
ON THE DEFINITION OF HEISENBERG CATEGORY

JONATHAN BRUNDAN

Abstract. We revisit the definition of the Heisenberg category of level k ∈ Z.

In level −1, this category was introduced originally by Khovanov, but with some

additional cyclicity relations which we show here are unnecessary. In other negative
levels, the definition is due to Mackaay and Savage, also with some redundant

relations, while the level zero case is the affine oriented Brauer category of Brundan,

Comes, Nash and Reynolds. We also discuss cyclotomic quotients.

1. Introduction

In [K], Khovanov introduced a graphical calculus for the induction and restriction
functors Indn+1

n and Resnn−1 arising in the representation theory of the symmetric
group Sn. This led him to the definition of a monoidal category H, which he called
the Heisenberg category. This category is monoidally generated by two objects ↑ and
↓ (corresponding to the induction and restriction functors) with morphisms defined in
terms of equivalence classes of certain diagrams modulo Reidemeister-type relations
plus a small number of additional relations. Khovanov’s relations imply in particular
that there is an isomorphism[ ]

: ↑ ⊗ ↓ ⊕ 1 ∼→ ↓⊗ ↑

in H, mirroring the Mackey decomposition

Indnn−1 ◦Resnn−1⊕Idn ∼= Resn+1
n ◦ Indn+1

n

at the level of representation theory of the symmetric groups. There have been sev-
eral subsequent generalizations of Khovanov’s work, including a q-deformation [LS],
and a version of Heisenberg category for wreath product algebras associated to finite
subgroups of SL2(C) [CL].

To explain the name “Heisenberg category,” let h be the infinite-dimensional Heisen-
berg algebra, i.e., the complex Lie algebra with basis {pn | n ∈ Z} and multiplication
[pm, pn] = δm+n,0mp0. Khovanov constructed an algebra homomorphism from U(h)
specialized at p0 = −1 to the complexified Grothendieck ring of the additive Karoubi
envelope Kar(H) of H, sending pn (respectively, p−n) for n > 0 to an explicit linear
combination of isomorphism classes of indecomposable summands of ↑⊗n (respectively,
↓⊗n). He proved that his map is injective, and conjectured that it is actually an iso-
morphism. We remark also that the trace of Khovanov’s category and of its q-deformed
version have recently been computed; see [CLLS, CLLSS].

The group algebra of the symmetric group is the level one case of a family of finite-
dimensional algebras: the cyclotomic quotients of degenerate affine Hecke algebras
associated to symmetric groups. For cyclotomic quotients of level ` > 0, the Mackey
theorem instead takes the form

Indnn−1 ◦Resnn−1⊕(Idn)⊕` ∼= Resn+1
n ◦ Indn+1

n ,

2010 Mathematics Subject Classification: 17B10, 18D10.

Research supported in part by NSF grant DMS-1700905.

1



2 J. BRUNDAN

e.g., see [Klesh, Theorem 7.6.2]. Mackaay and Savage [MS] have recently extended
Khovanov’s construction to this setting, defining Heisenberg categories for all ` > 0,
with the case ` = 1 recovering Khovanov’s original category. They also constructed
an injective homomorphism from U(h) specialized at p0 = −` to the complexified
Grothendieck ring of the additive Karoubi envelope of their category, and conjectured
that this map is an isomorphism.

In [BCNR], motivated by quite different considerations, the author jointly with
Comes, Nash and Reynolds introduced another diagrammatically-defined monoidal
category we called the affine oriented Brauer category AOB; the endomorphism al-
gebras of objects in AOB are the affine walled Brauer algebras of [RS]. In fact, the
affine oriented Brauer category is the level zero version of Heisenberg category. To make
this connection explicit, and also to streamline the approach of Mackaay and Savage,
we propose here a simplified definition of Heisenberg category valid for arbitrary level
k ∈ Z. Our new formulation is similar in spirit to Rouquier’s definition of Kac-Moody
2-category from [R1] (as opposed to the Khovanov-Lauda definition from [KL]); see
also [B1].

Definition 1.1. Fix a commutative ground ring k. The Heisenberg category Hk of
level k ∈ Z is the strict k-linear monoidal category generated by objects ↑ and ↓, and
morphisms x : ↑ → ↑, s : ↑ ⊗ ↑ → ↑ ⊗ ↑, c : 1 → ↓ ⊗ ↑ and d : ↑ ⊗ ↓ → 1 subject
to certain relations. To record these relations, we adopt the usual string calculus for
strict monoidal categories, representing the generating morphisms by the diagrams

x = • , s = , c = , d = .

