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NIL-BRAUER CATEGORIFIES THE SPLIT :-QUANTUM GROUP OF RANK ONE

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

ABsTRACT. We prove that the Grothendieck ring of the monoidal category of finitely generated graded
projective modules for the nil-Brauer category is isomorphic to an integral form of the split ;-quantum
group of rank one. Under this isomorphism, the indecomposable graded projective modules correspond
to the z-canonical basis. We also introduce a new PBW basis for the -quantum group and show that it
is categorified by standard modules for the nil-Brauer category. Finally, we derive character formulae for
irreducible graded modules and deduce various branching rules.
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1. INTRODUCTION

In [Let99], Letzter introduced what we now call the i-quantum groups associated to symmetric pairs.
These can be viewed as a generalization of Drinfeld-Jimbo quantum groups—the latter are the i-quantum
groups arising from diagonal symmetric pairs. Lusztig’s canonical bases for quantum groups, with their
favorable positivity properties, provided one source of motivation for the categorification of quantum
groups via the Kac-Moody 2-categories of Khovanov, Lauda and Rouquier [KLL10, Rou08]. A theory
of i-canonical bases for i-quantum groups was developed in [BW18a, BW18b]. In special cases, these
again have positive structure constants; see [LW 18] which treats the quasi-split types AIIl. Therefore, it
is reasonable to hope that there should be a categorification of i-quantum groups.

In rank 1, there are three quasi-split ;-quantum groups. First, there is the usual U,(sl,), which was
categorified by Lauda and Rouquier in [Laul0, Rou08]. The second, arising from the Satake diagram of
A, with non-trivial diagram involution, was categorified in [BSWW 18]. In this article, we explain how
to categorify the remaining case, the split ;-quantum group U;(slz) corresponding to the symmetric pair
(SL,, SOy). This is a basic building block for general i-quantum groups, and it is expected to play a key
role in the categorification of quasi-split --quantum groups of higher rank.

Our categorification of Uﬁl(slz) arises from the nil-Brauer category NB, introduced recently in
[BWW23]. This is a strict graded k-linear monoidal category defined over a field k of characteristic
different from 2. It has one self-dual generating object B and four generating morphisms represented
diagrammatically by + (degree 2), >< (degree —2), [\ (degree 0), and | ) (degree 0), subject to
some natural relations recorded in Definition 3.1. The parameter ¢ gives the value of () : 1 — 1, the
only admissible choices being t = O or = 1.

To formulate the main results precisely, rather than working in terms of idempotents, as is often
done in the categorification literature, we use the language of modules. By a graded NB,-module, we
mean a graded k-linear functor from AB, to graded vector spaces. The endofunctor of A‘B, defined by
tensoring with its generating object extends to an exact endofunctor, also denoted B, of the category of
graded A\B,-modules. Let [n] := ¢"~! + ¢"3 + --- + ¢' 7" be the quantum integer, and Vel denote
the corresponding direct sum of degree-shifted copies of a graded module V.

Theorem A. There are unique (up to isomorphism) indecomposable projective graded NB,-modules
P(n) (n = 0) such that P(0) is the projective graded module associated to the identity endomorphism
of the unit object, and

_f Pn+ 1)@t @ p(n— 1) jfp =t (mod?2)
BP(n) = { P(n + 1)®+1] ifn # t (mod2).

These modules give a full set of indecomposable projective graded NB,-modules (up to isomorphism
and grading shift).

The proof of Theorem A is similar in spirit to Lauda’s proof of the analogous result for the 2-category
U(sly) obtained in [LaulO]. It involves the explicit construction of appropriate homogeneous primitive
idempotents. These resemble primitive idempotents in the nil-Hecke algebra familiar from Schubert cal-
culus, but they are considerably more subtle; see Theorem 4.21 and Corollary 4.24. Another important
ingredient needed to establish the indecomposability of P(n) is the identification of the Cartan form on
the Grothendieck ring of A‘B, with an explicitly defined sesquilinear form on the :-quantum group. This
is discussed further after the statement of the next theorem, which is our main categorification result.

LetU' := U;(slz) be the split i-quantum group of rank 1. As a Q(g)-algebra, this is simply a polyno-
mial algebra on one generator B, but it has a non-trivial Z[g, g~']-form U’ associated to the parameter
t € {0,1}. As a Z[q, g~ ']-module, zU! is free with a distinguished basis given by the i-canonical basis
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P, (n = 0) that was originally defined in [BW18b] in terms of the finite-dimensional irreducible sl,-
modules of highest weight 1 = ¢ (mod 2). Let Ko(A(B,) be the split Grothendieck ring of the monoidal
category of finitely generated projective graded AB,-modules. In fact, this is a Z[g, g~ ']-algebra, with
the action of ¢ arising from the grading shift functor. The recursion for the indecomposable projective
graded modules in Theorem A exactly matches the recursion for the i-canonical basis P, (n = 0) of 7U:
calculated in [BW18c]. This coincidence is the essence of our next main theorem; see Theorem 4.23:

Theorem B. There is a unique Z[q, g~ ']-algebra isomorphism
Ky © K()(?\@,) :> ZU;

intertwining the endomorphism of Ko(NB,) induced by the endofunctor B with the endomorphism of
zU;, defined by multiplication by the generator B of the 1-quantum group. For any n = 0, k; maps the
isomorphism class of the indecomposable projective module P(n) to the i-canonical basis element P,.

Under the isomorphism of Theorem B, the non-degenerate symmetric bilinear form (-,-)" on zU}
constructed in [BW18a] is equal (after twisting the first argument with the bar involution to make it
sesquilinear in the appropriate sense, and some rescaling) to the Cartan form on Ko(AB,). The proof of
this depends ultimately on the basis theorem for A‘B, from [BWW23] together with some combinatorics
of chord diagrams which is of independent interest; see Lemma 2.4, Corollary 2.6, and Theorem 3.7.

The remaining results in the article rely on the observation that the category of graded AB,-modules
has some useful additional structure: it is an affine lowest weight category in a suitably generalized sense.
In particular, there are certain graded AB,-modules A(n) and A(n), the standard and proper standard
modules, equipped with explicit bases. The proper standard module A(n) has a unique irreducible
quotient denoted L(n), the modules L(n) (n > 0) give a complete set of graded irreducible A‘B,-modules
up to isomorphism and grading shift, and there is a graded analog of the usual BGG reciprocity; see
Theorem 5.6. These assertions follow from an application of the general machinery of graded triangular
bases developed in [Bru23]—the nil-Brauer category is a perfect example for this theory.

