq r, s \leq n$, we have that $\mathbf{f}_{r,n} \circ \mathbf{f}_{s,n} = \delta_{r,s} \mathbf{f}_{r,n}$.

Proof. This follows by Lemmas 4.14 and 4.17.

32

Lemma 4.19. Assume that $n \equiv t \pmod{2}$. For $0 \leq r \leq n$ and $1 \leq s \leq n$, we have that $\mathbf{u}_{r,n} \circ \mathbf{y}_{s,n} = \mathbf{x}_{s,n} \circ \mathbf{v}_{r,n} = 0$.

Proof. We first consider $\mathbf{x}_{s,n} \circ \mathbf{v}_{r,n}$. Since $\mathbf{x}_{s,n}$ is a sum of two terms, so too is $\mathbf{x}_{s,n} \circ \mathbf{v}_{r,n}$. We show that both of these terms are 0. The first term is

$$(-1)^{s-1} n-r \bigoplus_{n+1}^{n-1} \rho = (-1)^{s-1} \prod_{n-r}^{n-1} \rho = (-1)^{s-1}$$

This is 0 by Corollary 4.3 since $n - 1 \not\equiv t \pmod{2}$. The second term is 0 automatically if s = 1, so we are done in this case. When $s \ge 2$, the second term equals

which is 0 by the second relation from (3.7).

Now consider $\mathbf{u}_{r,n} \circ \mathbf{y}_{s,n}$ for $0 \leq r \leq n$ and $1 \leq s \leq n$. For notational convenience, we in fact show that $\mathring{\mathbf{u}}_{r,n} \circ \mathbf{y}_{s,n} = 0$, where $\mathring{\mathbf{u}}_{r,n} := (-1)^r \bigwedge_{n}^{n+1} \varpi_r + \rho$. Applying Corollary 4.4 as usual, we have that

$$\mathbf{\mathring{u}}_{r,n} \circ \mathbf{y}_{s,n} = (-1)^r \prod_{n-s}^{n+1} \overline{\varpi}_r + \rho = (-1)^r n - s \prod_{n-1}^n \overline{\varpi}_r + \rho.$$

This is of degree 2(r-s)-n(n-1) while by Theorem 3.6 the lowest non-zero degree of the graded vector space Hom_{\mathcal{MB}_t} ($B^{\star(n-1)}, B^{\star(n+1)}$) is -n(n-1), so it is automatically 0 if r < s. Assume henceforth that $r \ge s$. When n = t = 1, so r = s = 1, it is easy to see that we get 0 using Corollary 3.5, so assume also that $n \ge 2$.

In this paragraph, we treat the case that r > s. We have that $\overline{\omega}_{r,n} + \rho_n = (n, n-1, \dots, n-s, \dots, n-r+1, n-r-1, \dots, 1, 0) \in \mathbb{N}^n$. Let $\alpha := (n-s, n, n-1, \dots, n-s, \dots, n-r+1, n-r-1, \dots, 1, 0) \in \mathbb{N}^n$,

i.e., we have moved the entry n - s to the beginning. Let $\beta := (n - s, \alpha_1, \dots, \alpha_{n-1})$. We have that

$$\mathbf{\mathring{u}}_{r,n} \circ \mathbf{y}_{s,n} = (-1)^r \, n-s \, \underbrace{ \prod_{n=1}^{n} \varpi_r + \rho}_{n-1} \, \stackrel{(4.7)}{=} (-1)^{r+s} \, n-s \, \underbrace{ \prod_{n=1}^{n} \alpha_n}_{n-1} \, = (-1)^{r+s} \, \beta \, \underbrace{ \prod_{n=1}^{n} \alpha_n}_{n-1} \, .$$

In checking the second equality here, one also needs to observe that the term arising from the first term on the right hand side of (4.7) (which can definitely appear as $n - 1 \neq t \pmod{2}$ is 0 due to the second relation from (3.7). Now we have that $\beta_1 = \beta_2 = n - s$, so this is 0 by Corollary 4.9; again, when s = 1, the term arising from the right hand side of (4.8) vanishes due to (3.7).

Finally, we need to treat the case that r = s (and $n \ge 2$ still). We let $\alpha := \varpi_{r,n} + \rho_n = (n, n - 1)$ $1, ..., n-r+1, n-r-1, ..., 1, 0) \in \mathbb{N}^n, \beta := (n-s, \alpha_1, ..., \alpha_{n-1}), \text{ and } \gamma := (n-s, \alpha_2, ..., \alpha_n).$ As $r = s \ge 1$, the tuple γ is a permutation of ρ_n , and $\alpha_1 = n$. Using Corollary 4.8 several more times like in the previous paragraph, we get that

$$\mathbf{\hat{u}}_{r,n} \circ \mathbf{y}_{s,n} = (-1)^r \, n - s \, \underbrace{\prod_{n=1}^{n} \alpha_n}_{n-1} = (-1)^r \, \beta \, \underbrace{\prod_{n=1}^{n} \alpha_n}_{n-1} = (-1)^{r+1} \, s_1 \beta \, \underbrace{\prod_{n=1}^{n} \alpha_n}_{n-1} = (-1)^{r+1} \, n \, \underbrace{\prod_{n=1}^{n} \alpha_n}_{n-1} = n \, \underbrace{\prod_{n=1}^{n-1} \alpha_n}$$

This is 0 by Corollary 4.3, using that $n - 1 \neq t \pmod{2}$.

Corollary 4.20. Assume that $n \equiv t \pmod{2}$. For $0 \leq r \leq n$ and $1 \leq s \leq n$, we have that $\mathbf{e}_{r,n} \circ \mathbf{f}_{s,n} =$ $\mathbf{f}_{s,n} \circ \mathbf{e}_{r,n} = 0.$

Proof. This is clear from Lemmas 4.14 and 4.19.

Theorem 4.21. *The following hold for* $n \ge 0$ *:*

- (1) If $n \equiv t \pmod{2}$ then $\{\mathbf{e}_{r,n}, \mathbf{f}_{s,n} \mid 0 \leq r \leq n, 1 \leq s \leq n\}$ is a set of mutually orthogonal homogeneous idempotents whose sum is $B \star \mathbf{e}_n$. Each of the idempotents $\mathbf{e}_{r,n}$ $(0 \leq r \leq n)$ is conjugate to $\mathbf{e}_{n+1} = \mathbf{e}_{0,n}$ since $\mathbf{e}_{n+1} = \mathbf{u}_{r,n} \circ \mathbf{v}_{r,n}$ and $\mathbf{e}_{r,n} = \mathbf{v}_{r,n} \circ \mathbf{u}_{r,n}$ for $r = 1, \ldots, n$. Each of the idempotents $\mathbf{f}_{s,n}$ ($1 \leq s \leq n$) is conjugate to \mathbf{e}_{n-1} since $\mathbf{e}_{n-1} = \mathbf{x}_{s,n} \circ \mathbf{y}_{s,n}$ and $\mathbf{f}_{s,n} = \mathbf{y}_{s,n} \circ \mathbf{x}_{s,n}$ for s = 1, ..., n.
- (2) If $n \neq t \pmod{2}$ then $\{\mathbf{e}_{r,n} + \mathbf{f}_{r,n} \mid 0 \leq r \leq n\}$ is a set of mutually orthogonal homogeneous idempotents whose sum is $B \star \mathbf{e}_n$. Each of these idempotents is conjugate to $\mathbf{e}_{n+1} = \mathbf{e}_{0,n}$ since, recalling that $\mathbf{w}_{r,n} = \mathbf{u}_{r,n} - \mathbf{u}_{r,n} \circ \mathbf{v}_{0,n}$, we have that $\mathbf{e}_{n+1} = \mathbf{w}_{r,n} \circ \mathbf{v}_{r,n}$ and $\mathbf{e}_{r,n} + \mathbf{f}_{r,n} = \mathbf{v}_{r,n} \circ \mathbf{w}_{r,n}$ for r = 1, ..., n.

Proof. (1) The fact that $\mathbf{e}_{r,n}$ ($0 \leq r \leq n$) are mutually orthogonal idempotents follows from Corollary 4.16. The fact that $\mathbf{f}_{s,n}$ $(1 \leq s \leq n)$ are mutually orthogonal idempotents follows from Corollary 4.18. The orthogonality of each $\mathbf{e}_{r,n}$ $(0 \leq r \leq n)$ with each $\mathbf{f}_{s,n}$ $(1 \leq s \leq n)$ follows from Corollary 4.20. These idempotents sum to $B \star e_n$ by Lemma 4.13. Also $\mathbf{u}_{r,n} \circ \mathbf{v}_{r,n} = \mathbf{e}_{n+1}$ by Lemma 4.15, and $\mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} = \mathbf{e}_{r,n}$ by Lemma 4.14. Finally, $\mathbf{x}_{s,n} \circ \mathbf{y}_{s,n} = \mathbf{e}_{n-1}$ by Lemma 4.17, and $\mathbf{y}_{s,n} \circ \mathbf{x}_{s,n} = \mathbf{f}_{s,n}$ by Lemma 4.14.

(2) We first show that $\mathbf{e}_{r,n} + \mathbf{f}_{r,n}$ $(0 \le r \le n)$ are mutually orthogonal idempotents by checking that

$$(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) \circ (\mathbf{e}_{s,n} + \mathbf{f}_{s,n}) = \delta_{r,s}(\mathbf{e}_{r,n} + \mathbf{f}_{r,n})$$

for $0 \le r, s \le n$. If r = 0 this follows because $\mathbf{f}_{0,n} = 0$, $\mathbf{e}_{0,n} \circ \mathbf{e}_{s,n} = \delta_{0,s}\mathbf{e}_{0,n}$ and, assuming s > 0, we have that $\mathbf{e}_{0,n} \circ \mathbf{f}_{s,n} = -\mathbf{e}_{0,n} \circ \mathbf{e}_{s,n} \circ \mathbf{e}_{0,n} = 0$, all by Corollary 4.16. If r > 0 and s = 0 it follows because $\mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} = -\mathbf{f}_{r,n}$ and $\mathbf{f}_{r,n} \circ \mathbf{e}_{0,n} = -\mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} = \mathbf{f}_{r,n}$ by Corollary 4.16. Finally suppose that $1 \le r, s \le n$. Then by Corollary 4.16 we have that

$$(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) \circ (\mathbf{e}_{s,n} + \mathbf{f}_{s,n}) = \mathbf{e}_{r,n} \circ \mathbf{e}_{s,n} + \mathbf{e}_{r,n} \circ \mathbf{f}_{s,n} + \mathbf{f}_{r,n} \circ \mathbf{e}_{s,n} + \mathbf{f}_{r,n} \circ \mathbf{f}_{s,n}$$

= $\mathbf{e}_{r,n} \circ \mathbf{e}_{s,n} - \mathbf{e}_{r,n} \circ \mathbf{e}_{s,n} \circ \mathbf{e}_{0,n} - \mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} \circ \mathbf{e}_{s,n} + \mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} \circ \mathbf{e}_{s,n} \circ \mathbf{e}_{0,n}$
= $\delta_{r,s}\mathbf{e}_{r,n} - \delta_{r,s}\mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} = \delta_{r,s}(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}).$

We have that $\sum_{r=0}^{n} (\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) = B \star \mathbf{e}_{n}$ by Lemma 4.13. Finally, using Lemmas 4.14 and 4.15, Corollary 4.16 and $\mathbf{u}_{0,n} = \mathbf{v}_{0,n} = \mathbf{e}_{0,n}$, we have that

$$\mathbf{w}_{r,n} \circ \mathbf{v}_{r,n} = \mathbf{u}_{r,n} \circ \mathbf{v}_{r,n} - \mathbf{u}_{r,n} \circ \mathbf{u}_{0,n} \circ \mathbf{v}_{r,n} = \mathbf{e}_{n+1},$$

$$\mathbf{v}_{r,n} \circ \mathbf{w}_{r,n} = \mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} - \mathbf{v}_{r,n} \circ \mathbf{u}_{r,n} \circ \mathbf{e}_{0,n} = \mathbf{e}_{r,n} - \mathbf{e}_{r,n} \circ \mathbf{e}_{0,n} = \mathbf{e}_{r,n} + \mathbf{f}_{r,n}$$

for $1 \leq r \leq n$.

4.3. Locally unital graded algebras and modules. Before explaining the full significance of Theorem 4.21, we need to review some basic terminology. Suppose that \mathcal{A} is any small graded category and let I be its object set. The *path algebra* of \mathcal{A} is the graded algebra

$$A = \bigoplus_{i,j \in \mathbf{I}} \mathbf{1}_i A \mathbf{1}_j \quad \text{where} \quad \mathbf{1}_i A \mathbf{1}_j := \operatorname{Hom}_{\mathcal{A}}(j,i),$$

with multiplication induced by composition in \mathcal{A} . In general, this is *locally unital* rather than unital, equipped with the distinguished system 1_i ($i \in \mathbf{I}$) of mutually orthogonal idempotents arising from the identity endomorphisms of the objects of \mathcal{A} . By a graded left A-module, we mean a module V as usual which is itself locally unital in the sense that $V = \bigoplus_{i \in \mathbf{I}} 1_i V$. We sometimes refer to $1_i V$ as the *i*-weight space of V. There are also the obvious notions of graded right A-modules and, given another locally unital graded algebra B, graded (A, B)-bimodules.

For graded left A-modules V and W and $d \in \mathbb{Z}$, we write $\text{Hom}_A(V, W)_d$ for the vector space of all ordinary A-module homomorphisms $f : V \to W$ such that $f(V_n) \subseteq W_{n+d}$ for each $n \in \mathbb{Z}$. Then the graded vector space

$$\operatorname{Hom}_A(V, W) := \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_A(V, W)_d$$

is a morphism space in the graded category A-gMod of graded left A-modules. We denote the underlying category consisting of the same objects but just the degree-preserving morphisms by A-gmod. This is the usual Abelian category of graded left A-modules. It is equipped with the downward grading shift functor q defined as in the *General conventions*, and we have that

$$Hom_{A}(V, W)_{d} = Hom_{A}(V, q^{d}W)_{0} = Hom_{A}(q^{-d}V, W)_{0}.$$
(4.23)

We use the symbol \cong to denote (degree-preserving) isomorphism in A-gmod.