We denote the nth power xn of x under vertical composition diagrammatically by
labeling the dot with the multiplicity n, and also define t : ↑ ⊗ ↓ → ↓ ⊗ ↑ from

t = := . (1.1)

Then we impose three sets of relations: degenerate Hecke relations, right adjunction
relations, and the inversion relation. The degenerate Hecke relations are as follows1:

= , = ,
• − • =

(
= • − •

)
. (1.2)

The right adjunction relations say that

= , = . (1.3)

Finally, the inversion relation asserts that the following matrix of morphisms is an
isomorphism in the additive envelope of Hk:[

• · · · k−1 •
]T

: ↑ ⊗ ↓ ∼→ ↓⊗ ↑ ⊕ 1⊕k if k ≥ 0, (1.4)[
• · · · −k−1•

]
: ↑ ⊗ ↓ ⊕ 1⊕(−k) ∼→ ↓⊗ ↑ if k < 0. (1.5)

In the special case k = 0, the inversion relation means that one should adjoin another
generating morphism t′ : ↓ ⊗ ↑ → ↑ ⊗ ↓, represented by

t′ = ,

1The final one of these relations is in parentheses to indicate that it is a consequence of the other
relations; we have included it just for convenience.



HEISENBERG CATEGORIES 3

subject to the following relations asserting that t′ is a two-sided inverse to t:

= , = .

Up to reflecting diagrams in a vertical axis, this is exactly the definition of the affine
oriented Brauer category AOB from [BCNR]. Thus, there is a monoidal isomorphism
H0
∼= AOBrev.

When k 6= 0, the inversion relation appearing in Definition 1.1 is much harder
to interpret. We will analyze it systematically in the main part of this article. We
summarize the situation with the following two theorems.

Theorem 1.2. There are unique morphisms c′ : 1→ ↑⊗ ↓ and d′ : ↓ ⊗ ↑ → 1 in Hk,
drawn as

c′ = , d′ = ,

such that the following relations hold:

= +
∑
r,s≥0

r•

•s
•−r−s−2

= + δk,1 if k ≤ 1

 , (1.6)

= +
∑
r,s≥0

•−r−s−2
r•
•s
= − δk,−1 if k ≥ −1

 , (1.7)

= δk,0 if k ≥ 0, •r = −δr,k−11 if 0 ≤ r < k, (1.8)

= δk,0 if k ≤ 0, • r = δr,−k−11 if 0 ≤ r < −k. (1.9)

Moreover, Hk can be presented equivalently as the strict k-linear monoidal category
generated by the objects ↑, ↓ and morphisms x, s, c, d, c′, d′ subject only to the relations
(1.2)–(1.3) and (1.6)–(1.9). In these relations, as well as the rightward crossing t
defined by (1.1), we have used the leftward crossing t′ : ↓ ⊗ ↑ → ↑ ⊗ ↓ defined by

t′ = := , (1.10)

and the negatively dotted bubbles defined by

•r−k−1 := det
(

•i−j+k
)
i,j=1,...,r

if r ≤ k, (1.11)

•r+k−1 := −det
(
− • i−j−k

)
i,j=1,...,r

if r ≤ −k, (1.12)

interpreting the determinants as 1 if r = 0 and 0 if r < 0.

Theorem 1.3. Using the notation from Theorem 1.2, the following relations are con-
sequences of the defining relations.

(i) (“Infinite Grassmannian relations”)

•r = −δr,k−11 if r < k, • r = δr,−k−11 if r < −k, (1.13)∑
r,s≥0
r+s=t

•r+k−1 •s−k−1 = −δt,01. (1.14)
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(ii) (“Left adjunction”)

= , = . (1.15)

(iii) (“Cyclicity”)

• = • , = . (1.16)

(iv) (“Curl relations”)

r• =
∑
s≥0

r−s−1• s• , r• = −
∑
s≥0

s • r−s−1• . (1.17)

(v) (“Bubble slides”)

r• = r• −
∑
s≥0

(s+ 1) r−s−2• s• , (1.18)

r• = r• −
∑
s≥0

(s+ 1) s• r−s−2 • . (1.19)

(vi) (“Alternating braid relation”)

− =



∑
r,s,t≥0

•−r−s−t−3
•r

•s
•t if k ≥ 2,

0 if −1 ≤ k ≤ 1,

∑
r,s,t≥0

•−r−s−t−3
• r

•s
•t if k ≤ −2.

(1.20)

Part (ii) of Theorem 1.3 implies that the monoidal category Hk is rigid, i.e., any
object X has both a right dual X∗ (with its structure maps X ⊗X∗ → 1→ X∗ ⊗X)
and a left dual ∗X (with its structure maps ∗X ⊗ X → 1 → X ⊗ ∗X). In fact, there
is a canonical choice for both duals, by attaching the appropriately oriented cups and
caps as indicated below:

X X∗ X , X ∗X X .

Then part (iii) of the theorem shows that the right and left mates of x are equal, as
are the right and left mates of s. We denote these by x′ : ↓ → ↓ and s′ : ↓⊗ ↓ → ↓⊗↓,
respectively, and represent them diagrammatically by

x′ = • := • = • , s′ = := = .
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It follows that the functors (−)∗ and ∗(−) defined by taking right and left duals/mates
in the canonical way actually coincide; they are both defined by rotating diagrams
through 180◦. Thus, we have equipped Hk with a strictly pivotal structure.