The minimal standard modules A(0) and A(1) are projective and therefore coincide with P(0) and
P(1), respectively, but after that the two families of modules diverge. In fact, at the decategorified level,
the standard modules correspond to a new orthogonal basis for the i-quantum group, the PBW basis
A, (n = 0) introduced in section 2. The PBW basis elements satisfy the following recurrence relation:

n—1

Ao = 1, BA, = [n+ 1]Ans1 + ——
I—gq

An— 1 ’
interpreting A_; as 0. The assertion that the standard module A(n) categorifies A, is justified by the
next theorem, which describes the effect of the endofunctor B on standard modules:

Theorem C. For n > 0, there is a short exact sequence of graded NB,-modules

0— Pq" %A —1) — BA(n) — A(n + 1)@+ 0,

i=0

(In the first term, q denotes the downward grading shift functor, and this term should be interpreted as
Oincasen =0.)

An interesting feature of Theorem C is the presence of the infinite direct sum in the first term of
the short exact sequence—the finitely generated AB,-modules BA(n) (n > 0) are not Noetherian. This
corresponds to the fact that the PBW basis A, (n > 0) is a basis for U' over Q(g), but not for zU} over
Z[q,q']. Theorem C is proved in Theorem 5.14 in the main body of the text. There is also a parallel
result for proper standard modules, which categorify the dual PBW basis A, (n = 0); see Theorem 5.15.
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For closed formulae for the transition matrices between the bases P, (m > 0) and A, (n > 0), see
Theorem 2.7. Translating to representation theory and using BGG reciprocity, we obtain the following
explicit formula for graded decomposition numbers:

Theorem D. The irreducible subquotients of the proper standard module A(n) (n > 0) are isomorphic
(up to grading shifts) to L(n 4+ 2m) for m = 0 with

~ q—m(2m—1) / (1 —q- )(1 _ q—g) ce (] — q—4m) ifn=t (mod2)
[A(n) : L(n + 2m)]q = { g—m@m+1) J(=gH(1 =g ¥ (1—g*) ifn#t(mod2).

To formulate one more such combinatorial result, for a finitely generated graded AB,-module V, its
graded character is the formal series

chV = dy(V)e" e N(g " )I£]

n=0

where & is a formal variable and d,,(V) € N((g~!)) is the graded dimension of the graded vector space
obtained by evaluating the functor V on the object B*".

Theorem E. For n > 0, we have that

chL(n) = [n]'¢" [[ (-[k?&) eNg.q I
I<ksn+1
k=t (mod 2)

Finally, we also prove branching rules which give complete information about the structure of the
modules BL(n) (n = 0); see Theorem 5.18. Except in the case that n = ¢t = 0 (when it is zero),
these branching rules show that BL(n) is a self-dual uniserial module with irreducible socle and cosocle
isomorphic (up to appropriate grading shifts) to L(n—1) if n = ¢ (mod 2) or to L(n+1) if n # t (mod 2).
Moreover,

Endyg (BL(n)) = k[x]/(+*")
where B(n) = nif n =t (mod2) or n + 1 if n # r (mod 2). The combinatorics arising here is the same
as the combinatorics of the underlying i-crystal basis described in [Wat23, Ex. 4.1.4].

General conventions. Throughout the article, r € {0, 1} will be a fixed parameter. Given also n € N,
we use the shorthand 6,—, to denote 1 if n = 7 (mod2) or 0 otherwise. Similarly, 6, denotes 1 if
n # t (mod2) or 0 otherwise. We write S, for the symmetric group on n letters. Let s; € S, be the
simple transposition (i i+1), let £ : S, — N be the associated length function, and let w,, be the longest
element of S,. We denote the category of graded vector spaces over the field k by g%%ec, using ¢ for the
downward grading shift functor. So, for a graded vector space V = P ., Vy, its grading shift ¢V is the
same underlying vector space with new grading defined via (¢V), := V44 for each d € Z. For a graded
vector space V = @, Va4 with finite-dimensional graded pieces, we define its graded dimension to be

dim, V := ) (dim V,)g . (1.1)
deZ

For any formal series f = .., asq® with each a, € N, we write VO/ for @, ¢/ V4.

2. BASES OF THE SPLIT 1-QUANTUM GROUP OF RANK ONE

In this section, we recall some basic facts about the split -quantum group of rank 1 following
[BW18b, BW18c]. Then we introduce a new PBW-type basis, and derive combinatorial formulae for
various transition matrices, including between the PBW basis and the i-canonical basis. For all of this,

we work over the field Q(g) for an indeterminate g. We write [n] for the quantum integer & qq . [n]!
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for the quantum factorial, and [?] := [n][n — 1] - - [n — r + 1]/[r]!. The word anti-linear always means
with respect to the bar involution — : Q(q) — Q(g) that is the field automorphism taking g to g~ '. We
denote the limit of a convergent sequence (f3)=0 in Q((g~ 1)) by limy_« fi.

2.1. Quantum groups. Let U be the usual quantum group U,(sl), the Q(g)-algebra with generators
E,F,K,K~! satisfying the relations

K—K!

q—q "

Our general conventions are the same as in [Lus10], except that we write g in place of Lusztig’s v. The

subalgebras of U generated by F and by E are denoted U~ and U™, respectively, and the divided powers
are E® := E"/[n]!, F") := F"/[n]!. There are various useful symmetries:

KEK™' = §*E, KFK~' = ¢ ?F, [E,F] =

e Lety : U — U be the usual bar involution on U, that is, the anti-linear algebra involution which
fixes E and F and takes K to K.
e Letp : U — U be the linear algebra anti-involution such that p(K) = K, p(E) = ¢~ 'FK,
p(F) = gK~'E.
Let (-,-)” : U~ x U~ — Q(g) be Lusztig’s form on f from [Lus10, Sec. 1.2.5] transported through the
isomorphism between f and U™. Thus, it is the non-degenerate symmetric bilinear form such that
5m,n

(I=g2) (1 =g ) (1 =g

(Ftm, FM) ™ = 2.1)
form,n = 0.