Let *A*-pgmod be the full subcategory of *A*-gmod consisting of finitely generated projective graded modules. Also let $K_0(A)$ denote the split Grothendieck group of the additive category *A*-pgmod. This is naturally a $\mathbb{Z}[q, q^{-1}]$ -module with the action of *q* induced by the grading shift functor. One could also define $K_0(A)$ equivalently as the split Grothendieck group of the graded Karoubi envelope of \mathcal{A} , since the latter category is contravariantly equivalent to *A*-pgmod by Yoneda's Lemma. We will not take this point of view here, but note that some care is needed in the identification since contravariant equivalences interchange *q* with q^{-1} .

Assume in this paragraph that A is *locally finite-dimensional and bounded below*, meaning that for every $i, j \in \mathbf{I}$, the graded vector space $1_i A 1_j$ is locally finite-dimensional, i.e., each of its graded pieces $1_i A_d 1_j$ are finite-dimensional, and $1_i A_d 1_j = 0$ for $d \ll 0$. Then $K_0(A)$ can be understood in purely

combinatorial terms. To explain what we mean, referring to [Bru23, Sec. 2] for more details, we note to start with that the weight spaces of any irreducible graded left *A*-module *L* are finite-dimensional, and Schur's Lemma holds:

$$\operatorname{End}_A(L) = \Bbbk. \tag{4.24}$$

We say that a graded left A-module V is *locally finite-dimensional* if 1_iV_d is finite-dimensional for each $i \in \mathbf{I}$ and $d \in \mathbb{Z}$, and *bounded below* if for each $i \in \mathbf{I}$ we have that $1_iV_d = 0$ for $d \ll 0$. Since the distinguished projective modules $A1_i$ ($i \in \mathbf{I}$) are locally finite-dimensional and bounded below, it follows that any finitely generated graded left A-module also has these properties. Any graded left A-module has an injective hull in A-gmod, and any finitely generated graded left A-module also has these properties of the distinguished projective cover in A-gmod, the latter being a summand of a finite direct sum of degree-shifted copies of the distinguished projective modules $A1_i$ ($i \in \mathbf{I}$). Let L(b) ($b \in \mathbf{B}$) be a full set of representatives for the irreducible graded left A-modules (up to isomorphism and grading shift), and define P(b) to be a projective cover of L(b). The graded multiplicity of L(b) in a locally finite-dimensional graded module V is the formal series

$$[V:L(b)]_q := \sum_{d \in \mathbb{Z}} \max\left(\left| \{r = 1, \dots, n \mid V_r/V_{r-1} \cong q^d L(b)\} \right| \quad \text{for all finite graded filtrations} \\ 0 = V_0 \subseteq \dots \subseteq V_n = V \right) q^d.$$

Schur's Lemma implies that

$$[V: L(b)]_q = \dim_q \operatorname{Hom}_A(P(b), V). \tag{4.25}$$

Note also that this belongs to $\mathbb{N}((q^{-1}))$ when V is finitely generated. Finally, any finitely generated projective graded left A-module P satisfies

$$P \cong \bigoplus_{b \in \mathbf{B}} P(b)^{\bigoplus \overline{\dim_q \operatorname{Hom}_A(P, L(b))}}.$$
(4.26)

Now it follows that that $K_0(A)$ is a free $\mathbb{Z}[q, q^{-1}]$ -module with basis [P(b)] $(b \in \mathbf{B})$.

Another basic notion involves induction and restriction. For this, we start with a pair of small graded categories, \mathcal{A} and \mathcal{B} , with object sets denoted I and J, respectively. Let A and B be their path algebras. Given a graded functor $F : \mathcal{A} \to \mathcal{B}$, there is a graded functor

$$\operatorname{Res}_F: B\operatorname{-gMod} \to A\operatorname{-gMod} \tag{4.27}$$

called *restriction along F*. This takes a graded left *B*-module *V* to the graded vector space

$$1_FV := \bigoplus_{i \in \mathbf{I}} 1_{Fi}V$$

with $\theta \in 1_i A 1_j = \text{Hom}_{\mathcal{A}}(j, i)$ acting as the linear map $F\theta : 1_{Fj}V \to 1_{Fi}V$ between the summands indexed by *j* and *i*, and as 0 on all other summands. This notation is for graded left *B*-modules, but it is readily adapted to a graded right *B*-module *V*, letting

$$V1_F := \bigoplus_{i \in \mathcal{A}} V1_{Fi}$$

which is a graded right A-module. The functor Res_F is isomorphic to $\bigoplus_{i \in I} \operatorname{Hom}_B(B1_{Fi}, -)$. Hence, by adjointness of tensor and hom for locally unital algebras (e.g., see [BS18, Lem. 2.7]), it has a left adjoint

$$\operatorname{Ind}_F := B1_F \otimes_A - : A \operatorname{-gMod} \longrightarrow B \operatorname{-gMod}, \tag{4.28}$$

where $B1_F$ is the graded (B, A)-bimodule obtained by restricting the regular (B, B)-bimodule B on the right. We refer to Ind_F as *induction along* F. If $\alpha : F \Rightarrow G$ is a graded natural transformation between graded functors $F, G : \mathcal{A} \to \mathcal{B}$, we obtain graded bimodule homomorphisms $B1_G \to B1_F$ and $1_F B \to 1_G B$ defined by the linear maps $1_j B1_{Gi} \to 1_j B1_{Fi}, \theta \mapsto \theta \circ \alpha_i$ and $1_{Fi} B1_j \to 1_{Gi} B1_j, \theta \mapsto \alpha_i \circ \theta$, respectively, for $i \in \mathbf{I}, j \in \mathbf{J}$. These bimodule homomorphisms define graded natural transformations $\operatorname{Ind}_{\alpha} : \operatorname{Ind}_G \Rightarrow \operatorname{Ind}_F$ and $\operatorname{Res}_{\alpha} : \operatorname{Res}_F \Rightarrow \operatorname{Res}_G$. Suppose finally that the small graded category \mathcal{A} is monoidal, with tensor product bifunctor

$$-\star -: \mathcal{A} \boxtimes \mathcal{A} \to \mathcal{A},$$
 (4.29)

where we are using \boxtimes to denote linearized Cartesian product. Then there is an induced tensor product bifunctor making *A*-gMod into a graded monoidal category in its own right. We call this the *induction product*; it is also known as *Day convolution*. To define it, observe that the graded algebra $A \otimes A$ is the path algebra of the graded category $\mathcal{A} \boxtimes \mathcal{A}$. The induction product is the graded bifunctor

$$- \circledast - : A \operatorname{-gMod} \boxtimes A \operatorname{-gMod} \to A \operatorname{-gMod}$$

$$\tag{4.30}$$

that is the composition of the usual tensor product $-\otimes - :A \cdot gMod \boxtimes A \cdot gMod \rightarrow A \otimes A \cdot gMod$ followed by the functor $Ind_{-\star-} : NB \otimes A \cdot gMod \rightarrow A \cdot gMod$ defined by induction along (4.29). Note that $-\otimes$ is right exact in each argument but it is not necessarily exact. It is clear from the definition that

$$A1_i \otimes A1_j \cong A1_{i\star j} \tag{4.31}$$

for $i, j \in \mathbf{I}$. From this, one deduces that the restriction of $- \circledast -$ makes A-pgmod into a monoidal category. Consequently, $K_0(A)$ is actually a $\mathbb{Z}[q, q^{-1}]$ -algebra with multiplication satisfying

$$[A1_i][A1_j] = [A1_i \otimes A1_j] = [A1_{i\star j}].$$
(4.32)

4.4. **Identification of the Grothendieck ring.** Now we apply the general setup just explained to the nil-Brauer category. We denote the path algebra of \mathcal{NB}_t for the fixed value of *t* simply by NB. Its distinguished idempotents arising from the identity endomorphisms of $B^{\star n}$ ($n \in \mathbb{N}$) will be denoted by 1_n ($n \in \mathbb{N}$). So we have that

$$NB = \bigoplus_{m,n \in \mathbb{N}} \mathbb{1}_m NB\mathbb{1}_n \quad \text{where} \quad \mathbb{1}_m NB\mathbb{1}_n = Hom_{\mathcal{NB}_t}(B^{\star n}, B^{\star m})$$

Theorem 3.6 implies that NB is locally finite-dimensional and bounded below, so that we are in the situation discussed in the third paragraph of subsection 4.3. Since \mathcal{NB}_t is monoidal, we have the induction product $- \circledast - :$ NB-gMod \boxtimes NB-gMod \rightarrow NB-gMod defined as in (4.30). It makes $K_0(NB)$ into a $\mathbb{Z}[q, q^{-1}]$ -algebra. Our goal is to identify this with the integral form $\mathbb{Z}\mathbf{U}_t^i$ of the *i*-quantum group.

Recalling the idempotent $\mathbf{e}_n \in \mathbf{1}_n \text{NB1}_n$ from (4.12), we define

$$P(n) := q^{-\frac{1}{2}n(n-1)} \text{NB} \mathbf{e}_n.$$
(4.33)

This is a finitely generated projective graded left NB-module. In particular, we have that $P(0) = \text{NB1}_0$ and $P(1) = \text{NB1}_1$. Also let

$$B := P(1) \circledast - : \text{NB-gMod} \to \text{NB-gMod}$$

$$(4.34)$$

be the endofunctor defined by taking the induction product with the projective module P(1) associated to the generating object *B* of \mathcal{NB}_t . From (4.31), we have that

$$B(\mathrm{NB1}_n) \cong \mathrm{NB1}_{n+1}.\tag{4.35}$$

Since it is clearly additive, it follows that B takes finitely generated projectives to finitely generated projectives, i.e., it restricts to an endofunctor of NB-pgmod. This is all that we need for now, but we will say more about B viewed as an endofunctor of the Abelian category NB-gmod in subsection 5.3 below.

Lemma 4.22. *For* $n \in \mathbb{N}$ *, we have that*

$$BP(n) \cong \begin{cases} P(n+1)^{\bigoplus [n+1]} \bigoplus P(n-1)^{\bigoplus [n]} & \text{if } n \equiv t \pmod{2} \\ P(n+1)^{\bigoplus [n+1]} & \text{if } n \not\equiv t \pmod{2}. \end{cases}$$

Proof. First consider the case that $n \neq t \pmod{2}$. By the first part of Theorem 4.21(2), we have that $B \star \mathbf{e}_n = \sum_{r=0}^n (\mathbf{e}_{r,n} + \mathbf{f}_{r,n})$ as a sum of mutually orthogonal idempotents. As in (4.31), we deduce that

$$BP(n) = q^{-\frac{1}{2}n(n-1)} \operatorname{NB1}_1 \circledast \operatorname{NB} \mathbf{e}_n \cong \bigoplus_{r=0}^n q^{-\frac{1}{2}n(n-1)} \operatorname{NB}(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}).$$

To complete the proof, we claim that $q^{-\frac{1}{2}n(n-1)}NB(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) \cong q^{n-2r}P(n+1)$ for any $0 \le r \le n$. The second part of Theorem 4.21(2) shows that right multiplication by $\mathbf{v}_{r,n}$ defines an invertible NB-module homomorphism $NB(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) \xrightarrow{\sim} NB \mathbf{e}_{n+1}$ with inverse given by right multiplication by $\mathbf{w}_{r,n}$. By its definition (4.19), $\mathbf{v}_{r,n}$ is of degree -2r. Recalling (4.23), this shows that

$$q^{-\frac{1}{2}n(n-1)} \text{NB}(\mathbf{e}_{r,n} + \mathbf{f}_{r,n}) \cong q^{-\frac{1}{2}n(n-1)-2r} \text{NB} \, \mathbf{e}_{n+1} \cong q^{\frac{1}{2}(n+1)n-\frac{1}{2}n(n-1)-2r} P(n+1) = q^{n-2r} P(n+1),$$

as claimed.

Instead, suppose that $n \equiv t \pmod{2}$. Then the first part of Theorem 4.21(1) gives that

$$BP(n) = q^{-\frac{1}{2}n(n-1)} \operatorname{NB1}_1 \otimes \operatorname{NB} \mathbf{e}_n \cong \bigoplus_{r=0}^n q^{-\frac{1}{2}n(n-1)} \operatorname{NB} \mathbf{e}_{r,n} \oplus \bigoplus_{s=1}^n q^{-\frac{1}{2}n(n-1)} \operatorname{NB} \mathbf{f}_{s,n}.$$

To complete the proof, it suffices to show that $q^{-\frac{1}{2}n(n-1)}$ NB $\mathbf{e}_{r,n} \cong q^{n-2r}P(n+1)$ for $0 \leqslant r \leqslant n$ and that $q^{-\frac{1}{2}n(n-1)}$ NB $\mathbf{f}_{s,n} \cong q^{n+1-2s}P(n-1)$ for $1 \leqslant s \leqslant n$. The first assertion here follows from the second part of Theorem 4.21(1) just like in the previous paragraph (replacing $\mathbf{w}_{r,n}$ with $\mathbf{u}_{r,n}$). To prove the second assertion, right multiplication by $\mathbf{y}_{s,n}$ defines an invertible NB-module homomorphism NB $\mathbf{f}_{s,n} \xrightarrow{\sim} NB \mathbf{e}_{n-1}$ with inverse given by right multiplication by $\mathbf{x}_{s,n}$. By its definition (4.20), $\mathbf{y}_{s,n}$ is of degree 2n - 2s, so this shows that

$$q^{-\frac{1}{2}n(n-1)} \text{NB}\,\mathbf{f}_{s,n} \cong q^{-\frac{1}{2}n(n-1)+2n-2s} \text{NB}\,\mathbf{e}_{n-1} \cong q^{\frac{1}{2}(n-1)(n-2)-\frac{1}{2}n(n-1)+2n-2s} P(n-1) = q^{n+1-2s} P(n-1).$$

Recall the sesquilinear form $\langle \cdot, \cdot \rangle^i$ on \mathbf{U}_t^i from (3.36).