Now we can explain the relationship between the category Hk and the Heisenberg
categories already appearing in the literature. By a special case of the bubble slide
relations in Theorem 1.3(v), the lowest degree bubble := −k• = k• is strictly
central in the sense that

= , = .

This means that it is natural to specialize to some scalar δ ∈ k. We denote the
resulting monoidal category by Hk(δ).

Theorem 1.4. The Heisenberg category H̃λ defined by Mackaay and Savage in [MS]
is isomorphic to the additive envelope of Hk(δ), taking k := −

∑
i λi and δ :=

∑
i iλi.

In particular, the Heisenberg category H introduced originally by Khovanov in [K] is
isomorphic to the additive envelope of H−1(0).

Remark 1.5. The above results give two presentations for Khovanov’s original Heisen-
berg category H = H−1(0):

(1) The first presentation, which is essentially Definition 1.1, asserts that H is
the strict k-linear monoidal category generated by objects ↑ and ↓ and the
morphisms x, s, c and d, subject to the relations (1.2) and (1.3), the relation
(1.5) which says simply that[ ]

: ↑ ⊗ ↓ ⊕ 1 ∼→ ↓⊗ ↑

is an isomorphism for the rightward crossing defined by (1.1), and the relation
• = 0 for the leftward cap defined from

 :=

[ ]−1
.

The leftward cup may also be recovered from := • .
(2) The second presentation, which is a slight simplification of the presentation

from Theorem 1.3 (and close to Khovanov’s original one), asserts that H is
generated by objects ↑ and ↓ and the morphisms s, c, d, c′, d′ subject to the
first two relations from (1.2), the relations (1.3), and four additional relations:

= , = − , = 0, = 0.

The rightward and leftward crossings used here are shorthands for the mor-
phisms defined by (1.1) and (1.10), respectively. Then x may be defined from

• := ; the third relation from (1.2) holds automatically.

Let Sym be the algebra of symmetric functions. Recall this is an infinite rank poly-
nomial algebra generated freely by either the complete symmetric functions {hr}r≥1
or the elementary symmetric functions {er}r≥1; we also let h0 = e0 = 1 and interpret
hr and er as 0 when r < 0. Let

β : Sym→ EndHk
(1) (1.21)
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be the algebra homomorphism defined by declaring that{
β(er) := − •r+k−1 if k ≥ 0,
β(hr) := (−1)r •r−k−1 if k < 0.

Then the relations from Theorem 1.3(i) imply that{
β(hr) = (−1)r •r−k−1 if k ≥ 0,
β(er) = − •r+k−1 if k < 0.

In fact, β is an isomorphism. This assertion is a consequence of the basis theorem for
morphism spaces in Hk, which we explain next.

Let X = X1 ⊗ · · · ⊗Xr and Y = Y1 ⊗ · · · ⊗ Ys be two words in the letters ↑ and ↓,
representing two objects of Hk. By an (X,Y )-matching, we mean a bijection

{i |Xi = ↑} t {j | Yj = ↓} ∼→ {i |Xi = ↓} t {j | Yj = ↑}.
By a reduced lift of an (X,Y )-matching, we mean a diagram representing a morphism
X → Y in Hk such that

• the endpoints of each strand in the diagram are paired under the matching;
• any two strands intersect at most once;
• there are no self-intersections;
• there are no dots or bubbles;
• each strand has at most one critical point coming from a cup or cap.

Let B(X,Y ) be a set consisting of a reduced lift for each of the (X,Y )-matchings. For
each element of B(X,Y ), pick a distinguished point on each of its strands that is away
from crossings and critical points. Then let B∞,∞(X,Y ) be the set of all morphisms
θ : X → Y obtained from the elements of B(X,Y ) by adding zero or more dots to each
strand at these distinguished points.

Theorem 1.6. For any k ∈ Z and X,Y ∈ obHk, the morphism space HomHk
(X,Y )

is a free right Sym-module with basis B∞,∞(X,Y ). Here, the right action of Sym on
morphisms is by θ · p := θ ⊗ β(p) for θ : X → Y and p ∈ Sym.

Theorem 1.6 was proved already in case k = 0 in [BCNR], by an argument based
on the existence of a certain monoidal functor from H0 to the category of k-linear
endofunctors of the category of modules over the Lie algebra gln(k). When k 6= 0,
the theorem will instead be deduced from the basis theorems proved in [K, MS]. The
proofs in [K, MS] depend crucially on the action of Hk on the category of modules
over the degenerate cyclotomic Hecke algebras mentioned earlier. Since it highlights
the usefulness of Definition 1.1, we give a self-contained construction of this action in
the next paragraph.