We denote the irreducible U-module of highest weight 1 € N by V(). This is generated by a vector
14 such that En, = 0 and K5, = ¢'n,. There is an anti-linear involution ; : V(1) — V(Q) such that
Ya(ma) = maand Ya(uv) = Y(u)y(v) foru € U,v € V(A). Also let (-,-), : V() x V(1) — Q(gq) be
the unique non-degenerate symmetric bilinear form on V(1) such that

(ma,m)a =1, (uvi,v2)a = (vi,p(u)v2)a (2.2)

for u € U,vi,v; € V(2). The form (-,-)~ on U™ can be recovered from these forms on the modules
V(Q) since we have that

Oy2)” = Ali_)ffolo (vim.y2m) (2.3)

for all y;,y, € U™ by a special case of [Lus10, Prop. 19.3.7]. The vectors F(")W (0 < n < Q) give
the canonical basis for V(). In fact, they give a basis for an integral form 7V (1) over Z[g,g~']. The
anti-involution y, restricts to an anti-linear involution of zV(1), and the values of the form (-,-), on
elements of 7V (1) lie in Z[q, ¢~ '].

Let R: U~ — U™ be the linear map defined by

n—1p(n—1)
R(1) =0, R(FMy=94_"___ 2.4
(1) (F") === (24)
for n > 1. This map arises naturally as the adjoint of left multiplication by F: we have that
(Fy1,y2)” = (1, R(»2))~ (2.5)

for all y;,y» € U~. Equivalently, R(y) = r(y)/(1 — ¢~2) where r is the map defined in either the
first or the second paragraph of [Lus10, Sec. 1.2.13] (the two maps coincide in rank one). So [Lus10,
Prop. 3.1.6(b)], or an easy induction exercise using (2.4), gives that

Ey—yE = q 'KR(y) — ¢ '"R()K™! (2.6)
forany ye U™.
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For the purposes of categorification, one usually replaces U by its modified form U, whichis a locally
unital algebra U= @ Apez | ﬂUl 2 with a distinguished system 1,(2 € Z) of mutually orthogonal idem-
potents replacing the diagonal generators K, K~!. The relationship between U and U can be expressed
either by saying that Uisa (U, U)-bimodule, or that U embeds into the completion of U consisting of
matrices (a#, 1) Auez € I1 Apez 1 #Ul 2 such that there are only finitely many non-zero entries in each row

and column. The element K € U corresponds to the diagonal matrix with g1, as its Ath diagonal entry,
while E, F € U are identified with the matrices whose only non-zero entries are 1,,,E1, (1 € Z) and
1,F 1,45 (A € Z), respectively.

2.2. The i-quantum group and its PBW basis. The i-quantum group U'(sl,) is the subalgebra U’ of
U generated by

B:=F +p(F)=F +qgK'E. 2.7
As an algebra, U’ is uninteresting since it is the free Q(g)-algebra on B. However it is an interesting
coideal subalgebra of U for an appropriate choice of comultiplication.

The symmetry p of U restricts to a linear anti-involution p : U" — U" with p(B) = B. Also, the bar
involution ' : U" — U is the unique anti-linear involution such that ¢/ (B) = B. We stress a key point:
Y is not the restriction of the bar involution ¢ on U, indeed, the latter does not leave U’ invariant. For
A € N, there is a unique anti-linear involution ¢, : V(1) — V(1) such that

() = m. Y (uv) = ' )y, (v) (2.8)

forallu € U',v € V(2); see [BW18b, Cor. 3.11] and [BW18a, Prop. 5.1]. Also, by [BW18a, Lem. 6.25],
there is a symmetric bilinear form (-, -)" : U" x U" — Q(g) such that

(ur,up)' = lim (urma, uamy) (2.9)
for all uy, u; € U'. From (2.2), we get that
(Bul, Ltz)l = (ul,Bug)’ (2.10)

for any u;,u; € U'. In [BW18a, Th. 6.27], it is shown that (-, )" is non-degenerate. This also follows
from the following theorem together with the non-degeneracy of the form (-,-)~ on U™.

Theorem 2.1. There is a unique isomorphism of Q(q)-vector spaces j : U' = U~ such that
Jim (g, yma) , = (iw), )~ 2.11)
forall u € U' and y € U~. Moreover, the following hold for u,u;,u; € U':

(1) j(Bu) = Fj(u) + R(j(u)).

(2) (ur,uz)' = (j(w), j(u2))
Proof. Uniqueness of a linear map j satisfying (2.11) follows easily from the non-degeneracy of the
form (-,-)~. To prove existence, we can assume that u is a power of B and proceed by induction on
degree. Let j(1) := 1, which clearly satisfies (2.11) for all y € U~. Now assume for some u € U* that
J(u) satisfying (2.11) for all y has been constructed inductively, and consider j(Bu). Using (2.2) and the
identity (2.6) multiplied on the left by gK !, we have that

: @2 .. . -

Tim (Buy, yma) ;= lim (una, Byna), = lim (una, Fyna + K~ Eyn)
2.6) .. _ _

(:)}520 (sna. Fyna + R(y)ma — K~ R()K™'ma) ,

= lim (una, Fyna + ROYm) , = (70). Fy + RO)™ = (Filw) + R(w)).y)"
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So j(Bu) := Fj(u) + R(j(u)) satisfies (2.11). This proves the existence of a linear map j satisfying
(2.11), and at the same time we have established (1). To see that j is a linear isomorphism, it follows
easily from (1) that j(B") is a monic polynomial of degree n in F. Since U’ and U™ are free on B and
on F, respectively, it is now clear that j is an isomorphism.

It remains to prove (2). By the definition (2.9) and (2.11), we need to show that

lim (i, j(u)m), = lim (s om)

for all u;,u; € U'. Note that the limit on the left hand side exists by what we have proved so far. We
assume that u; is a power of B and proceed by induction on its degree. The base case u, = 1 is clear.
Now assume the result has been proved for all u; and some u,, and consider Bu,. Using (1), we have
that

uin, Fj(uz)na + R(j(u2))ma) ,
wina. Fj(uz)na + R(j(uz))ma — K 'R(j(u2))K~"'ma)

Jim (w1, j(Buz)my) | = Jim (
= hm (

2.6) ,. . .

(=)Algn (w1ma, Fj(uz)na + gK ' Ej(u2)) , = lim (urna, Bj(uz)m,) ,

2.2) .. . 22 ..