Theorem 4.23. The modules P(n) $(n \ge 0)$ give a complete set of indecomposable projective graded left NB-modules (up to isomorphism and grading shift). Moreover, there is a unique $\mathbb{Z}[q, q^{-1}]$ -algebra isomorphism

$$\kappa_t: K_0(\text{NB}) \xrightarrow{\sim} \mathbb{Z} \mathbf{U}_t^t$$

such that

(1) $\kappa_t([BP]) = B\kappa_t([P])$ for any finitely generated projective graded module P.

The following properties also hold for finitely generated projective graded modules P, Q and $n \ge 0$:

- (2) $\kappa_t([NB1_n]) = B^n;$
- (3) $\kappa_t([P(n)]) = P_n;$
- (4) $\dim_q \operatorname{Hom}_{\operatorname{NB}}(P,Q) = \dim_q \Gamma \cdot \langle \kappa_t([P]), \kappa_t([Q]) \rangle^t$.

Proof. Let $\lambda_t : {}_{\mathbb{Z}}\mathbf{U}_t^t \to K_0(\text{NB})$ be the $\mathbb{Z}[q, q^{-1}]$ -module homomorphism taking P_n to [P(n)] for each $n \ge 0$. By (2.23) and Lemma 4.22, it follows that λ_t intertwines the endomorphism of ${}_{\mathbb{Z}}\mathbf{U}_t^t$ defined by left multiplication by B with the endomorphism of $K_0(\text{NB})$ induced by the functor B: NB-pgmod \to NB-pgmod. Hence, also using (4.35), we have that

$$\lambda_t(B^n) = \lambda_t(B^n P_0) = [B^n P(0)] = [B^n \text{NB1}_0] = [\text{NB1}_n].$$
(4.36)

We also have that

$$\dim_{q} \operatorname{Hom}_{\operatorname{NB}}(P(m), P(n)) = \dim_{q} \Gamma \cdot \langle P_{m}, P_{n} \rangle^{\iota}$$
(4.37)

for any $m, n \ge 0$. To see this, since both $\mathbb{Z}U_t^i$ and $K_0(NB)$ are free $\mathbb{Z}[q, q^{-1}]$ -modules, it is harmless to extend scalars from $\mathbb{Z}[q, q^{-1}]$ to $\mathbb{Q}(q)$. Then P_m and P_n are $\mathbb{Q}(q)$ -linear combinations of the elements B^k ($k \ge 0$) (see (2.22) for the explicit formula which is not needed here). Applying λ_t gives that [P(m)] and [P(n)] are corresponding linear combinations of $[NB1_k]$ ($k \ge 0$). In this way, the proof of (4.37) is reduced to checking that

$$\dim_{a} \operatorname{Hom}_{\operatorname{NB}}(\operatorname{NB1}_{m}, \operatorname{NB1}_{n}) = \dim_{a} \Gamma \cdot \langle B^{m}, B^{n} \rangle^{\iota}$$

$$(4.38)$$

for all $m, n \ge 0$. Since $\text{Hom}_{NB}(NB1_m, NB1_n) \cong 1_m NB1_n = \text{Hom}_{\mathcal{NB}_t}(B^{\star n}, B^{\star m})$, this follows from Theorem 3.7.

Now we prove that the finitely generated projective graded module P(n) is indecomposable: by Corollary 2.8 and the ψ^i -invariance of P_n , we have that $\langle P_n, P_n \rangle^i \in 1 + q^{-1}\mathbb{Z}[\![q^{-1}]\!]$, hence, by (4.37), we have that $\operatorname{End}_{\operatorname{NB}}(P(n))_0 \cong \Bbbk$. This implies the indecomposability of P(n). Moreover, the isomorphism classes [P(n)] $(n \ge 0)$ are linearly independent over $\mathbb{Z}[q, q^{-1}]$. This follows because the matrix $(\dim_q \operatorname{Hom}_{\operatorname{NB}}(P(n), P(m))_{m,n\ge 0}$ is invertible by (4.37) and Corollary 2.8 (or the non-degeneracy of the form $(\cdot, \cdot)^i$). Hence, for $m \ne n$ the module P(n) is not isomorphic to any grading shift of P(m). Finally, we observe that any indecomposable projective graded left NB-module is isomorphic to $q^d P(n)$ for unique $d \in \mathbb{Z}, n \in \mathbb{N}$. This is true because each left ideal NB1_n is isomorphic to a direct sum of grading shifts of the modules P(m) for $m \ge n$, as follows by induction on n using (4.35) and Lemma 4.22.

We have now proved the first sentence in the statement of the theorem. It follows that the isomorphism classes [P(n)] $(n \ge 0)$ give a basis for $K_0(NB)$ as a free $\mathbb{Z}[q, q^{-1}]$ -module. We deduce immediately that λ_t is an isomorphism of free $\mathbb{Z}[q, q^{-1}]$ -modules. Let $\kappa_t := \lambda_t^{-1}$. This satisfies the property (1). Moreover,

$$\kappa_t(B^m \cdot B^n) = \kappa_t(B^{m+n}) = [\operatorname{NB1}_{m+n}] = [\operatorname{NB1}_m \otimes \operatorname{NB1}_n] = [\operatorname{NB1}_m][\operatorname{NB1}_n]$$

It follows that the $\mathbb{Q}(q)$ -module isomorphism $\mathbb{Q}(q) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{Z} \mathbf{U}_t^i \xrightarrow{\sim} \mathbb{Q}(q) \otimes_{\mathbb{Z}[q,q^{-1}]} K_0(\mathbf{NB})$ induced by κ_t is actually a $\mathbb{Q}(q)$ -algebra isomorphism. Hence, κ_t itself is a $\mathbb{Q}(q)$ -algebra isomorphism. The uniqueness of an algebra isomorphism κ_t satisfying the property (1) is clear. We also get (2) and (3) since λ_t satisfies the appropriate inverse properties by the definition of λ_t and (4.36). Finally, (4) follows from (4.37), the ψ^i -invariance of each P_n , and the sesquilinearity of the forms on either side of the statement of (4). \Box

Corollary 4.24. The idempotents \mathbf{e}_n $(n \ge 0)$ from (4.12) give a complete set of primitive homogeneous idempotents in the nil-Brauer category (up to conjugacy).

Proof. We need to establish the following two assertions:

1 10 1

- each \mathbf{e}_n is a primitive homogeneous idempotent in the path algebra NB;
- given a primitive homogeneous idempotent $\mathbf{e} \in 1_m \text{NB1}_m$, there is a unique $n \ge 0$ and elements $x \in 1_m \text{NB1}_n, y \in 1_n \text{NB1}_m$ such that $\mathbf{e} = xy$ and $\mathbf{e}_n = yx$.

The first of these is equivalent to the indecomposability of the projective graded module NB \mathbf{e}_n established in Theorem 4.23. To prove the second assertion, NB \mathbf{e} is an indecomposable projective graded module, hence, it isomorphic to q^d NB \mathbf{e}_n for unique $d \in \mathbb{Z}, n \in \mathbb{N}$ by the definition of P(n) and Theorem 4.23 again. Let θ : NB $\mathbf{e} \xrightarrow{\sim} q^d$ NB \mathbf{e}_n be an isomorphism. Since Hom_{NB}(NB \mathbf{e}, q^d NB $\mathbf{e}_n)_0 =$ Hom_{NB}(NB $\mathbf{e}, NB \mathbf{e}_n)_d \cong \mathbf{e}$ NB_d \mathbf{e}_n , there is a unique $x \in \mathbf{e}$ NB_d \mathbf{e}_n such that θ is right multiplication by x. Similarly, there is a unique $y \in \mathbf{e}_n$ NB_{-d} \mathbf{e} such that θ^{-1} is right multiplication by y. We then have that $xy = \mathbf{e}$ and $yx = \mathbf{e}_n$ as required.

Corollary 4.25. For $n \ge 0$, we have that

$$\operatorname{NB1}_{n} \cong \bigoplus_{m=0}^{\lfloor \frac{n}{2} \rfloor} P(n-2m)^{\bigoplus \left([n-2m]! \sum_{\alpha \in \mathcal{P}_{t}(m \times (n-2m))} [\alpha_{1}+1]^{2} \cdots [\alpha_{m}+1]^{2} \right)}.$$

Proof. This follows from the theorem together with Corollary 2.13.

Theorems A and B as formulated in the introduction follow from Lemma 4.22 and Theorem 4.23.

5. Representation theory

In this section, we introduce an explicit graded triangular basis for the path algebra NB of the nil-Brauer category \mathcal{NB}_t , which fits well with the general machinery developed in [Bru23]. This allows us to define standard and proper standard modules, and to classify irreducible graded NB-modules by their lowest weights. Then, in Theorem 5.13, we establish the existence of a certain short exact sequence of functors which can be viewed as a categorification of part of Theorem 2.1. We use this to describe the effect of the functor *B* on standard and proper standard modules, thereby proving Theorem C from the introduction. Finally, we prove character formulae for proper standard and irreducible modules, thereby proving Theorems D and E, and derive further branching rules.

5.1. **Triangular basis.** The *center* Z(A) of a locally unital graded algebra $A = \bigoplus_{i,j \in \mathbf{I}} 1_i A 1_j$ is the commutative subalgebra of the unital graded algebra $\prod_{i \in \mathbf{I}} 1_i A 1_i$ consisting of tuples $(z_i)_{i \in \mathbf{I}}$ such that $\theta z_j = z_i \theta$ for all $i, j \in \mathbf{I}$ and $\theta \in 1_i A 1_j$. Assuming that A is the path algebra of a small graded category \mathcal{A} , this is a direct translation of the definition of the center of the category \mathcal{A} . Given a (unital) commutative graded algebra R, we say that A is a *locally unital graded R-algebra* if we are given a unital graded algebra homomorphism $\eta : R \to Z(A)$. Then each subspace $1_i A 1_j$ is naturally a graded R-module. Recalling the algebra Γ from subsection 3.3, the path algebra NB of \mathcal{NB}_t is a locally unital graded Γ -algebra in this sense, with the structure map $\eta : \Gamma \to Z(NB)$ mapping $p \in \Gamma$ to $(1_n \star \gamma_t(p))_{n \in \mathbb{N}}$. The resulting Γ -module structure on $1_m NB1_n$ is the same as in Theorem 3.6.

Recall that D(m, n) is a set of representatives for the \sim -equivalence classes of reduced $m \times n$ string diagrams, two such diagrams being equivalent if they define the same matchings on their boundaries. Theorem 3.6 shows moreover that NB is free as a Γ -algebra with basis $\bigcup_{m,n\geq 0} D(m, n)$. We now distinguish three special types of reduced string diagrams:

- (X) Reduced string diagrams which only involve generalized cups and non-crossing propagating strings.
- (H) Reduced string diagrams with no generalized cups or caps, just propagating strings (which are allowed to cross).
- (Y) Reduced string diagrams which only involve generalized caps and non-crossing propagating strings.

From now on, we actually only need representatives for the \sim -equivalence classes of undotted reduced string diagrams of these three types. For types X or Y, we also choose a distinguished point on each generalized cup or cup. For type H, we choose a distinguished point on each propagating string. Then let $X(a, n) \subset 1_a \text{NB1}_n$, $\mathring{H}(n) \subset 1_n \text{NB1}_n$ and $Y(n, b) \subset 1_n \text{NB1}_b$ be the sets obtained from the chosen \sim -equivalence class representatives of $a \times n$ string diagrams of type X, of $n \times n$ string diagrams of type H, and of $n \times b$ string diagrams of type Y, respectively, obtained by adding closed dots labeled by non-negative multiplicities at each of the distinguished points. Clearly, $X(a, n) = Y(n, b) = \emptyset$ unless $a \ge n \le b$, and $X(n, n) = \{1_n\} = Y(n, n)$. Shorthand:

$$\mathbf{X}(n) := \bigcup_{a \ge n} \mathbf{X}(a, n), \qquad \qquad \mathbf{Y}(n) := \bigcup_{b \ge n} \mathbf{Y}(n, b).$$

Also let H(n) be the set of morphisms obtained from the ones in $\mathring{H}(n)$ by placing ordered monomials $\mathbb{O}_1^{m_1} \mathbb{O}_3^{m_3} \mathbb{O}_5^{m_5} \cdots$ in the odd \mathbb{O}_r at the right hand boundary (recall (3.23)). The latter are the images of a basis for Γ under the isomorphism $\gamma_t : \Gamma \xrightarrow{\sim} \operatorname{End}_{\mathcal{NB}_r}(\mathbb{1})$ from (3.35).

Example 5.1. The following diagram is a typical product $xhy \in 1_{14}$ NB 1_{12} :

Example 5.2. Equivalence classes of undotted reduced string diagrams of type X with f generalized cups and n propagating strings are in bijection with the set of chord diagrams with f free chords and n tethered ones as discussed in subsection 2.3. For example, the chord diagram (2.16) corresponds to the string diagram

We hope the bijection here is apparent; it is similar to the bijection described in the proof of Theorem 3.7 but now the propagating strings become chords that are tethered to the bottom node.

Theorem 5.3. The products xhy for $(x, h, y) \in \bigcup_{n \in \mathbb{N}} X(n) \times H(n) \times Y(n)$ give a graded triangular basis for NB in the sense of [Bru23, Def. 1.1] (taking the sets **I**, **S** and Λ there all to be equal to \mathbb{N} ordered in the natural way).