Fix a monic polynomial f(u) ∈ k[u] of degree ` > 0 and set k := −`. Let Hn be
the degenerate affine Hecke algebra, that is, the tensor product kSn ⊗ k[x1, . . . , xn] of
the group algebra of the symmetric group with a polynomial algebra. Multiplication
in Hn is defined so that kSn and k[x1, . . . , xn] are subalgebras, and also

xi+1si = sixi + 1, xisj = sjxi (i 6= j, j + 1),

where sj denotes the basic transposition (j j+1). Let Hf
n be the quotient of Hn by

the two-sided ideal generated by f(x1). There is a natural embedding Hf
n ↪→ Hf

n+1

sending xi, sj ∈ Hf
n to the same elements of Hf

n+1. Let

Indn+1
n :=?⊗Hf

n
Hf
n+1 : mod-Hf

n → mod-Hf
n+1,

Resn+1
n : mod-Hf

n+1 → mod-Hf
n
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be the corresponding induction and restriction functors2. The key assertion established
in [K, MS] is that there is a strict k-linear monoidal functor

Ψf : Hk → Endk

⊕
n≥0

mod-Hf
n

 (1.22)

sending ↑ (respectively, ↓) to the k-linear endofunctor that takes an Hf
n -module M to

the Hf
n+1-module Indn+1

n M (respectively, to the Hf
n−1-module Resnn−1M , interpreted

as zero in case n = 0). On generating morphisms, Ψf (x),Ψf (s),Ψf (c) and Ψf (d) are
the natural transformations defined on an Hf

n -module M as follows:

• Ψf (x)M : Indn+1
n M → Indn+1

n M, m⊗ h 7→ m⊗ xn+1h;

• Ψf (s)M : Indn+2
n M → Indn+2

n M,m⊗h 7→ m⊗sn+1h, where we have identified

Indn+2
n+1 ◦ Indn+1

n with Indn+2
n :=?⊗Hf

n
Hf
n+2 in the obvious way;

• Ψf (c)M : M → Resn+1
n ◦ Indn+1

n M, m 7→ m⊗ 1;
• Ψf (d)M : Indnn−1 ◦Resnn−1M →M, m⊗ h 7→ mh.

To prove this in our setting, we need to verify the three sets of relations from Defini-
tion 1.1. The first two are almost immediate. For the inversion relation, one calculates
Ψf (t)M explicitly to see that it comes from the (Hf

n , H
f
n)-bimodule homomorphism

Hf
n ⊗Hf

n−1
Hf
n → Hf

n+1, a ⊗ b 7→ asnb. Thus, it suffices to show that the (Hf
n , H

f
n)-

bimodule homomorphism

Hf
n ⊗Hf

n−1
Hf
n ⊕

−k−1⊕
r=0

Hf
n → Hf

n+1, (1.23)

(a⊗ b, c0, c1, . . . , c−k−1) 7→ asnb+

−k−1∑
r=0

xrn+1cr

is an isomorphism, which is exactly checked in the proof of [Klesh, Lemma 7.6.1].
The natural transformations Ψf (c) and Ψf (d) in the previous paragraph come from

the units and counits of the canonical adjunctions making (Indn+1
n ,Resn+1

n ) into adjoint
pairs. In view of Theorem 1.3(ii), we also get canonical adjunctions the other way
around, with units and counits defined by Ψf (c′) and Ψf (d′), respectively. Thus, the

induction and restriction functors Indn+1
n and Resn+1

n are biadjoint; see also [Klesh,
Corollary 7.7.5] and [MS, Proposition 5.13].

One reason that cyclotomic quotients of the degenerate affine Hecke algebra are im-
portant is that they can be used to realize the minimal categorifications of integrable
lowest (or highest) weight modules for the Lie algebra sl∞ (if k is a field of characteris-

tic 0) or ŝlp (if k is a field of characteristic p > 0), e.g., see [BK]. The following theorem
shows that these minimal categorifications can be realized instead as cyclotomic quo-
tients of Heisenberg categories. This should be compared with [R1, §5.1.2] (and [R2,
Theorem 4.25]), where the minimal categorification is realized as a cyclotomic quotient
of the corresponding Kac-Moody 2-category. In the special case ` = 1, some closely
related constructions can be found in [QSY].

Theorem 1.7. Fix f(u) = u` + z1u
`−1 + · · · + z` ∈ k[u] of degree ` = −k > 0 as

in (1.22). Let If,1 be the k-linear left tensor ideal of Hk generated by f(x) : ↑ → ↑;
equivalently, by Lemma 1.9 below, If,1 is the k-linear left tensor ideal generated by

2We are working with right modules whereas [K, MS] use left modules; since Hf
n admits an antiauto-

morphism sending xi 7→ xi and sj 7→ sj this is not a substantive difference.
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1↓ : ↓ → ↓ and r+k−1• + zr11 : 1→ 1 for r = 1, . . . , `. Let

Ev : Endk

⊕
n≥0

mod-Hf
n

→⊕
n≥0

mod-Hf
n

be the functor defined by evaluating on the one-dimensional Hf
0 -module. Then Ev ◦Ψf

factors through the quotient category Hf,1 := Hk/If,1 to induce an equivalence of
categories

ψf : Kar(Hf,1)→
⊕
n≥0

pmod-Hf
n ,

where Kar denotes additive Karoubi envelope and pmod denotes finitely generated pro-
jectives.