= Alim (Buina, j(u2)m) , Algrolo (Buina, uoma) | = ﬁlir{}o (u1na, Buamy) .
O

Applying Theorem 2.1, we let A,, € U’ be the unique element such that j(A,) = F ("), The elements
A, (n = 0) give a basis for U’, which we call the PBW basis. From Theorem 2.1(2) and (2.1), we get

that
5m,n

Ams An)' =

(&) = =T =g =0
for m,n > 0. Thus, the PBW basis is an orthogonal basis. The following recurrence relation is easily
deduced using Theorem 2.1(1) and (2.4):

(2.12)

n—1

Ao =1, BA, = [n+ 1]Auss + J]—An,l (2.13)

-2

for n > 0, interpreting A_; as 0.

Remark 2.2. The PBW basis for U’ with the orthogonality property (2.12) is an r-analogue of the (or-
thogonal) PBW bases for modified quantum groups constructed in [Wan21], and the linear isomorphism
in Theorem 2.1 is an i-analogue of the linear isomorphism Ut @ U™ = Ulg in [Wan21, Theorem 2.8].
The PBW basis construction described here can be generalized to :-quantum groups of higher rank.

2.3. Combinatorics of chord diagrams. Next, we investigate the rational functions wy,,(q) € Q(q)
defined from the expansion

= Z Winn (@) A (2.14)
n=0

One reason to be interested in these is that

(Bn,Bm)z (Zé()) (I,Bern)z (2;3) (AOa Bm+n)z (2;2) Wern,O(Q) (215)
for any m,n = 0.
Lemma 2.3. For 0 < n < m, we have that
n
Win—1n+1
woold) = 1, Wina(g) = [l 1 (g) + Lottt ()

1—qg2
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interpreting Wy ,(q) as 0 ifn < 0orn > m.

Proof. Applying j to B" = 3" wn.(q)A, gives that j(B") = S wua(q)F™. Thus, wy,.(q)
is the F"-coefficient of j(B™). Suppose that m > 1. By Theorem 2.1(1), we have that j(B™) =
Fj(B™ ') + R(j(B"')). Then we observe using (2.4) that the right hand side equals

m—2 n
Wim—1,n n
[l 1-1 (@) F™ + ql_l—’q_*;@F( ),

Ms

n=1 n=0

From this, we see that the coefficient w,,,,(q) of F") in j(B™) satisfies the recurrence relation in the
statement of the lemma. m]

We are going to give an elementary combinatorial interpretation of w;, ,(g) in terms of certain chord
diagrams with n chords tethered to a fixed basepoint and f = (m — n)/2 free chords. In lieu of a formal
definition, we just give an example. The following is a chord diagram with n = 3 tethered chords, f = 4

free chords, and ¢ = 11 crossings:
< g :@ (2.16)

The three tethered chords are the ones attached to the basepoint. We have also numbered the free
endpoints of the tethered chords in order going clockwise around the circle. Here is one more example

withn=4,f =3 andc = 5:
<% (2.17)

In a chord diagram with f free and n tethered chords, the maximum possible number of crossings is
nf + % f(f = 1). Counting chord diagrams up to planar isotopy fixing the basepoint, let N(f,n,c) be
the number of chord diagrams with f free chords, n tethered chords, and ¢ crossings, and

nf+3f(f=1)
Tra(q):= Y,  N(finc)g" € Nlg] (2.18)

c=0

be the resulting generating function. We obviously have that Ty ,(g) = 1, and T} ,_(q) is equal to the
classical g-integer {n} = 1 + g+ ¢* + --- + ¢"~!. Other examples: T>0(q) = 2 + ¢q and T30(q) =
5+ 6q + 3¢*> + ¢°. Note also that Ty, (1) = (2f;L") (2f — 1)!! (here, n!! denotes the double factorial
defined recursively by n!! = n- (n —2)!!and 0!! = (—1)!! = 1).

Lemma 2.4. The generating function T,(q) satisfies the recurrence relation

To,o =1, Tf,n(q) = Tf,n,l(q) + {n + l}Tffl,nJrl(q), (2.19)
interpreting Ty, r(q) as 0 if n or f is negative.
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Proof. 1t is clear that Ty o(q) = 1. Now suppose that n > 0. Let C(f,n) be the set of chord diagrams
with f free and n tethered chords. We are going to construct a set partition

n
C(fin) = C(fin) u | [Cilfn).
i=0
Take a chord diagram D € C(f,n). Consider the chord x in D which has the nearest free endpoint to
the basepoint measured in a clockwise direction around the circumference of the circle. There are two
cases:
e If x is a tethered chord then we put D into the set C(f,n) and let (D) € C(f,n— 1) be the chord
diagram obtained from d by removing x. Note that (D) has the same number of crossings as
D. An example of this situation is given by (2.17); for this §(D) is

O

e Otherwise, x is a free chord. Its furthest endpoint from the basepoint lies between the free
endpoints of the ith and (i + 1)th tethered chords for some 0 < i < n. We put D into the set
Ci(f,n) and let 6;(D) € C(f — 1,n + 1) be the chord diagram obtained from D by replacing x
by a tethered chord y with the same furthest endpoint as x. Note that 6;(D) has i fewer crossings
than D since y crosses i fewer tethered chords compared to x. An example is given by (2.16);
for this, we have that i = 2 and 6,(D) is

@

We have now defined the partition of C(f,n). It is also clear that 6 : C(f,n) = C(f,n — 1) and all
6; : Ci(f,n) > C(f —1,n+ 1) are bijections. The lemma follows by computing the generating function

Tt (q) using this partition to see that T7,,(q) = Tra—1(q) + >0 ¢ Tr—1.+1(q)- m
Theorem 2.5. For 0 < n < m withn = m (mod 2), we have that
(]! T 1 (q%)

Wanlg) = { (=g 2)f Um=n+2fforsome el
0

otherwise.

Proof. 1t is clear from Lemma 2.3 that wy, ,(¢) = 0if n # m (mod 2). Also using Lemma 2.3 it follows
that the rational function 7'z, (g) defined from

Tra(q®) := (1 = ¢ 2 Warapa(q)/[n]!

satisfies the recurrence relation in Lemma 2.4. Hence, Tf,n(qz) = T,(q?) and the result follows. O
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Corollary 2.6. The bilinear form (-,-)" on U' satisfies

Trold®) . _
(Bn’ Bm)l — (l—qu)f l_fm + n = 2ff0r some f € N
0 otherwise.