Proof. We can choose the set D(a, b) in Theorem 3.6 so that it consists of the products xhy for $(x, h, y) \in \bigcup_{n \in \mathbb{N}} X(a, n) \times \mathring{H}(n) \times Y(n, b)$. These give a basis for $1_a NB1_b$ as a free Γ -module. Since elements of H(n) are elements of $\mathring{H}(n)$ multiplied by basis elements of Γ , it follows that the products xhy for $(x, h, y) \in \bigcup_{n \in \mathbb{N}} X(a, n) \times H(n) \times Y(n, b)$ give a linear basis for $1_a NB1_b$. The remaining axioms of graded triangular basis are trivial to check.

5.2. Standard modules and BGG reciprocity. Theorem 5.3 is significant because it means we can apply the general theory developed in [Bru23]. We recall some of the basic constructions made there. For $n \in \mathbb{N}$, let $NB_{\ge n}$ be the quotient of NB by the two-sided ideal generated by $1_m (m \ge n)$. Writing \bar{u} for the canonical image of $u \in NB$ in the quotient $NB_{\ge n}$, we let $NB_n := \bar{1}_n NB_{\ge n} \bar{1}_n$. This is a unital graded Γ -algebra with basis \bar{h} ($h \in \mathring{H}(n)$) as a free Γ -module. These \bar{h} are the usual diagrams for elements of a basis of the nil-Hecke algebra associated to the symmetric group. In fact, NB_n is precisely this nil-Hecke algebra over the ground ring Γ . Put somewhat informally, this follows because the following "local relations" hold:

$$= 0, \qquad \qquad = \checkmark, \qquad \qquad \bullet - \checkmark = \mid = \checkmark - \checkmark. \tag{5.1}$$

These are derived easily from the defining relations (3.2), (3.5) and (3.8), noting that the final cup/cap terms in (3.5) and (3.8) become 0 in the quotient algebra. Because of this term, the nil-Hecke algebra NB_n is *not* a subalgebra of NB—one really does need to pass first to the quotient NB_{$\geq n$}. In proper

algebraic language, NB_n is the Γ -algebra generated by x_1, \ldots, x_n all of degree 2 and $\tau_1, \ldots, \tau_{n-1}$ all of degree -2, with τ_i and x_i denoting the crossing of the *i*th and (i + 1)th strings and the dot on the *i*th string, respectively (numbering strings by 1, ..., n from left to right). A complete set of relations is

$$x_i x_j = x_j x_i, (5.2)$$

$$\tau_i^2 = 0, \tag{5.3}$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{for } |i - j| > 1, \tag{5.4}$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, \tag{5.5}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1 = \tau_i x_i - x_{i+1} \tau_i.$$
(5.6)

One possible basis for NB_n as a free graded Γ -module is given by

$$x_1^{r_1} \cdots x_n^{r_n} \tau_w \qquad \left(w \in S_n, r_1, \dots, r_n \ge 0 \right) \tag{5.7}$$

Here, τ_w is the element of NB_n defined by multiplying the generators τ_i according to some reduced expression of w. Recall also that the *center* of the nil-Hecke algebra NB_n is the algebra

$$Z_n := \Gamma[x_1, \dots, x_n]^{S_n} \subseteq NB_n$$
(5.8)

of symmetric polynomials over Γ .

The *polynomial representation* of NB_n is the graded NB_n-module $\Gamma[x_1, \ldots, x_n]$, with x_i acting in the obvious way by multiplication and τ_i acting as the Demazure operator

$$\tau_i f = \frac{f - s_i(f)}{x_i - x_{i+1}},\tag{5.9}$$

using s_i for the basic transposition $(i \ i+1) \in S_n$. Incorporating also a grading shift, we obtain the indecomposable projective graded NB_n-module $P_n(n) := q^{\frac{1}{2}n(n-1)}\Gamma[x_1, \ldots, x_n]$. Using (5.7), it is easy to see that $P_n(n)$ is generated by the polynomial $u_n := 1$ (which is of degree $-\frac{1}{2}n(n-1)$) subject just to the relations that $\tau_i u_n = 0$ for $i = 1, \ldots, n-1$.

Let $L_n(n) := hd P_n(n)$. This is an irreducible graded NB_n-module, and every irreducible graded NB_n-module is isomorphic to $L_n(n)$ up to a grading shift. Writing \bar{u}_n for the image of u_n in the quotient $L_n(n)$, the monomials

$$x_1^{r_1} \cdots x_n^{r_n} \bar{u}_n \quad (0 \leqslant r_i \leqslant n-i) \tag{5.10}$$

give a homogeneous linear basis for $L_n(n)$. In particular,

$$\dim_q L_n(n) = [n]!. (5.11)$$

It is well known that

$$\tau_{w_n}(x_1^{n-1}x_2^{n-2}\cdots x_{n-1})\bar{u}_n=\bar{u}_n.$$
(5.12)

Note also that any homogeneous element in Z_n of positive degree acts as 0 on \bar{u}_n , as does any τ_i $(1 \le i \le n-1)$. This is a full set of relations for $L_n(n)$.

We identify $NB_{\geq n}$ -gMod with a subcategory of NB-gMod in the obvious way. Trunctation with the idempotent \overline{l}_n defines a quotient functor $j^n : NB_{\geq n}$ -gMod $\rightarrow NB_n$ -gMod. This has left and right adjoints called the *standardization* and *costandardization functors*:

$$j_{!}^{n} := \mathrm{NB}_{\geq n} \bar{1}_{n} \otimes_{\mathrm{NB}_{n}} - : \mathrm{NB}_{n} - \mathrm{gMod} \longrightarrow \mathrm{NB} - \mathrm{gMod}, \tag{5.13}$$

$$j_*^n := \bigoplus_{m \ge n} \operatorname{Hom}_{\operatorname{NB}_n}(\overline{1}_n \operatorname{NB}_{\ge n} 1_m, -) : \operatorname{NB}_n \operatorname{-gMod} \longrightarrow \operatorname{NB}\operatorname{-gMod}.$$
(5.14)

The following lemma implies that both of these functors are exact; see also [Bru23, Lem. 4.1].

Lemma 5.4. For $n \in \mathbb{N}$, $NB_{\geq n}\overline{1}_n$ is free as a right NB_n -module with basis \overline{x} ($x \in X(n)$), and $\overline{1}_n NB_{\geq n}$ is free as a left NB_n -module with basis \overline{y} ($y \in Y(n)$).

Proof. This is an instance of [Bru23, (4.4)-(4.5)].

For $n \in \mathbb{N}$, we define the *standard* and *proper standard modules* for NB to be the induced modules

$$\Delta(n) := j_!^n P_n(n), \qquad \qquad \bar{\Delta}(n) := j_!^n L_n(n). \tag{5.15}$$

These are cyclic graded NB-modules generated by the vectors $v_n := 1 \otimes u_n$ and $\bar{v}_n := 1 \otimes \bar{u}_n$, respectively. Since we have in hand a basis for $L_n(n)$, Lemma 5.4 implies that the following vectors give a linear basis for $\bar{\Delta}(n)$:

$$x(x_1^{r_1}\cdots x_n^{r_n})\bar{v}_n \qquad (x\in \mathbf{X}(n) \text{ and } r_1,\ldots,r_n \text{ with } 0 \le r_i \le n-i \text{ for each } i).$$
(5.16)

In particular, the lowest weight space $1_n L(n)$ is naturally identified with $L_n(n)$. Vectors in L(n) can be represented diagrammatically by putting \bar{v}_n into a labeled node at the bottom, with the left action of NH being by attaching diagrams to the *n* strings at the top of that node. For example, the following is a vector in $1_m \bar{\Delta}(n)$ for any $u \in 1_m \text{NB1}_n$:

It is clear this vector is 0 if *u* has some \mathbb{O}_r (r > 0) on its right boundary. In view of (3.27), this is also true if *u* has some \mathbb{O}_r (r > 0) on its left boundary.

Lemma 5.5. We have that $\operatorname{End}_{NB}(\Delta(n)) \cong \mathbb{Z}_n$ and $\operatorname{End}_{NB}(\overline{\Delta}(n)) \cong \Bbbk$.

Proof. The homomorphism from Z_n to $\operatorname{End}_{NB}(\Delta(n))$ defined by its action on the lowest weight space $1_n\Delta(n) \cong P_n(n)$ is an isomorphism because

$$\operatorname{End}_{\operatorname{NB}}(\Delta(n)) \cong \operatorname{Hom}_{\operatorname{NB}_{\geq n}}(j_!^n P_n(n), j_!^n P_n(n)) \cong \operatorname{Hom}_{\operatorname{NB}_n}(P_n(n), j_!^n j_!^n P_n(n)) \cong \operatorname{End}_{\operatorname{NB}_n}(P_n(n)) \cong \mathbb{Z}_n.$$

The argument for $\overline{\Delta}_n$ is similar, reducing to Schur's Lemma (4.24).

There are also the costandard and proper costandard modules

$$\nabla(n) := j_*^n I_n(n), \qquad \nabla(n) := j_*^n L_n(n). \tag{5.18}$$

We will not use these so often, but note that they can also be obtained from $\Delta(n)$ and $\overline{\Delta}(n)$, respectively, by applying the contravariant graded functor

$$?^{\circledast}: NB-gMod \to NB-gMod$$
(5.19)

which takes a graded module $V = \bigoplus_{n \in \mathbb{N}} \bigoplus_{d \in \mathbb{Z}} \mathbb{1}_n V_d$ to the graded dual $V^{\circledast} = \bigoplus_{n \in \mathbb{N}} \bigoplus_{d \in \mathbb{Z}} (\mathbb{1}_n V_{-d})^*$ viewed as a graded NB-module so that (af)(v) := f(T(a)v) for $a \in NB$, $f \in V^{\circledast}$ and $v \in V$, where $T : NB \to NB$ is the Γ -algebra anti-automorphism arising from (3.10). The proof of this assertion, i.e.,

$$abla(n) \cong \Delta(n)^{\circledast}, \qquad \qquad \bar{\nabla}(n) \cong \bar{\Delta}(n)^{\circledast}, \qquad (5.20)$$

follows from the general discussion of duality in [Bru23, Sec 5], specifically, the formula (5.3) there. One just needs to note that T fixes the idempotents $1_n (n \in \mathbb{N})$, hence, it descends to an anti-automorphism $T_n : NB_n \rightarrow NB_n$ fixing the generators $x_1, \ldots, x_n, \tau_1, \ldots, \tau_{n-1}$. Moreover, the irreducible NB_n-module $L_n(n)$ is self-dual with respect to the resulting duality ?[®] on NB_n-gMod. This last statement is clear because dim_q $L_n(n)$ is invariant under the bar involution by (5.11), and $L_n(n)$ is the unique irreducible graded left NB_n-module of this graded dimension.

For the basic notions of Δ -flags, $\overline{\Delta}$ -flags, ∇ -flags and $\overline{\nabla}$ -flags, we refer to [Bru23, Def. 6.3, Def. 6.4]. In particular, a Δ -flag in a graded NB-module V is a graded filtration $0 = V_0 \subseteq V_1 \cdots \subseteq V_m$ such that $V_i/V_{i-1} \cong \Delta(n_i)^{\oplus f_i}$ for distinct $n_1, \ldots, n_m \in \mathbb{N}$ and $f_i \in \mathbb{N}((q^{-1}))$. Multiplicities in these four types of

42

filtration are denoted $(V : \Delta(n))_q$, $(V : \overline{\Delta}(n))_q$, $(V : \nabla(n))_q$ and $(V : \overline{\nabla}(n))_q$. For example, the standard module $\Delta(n)$ has a $\overline{\Delta}$ -flag with the multiplicities

$$(\Delta(n):\bar{\Delta}(n))_q = [P_n(n):L_n(n)]_q = \frac{\dim_q 1}{(1-q^{-2})(1-q^{-4})\cdots(1-q^{-2n})}$$
(5.21)

..

and $(\Delta(n) : \Delta(m))_q = 0$ for $m \neq n$. This follows from exactness of j_1^n and the well-known representation theory of NH_n. It should be compared with (2.30).

Now we can formulate the fundamental theorem about the structure of NB-gMod. It follows by an application the general theory developed in [Bru23], specifically, [Bru23, Th. 4.3, Sec. 5, Cor. 8.4], and is analogous to the basic structural results about Verma and dual Verma modules in Lie theory.

Theorem 5.6. The following properties hold:

- (1) The standard module $\Delta(n)$ has a unique irreducible graded quotient L(n). Also, $L(n)^{\circledast} \cong L(n)$, so that L(n) is also the unique irreducible graded submodule of $\nabla(n)$.
- (2) The NB-modules L(n) ($n \in \mathbb{N}$) give a complete set of irreducible graded NB-modules up to isomorphism and grading shift.
- (3) Let P(n) be the projective cover of L(n) in NB-gmod and $I(n) \cong P(n)^{\circledast}$ be its injective hull. Then P(n) has a Δ -flag and I(n) has a ∇ -flag, with multiplicities satisfying the usual graded BGG reciprocity formulae

$$(P(n):\Delta(m))_q = [\bar{\Delta}(m):L(n)]_q = [\bar{\nabla}(m):L(n)]_{q^{-1}} = (I(n):\nabla(m))_{q^{-1}} \in \mathbb{N}((q^{-1}))$$

for all
$$m, n \in \mathbb{N}$$
. These multiplicities are 1 if $m = n$ and 0 unless $m \leq n$.

We denote the canonical image of v_n in the irreducible quotient L(n) of $\Delta(n)$ by \tilde{v}_n . Vectors in L(n) can be denoted diagrammatically just like in (5.17) putting \tilde{v}_n into the node at the bottom of the diagram instead of \bar{v}_n . Again, the lowest weight space $1_n L(n)$ is naturally identified with the NB_n-module $L_n(n)$.