Remark 1.8. There is also a version of the functor (1.22) for positive levels k. To
construct this, fix a monic f ′(u) ∈ k[u] of degree `′ > 0 and set k := `′. Instead of

the induction functor Indn+1
n =? ⊗

Hf′
n
Hf ′

n+1, it is convenient to work now with the

coinduction functor Coindn+1
n := Hom

Hf′
n

(Hf ′

n+1,−) : mod-Hf ′

n → mod-Hf ′

n+1, which is

canonically right adjoint to Resn+1
n . Then there is a strict k-linear monoidal functor

Ψ′f ′ : Hk → Endk

⊕
n≥0

mod-Hf ′

n

 (1.24)

sending ↑ (respectively, ↓) to the k-linear endofunctor that takes an Hf ′

n -module M

to the Hf ′

n−1-module Resnn−1M (respectively, to the Hf ′

n+1-module Coindn+1
n M). On

generating morphisms, Ψ′f ′(x),Ψ′f ′(s),Ψ
′
f ′(c) and Ψ′f ′(d) are the natural transformations

defined on an Hf ′

n -module M as follows:

• Ψ′f ′(x)M : Resnn−1M → Resnn−1M, m 7→ mxn;

• Ψ′f ′(s)M : Resnn−2M 7→ Resnn−2M, m 7→ −msn−1, where we have identified

Resn−1n−2 ◦Resnn−1 with Resnn−2;
• Ψ′f ′(c)M : M → Coindnn−1 ◦Resnn−1M, m 7→ (h 7→ mh);

• Ψ′f ′(d)M : Resn+1
n ◦Coindn+1

n M →M, θ 7→ θ(1).

Again, this is proved by verifying the defining relations from Definition 1.1; the inver-
sion relation follows ultimately from (1.23). Then the analog of Theorem 1.7 asserts
that Ev ◦Ψ′f ′ induces an equivalence of categories

ψ′f ′ : Kar(H1,f ′)→
⊕
n≥0

pmod-Hf ′

n , (1.25)

where H1,f ′ is another special case of the quotient category to be defined in (1.28)
below. The proof of this is similar to that of Theorem 1.7 and will be omitted.

In [W], Webster has introduced generalized cyclotomic quotients of Kac-Moody 2-
categories which categorify lowest-tensored-highest weight representations; see also

[BD, §4.2]. For sl∞ or ŝlp, Webster’s categories can also be realized as generalized
cyclotomic quotients of Heisenberg categories. This will be explained elsewhere, but
we can at least formulate the definition of these generalized cyclotomic quotients here.
Fix a pair of monic polynomials f(u), f ′(u) ∈ k[u] of degrees `, `′ ≥ 0, respectively, and
define k := `′ − ` and δr, δ

′
r ∈ k so that

δ(u) = δ0 + δ1u
−1 + δ2u

−2 + · · · := u−kf ′(u)/f(u) ∈ k[[u−1]], (1.26)

δ′(u) = δ′0 + δ′1u
−1 + δ′2u

−2 + · · · := −ukf(u)/f ′(u) ∈ k[[u−1]]. (1.27)
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Then the corresponding generalized cyclotomic quotient of Hk is the k-linear category

Hf,f ′ := Hk/If,f ′ (1.28)

where If,f ′ is the k-linear left tensor ideal of Hk generated by f(x) : ↑ → ↑ and
r−k−1• − δr11 : 1 → 1 for r = 1, . . . , `′. These categories were introduced already

in the case that ` = `′ in [BCNR].

Lemma 1.9. The ideal If,f ′ can be defined equivalently as the k-linear left tensor ideal

of Hk generated by f ′(x′) : ↓ → ↓ and r+k−1• − δ′r11 : 1 → 1 for r = 1, . . . , `. It

also contains r−k−1• − δr11 and r+k−1• − δ′r11 for all r ≥ 0.

Let us finally mention that there is also a q-analog of the Heisenberg category Hk.
This will be defined in a sequel to this article [B3]. Our approach is different to [LS],
as we incorporate the entire affine Hecke algebra into the definition (rather than the
q-deformed degenerate affine Hecke algebra used in [LS]). The q-Heisenberg category
of level zero is the affine oriented skein category from [B2, §4].