Proof. This follows from the theorem using also (2.15). m|

For example, Corollary 2.6 implies the following:

2+¢°

1 —q% (T—¢72)7
The generating function 7Ts((q) for ordinary chord diagrams has been studied classically; e.g., see

[Rio75]. Our more general tethered chord diagrams will show up again in a slightly different guise later
in the article; see Example 5.2.

(B,B)' = (1,B%)' = (B*,B*)' = (B,B’) = (1,B*)' = (2.20)

2.4. The i-canonical basis. So far we have not used the parameter ¢ € {0, 1}, but all subsequent results
depend on it. To avoid notational confusion, it is helpful to appeal to the construction from [BW18b,
Chap. 4] and [BW18a, Sec. 3.7], which shows that U’ has a modified form Ut = Utly @ Utl;. We
will denote the summands here simply by Uj, and U] since they are actually unital algebras. In fact, the

map U’ — U;, u — ul, is an algebra isomorphism. We use this to transport all of the results about U’
established so far to Uj, and work only with the latter from now on. In particular, U} is freely generated
by B = Bl,, it has the symmetries p and y' fixing B as before, it possesses a bilinear form (-, -)" as
in (2.9), there is a linear isomorphism j : U. = U~ as in Theorem 2.1, and we have the PBW basis
A, (n = 0) for U} satisfying (2.13). However, one should have in mind that U} is a subalgebra not of
the original quantum group U but rather of the summand of the completion of U consisting of matrices
(@ )urez € [ Laez 1,U1, such that a, 4 = 0if 4,4 % ¢ (mod2). This means that U! should only be
allowed to act on U-modules whose weights satisfy A = ¢ (mod 2). For example, the definition (2.9) of
the form (-, -)* on U} should really be written now as

(ur,u)' = /IILHQO (uimp, uam) (2.21)
A=t (mod?2)

for all uy, up € U;.

By the integrality properties from [BW18b, Th. 4.18] and [BW18a, Th. 5.3], the symmetry ¢/, re-
stricts to an anti-linear involution on 7V (1). Applying [BW18b, Th. 4.20] and [BW18a, Th. 5.7], we
define the 1-canonical basis for V(2) to be the unique Z[g, ¢~ ']-basis P, 1 (0 < n < ) for zV(2) such
that each P, is /,-invariant and

D
Py — Fn, e Z g 'Zlg ' TF"na.
m=0

As the notation suggests, for 4 = ¢ (mod 2), the vector P, 17, is obtained by applying an element P, € U}
to n7;. In fact, there is unique element P, € U} (n > 0) such that P, 1, is the i-canonical basis element
of L(A) for all 0 < n < A with A = ¢ (mod 2); see [BW18b, Chap. 4] and [BW18¢, Th. 2.10, Th. 3.6].
The elements P, (n > 0) thus defined give a remarkable basis for U again called the i-canonical basis.

Closed formulae for the ;-canonical basis elements were worked out in [BW 18¢] (see also [BW18b]):
for n > 0, we have that

goim nl 0 ifniseven
P, = ' H (B2 — [k]z) where oi(n):=< —1 ifnisoddandr=0 (2.22)
]! s 1 ifnisoddandf = 1.
k=t (mod 2)
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This expression can be viewed as the z-analog of the nth divided power of B. Accordingly, P, could also
be denoted B™ and called an i-divided power. This, however, is a special phenomenon in rank 1. It is
straightforward to check from (2.22) that the i-canonical basis satisfies the recurrence relation

Py =1, BP, = [n + 1]Pn+1 + 5n£t[n]Pn71, (2.23)
for any n = 0.

Theorem 2.7. For n = 0, we have that

,_
[STE
—

q—m(2m+1—26,,5,)

Py= ) - - ——Anom, (2.24)
=g H(L—g ) (L —gm)

A l%J( 1y g ") P (2.25)

n — - — — —amy L n—2m- .
= (I=g (1 —g#)- (1 —qgm)

Proof. To prove the first formula, use (2.13) to verify that the expression on the right hand side satisfies
the recurrence relation (2.23). Similarly, (2.25) follows by using (2.23) to verify that the expression on
the right hand side satisfy the recurrence relation (2.13). O

Corollary 2.8. The 1-canonical basis of U, is almost orthonormal in the sense that
(Pis Pn)' € 6+ a~ ' ZIg ™' 10 Q(g)
form,n = 0.
Proof. This is clear from (2.24) and (2.12). O

Remark 2.9. Using (2.12) and (2.24), one can derive the following explicit formula for the pairings
between i-canonical basis elements:

g L (n—i)(n—i+1-26,=,)— 1 (m—i) (m—i+1-26,=)

(PnaPm)l =

o<i<mingna) [Tj_y (1 =g~ ¥) [T,Z,(1 = ¢~ ) [T,Z, (1 — ¢~
i=n=m (mod 2)

for any m,n > 0. This is 0 if m # n (mod 2).

The i-canonical basis in fact gives a basis for an integral form zU! of U over Z[g, ¢~ ']. Equivalently,
we have that

72U, = {ue U |u(zV(2) € zV(A) forall 1 € N with A = t (mod 2) } ,

from which one sees that 7U! is a Z[q, g~ !']-subalgebra of U.. Since both p and ¢ fix each of the
1-canonical basis elements P,, they restrict to symmetries on zUj. Also, the form on Uj restricts to
(-,-)' : zU! x zU! — Z[q,q~']. From (2.13), it is apparent that A, does not lie in the integral form 7 U..
Instead, it is naturally an element of the completion

20 = Z(q7") ®zpyq-1 2U:- (2.26)

As is clear from Theorem 2.7, the elements A, (n = 0) give a topological Z((g~"))-basis for 7 U".
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2.5. The character ring. Let *U’ be the Q(g)-linear dual of U!. The left regular action of U’ on itself
makes *U} naturally into a right U}-module. We twist this action with the anti-automorphism p to make
*Ul into a left U}-module. Since the non-degenerate symmetric bilinear form (-, -)' on U} satisfies (2.10),
we get induced a canonical injective homomorphism of left Ui-modules

U — *U (2.27)

sending u € U! to the linear map U} — Q(q), u’ — (u,u’)". Henceforth, we will always identify U! with
a subspace of *U; via this embedding, thinking of *Uj as a completion of the vector space U!.