Theorem 5.6 gives a classification of irreducible graded left NB-modules via their lowest weights. The proof just explained is completely independent of any of the results from section 4. It follows that the modules P(n) ($n \ge 0$) defined in Theorem 5.6(3) give a complete set of pairwise inequivalent indecomposable graded projective left NB-modules. Such a classification was already established in Theorem 4.23 by a more sophisticated method involving Theorems 3.7 and 4.21. The following shows that the two approaches are consistent with each other:

Lemma 5.7. For $n \ge 0$, the graded module P(n) defined in Theorem 5.6(3), that is, the projective cover of L(n) is isomorphic to the graded module denoted P(n) in the previous section, that is, $q^{-\frac{1}{2}n(n-1)}$ NB \mathbf{e}_n .

Proof. Since $q^{-\frac{1}{2}n(n-1)}$ NB \mathbf{e}_n is an indecomposable projective graded module by Theorem 4.23, it suffices to prove that

$$\operatorname{Hom}_{\operatorname{NB}}\left(-q^{\frac{1}{2}n(n-1)}\operatorname{NB}\mathbf{e}_{n},\ L(n)\right)_{0}\cong\mathbf{e}_{n}L(n)_{\frac{1}{2}n(n-1)}\neq0.$$

This follows because $(x_1^{n-1}x_2^{n-2}\cdots x_{n-1})\tilde{v}_n \in L(n)$ is a non-zero vector of degree $\frac{1}{2}n(n-1)$ such that $\mathbf{e}_n(x_1^{n-1}x_2^{n-2}\cdots x_{n-1})\tilde{v}_n = (x_1^{n-1}x_2^{n-2}\cdots x_{n-1})\tilde{v}_n$, as follows from the definition (4.12) of the idempotent \mathbf{e}_n together with (5.12).

Remark 5.8. For convenience, we have worked with the natural total ordering on \mathbb{N} . However, the basis in Theorem 5.3 is in fact a graded triangular basis with respect to the *partial ordering* \trianglelefteq on \mathbb{N} defined by $m \trianglelefteq n \Leftrightarrow n - m \in 2\mathbb{N}$; this is clear since X(*a*, *n*) and Y(*n*, *a*) are empty unless $a \equiv n \pmod{2}$. Everything established so far is also true for this order. In particular, both 0 and 1 are minimal with respect to \trianglelefteq , so by Theorem 5.6(3) we have that $P(0) = \Delta(0)$ and $P(1) = \Delta(1)$.

5.3. The projective functor *B* preserves good filtrations. Recall the endofunctor *B* of NB-gMod introduced in (4.34). Using the construction (4.28), it can be defined equivalently as the induction functor $\operatorname{Ind}_{B^{\star-}}$ where $B^{\star} - : \mathcal{NB}_t \to \mathcal{NB}_t$ is the graded functor defined by tensoring with *B*. This follows easily from the definitions; see [BV22, Lem. 2.4] for details in a similar situation. In fact, we can go a step further to make NB-gMod into a strict graded \mathcal{NB}_t -module category, i.e., there is a strict graded monoidal functor μ from \mathcal{NB}_t to the strict graded monoidal category \mathcal{gEnd} (NB-gMod) consisting of graded endofunctors and graded natural transformations. This takes the generating object *B* of \mathcal{NB}_t to the graded endofunctor $\operatorname{Ind}_{B^{\star-}}$ and the generating morphisms ϕ, χ, \bigcap and \bigcup to the graded natural transformations $\operatorname{Ind}_{\mathbb{A}^{\star-}}$, $\operatorname{Ind}_{\mathbb{A}^{\star-}}$, $\operatorname{Ind}_{\mathbb{A}^{\star-}}$, respectively. Notice we have switched the cap and the cup here; this is the usual price for choosing to work with left modules rather than right modules—we are using the contravariant Yoneda Embedding.

Lemma 5.9. The functor $\operatorname{Ind}_{B^{\star-}}$: NB-gMod \rightarrow NB-gMod is isomorphic to the restriction functor $\operatorname{Res}_{B^{\star-}}$: NB-gMod \rightarrow NB-gMod. The isomorphism can be chosen so that it intertwines the endomorphism $\operatorname{Ind}_{b^{\star-}}$: $\operatorname{Ind}_{B^{\star-}} \Rightarrow \operatorname{Ind}_{B^{\star-}}$ with $-\operatorname{Res}_{b^{\star-}}$: $\operatorname{Res}_{B^{\star-}} \Rightarrow \operatorname{Res}_{B^{\star-}}$.

Proof. The functor $\operatorname{Ind}_{B\star-}$ is defined by tensoring with the bimodule $\operatorname{NB1}_{B\star-}$ and the functor $\operatorname{Res}_{B\star-}$ is defined by tensoring with the bimodule $1_{B\star-}$ NB. The functors are isomorphic because there is a graded (NB, NB)-bimodule isomorphism $\phi : 1_{B\star-}$ NB $\xrightarrow{\sim}$ NB1_{B\star-} such that

$$\phi\left(\begin{array}{c} || \cdots \\ u \\ | \cdots \\ | \end{array}\right) = \left(\begin{array}{c} || \cdots \\ u \\ | \cdots \\ | \end{array}\right), \qquad \phi^{-1}\left(\begin{array}{c} || \cdots \\ v \\ || \cdots \\ | \end{array}\right) = \left(\begin{array}{c} || \cdots \\ v \\ || \cdots \\ | \end{array}\right). \quad (5.22)$$

Remembering the sign in the nil-Brauer relations (3.5) and (3.8), the resulting isomorphism intertwines $\operatorname{Ind}_{\oint \star_{-}}$ with $-\operatorname{Res}_{\oint \star_{-}}$.

From now on, we denote the endofunctor $\operatorname{Ind}_{B\star-}$ simply by *B* (as we did in the previous section). We often use *x* to denote the endomorphism of *B* defined by $\operatorname{Ind}_{\phi\star-}$. The same letter is used to denote elements of X(*n*), but we think it is always clear from context which we mean.

Lemma 5.10. The endofunctor B: NB-gMod \rightarrow NB-gMod is self-adjoint. Hence, on the Abelian category NB-gmod, it is exact, cocontinuous, and preserves finitely generated projectives. Also B commutes with the duality (5.19), i.e., we have that $B \circ ?^{\circledast} \cong ?^{\circledast} B$.

Proof. Lemma 5.9 shows that *B* is isomorphic to a right adjoint to *B*. Hence, it is self-adjoint. The fact that *B* commutes with duality follows because $\text{Res}_{|\star|}$ clearly does so.

Lemma 5.11. For $n \ge 0$, the degree $\beta(n)$ of the minimal polynomial of $x_{L(n)} : BL(n) \rightarrow BL(n)$ satisfies $\beta(n) \equiv t \pmod{2}$.

Proof. We are in exactly the situation discussed in Remark 3.12. Moreover, L(n) is a special object in the sense there: we have that $\operatorname{End}_{NB}(L(n)) = \Bbbk$ by (4.24), and $\operatorname{End}_{NB}(BL(n)) \cong \operatorname{Hom}_{NB}(B^2L(n), L(n))$ which is finite-dimensional since $B^2L(n)$ is finitely generated. Now the lemma follows from the graded analog of Corollary 3.11.

Let $\iota_{1,n}$: NB_n \hookrightarrow NB_{n+1} be the (unital) graded Γ -algebra homomorphism mapping $x_i \mapsto x_{i+1}$ and $\tau_j \mapsto \tau_{j+1}$. We denote the restriction of a graded left (resp., right) NB_{n+1}-module along the homomorphism $\iota_{1,n}$ by $\iota_{1,n}^* V$ (resp., $V\iota_{1,n}^*$). Let $(I_{1,n}, R_{1,n})$ be the resulting adjoint pair of induction and restriction functors between NB_n-gmod and NB_{n+1}-gmod. We have that $I_{1,n} = NB_{n+1}\iota_{1,n}^* \otimes_{NB_n} -$ and $R_{1,n} \cong \iota_{1,n}^* NB_{n+1} \otimes_{NB_{n+1}} -$. **Lemma 5.12.** The vectors $x_1^r \tau_1 \cdots \tau_{i-1}$ $(1 \le i \le n+1, r \ge 0)$ give a basis for $\iota_{1,n}^* NB_{n+1}$ as a free graded left NB_n-module. Similarly, the vectors $\tau_{i-1} \cdots \tau_1 x_1^r$ $(1 \le i \le n+1, r \ge 0)$ give a basis for $NB_{n+1}\iota_{1,n}^*$ as a free graded right NB_n-module. Hence, the functors $I_{1,n}$ and $R_{1,n}$ are exact.

Proof. This is well known. The first statement follows easily from (5.7), and the second statement may be deduced from the first by applying an anti-automorphism. \Box

Note that Theorem 2.1(1) can be rephrased in terms of the inverse map $j^{-1}: \mathbf{U}^- \xrightarrow{\sim} \mathbf{U}^i$ as

$$Bj^{-1}(y) = j^{-1}(Fy) + j^{-1}(R(y)), \quad \text{for } y \in \mathbf{U}^-.$$
 (5.23)

The next important theorem can be interpreted as a categorification of this identity, with $j_!^n$ $(n \ge 0)$ corresponding to j^{-1} , $I_{1,n}$ $(n \ge 0)$ corresponding to multiplication by *F*, and the functors $R_{1,n}$ (n > 0) corresponding to the map *R*. The fact that the restriction functors $R_{1,n}$ categorify *R* was first pointed out in [KK12].

Theorem 5.13. For $n \ge 0$, there is a short exact sequence of functors¹

$$0 \longrightarrow j_{!}^{n-1} \circ R_{1,n-1} \xrightarrow{\alpha} B \circ j_{!}^{n} \xrightarrow{\beta} j_{!}^{n+1} \circ I_{1,n} \longrightarrow 0,$$
(5.24)

interpreting the first term as the zero functor in the case n = 0. Moreover, letting $x' : R_{1,n} \Rightarrow R_{1,n}$ and $x'' : I_{1,n} \Rightarrow I_{1,n}$ be the degree 2 endomorphisms induced by the endomorphisms of the bimodules $\iota_{1,n}^* NB_{n+1}$ and $NB_{n+1}\iota_{1,n}^*$ defined by left multiplication by $-x_1$ and by right multiplication by x_1 , respectively, we have that

$$\alpha \circ \left(j_{!}^{n-1}x'\right) = \left(xj_{!}^{n}\right) \circ \alpha, \qquad \qquad \beta \circ \left(xj_{!}^{n}\right) = \left(j_{!}^{n+1}x''\right) \circ \beta. \tag{5.25}$$

Proof. All three functors appearing in the short exact sequence are defined by tensoring with certain graded (NB, NB_n)-bimodules: $j_{!}^{n-1} \circ R_{1,n-1}$ is tensoring with the bimodule $NB_{\geq (n-1)}\overline{I}_{n-1} \otimes_{NB_{n-1}} \iota_{1,n-1}^* NB_n, B \circ j_{!}^n$ is tensoring with the bimodule $1_{B\star-}NB_{\geq n}\overline{I}_n$ (here we have used Lemma 5.9 to realize *B* as restriction rather than induction), and $j_{!}^{n+1} \circ I_{1,n}$ is tensoring with $NB_{\geq (n+1)}\overline{I}_{n+1} \otimes_{NB_{n+1}} NB_{n+1}\iota_{1,n}^*$. In the next two paragraphs, we construct a short exact sequence of graded bimodules and degree-preserving bimodule homomorphisms:

$$0 \longrightarrow \mathrm{NB}_{\geq (n-1)} \bar{1}_{n-1} \otimes_{\mathrm{NB}_{n-1}} \iota_{1,n-1}^* \mathrm{NB}_n \xrightarrow{a} \mathbf{1}_{B\star} - \mathrm{NB}_{\geq n} \bar{1}_n \xrightarrow{b} \mathrm{NB}_{\geq (n+1)} \bar{1}_{n+1} \otimes_{\mathrm{NB}_{n+1}} \mathrm{NB}_{n+1} \iota_{1,n}^* \longrightarrow 0.$$

As $\iota_{1,n-1}^*$ NB_n is free by Lemma 5.12, the graded right NB_n-module NB_{\geq (n-1)}1_{n-1} $\otimes_{NB_{n-1}} \iota_{1,n-1}^*$ NB_n is projective. Hence,

 $\operatorname{Tor}_{1}^{\operatorname{NB}_{n}}\left(\operatorname{NB}_{\geq(n-1)}\overline{1}_{n-1}\otimes_{\operatorname{NB}_{n-1}}\iota_{1,n-1}^{*}\operatorname{NB}_{n},V\right)=0$

for any graded left NB_n-module V. So this short exact sequence of bimodules remains exact when we apply the functor $-\bigotimes_{NB_n} V$. Thus, we have constructed the short exact sequence of functors in the statement of the theorem.