2. Analysis of the inversion relation

This section is the technical heart of the paper. The development is similar to that
of [B1] but with subtlely different signs. Going back to the original definition of Hk
from Definition 1.1, we begin our study by defining the downward dots and crossings
to be the right mates of the upward dots and crossings:

x′ = • := • , s′ = := . (2.1)

The following relations are immediate from these definitions:

• = • , = , = , (2.2)

• = • , = , = . (2.3)

Also, the following relations are easily deduced by attaching rightward cups and caps
to the degenerate Hecke relations, then “rotating” the pictures using the definitions of
the rightwards/downwards crossings and the downwards dots:

= , = , = , (2.4)

•
− • = =

•
− • ,

•
− • = = • −

•
. (2.5)

The important symmetry ω constructed in the next lemma is often useful since it
reduces to the case that k ≥ 0. In words, ω reflects in a horizontal axis then multiplies
by (−1)n, where n is the total number of dots appearing in the diagram. This heuristic
also holds for all of the other morphisms defined diagrammatically below, but in general
the sign becomes (−1)n+km where n is the total number of dots and diamonds and m
is the total number of undecorated leftward cups and caps.

Lemma 2.1. There is an isomorphism of monoidal categories ω : Hk
∼→ Hop

−k switching
the objects ↑ and ↓, and defined on generating morphisms by x 7→ −x′, s 7→ s′, c 7→ d
and d 7→ c.
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Proof. The existence of ω follows by a straightforward relation check. Use (2.4)–(2.5)
for the degenerate Hecke relations. The need to switch k and −k comes from the
inversion relations. To see that ω is an isomorphism, notice by the right adjunction
relations that ω(x′) = −x and ω(s′) = s, hence, ω2 = Id. �

The inversion relation means that there are some as yet unnamed generating mor-
phisms in Hk which are the matrix entries of two-sided inverses to the morphism
(1.4)–(1.5). We next introduce notation for these matrix entries. First define

t′ = : ↓ ⊗ ↑ → ↑ ⊗ ↓,

and the decorated leftward cups and caps

r
♦ : 1→ ↑⊗ ↓,

r
♦

: ↓ ⊗ ↑ → 1

for 0 ≤ r < k or 0 ≤ r < −k, respectively, by declaring that
0
♦

1
♦ · · ·

k−1
♦

 :=

([
• · · · k−1•

]T)−1
(2.6)

if k ≥ 0, or 0
♦

1
♦ · · ·

−k−1
♦

T:= [ • · · · −k−1•
]−1

(2.7)

if k < 0. Then we set

c′ = :=


−

k−1
♦ if k > 0,

−k• if k ≤ 0,
d′ = :=


k•

if k ≥ 0,

−k−1
♦

if k < 0.

(2.8)

From these definitions, it follows that

= +

k−1∑
r=0

r
♦

•r
, = +

−k−1∑
r=0 r

♦
•r
, (2.9)

with the right hand sides being sums of mutually orthogonal idempotents. Also

=
r• = 0 and •r = −δr,k−111 (2.10)

if 0 ≤ r < k, or

=
r• = 0 and • r = δr,−k−111 (2.11)

if 0 ≤ r < −k.

Lemma 2.2. The following relations hold:

•
− •

= ,
•
− • = , (2.12)

• = • , • = • . (2.13)
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Proof. To prove (2.12), take the first equation from (2.5) describing how dots slide
past rightward crossings, vertically compose on top and bottom with t′, then simplify
using (2.8)–(2.11). For (2.13), it suffices to prove the first equation, since the latter
then follows on applying ω. If k < 0 we vertically compose on the bottom with the
isomorphism ↑ ⊗ ↓ ⊕ 1⊕(−k) ∼→ ↓⊗ ↑ from (1.5) to reduce to checking the following:

• = • , and •
•r = •

•r for all 0 ≤ r < −k.

To establish the first identity here, commute the dot past the crossing on each side
using (2.5), then use the vanishing of the curl from (2.11). The second identity follows
using (2.2). Finally, we must prove the first equation from (2.13) when k ≥ 0. In view
of the definition of the leftward cap from (2.8), we must show equivalently that

k•
•

=
k•
•

.

To see this, use (2.12) to commute the bottom dot past the crossing, then appeal to
(2.3). �

We also give meaning to negatively dotted bubbles by making the following defini-
tions for r < 0:

•r :=


•

♦
−k

−r−1

if r > k − 1,

−1 if r = k − 1,
0 if r < k − 1,

• r :=


− •

♦
k

−r−1
if r > −k − 1,

1 if r = −k − 1,
0 if r < −k − 1.

(2.14)

Lemma 2.3. The infinite Grassmannian relations from Theorem 1.3(i) all hold.