We obtain topological bases A, (n = 0) and L, (n > 0) for *U! that are the duals of the PBW and
canonical basis of Uj:

An (Am) = 6m,n, Ln (Pm) = 6m,n- (228)

We call these the dual PBW and the dual i-canonical bases, respectively. The dual canonical basis
element L, is invariant under the dual bar involution *y' : *U; — *U} defined by

W) (u) = [y (u)) (2.29)
for f € *U}, u € Uj. We get from (2.12) and the definition of the embedding (2.27) that
A,
A, = (2.30)

(1=g2)(1—g %) (1—g)
Dualizing Theorem 2.7 gives that

A, = i i L 2.31)
SO0 =g (1—gm) "
0 —m (28,241
b= D G 232
for n = 0. Also the following recurrence relations follow by dualizing (2.13) and (2.23):
B&r—hmm4+Tf%7AHh (2.33)
BL, = [n|L,—1 + 6pze[n + 1]Ly44 (2.34)

for any n = 0.
The character ring is the ring Q(g)[£] for a formal variable £. This is natural to consider from a
representation-theoretic perspective (see subsection 5.4). We view Q(q)[£] as a left Ul-module so that

BY ant" =Y and" . (2.35)
n=0 n=1
There is an injective Uj-module homomorphism
ch: *Ul — Q(q)[£], £ ) f(BYE" (2.36)
n=0

In fact, since U} = Q(g)[B], the map ch is an isomorphism—a special feature of the split rank one case.
We refer to ch, also its restriction ch : U, < Q(q)[[£]], as the character map. It intertwines the dual bar
involution *i' on *U} with the bar involution on the character ring, which is the anti-linear map

® : Q(q)I£1 — Q(g)I£I, D ant" — Y @meE" (2.37)

n=0 n=0

Now we proceed to compute the characters of A, and L,,.
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Lemma 2.10. For n > 0, we have that

2
chA, = [n]! Z Lq)ffnﬂf.

-2
£=0 (1 -9 )
Proof. By (2.14), we have that A,(B™) = wy,(g). This shows that chA, = >}, o wma(q)&™. It
remains to apply Theorem 2.5. O
)1 ift=0
Lemma 2.11. ch Ly = { 1+ 248654 ift— 1.

Proof. Suppose first that 1 = 0. By the definition (2.36), we need to show that Ly(B") = 6, for any
n > 0. This is clear for n = 0 since Py = 1 by (2.22) and Ly(Py) = 1. Also (2.22) shows that all
P, (n > 0) are divisible by B, so we can use (2.22) to express B" (n > 0) as a linear combination of
Py,...,P,. This implies that Lo(B") = 0 for n > 0 as required.

Now suppose that # = 1. We need to show that Lo(B***!) = 0 and Ly(B*") = 1 for n > 0. By (2.22),
Py, is a linear combination of B*"*! for 0 < m < n, and inverting obviously gives that B>**! is a
linear combination of Py, for 0 < m < n. This implies that L0(32"+1) = 0. Also (2.22) gives that
Py = 1and [2n][2n — 1]P,, = (B* — [2n— 1]?)Py,_; for n > 1. Using this, one shows by induction on
n = 0 that B** = a,Py, + - - - + a1 Py + Py for some ay, ...,a, € Q(q). It follows that Ly(B*') = 1. O

Theorem 2.12. We have that

chiL, =[n1e" ] ;:[n]!Z DU e 1P [ + 1] | €2 (238)

—[r2e2
I1<k<n+1 1 [k] 3 m=0 \ aeP;(mxn)
k=t (mod2)
where P.(m x n) is the set of « € N" with0 < a1 < -+ < @ < nand a; # t (mod 2) for each i.

Proof. The second equality follows by expanding the product. To prove the first equality, we proceed
by induction on n. The induction base follows from Lemma 2.11. For the induction step, take n > 0.
The constant term of ch L, is 0 since L, (1) = L,(Pp) = 0 so we have that Bch L, = ch L, /¢ by (2.35).
Suppose first that n = r (mod 2). Then (2.34) shows that

chL, = [n]échL, (2.39)
and we easily get done by induction in this case. When n # ¢ (mod 2), (2.34) gives that
chL, = [n)échL, | +[n+1]¢échL, | = [n]échL, | + [n+ 1]?¢*ch L,.

Hence,
[n]¢
hl,=—————ch[l, |, 2.40
and again the result follows by induction. O
Corollary 2.13. Forn = 0, we have that
15
B"= ) [n—2m]! > [ + 117 [@m + 11> | Po_om.
m=0 @eP;(mx (n—2m))

Proof. The coefficient of P, in the expansion of B" is L¢(B"), i.e., it is the &"-coefficient of ch L;. Now
use Theorem 2.12. O
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3. THE NIL-BRAUER CATEGORY

For the remainder of the article, we will work over a field k of characteristic different from 2. All
algebras, categories, functors, etc. will be assumed to be k-linear without further mention, and we
reserve the symbol ® for tensor products of vector spaces or algebras over k. By a graded category,
graded monoidal category, graded functor, etc. we mean one that is enriched in the closed symmetric
monoidal category g¥ec of graded vector spaces.

In this section, we first recall the definition of the nil-Brauer category AB, and the crucial basis
theorem for its morphism spaces from [BWW23]. Then we relate the graded dimensions of these spaces
to the bilinear form (-, )" on the i-quantum group U!. Finally, we discuss the center of A‘B,, and prove
a useful result about minimal polynomials.

3.1. Definition and basic properties. We use the usual string calculus for morphisms in strict monoidal
categories; our general convention is that f o g denotes composition of f drawn on top of g (“vertical
composition”) and fxg denotes the tensor product of f drawn to the left of g (“horizontal composition”).
We always draw string diagrams so that the underlying strings are smooth curves. Recall the following
definition from [BWW23, Def. 2.1].

Definition 3.1. The nil-Brauer category NB, is the strict graded monoidal category with one generating
object B (whose identity endomorphism will be represented diagrammatically by the unlabeled string
| ) and four generating morphisms

+:B—>B, ><:B*B—>B*B, /N\:B*B—>1, \_J:1—>B*B (.
(degree 2) (degree —2) (degree 0) (degree 0)

subject to the following relations:

ézo, §§<:>§ a2
tal]l, m::m’ (3.3)
Q_o, <N\ =K (3.4)
XA e s

Remark 3.2. One source of motivation for Definition 3.1 is the expected compatibility of A‘B, with
the bilinear form (-,-)" on U, something which will be proved in general in Theorem 3.7. From this
perspective, the formulae (2.20) suggest the existence of generators of the degrees specified in (3.1) and
some of the basic relations. This is similar to Lauda’s approach to categorification of U, (sl») in [Laul0].