To construct the short exact sequence of bimodules, take $m \ge 0$. We can assume the set X(m + 1, n) is chosen to be

$$\mathbf{X}(m+1,n) = \left\{ \begin{vmatrix} \cdots \\ x \\ \cdots \end{vmatrix} \ \middle| \ x \in \mathbf{X}(m,n-1) \right\} \sqcup \left\{ \begin{vmatrix} \cdots \\ x \\ \cdots \\ i-1 \end{matrix} \ \middle| \ \begin{array}{c} x \in \mathbf{X}(m,n+1) \\ 1 \leqslant i \leqslant n+1 \\ r \geqslant 0 \end{array} \right\}.$$
(5.26)

The first set on the right hand side here (which should be interpreted as \emptyset in case n = 0) gives the elements of X(m + 1, n) which have a propagating string at the top left boundary point. The second set gives all remaining elements of X(m + 1, n). These have a generalized cup at the top left boundary point

¹We mean that one obtains a short exact sequence in NB-gmod after evaluating on any graded left NB_n-module V.

with (i-1) propagating strings between that and its other boundary point for some $1 \le i \le n+1$; these are represented in the diagram by the single thick string labeled i-1. We can assume the set H(n+1) is chosen to be

$$\mathbf{H}(n+1) = \left\{ \begin{array}{c} \left| \begin{array}{c} i - 1 \\ r \\ r \\ r \\ \bullet \end{array} \right| \begin{array}{c} i \in \mathbf{H}(n) \\ 1 \leq i \leq n+1 \\ r \geq 0 \end{array} \right\}.$$
(5.27)

In these diagrams, the propagating string with the bottom left boundary point has (i-1) other strings to the left of its other boundary point for some $1 \le i \le n+1$. The vectors $x \otimes h$ ($x \in X(m, n-1), h \in H(n)$) give a linear basis for $\bar{1}_m NB_{\ge (n-1)} \bar{1}_{n-1} \otimes_{NB_{n-1}} \iota_{1,n-1}^* NB_n$ by Lemma 5.4 again. We define an injective linear map $a_m : \bar{1}_m NB_{\ge (n-1)} \bar{1}_{n-1} \otimes_{NB_{n-1}} \iota_{1,n-1}^* NB_n \hookrightarrow \bar{1}_{m+1} NB_{\ge n} \bar{1}_n$ on basis vectors by

$$a_m: \underbrace{\begin{array}{c} \cdots \\ x \\ \cdots \end{array}}_{n} \otimes \underbrace{\begin{array}{c} \cdots \\ h \\ \cdots \end{array}}_{h} \mapsto \underbrace{\begin{array}{c} \cdots \\ x \\ \cdots \end{array}}_{h}$$

for $x \in X(m, n - 1)$, $h \in H(n)$. The image of a_m is the subspace of $\overline{1}_{m+1}NB_{\ge n}\overline{1}_n$ with basis given by the vectors xh ($x \in X(m + 1, n)$, $h \in H(n)$), i.e., the basis vectors with x in the first set on the right hand side of (5.26). We define $b_m : \overline{1}_{m+1}NB_{\ge n}\overline{1}_n \twoheadrightarrow \overline{1}_mNB_{\ge (n+1)}\overline{1}_{n+1} \otimes_{NB_{n+1}} NB_{n+1}\iota_{1,n}^*$ to be the surjective linear map that is 0 on these basis vectors and is defined on the remaining basis vectors xh ($x \in X(m + 1, n)$, $h \in H(n)$) for x in the second set on the right hand side of (5.26) by

$$b_m: \underbrace{\begin{array}{c} & & \\ x \\ & & \\$$

for $x \in X(m, n + 1)$, $1 \le i \le n + 1$ and $r \ge 0$. In view of (5.27) and Lemma 5.4, the image vectors here are a basis for $\bar{1}_m NB_{\ge (n+1)}\bar{1}_{n+1} \otimes_{NB_{n+1}} NB_{n+1}\iota_{1,n}^*$. Now we have that a_m is injective, b_m is surjective and im $a_m = \ker b_m$. Then we define $a := \bigoplus_{m\ge 0} a_m$ and $b := \bigoplus_{m\ge 0} b_m$. This gives the linear maps in the short exact sequence that we are after, and we have checked the exactness.

Next, we show that *a* and *b* are graded bimodule homomorphisms. The map *a* is given equivalently by multiplication $NB_{\ge n}\overline{1}_{n-1} \otimes_{NB_{n-1}} \iota_{1,n-1}^* NB_{n-1} \to NB_{\ge n}\overline{1}_n \iota_{1,n-1}^*, u \otimes v \mapsto u\iota_{1,n-1}(v)$ for any $u \in NB_{\ge n}\overline{1}_{n-1}, v \in NB_{n-1}$. This is obviously a graded bimodule homomorphism. For *b*, we show equivalently that the map $NB_{\ge (n+1)}\overline{1}_{n+1} \otimes_{NB_{n+1}} NB_{n+1}\iota_{1,n}^* \to \operatorname{coker} a$ that is the inverse of the linear map induced by *b* is a graded bimodule homomorphism. This inverse map is defined explicitly by

for any $u \in NB_{\geq (n+1)}\overline{1}_{n+1}$, $v \in NB_{n+1}$, which is a graded bimodule homomorphism

It remains to check (5.25). Take $m \ge 0$. By its definition, $a_m : \overline{1}_m NB_{\ge (n-1)} \overline{1}_{n-1} \otimes_{NB_{n-1}} \iota_{1,n-1}^* NB_n \rightarrow \overline{1}_{m+1}NB_{\ge n}\overline{1}_n$ intertwines left multiplication by $1 \otimes x_1$ with left multiplication by $\phi \star 1_m$. This implies the statement about α , noting that a sign appears since $x : B \Rightarrow B$ corresponds to $-\text{Res}_{\phi \star -}$ in Lemma 5.9.

Similarly, for β , one checks from the definition that $b_m : \overline{1}_{m+1} NB_{\geq n} \overline{1}_n \to \overline{1}_m NB_{\geq (n+1)} \overline{1}_{n+1} \otimes_{NB_{n+1}} NB_{n+1} \iota_{1,n}^*$ intertwines left multiplication by $\phi \star 1_m$ with right multiplication by $1 \otimes x_1$.

Theorem 5.13 implies that the functor *B* preserves modules with Δ -flags and with $\overline{\Delta}$ -flags. The next two theorems makes this more precise. The combinatorics that emerges here matches (2.13) and (2.33).

Theorem 5.14. Consider the short exact sequence

$$0 \longrightarrow K(n) \longrightarrow B\Delta(n) \longrightarrow Q(n) \longrightarrow 0$$

obtained by applying Theorem 5.13 to the NB_n-module $P_n(n)$ $(n \ge 0)$. We denote the endomorphisms $j_!^{n-1}x'_{\Delta(n)}: K(n) \to K(n)$ and $j_!^{n+1}x''_{\Delta(n)}: Q(n) \to Q(n)$ from (5.25) by y and z, respectively.

(1) Assuming that n > 0 so that $K(n) \neq 0$, we have that $K(n) \cong \Delta(n-1)^{\bigoplus q^{n-1}/(1-q^{-2})}$. More precisely, we have that

$$K(n) \cong q^{n-1}\Gamma[y] \otimes_{\Gamma} \Delta(n-1)$$

with the action of NB being on the second tensor factor. This isomorphism may be chosen so that the endomorphism y of K(n) corresponds to multiplication by y on the first tensor factor.

(2) We have that $Q(n) \cong \Delta(n+1)^{\bigoplus [n+1]}$. More precisely, recalling also Lemma 5.5,

$$Q(n) \cong q^n \mathbb{Z}_{n+1}[z]/((z-x_1)\cdots(z-x_{n+1})) \otimes_{\mathbb{Z}_{n+1}} \Delta(n+1)$$

with the action of NB being on the second tensor factor. This isomorphism may be chosen so that the endomorphism z of Q(n) corresponds to multiplication by z on the first tensor factor.

Proof. (1) According to Theorem 5.13, we have that $K(n) = j_!^{n-1}(R_{1,n-1}P_n(n))$, and the endomorphism y of K(n) is obtained by applying the functor $j_!^{n-1}$ to the endomorphism we also denote $y := x'_{P_n(n)}$ of $R_{1,n-1}P_n(n)$ defined by left multiplication by $-x_1$. Therefore, by exactness of $j_!^{n-1}$, it suffices to prove that $R_{1,n-1}P_n(n) \cong q^{n-1}\Gamma[y] \otimes_{\Gamma} P_{n-1}(n-1)$ as a graded NB₁ \otimes_{\Bbbk} NB_{n-1}-module, identifying NB₁ with $\Gamma[y]$ so $y = -x_1$. This follows because

$$P_n(n) = q^{\frac{1}{2}n(n-1)}\Gamma[x_1, x_2, \dots, x_n] \cong q^{n-1}\Gamma[y] \otimes_{\Gamma} q^{\frac{1}{2}(n-1)(n-2)}\Gamma[x_2, \dots, x_n]$$

(2) By Theorem 5.13, we have that $Q(n) = j_!^{n+1}(I_{1,n}P_n(n))$, and the endomorphism z of Q(n) is obtained by applying $j_!^{n+1}$ to the endomorphism also denoted $z := x''_{P_n(n)}$ of $I_{1,n}P_n(n)$ defined by right multiplication by x_1 . Therefore, it suffices to show that

$$I_{1,n}P_n(n) \cong q^n \mathbb{Z}_{n+1}[z]/((z-x_1)\cdots(z-x_{n+1})) \otimes_{\mathbb{Z}_{n+1}} P_{n+1}(n+1)$$

as a graded NB_{n+1} -module, where the action is on the second tensor factor. Using Lemma 5.12, it is easy to check that both sides have the same graded dimensions. Hence, it suffices to construct a degree-preserving surjective homomorphism

$$\bar{\theta}: q^{n} \mathbb{Z}_{n+1}[z] / ((z-x_{1})\cdots(z-x_{n+1})) \otimes_{\mathbb{Z}_{n+1}} P_{n+1}(n+1) \twoheadrightarrow \mathrm{NB}_{n+1}\iota_{1,n}^{*} \otimes_{\mathrm{NB}_{n}} P_{n}(n).$$
(5.28)

Recall that $P_{n+1}(n+1)$ is generated by u_{n+1} subject to the relations $\tau_i u_{n+1} = 0$ for i = 1, ..., n. It is easy to see that $\tau_n \cdots \tau_2 \tau_1 x_1^r \otimes u_n$ is annihilated by all τ_i . Hence, there is a unique graded NB_{n+1}-module homomorphism such that

$$\theta: q^{n} \mathbb{Z}_{n+1}[z] \otimes_{\mathbb{Z}_{n+1}} P_{n+1}(n+1) \to \mathrm{NB}_{n+1}\iota_{1,n}^{*} \otimes_{\mathrm{NB}_{n}} P_{n}(n), \qquad z^{r} \otimes u_{n+1} \mapsto \tau_{n} \cdots \tau_{2}\tau_{1} x_{1}^{r} \otimes u_{n}$$

for any $r \ge 0$. This takes $(z - x_1) \cdots (z - x_{n+1}) \otimes u_{n+1}$ to $\tau_n \cdots \tau_2 \tau_1(x_1 - x_1) \cdots (x_1 - x_{n+1}) \otimes u_n = 0$. Hence, we get induced a graded NB_{n+1}-module homomorphism $\bar{\theta}$ as in (5.28). It remains to show that this is surjective. The module on the right hand side is cyclic with generator $1 \otimes u_n$, so we just need to see that it is in the image of $\bar{\theta}$. To see this, we show by induction on $m = 0, 1, \ldots, n$ that $1 \otimes u_n$ lies in the submodule generated by $\tau_m \cdots \tau_2 \tau_1 x_1^r \otimes u_n \ (0 \le r \le m)$; the m = n case of this gives what we need. The base case m = 0 of the induction is trivial. The induction step follows from the relation

$$\tau_m \cdots \tau_2 \tau_1 x_1^m \otimes u_n = x_{m+1} \tau_m \cdots \tau_2 \tau_1 x_1^{m-1} \otimes u_n + \tau_{m-1} \cdots \tau_2 \tau_1 x_1^{m-1} \otimes u_n,$$
(5.29)

which follows using (5.6).

Theorem 5.15. Consider the short exact sequence

 $0 \longrightarrow \bar{K}(n) \longrightarrow B\bar{\Delta}(n) \longrightarrow \bar{Q}(n) \longrightarrow 0$

obtained by applying Theorem 5.13 to the NB_n-module $L_n(n)$ $(n \ge 0)$. We denote the endomorphisms $j_!^{n-1}x'_{\bar{\Delta}(n)}: \bar{K}(n) \to \bar{K}(n)$ and $j_!^{n+1}x''_{\bar{\Delta}(n)}: \bar{Q}(n) \to \bar{Q}(n)$ from (5.25) by \bar{y} and \bar{z} , respectively.