Proof. The equation (1.13) is implied by (2.10)–(2.11) and (2.14). For (1.14), we may
assume using ω that k ≥ 0. Then we take t > 0 and calculate:

∑
r,s∈Z

r+s=t−2

• s
•r

(2.14)
= •k+t−1 −

k−1∑
n=0

•
♦

k

n

•n+t−1
+

∑
r≥−1,s≥0
r+s=t−2

• s
•r

(2.9)
=

k •

t−1 •

+
∑
r,s≥0

r+s=t−2

• s
•r +

• t−1
•−1

(2.8)
=

(2.14) t−1 • +
∑
r,s≥0

r+s=t−2

• s
•r − δk,0 • t−1

(2.5)
=

t−1•
− δk,0 • t−1 (2.10)

=
(2.8)

δk,0


t−1•
− • t−1

 (2.9)
= 0.

This implies (1.14). �



12 J. BRUNDAN

The next lemma expresses the decorated leftward cups and caps in terms of the
undecorated ones. It means that we will not need to use the diamond notation again
after this.

Lemma 2.4. The following holds:

r
♦ = −

∑
s≥0

•s • −r−s−2 if 0 ≤ r < k,

r
♦

= −
∑
s≥0 •−r−s−2

•s if 0 ≤ r < −k.

(2.15)

Proof. We explain the first equality; the second may then be deduced by applying ω
using also (2.13). Remembering the definition (2.6), it suffices to show on replacing

each
r
♦ with −

∑
s≥0

•s • −r−s−2 that the matrix product

[
• · · · k−1•

]T 
0
♦

1
♦ · · ·

k−1
♦


is the (k + 1) × (k + 1) identity matrix. This may be checked using (2.9)–(2.10) and
Lemma 2.3; cf. the proof of [B1, Corollary 3.3] for a similar argument. �

If we substitute the formulae from Lemma 2.4 into (2.9), we obtain:

= +

k−1∑
r=0

∑
s≥0

s•

•r
•−r−s−2 , (2.16)

= +

−k−1∑
r=0

∑
s≥0

•−r−s−2
s•
•r
. (2.17)

Lemma 2.5. The curl relations from Theorem 1.3(iv) all hold.

Proof. In the next paragraph, we will establish the following:

=

k∑
r=0

•r
•−r−1 , = −

−k∑
r=0

•−r−1
•r
. (2.18)

Then to obtain the curl relations in the form (1.17), take the dotted curls on the left
hand side of those relations, use (1.2) to commute the dots past the upward crossing,
convert the crossing to a rightward one using (1.3) and the definition of t, then apply
(2.18).

For (2.18), here is the proof of the first equation:

(2.8)
=

•k (2.16)
= •k +

k−1∑
r=0

∑
s≥0

•k+s

•r
• −r−s−2

(1.13)
= •k +

k−1∑
r=0

∑
s+t=k−r

•s+k−1

•r
•t−k−1 +

k−1∑
r=0 •r

•−r−1

(1.14)
= •k +

k−1∑
r=0 •r

•−r−1 (1.13)
=

k∑
r=0 •r

•−r−1 .
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The second equation then follows by applying ω and using (2.2). �

The proofs of the next two lemmas are intertwined with each other.

Lemma 2.6. The following relations hold:

= , = , (2.19)

= , = . (2.20)

Proof. It suffices to prove the left hand equalities in (2.19)–(2.20); then the right hand
ones follow by applying ω. In the next two paragraphs, we will prove the left hand
equality in (2.19) assuming k ≤ 0 and the left hand equality in (2.20) assuming k > 0.

Consider (2.19) when k ≤ 0. We claim that

= . (2.21)

To prove this, vertically compose on the bottom with the isomorphism[
• · · · −k−1•

]
: ↑ ⊗ ↑ ⊗ ↓ ⊕ ↑⊕(−k) ∼→ ↑⊗ ↓ ⊗ ↑

to reduce to showing equivalently that

= and
r•

= r• for 0 ≤ r < −k.

Here are the proofs of these two identities:

(2.4)
=

(1.2)

(2.18)
=

(1.13)
δk,0

(2.3)
=

(1.2)
δk,0

(2.18)
=

(1.13)
,

r•
(2.2)
= r•

(1.2)
= r• −

∑
s,t≥0

s+t=r−1

s•
t•

(1.17)
=

(1.13)
r•

(2.11)
= r• .

Thus, the claim (2.21) is proved. Then we have that

(2.21)
=

(1.7)
= +

−k−1∑
r=0

∑
s≥0 •s

•−r−s−2

r• (1.17)
=

(1.13)
,

establishing (2.19).
Next consider (2.20) when k > 0. The strategy to prove this is the same as in the

previous paragraph. One first verifies that = by vertically composing

on the top with the isomorphism[
• · · · k−1•

]T
: ↑ ⊗ ↓ ⊗ ↑ ∼→ ↓⊗ ↑ ⊗ ↑ ⊕ ↑⊕k.

Then this can be used to show = = .