The following relations are easily derived from the defining relations in [BWW23, (2.6)—(2.8)]:
W=\, O-0-0C. (.6
8 ~o, ><>< 0, (3.7)

XA U e
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In view of the last relation from (3.4) and the first relation from (3.6), we can unambiguously denote
the morphisms in these two equations by the “pitchforks” m and W respectively. Together with the
last relation of (3.3), it follows that a string diagram with no dots can be deformed under planar isotopy
without changing the morphism that it represents. This is not true in the presence of dots due to the sign
in the last relations of (3.5) and (3.8)—there is a sign change whenever a dot slides across the critical
point of a cup or cap.

The relations discussed so far imply that there are strict graded monoidal functors

R : AB, —> NB™, B~ B, s (—1)*® s, (3.9)
T: NB, — NB/”, B — B, s — st (3.10)

Here, for a string diagram s we use s and s to denote its reflection in a horizontal or vertical axis, and
o(s) denotes the total number of dots and crossings in the diagram, respectively. The category A(B, is
strictly pivotal with duality functor b := R o T = T o R; this rotates a string diagram s through 180° then
scales by (—1)*().

3.2. Generating functions for dots and bubbles. Next we recall the generating function formalism
from [BWW23, Sec. 2]. We denote the rth power of + under vertical composition simply by labeling
the dot with . More generally, given a polynomial f(x) = >, cx" € k[x] and a dot in some string
diagram s, we denote

Z ¢, X (the morphism obtained from s by labeling the dot by r)
r=0

by attaching what we call a pin to the dot, labeling the node at the head of the pin by f(x):

+— =Y + € Endag, (B). (3.11)

r=0

In the drawing of a pin, the arm and the head of the pin can be moved freely around larger diagrams so
long as the point stays put—these are not part of the string calculus. More generally, f(x) here could be
a polynomial with coefficients in the algebra k((u~')) of formal Laurent series in an indeterminate u~!;
then the string s decorated with pin labeled f(x) defines a generating function of morphisms.

We will use the following shorthands for the generating functions of [BWW23, (2.14)—(2.15)]:
The notation here is motivated by the following standard trick: for any f(x) € k[x], we have that

el - ). fwe] - b, G

where [—],- denotes the u"-coefficient of the formal Laurent series inside the brackets. These identities
follow by using linearity to reduce to the case that f(x) = x" for n > 0, then explicitly computing
coefficients on both sides. As we do with ordinary dots, we denote the nth power of one of these “dot
generating functions” by labeling them also by n. This makes sense for any n € Z since we have by the

cfinitions tha 4.e=(e) -t "1

—1

(ufx)*l =u

+u? + +u 3 % +u? $ +"'6End?\[$,<3)|[uil]], (3.12)

-1

(ut+x)"'] =u

_ M—Z + + I/t_3 # _ M_4 $ + ... € EndN,Bt(B)[[u_I]] . (313)

) = u

b (3)' e s
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The endomorphisms (3.12) and (3.13) obviously commute with each other and all other pins. Note also
that T and R satisfy

O S 3 S SR O Y SR ) R S

Another useful trick is to apply the substitution u — —u; this interchanges ¢ and —¢.

It is clear from the last relation in (3.4) that m— = —(\ and similarly for cups, hence,

we have that

(e=¢ )\ [®=¢) \o=& ). (#=0/) a1

Further useful relations involving these generating functions are
WKt KAt em
L N e T Lo

These are also noted in [BWW23, (2.19)—(2.20)]. Equating the coefficients of x~"~!, we obtain

KX 5 (- )

i+j=n—1

><_>< _ i;{) (T lf _ i%}_), (3.20)

i+j=n—1

Now consider the “dotted bubble generating function”

(® =D u"'Or et 1y +u?Endpg (1)[u~'1. (3.21)

r=0

This is often useful, but even more important will be the renormalization

O(u) = Z w0, = (1) (13 — 2u (®) € 11 + u~ ' Endag, (1)[u']. (3.22)

r=0
Its u~"'-coefficients O, are given explicitly by

0p = 14, 0, = =2(=1) o r (3.23)
for r > 1. Note also by (3.15) and (3.16) that O(u) is invariant under R and T.

Theorem 3.3 ((BWW23, Th. 2.5]). The following relations hold in NB,:

24(}:2@@-#—#, (3.24)

®+®=2uo (™, (3.25)
O(u)O(—u) = 1y, (3.26)
O(u) | = [ (42)? —+ O(u) . (3.27)

Corollary 3.4. The following relations hold in NB,:

24(} - _# _ (_1)f+ O(u), 24@ _ JF + (—1)f+ O(—u),  (3.28)
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2u@< = —# - (—1)t©(u)+, 2u@< — % + (—1)t©(—u)+. (3.29)

Proof. The first equality follows from (3.24) and the definition (3.22). The others follow by applying R
or using the substitution u — —u. O

Corollary 3.5. Forn = 0, we have that

n—1
bn+1 = Z(—l)r r+ Onfr — Op=s +n .
r=0
Proof. This follows by equating the coefficients of »~"~! in (3.28). O

3.3. The basis theorem. Let A be the graded algebra of symmetric functions over k. Adopting standard
notation, this is freely generated either by the elementary symmetric functions e, (r > 0) or by the
complete symmetric functions &, (r > 0); our convention for the grading puts these in degree 2r. The
two families of generators are related by the identity

e(—u)h(u) = 1 (3.30)

_ Z u e, h(u) = Z u "h, 3.31)

r=0 r=0

where

are the corresponding generating functions, and ey = hy = 1 by convention. It is also convenient to
interpret e, and A, as 0 when r < 0.

Following [Mac15, Ch. III, Sec. 8], we define a power series g(u) € Allu~'7 and elements g, (r=0)
of A so that

u) = Z u g, :=e(u)h(u). (3.32)
r=0
By (3.30), we have that
q(u)g(—u) =1 (3.33)
Equivalently, go = 1 and
0r = (1) "3q7 + Z ) 5o (3.34)

for r > 1; cf. [Macl5, (II1.8.2)]. As with e, and h,, we adopt the convention that ¢, = 0 for r < 0.