(1) Assuming that n > 0 so that $\bar{K}(n)$ is non-zero, the module $\bar{K}(n)$ is a $\bar{\Delta}$ -layer that is equal in the Grothendieck group to $[n] [\bar{\Delta}(n-1)]$. More precisely, letting $\bar{K}_i(n)$ be the image of $\bar{y}^i : \bar{K}(n) \to \bar{K}(n)$ defines a graded filtration

$$\bar{K}(n) = \bar{K}_0(n) > \bar{K}_1(n) > \dots > \bar{K}_n(n) = 0$$
such that $\bar{K}_{i-1}(n)/\bar{K}_i(n) \cong q^{n+1-2i}\bar{\Delta}(n-1)$ for $i = 1, \dots, n$. Also
$$\dim_q \operatorname{Hom}_{\operatorname{NB}}(\bar{K}(n), \bar{L}(n-1)) = q^{1-n}.$$
(5.30)

(2) The module $\bar{Q}(n)$ is a $\bar{\Delta}$ -layer equal in the Grothendieck group to $q^n \left[\bar{\Delta}(n+1)\right]/(1-q^{-2})$. More precisely, letting $\bar{Q}_i(n)$ be the image of $\bar{z}^i : \bar{Q}(n) \to \bar{Q}(n)$ defines a graded filtration

$$\bar{Q}(n) = \bar{Q}_0(n) > \bar{Q}_1(n) > \bar{Q}_2(n) > \cdots$$
such that $\bar{Q}_{i-1}(n)/\bar{Q}_i(n) \cong q^{n+2-2i}\bar{\Delta}(n+1)$ for $i \ge 1$. Also
$$\dim_q \operatorname{Hom}_{\operatorname{NB}}(\bar{Q}(n), \bar{L}(n+1)) = q^{-n}.$$
(5.31)

Proof. (1) Let $V := R_{1,n-1}L_n(n)$ and $\bar{y} : V \to V$ be the endomorphism defined by multiplication by $-x_1$. Let $V_i := \operatorname{im} \bar{y}^i$. Like in the proof of the previous theorem, the proof of the first assertion in (1) reduces to showing that $V_{i-1}/V_i \cong q^{n+1-2i}L_{n-1}(n-1)$ as a graded NB_{n-1}-module for $i = 1, \ldots, n$, and that $V_n = 0$. We have that

$$\sum_{r=0}^{n} (-1)^{r} x_{1}^{n-r} e_{r,n} = (x_{1} - x_{1})(x_{1} - x_{2}) \cdots (x_{1} - x_{n}) = 0,$$

where $e_{r,n}$ is the *r*th elementary symmetric polynomial in x_1, \ldots, x_n . Also let $e'_{r,n}$ be the *r*th elementary symmetric polynomial in x_2, \ldots, x_n . Since $e_{r,n}$ acts as 0 on $L_n(n)$ for $r \ge 1$, it follows that x_1^n acts as 0 too. This implies that $V_n = 0$. Now take $1 \le i \le n$. We claim that there is a graded NB_{n-1}-module homomorphism

$$\theta_i: q^{n+1-2i}L_{n-1}(n-1) \to V_{i-1}/V_i, \qquad \bar{u}_{n-1} \mapsto x_1^{i-1}\bar{u}_n + V_i.$$

This follows using the generators and relations for $L_{n-1}(n-1)$ discussed earlier since $\tau_2, \ldots, \tau_{n-1}$ annihilate $x_1^{i-1}\bar{u}_n$, as does $e'_{r,n}$ for each $r \ge 1$. To see the latter assertion, We have that

$$e'_{r} = e_{r,n} - x_{1}e'_{r-1}.$$
(5.32)

The first term on the right-hand side of (5.32) is 0 on $x_1^{i-1}\bar{u}_n$, and the second term maps it to V_i . This proves the claim. Finally, each θ_i is actually an isomorphism. This follows by considering the explicit bases for $L_n(n)$ and $L_{n-1}(n-1)$ from (5.10).

It remains to prove (5.30). We have that

$$\operatorname{Hom}_{\operatorname{NB}}(\bar{K}(n), L(n-1)) = \operatorname{Hom}_{\operatorname{NB}_{\geq (n-1)}} \left(j_{!}^{n-1}(R_{1,n}L_n(n)), L(n-1) \right)$$

$$\cong \operatorname{Hom}_{\operatorname{NB}_{n-1}} \left(R_{1,n}L_n(n), j^{n-1}L(n-1) \right)$$

$$\cong \operatorname{Hom}_{\operatorname{NB}_{n-1}} \left(R_{1,n}L_n(n), L_{n-1}(n-1) \right).$$

Let $f : R_{1,n}L_n(n) \to L_{n-1}(n-1)$ be an NB_{n-1}-module homomorphism. Since $x_1 = (x_1 + \dots + x_n) - (x_2 + \dots + x_n)$ and $x_1 + \dots + x_n$ annihilates $L_n(n)$ as it is central of positive degree, we see that

$$f(x_1^i \bar{u}_n) = (-1)^i f\left((x_2 + \dots + x_n)^i \bar{u}_n\right) = (-1)^i (x_1 + \dots + x_{n-1})^i f(\bar{u}_n).$$

This is 0 for $i \ge 1$. It follows that f sends the submodule V_1 defined in the previous paragraph to 0. Thus, it factors through the quotient $V_0/V_1 \cong q^{n-1}L_{n-1}(n-1)$. Using Schur's Lemma, we deduce that

$$\dim_{q} \operatorname{Hom}_{\operatorname{NB}_{n-1}}(R_{1,n}L_{n}(n), L_{n-1}(n-1)) = \\ \dim_{q} \operatorname{Hom}_{\operatorname{NB}_{n-1}}\left(q^{n-1}L_{n-1}(n-1), L_{n-1}(n-1)\right) = q^{1-n}.$$
(5.33)

(2) Let $W := I_{1,n}L_n(n) = NB_{n+1}\iota_{1,n}^* \otimes_{NB_n} L_n(n)$ and $\bar{z} : W \to W$ be the endomorphism defined by right multiplying the bimodule $NB_{n+1}\iota_{1,n}^*$ by x_1 . Let $W_i := \operatorname{im} \bar{z}^i$. For the first assertion, we need to show that $W_{i-1}/W_i \cong q^{n+2-2i}L_{n+1}(n+1)$ for each $i \ge 1$. The argument using (5.29) explained at the end of the proof of Theorem 5.14 shows that W is generated as an NB_{n+1} -module by the vectors $\tau_n \cdots \tau_2 \tau_1 x_1^j \otimes \bar{u}_n$ for all $j \ge 0$ (actually, one just needs them for $0 \le j \le n$). It follows that W_i is generated by the vectors $\tau_n \cdots \tau_2 \tau_1 x_1^j \otimes \bar{u}_n$ for all $j \ge i$, and W_{i-1}/W_i is a cyclic NB_{n+1} -module generated by $\tau_n \cdots \tau_2 \tau_1 x_1^{i-1} \otimes \bar{u}_n + W_i$. For any $i \ge 1$, we claim that there is a surjective graded NB_{n+1} -module homomorphism

$$\theta_i: q^{2n+2-2i}L_{n+1}(n+1) \twoheadrightarrow W_{i-1}/W_i, \qquad \bar{u}_{n+1} \mapsto \tau_n \cdots \tau_2 \tau_1 x_1^{i-1} \otimes \bar{u}_n + W_i.$$

To see this, it just remains to check the relations: each of τ_1, \ldots, τ_n annihilates $\tau_n \cdots \tau_2 \tau_1 x_1^{i-1} \otimes \bar{u}_n + W_i$ by some easy commutation relations using (5.3) to (5.5), and $e_{r,n+1}$ does too for $r \ge 1$, as may be deduced using (5.32). Finally, one checks graded dimensions using (5.11) and Lemma 5.4 to see that each θ_i must actually be an isomorphism.

Now consider (5.31). This reduces like before to showing that $\dim_q \operatorname{Hom}_{\operatorname{NB}_{n+1}}(I_{1,n}L_n(n), L_{n+1}(n+1)) = q^{-n}$. For this, we note using adjointness and duality that

$$\operatorname{Hom}_{\operatorname{NB}_{n+1}}(I_{1,n}L_n(n), L_{n+1}(n+1)) \cong \operatorname{Hom}_{\operatorname{NB}_{n+1}}(L_n(n), R_{1,n}L_{n+1}(n+1))$$
$$\cong \operatorname{Hom}_{\operatorname{NB}_{n+1}}(R_{1,n}L_{n+1}(n+1), L_n(n)).$$

This is of graded dimension q^{-n} by (5.33).

5.4. Character formulae. The *graded character* of a locally finite-dimensional graded left NB-module *V* is defined by

$$\operatorname{ch} V := \sum_{n \ge 0} (\dim_q 1_n V) \xi^n.$$
(5.34)

In general, this is a power series in the formal variable ξ with coefficients that are themselves formal series of the form $\sum_{n \in \mathbb{Z}} a_n q^n$ for $a_n \in \mathbb{N}$. The graded character of any finitely generated graded module belongs to $\mathbb{Z}((q^{-1}))[\![\xi]\!]$. This is an integral form for the completion $\mathbb{Q}((q^{-1}))[\![\xi]\!]$ of the character ring from subsection 2.5.

We obviously have that

$$\operatorname{ch}(V^{\circledast}) = (\operatorname{ch} V)^{\circledast} \tag{5.35}$$

where the \circledast on the right-hand side is the bar involution on the character ring from (2.37). Also

$$ch(BV) = B(ch V) \tag{5.36}$$

where the action of *B* on $\mathbb{Z}((q^{-1}))[[\xi]]$ on the right-hand side is defined as in (2.35). This identity is easy to see if one views *B* as the functor $\text{Res}_{|\star|}$ as explained in Lemma 5.9.

The irreducible module L(n) has (globally) finite-dimensional weight spaces by general theory, so its graded character actually lies in $\mathbb{Z}[q, q^{-1}][[\xi]]$, as does the formal character of any graded module of finite length. By lowest weight theory, we clearly have that

$$\operatorname{ch} L(n) \equiv [n]! \xi^n \left(\operatorname{mod} \xi^{n+1} \mathbb{Z}[q, q^{-1}] \llbracket \xi \rrbracket \right),$$
(5.37)

which implies that the irreducible characters are linearly independent. They are also invariant under \circledast since L(n) is self-dual. Now recall the following expressions defined/computed in Lemma 2.10 and Theorem 2.12:

$$\operatorname{ch}\bar{\Delta}_{n} = [n]! \sum_{f \ge 0} \frac{T_{f,n}(q^{2})}{(1-q^{-2})^{f}} \xi^{n+2f},$$
(5.38)

$$\operatorname{ch} L_n = [n]! \sum_{m \ge 0} \left(\sum_{\alpha \in \mathcal{P}_t(m \times n)} [\alpha_1 + 1]^2 \cdots [\alpha_m + 1]^2 \right) \xi^{n+2m}.$$
(5.39)

These are the graded characters of proper standard and irreducible modules:

Theorem 5.16. For any $n \in \mathbb{N}$, we have that $\operatorname{ch} \overline{\Delta}(n) = \operatorname{ch} \overline{\Delta}_n$ and $\operatorname{ch} L(n) = \operatorname{ch} L_n$.

Proof. The equality $\operatorname{ch} \overline{\Delta}(n) = \operatorname{ch} \overline{\Delta}_n$ follows on computing the graded character of $\overline{\Delta}(n)$ by counting vectors of each degree in the basis (5.16), using also the combinatorics discussed in Example 5.2. To prove that $\operatorname{ch} L(n) = \operatorname{ch} L_n$, Corollary 4.25 implies that

$$\dim_q \mathbf{1}_n L(n-2m) = \dim_q \operatorname{Hom}_{\operatorname{NB}}(\operatorname{NB}\mathbf{1}_n, L(n-2m))$$
$$= [n-2m]! \sum_{\alpha \in \mathcal{P}_t(m \times (n-2m))} [\alpha_1 + 1]^2 \cdots [\alpha_m + 1]^2.$$

Replacing *n* by n + 2m throughout, this shows that the ξ^{n+2m} -coefficient of ch L(n) is the same as this coefficient in the formula (5.39) for ch L_n .

Using also the identity (2.38), Theorem 5.16 proves Theorem E from the introduction, and Theorem D follows from (2.31).

5.5. Branching rules. We end by describing the effect of the projective functor *B* on the irreducible module L(n). In view of Theorem 5.16 and (5.36), we can reinterpret (2.34) as

ch
$$BL(n) = [n] \operatorname{ch} L(n-1) + \delta_{n \neq t} [n+1] \operatorname{ch} L(n+1).$$
 (5.40)

Since the irreducible characters are linearly independent, this provides complete information about the composition factors of BL(n). In particular, we see that

$$BL(0) \cong \begin{cases} L(1) & \text{if } t = 1\\ 0 & \text{if } t = 0. \end{cases}$$
(5.41)

Note also that $\overline{\Delta}(0) = \Delta(0)$ so, by Theorem 5.14 and the fact from Lemma 5.10 that *B* commutes with duality, we have that

$$B\overline{\Delta}(0) \cong \Delta(1),$$
 $B\nabla(0) \cong \nabla(1).$ (5.42)

In the proof of the next lemma, we appeal to these identities to treat the degenerate case n = 0.

Lemma 5.17. Interpreting L(-1) as 0, the following hold for all $n \ge 0$:

(1) hd
$$B\overline{\Delta}(n) \cong \begin{cases} q^n L(n+1) \oplus q^{n-1} L(n-1) & \text{if } n \equiv t \pmod{2} \\ q^n L(n+1) & \text{if } n \neq t \pmod{2}. \end{cases}$$

$$(2) \operatorname{soc} B\overline{\nabla}(n) \cong \begin{cases} q^{-n}L(n+1) \oplus q^{1-n}L(n-1) & \text{if } n \equiv t \pmod{2} \\ q^{-n}L(n+1) & \text{if } n \not\equiv t \pmod{2} \end{cases}$$

$$(3) \operatorname{hd} BL(n) \cong \begin{cases} q^{n-1}L(n-1) & \text{if } n \equiv t \pmod{2} \\ q^{n}L(n+1) & \text{if } n \not\equiv t \pmod{2} \end{cases}$$

$$(4) \operatorname{soc} BL(n) \cong \begin{cases} q^{1-n}L(n-1) & \text{if } n \equiv t \pmod{2} \\ q^{-n}L(n+1) & \text{if } n \equiv t \pmod{2} \\ q^{-n}L(n+1) & \text{if } n \equiv t \pmod{2} \end{cases}$$

Proof. The case n = 0 follows by the remarks just made. Assume for the rest of the proof that $n \ge 1$. By duality, (1) and (2) are equivalent, as are (3) and (4). By Theorem 5.15, especially (5.30) and (5.31), it is clear that hd $B\overline{\Delta}(n)$ is isomorphic *either* to $q^nL(n+1) \oplus q^{n-1}L(n-1)$ or to $q^nL(n+1)$. The following claim completes the proof of (1) and (2) when $n \not\equiv t \pmod{2}$.

Claim. If $n \neq t \pmod{2}$ then $\operatorname{Hom}_{\operatorname{NB}}(B\overline{\Delta}(n), L(n-1)) = 0$.

To prove this, we let $V := \operatorname{Res}_{|\star|} \overline{\Delta}(n)$, this being isomorphic to $B\overline{\Delta}(n)$ by Lemma 5.9. In this incarnation, the submodule $\overline{K}(n)$ from Theorem 5.15(1) is identified with the submodule K of V generated by the vectors $x_1^{i-1}\overline{v}_n$ for $1 \le i \le n$. This is apparent from the proofs of Theorem 5.13 and Theorem 5.15(1). Any non-zero homomorphism $f: K \to L(n-1)$ resulting from (5.30) is necessarily homogeneous of degree n-1, and must take \overline{v}_n to a *non-zero* vector of the minimal degree $-\frac{1}{2}(n-1)(n-2)$ in $1_{n-1}L(n-1)$. We are trying to show that f does not extend to a homogeneous homomorphism $\widehat{f}: V \to L(n-1)$. Suppose for a contradiction that there is such an extension. Consider the vectors

The vector v is of degree $-\frac{1}{2}n(n-1) - 2n$, so $\hat{f}(v)$ is of degree $-\frac{1}{2}(n-1)(n-2) - 2n$, which is smaller than the degree of any non-zero vector in $1_{n+1}\bar{\Delta}(n-1)$, hence, in $1_{n+1}L(n-1)$. So $\hat{f}(v) = 0$. Since w is obtained from v by acting with some element of NB, we deduce that $\hat{f}(w) = 0$ too. Now we calculate using Corollary 3.5 and (3.17) and the defining relations of $L_n(n)$ to see that

$$w = \underbrace{\begin{array}{c} \cdots \\ \bar{v}_n \end{array}}^n = -\underbrace{\begin{array}{c} \cdots \\ \bar{v}_n \end{array}}^{n-1} = (-1)^n \underbrace{\left[\begin{array}{c} \cdots \\ \bar{v}_n \end{array}\right]}^n = (-1)^n \bar{v}_n$$

The first equality here requires $n \neq t \pmod{2}$ —otherwise, it would be 0. Now we have that $\hat{f}(w) = (-1)^n \hat{f}(\bar{v}_n) = 0$ but $\hat{f}(\bar{v}_n) \neq 0$. This contradiction proves the claim.

Next, consider hd BL(n). For $m \ge 0$, Hom_{NB}(BL(n), L(m)) embeds naturally into both of the spaces Hom_{NB} $(B\bar{\Delta}(n), L(m))$ and Hom_{NB} $(BL(n), \bar{\nabla}(m)) \cong$ Hom_{NB} $(L(n), B\bar{\nabla}(m))$. So the parts of (1)–(2) proved so far imply:

- dim_{*q*} Hom_{NB}(BL(n), L(m)) = 0 if $m \neq n \pm 1$.
- $\dim_q \operatorname{Hom}_{\operatorname{NB}}(BL(n), L(n+1)) = 0 \text{ or } q^{-n}.$
- $\dim_{q} \operatorname{Hom}_{NB}(BL(n), L(n-1)) = 0 \text{ or } q^{1-n}.$

If $n \neq t \pmod{2}$ then $\operatorname{Hom}_{NB}(BL(n), L(n-1)) = 0$ as $\operatorname{Hom}_{NB}(B\overline{\Delta}(n), L(n-1)) = 0$. Since $BL(n) \neq 0$ by (5.40), we must therefore have that $\operatorname{Hom}_{NB}(BL(n), L(n+1)) \neq 0$, so its graded dimension is q^{-n} . Hence, hd $BL(n) \cong q^n L(n+1)$ in this situation. Instead, if $n \equiv t \pmod{2}$ then we have that $\operatorname{Hom}_{NB}(BL(n), L(n+1)) = 0$ as $\operatorname{Hom}_{NB}(L(n), B\overline{\nabla}(n+1)) = 0$. Since $BL(n) \neq 0$, we must therefore have that $\operatorname{Hom}_{NB}(BL(n), L(n-1)) \neq 0$. So it has graded dimension q^{1-n} , and we have proved that hd $BL(n) \cong q^{n-1}L(n-1)$. Now (3) and (4) are proved.

Finally, we complete the proof of (1) and (2) in the remaining case that $n \equiv t \pmod{2}$. We need to show that $\operatorname{Hom}_{NB}(B\overline{\Delta}(n), L(n-1))$ and $\operatorname{Hom}_{NB}(L(n-1), B\overline{\nabla}(n))$ are non-zero. This follows because $\operatorname{Hom}_{NB}(BL(n), L(n-1))$ and $\operatorname{Hom}_{NB}(L(n-1), BL(n))$ are non-zero by (3)–(4).

Theorem 5.18. For $n \ge 0$, the module V := BL(n) is uniserial. To describe its unique composition series, let $x : V \to V$ denote the nilpotent endomorphism $x_{L(n)}$, $V_i := \operatorname{im} x^i$ and $V^i := \ker x^i$.

(1) If $n \equiv t \pmod{2}$ then the unique composition series is

$$V = V_0 = V^n > V_1 = V^{n-1} > V_2 = V^{n-2} > \dots > V^1 > V_n = V^0 = 0$$

with $V_{i-1}/V_i = V^{n+1-i}/V^{n-i} \cong q^{n+1-2i}L(n-1)$ for each i = 1, ..., n.

(2) If $n \neq t \pmod{2}$ then the unique composition series is

$$V = V_0 > V^n > V_1 > V^{n-1} > V_2 > V^{n-2} > \dots > V^1 > V_n > V^0 = 0$$

with $V_{i-1}/V^{n+1-i} \cong q^{n+2-2i}L(n+1)$ for $i = 1, \dots, n+1$ and $V^{n+1-i}/V_i \cong q^{n+1-2i}L(n-1)$ for $i = 1, \dots, n$.

Moreover, $\operatorname{End}_{\operatorname{NB}}(V) = \mathbb{k}[x]/(x^{\beta(n)})$ with $\beta(n) = n$ if $n \equiv t \pmod{2}$ or n+1 if $n \not\equiv t \pmod{2}$.

Proof. Since V is a quotient of $B\overline{\Delta}(n)$, Theorem 5.15 implies that there is a short exact sequence

 $0 \longrightarrow K \longrightarrow V \longrightarrow Q \longrightarrow 0$

where *K* is a quotient of $\overline{K}(n)$ and *Q* is a quotient of $\overline{Q}(n)$. The filtrations of $\overline{K}(n)$ and $\overline{Q}(n)$ described in Theorem 5.15 induce filtrations $K = K_0 \ge K_1 \ge \cdots \ge K_n = 0$ and $Q = Q_0 \ge Q_1 \ge \cdots \ge \cdots$ with K_{i-1}/K_i being a (possibly zero) quotient of $q^{n+1-2i}\overline{\Delta}(n-1)$ for $i = 1, \ldots, n$, and Q_{i-1}/Q_i being a (possibly zero) quotient of $q^{n+2-2i}\overline{\Delta}(n+1)$ for $i \ge 1$. By (5.40), we know that $[V : L(n-1)]_q = [n]$. Since $[Q : L(n-1)]_q = 0$, these composition factors can only come from the heads of K_{i-1}/K_i for $i = 1, \ldots, n$. So we must have that $K_0 > K_1 > \cdots > K_n = 0$. Since $K_i = x^i K$ by definition, this shows that $x^{n-1} \ne 0$.

Now suppose that $n \equiv t \pmod{2}$. Then all composition factors of V are isomorphic (up to degree shift) to L(n-1) by (5.40) again. We deduce that V = K, $V_i = K_i$ and $V_{i-1}/V_i \cong q^{n+1-2i}L(n-1)$ for each *i*. Thus, we have constructed the filtration described in (1). We also know from Lemma 5.17(3) that hd $V \cong q^{n-1}L(n-1)$ so that dim End_{NB} $(V) \leq [V : L(n-1)] = n$. As $x^{n-1} \neq 0$, the endomorphisms $1, x, \ldots, x^{n-1}$ are linearly independent. So we have that $\text{End}_{\text{NB}}(V) = \frac{k[x]}{(x^n)}$ as at the end of the statement of the lemma. Moreover, V is uniserial because V, hence, each $V_i = x^i V$ has irreducible head, i.e., V_i is the unique maximal submodule rad V_{i-1} of V_{i-1} for $i = 1, \ldots, n$.

It remains to treat the case $n \neq t \pmod{2}$. Since hd $V \cong q^n L(n+1)$ and $[V : L(n+1)]_q = [n+1]$, we have that dim $\operatorname{End}_{NB}(V) \leq [V : L(n+1)] = n+1$. We know already that $x^{n-1} \neq 0$. We cannot have $x^n = 0$ as this would contradict Lemma 5.11. So the nilpotency degree of x is exactly n+1, and $\operatorname{End}_{NB}(V) = \lfloor k[x]/(x^{n+1})$ as required for the final statement of the theorem. It follows that $V = V_0 > V_1 > \cdots > V_n > V_{n+1} = 0$. Since hd $V \cong q^n L(n+1)$, each V_i has irreducible head $q^{n-2i}L(n+1)$. Since soc $V \cong q^{-n}L(n+1)$ we have that $V_n = \operatorname{im} x^n = \operatorname{soc} V$. This is also the image of the restriction of x^{n+1-i} to V_{i-1} , and $x^{n+1-i}V_i = 0$, so x^{n+1-i} induces a homomorphism $V_{i-1}/V_i \twoheadrightarrow q^{n+2-2i}L(n+1)$. It follows that $V^{n+1-i} = \operatorname{rad} V_{i-1}$. We have now shown that

$$V = V_0 > V^n \ge V_1 \ge V^{n-1} > V_2 \ge \dots > V^1 \ge V_n > V^0 = 0$$

with $V_{i-1}/V^{n+1-i} \cong q^{n+2-2i}L(n+2)$ for i = 1, ..., n+1. We claim that V^{n+1-i}/V_i has $q^{n+1-2i}L(n-1)$ as a composition factor. This follows because hd $K_{i-1} \cong q^{n+1-2i}L(n-1)$, $x^{n+1-i}K_{i-1} = 0$ and $x^{n-i}K_{i-1} \neq 0$, so V^{n+1-i}/V^{n-i} has $q^{n+1-2i}L(n-1)$ as a composition factor. Combined with the information from (5.40), the claim implies that $V^{n+1-i}/V_i \cong q^{n+1-2i}L(n-1)$, and we have constructed the filtration

in (2). Finally, we observe that V is uniserial because V_{i-1} has irreducible head $q^{n+2-2i}L(n+1)$ for i = 1, ..., n + 1, hence, V_{i-1}/V_i is uniserial of length 2 for i = 1, ..., n or length 1 for i = n + 1.

References

- [Bru23] Jonathan Brundan. Graded triangular bases. arXiv:2305.05122, 2023.
- [BS18] Jonathan Brundan and Catharina Stroppel. Semi-infinite highest weight categories. *Mem. Amer. Math. Soc.*, to appear, arXiv:1808.08022, 2018.
- [BSW20] Jonathan Brundan, Alistair Savage, and Ben Webster. Heisenberg and Kac-Moody categorification. *Selecta Math.* (*N.S.*), 26:Paper No. 74, 62, 2020.
- [BSWW18] Huanchen Bao, Peng Shan, Weiqiang Wang, and Ben Webster. Categorification of quantum symmetric pairs I. *Quantum Topol.*, 9:643–714, 2018.
- [BV22] Jonathan Brundan and Max Vargas. A new approach to the representation theory of the partition category. J. *Algebra*, 601:198–279, 2022.
- [BW18a] Huanchen Bao and Weiqiang Wang. Canonical bases arising from quantum symmetric pairs. *Invent. Math.*, 213(3):1099–1177, 2018.
- [BW18b] Huanchen Bao and Weiqiang Wang. A new approach to Kazhdan-Lusztig theory of type *B* via quantum symmetric pairs. *Astérisque*, 402:vii+134, 2018.
- [BW18c] Collin Berman and Weiqiang Wang. Formulae of *i*-divided powers in $U_q(\mathfrak{sl}_2)$. J. Pure Appl. Algebra, 222(9):2667–2702, 2018.
- [BWW23] Jonathan Brundan, Ben Webster, and Weiqiang Wang. The nil-Brauer category. arXiv:2305.03876, 2023.
- [KK12] Seok-Jin Kang and Masaki Kashiwara. Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. *Invent. Math.*, 190(3):699–742, 2012.
- [KL10] Mikhail Khovanov and Aaron D. Lauda. A categorification of quantum sl(n). *Quantum Topol.*, 1:1–92, 2010.
- [KLMS12] Mikhail Khovanov, Aaron D. Lauda, Marco Mackaay, and Marko Stošić. Extended graphical calculus for categorified quantum sl(2). *Mem. Amer. Math. Soc.*, 219(1029):vi+87, 2012.
- [Lau10] Aaron D. Lauda. A categorification of quantum sl(2). Adv. Math., 225(6):3327–3424, 2010.
- [Let99] Gail Letzter. Symmetric pairs for quantized enveloping algebras. J. Algebra, 220(2):729–767, 1999.
- [Lus10] George Lusztig. *Introduction to Quantum Groups*. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition.
- [LW18] Yiqiang Li and Weiqiang Wang. Positivity vs negativity of canonical bases. *Bull. Inst. Math. Acad. Sin. (N.S.)*, 13(2):143–198, 2018.
- [Mac15] I. G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, second edition, 2015.
- [Rio75] John Riordan. The distribution of crossings of chords joining pairs of 2*n* points on a circle. *Math. Comp.*, 29:215–222, 1975.
- [Rou08] Raphaël Rouquier. 2-Kac-Moody algebras. arXiv:0812.5023, 2008.
- [Wan21] Weiqiang Wang. PBW bases for modified quantum groups. arXiv:2109.00139, 2021.
- [Wat23] Hideya Watanabe. Stability of *i*-canonical bases of irreducible finite type of real rank one. *Represent. Theory*, 27(129), 2023.

(J.B.) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR, USA *Email address*: brundan@uoregon.edu

(W.W.) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VA, USA *Email address*: ww9c@virginia.edu

(B.W.) DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO & PERIMETER INSTITUTE FOR THEORETICAL PHYSICS, WATERLOO, ON, CANADA

Email address: ben.webster@uwaterloo.ca