The graded subalgebra of A generated by all g, (r = 0) is denoted I'. As explained in [Macl5], T
is freely generated by ¢, g3, g5, ... (and it has a distinguished basis given by the Schur Q-functions Q,
indexed by all strict partitions). It follows that I is generated by the elements g, (r = 0) subject only
to the relations (3.33). Hence, (3.26) is all that is needed to establish the existence of a graded algebra
homomorphism

ve: T — End?\[@,(l)’ qr — O. (3.35)

By [BWW23, Cor. 5.4], this is actually an isomorphism.

Now we recall the basis theorem for morphism spaces in AB,, which is the main result of [BWW23].
For m,n > 0, any morphism f : B*" — B*" is represented by a linear combination of m x n string
diagrams, i.e., string diagrams with m boundary points at the top and »n boundary points at the bottom
that are obtained by composing the generating morphisms from (3.1). It follows that Homyg, (B*", B*™)
is 0 unless m = n (mod 2). The individual strings in an m x n string diagram s are of four basic types:
generalized cups (with two boundary points on the top edge), generalized caps (with two boundary
points on the bottom edge), propagating strings (with one boundary point at the top and one at the
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bottom), and internal bubbles (no boundary points). We define an equivalence relation ~ on the set of
m x n string diagrams by declaring that s ~ s if their strings define the same matching on the set of
m + n boundary points. We say that s is reduced if the following properties hold:

There are no internal bubbles.

Propagating strings have no critical points (=points of slope 0).

Generalized cups and caps each have exactly one critical point.

There are no double crossings (= two different strings which cross each other at least twice).

These assumptions imply in particular that there are no self-intersections (= crossings of a string with
itself). Fix a set D(m,n) of representatives for the ~-equivalence classes of undotted reduced m x n
string diagrams; the total number of such diagrams is (m+n— 1)!! if m = n (mod 2), and there are none
otherwise. For each of these ~-equivalence class representatives, we also choose distinguished points
in the interior of each of its strings that are away from points of intersection. Then let D(m, n) be the set
of all morphisms f : B** — B*" which can be obtained by taking an element of E(m, n) then adding
dots labeled by non-negative multiplicities at each of the distinguished points on the strings.

Theorem 3.6 ((BWW23, Th. 5.1]). Viewing Homgg (B*", B*™) as a graded T'-module so that p € T
actson f : B — B*" by f - p := f*vy,(p), the space Homag (B*", B*") is free as a graded T-module
with basis D(m, n).

Now we can make the first significant connection between AB, and the i-quantum group. Recall
the bilinear form (-,-)" : Ul x Ul — Q(g) from (2.21). We convert this into a sesquilinear form
()" UL x UL — Q(q) by setting

Curyup)' = (W' (ur), uz)’' (3.36)
for up,uy € U;.
Theorem 3.7. For m,n € N, we have that dim, Homyg (B*", B*") = dim, T - (B", B")".

Proof. Since B" is y'-invariant, we have that (B", B")" = (B",B™)". Now we compare the explicit
combinatorial formula for (B", B")" from Corollary 2.6 with the formula

dim, HomNgt(B*”, B™") = dim, T - Z q deg(s)
seD(m,n)

implied by Theorem 3.6. If m % n (mod2) then (B", B™)" = 0 and D(m, n) is empty, and the result is
clear. Now assume that m = n (mod 2) and let f := (m + n)/2. There is an obvious bijection between
equivalence classes of m x n string diagrams and chord diagrams with f free chords and no tethered
chords. This just arises by identifying the (m + n) boundary points of strings in an m x n string diagram
with the (m + n) endpoints of chords in a chord diagram in some fixed way that preserves the clockwise
ordering, then replacing strings by chords so that the underlying matching of these points is preserved.
In a string diagram, each crossing is of degree —2, so it contributes ¢ to the graded dimension. The
dots placed at the f distinguished points produce the factor 1/(1 — g~2)/, this being dim, k[xi,.. ., x|
with x; in degree 2. Recalling the definition of the generating function T's((g) from (2.18), we deduce
that

dim, Homyg (B™", B*") = dim, T - Z q deg(s) _ dim, T - Tf,o(q2)/(1 _ qu)f,
seD(m,n)

which is dim, I" - (B", B™)" according to Corollary 2.6. o
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3.4. Central elements. Recall that the center Z(A4) of a category 4 means the algebra of endomor-
phisms of its identity endofunctor. Thus, elements of Z(AB,) consist of tuples (z,),>0 for elements
Zn € Endg\@r(B*") such that z,, o f = f oz, forall m,n > 0 and f € Homyg (B*", B*"). In this
subsection, we are going to use the dotted bubbles to construct many—conjecturally, all—elements of

Z(N\B)).

Since O(+u) € 13 + u 'Endyag (1)[~'] and 2 is invertible in k, it makes sense to take the
square roots 4/O(+tu); we choose the ones that are positive in the sense that they again lie in 17 +

-1
u~ ' Endgg (1)[u']. We have that /O(—u) = ( @(u)) by (3.26). Taking the square roots of
both sides of (3.27), both of which are formal power series in 15 + 1~ EndM;t(B)l[ufl]], we obtain

Vol @ = @ V5 Vo =& or. (3.37)

Let €., Ay Grn € K[ X1, .. ., xn]S = be the symmetric polynomials in n variables obtained by special-
izing the symmetric functions e,, 4,, g, from (3.31) and (3.32). We have that

-
qrn = Z esnhr—sn- (3.38)
s=0
Moreover,
mou+ x
DuT g =] Ll 4w kx, x e (3.39)
. u— X
r=0 i=1
In the statement of the next theorem, for a polynomial f € k[x,..., x,,|, we use the notation f1, = 1,f

to denote the endomorphism of B*" defined by interpreting x; as [*("D x ¢ « [*(*=0) 'je_, the dot on the
ith string.

Theorem 3.8. For any r > 0, we have that (qn1,),0 € Z(NB,).

Proof. We need to show that g, n1,,0 f = foq,al, forany f € Homgg (B*, B*"). By (3.37), we have
that

n

I | el 11 :1' :1 = VOl * " /B, (3.40)

u— Xj
r=0 i=1 !

The result follows from this since the expression on the right hand side