The partial results established so far are all that are needed to to prove Lemma 2.7
below. To complete the proof of the present lemma, suppose first that k > 0. We take
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the left hand equality from (2.20) proved in the previous paragraph, attach leftward
caps to the top left and top right strands, then simplify using the left adjunction
relations to be established in Lemma 2.7. This establishes (2.19) for k > 0. Finally,
(2.20) for k ≤ 0 may be deduced from (2.19) by a similar procedure. �

Lemma 2.7. The left adjunction relations from Theorem 1.3(ii) hold.

Proof. As usual, it suffices to prove the first equality. If k ≤ 0 then

(2.8)
=

−k•

(2.19)
=

−k•

(1.17)
=

(1.13)
.

If k > 0 then

(2.8)
= k• (2.20)

= k• (1.17)
=

(1.13)
.

Note we have only used the parts of Lemma 2.6 that were already proved without
forward reference to the present lemma. �

There are just two more relations to be checked; the arguments here are analogous
to ones in [KL].

Lemma 2.8. The bubble slide relations from Theorem 1.3(v) hold.

Proof. We just explain the argument for k ≥ 0; the case k < 0 is similar. We first
prove (1.19). This is trivial for r < 0 due to (1.13), so we may assume that r ≥ 0.
Then we calculate:

r•
(1.7)
= r•

(2.3)
=

(2.20)
r•

(1.2)
=

r•
+

∑
s,t≥0

s+t=r−1

s•
t
•

(1.2)
=

(1.17)
r• −

∑
s,t≥0

s+t=r−1

∑
m≥0

s+m• t−m−1• .

This easily simplifies to the right hand side of (1.19).
Now we deduce (1.18). Let u be an indeterminant and

e(u) :=
∑
r≥0

eru
−r, h(u) :=

∑
r≥0

hru
−r (2.22)

be the generating functions for the elementary and complete symmetric functions.
These are elements of Sym[[u−1]] which satisfy e(u)h(−u) = 1. Lemma 2.3 implies
that the homomorphism β defined after (1.21) satisfies

β(e(u)) = −
∑
r≥0

•r+k−1 u−r, (2.23)

β(h(−u)) =
∑
r≥0

•r−k−1 u−r. (2.24)

Also let p(u) :=
∑
r≥0(r+1)xru−r−2, where x is the upward dot as usual. The identity

(1.19) just proved asserts that

β(e(u))⊗ 1↑ = 1↑ ⊗ β(e(u))− p(u)⊗ β(e(u)).
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Multiplying on the left and right by β(h(−u)) = β(e(u))−1, we deduce that

1↑ ⊗ β(h(−u)) = β(h(−u))⊗ 1↑ − β(h(−u))⊗ p(u).

This is equivalent to (1.18). �

Lemma 2.9. The alternating braid relation from Theorem 1.3(vi) holds.

Proof. Again, we just sketch the argument when k ≥ 0, since k < 0 is similar. The idea
is to attach crossings to the top left and bottom right pairs of strands of the second
equality of (2.4) to deduce that

= .

Now apply (1.6)–(1.7) to remove t ◦ t′ and t′ ◦ t on each side then simplify; along the
way many bubbles and curls vanish thanks to (1.13) and (2.10). �

3. Proofs of Theorems

Proof of Theorem 1.2. We first establish the existence of c′ and d′ satisfying the rela-
tions (1.6)–(1.9). So let Hk be as in Definition 1.1. Define t′ and the decorated leftward
cups and caps from (2.6)–(2.7), then define c′, d′ and the negatively dotted bubbles by
(2.8) and (2.14). We need to show that this t′ and these negatively dotted bubbles are
the same as the ones defined in the statement of Theorem 1.2. For t′, this follows from
(2.19) and the left adjunction relations (1.15) proved in Lemma 2.7. For the negatively
dotted bubbles, the infinite Grassmannian relations (1.13)–(1.14) proved in Lemma 2.3
are all that are needed to construct the homomorphism β from (1.21). In the ring of
symmetric functions, it is well known that

hr = det (ei−j+1)i,j=1,...,r . (3.1)

Hence, applying the automorphism of Sym that interchanges hr and (−1)rer, we get
also (−1)rer = det

(
(−1)i−j+1hi−j+1

)
i,j=1,...,r

. On applying β, this shows that

(−1)r •r−k−1 = det
(
− •i−j+k

)
i,j=1,...,r

,

−(−1)r •r+k−1 = det
(
• i−j−k

)
i,j=1,...,r

,

which easily simplify to produce the identities (1.11)–(1.12). Thus, we are indeed in
the setup of Theorem 1.2. Now we get the relations (1.6)–(1.9) from (2.16)–(2.17),
the infinite Grassmannian relations (1.13)–(1.14) proved in Lemma 2.3, and the curl
relations (1.17) proved in Lemma 2.5.

Next let C be a strict monoidal category with generators x, s, c, d, c′, d′ subject to
the relations (1.2)–(1.3) and (1.6)–(1.9). We have just demonstrated that all of these
relations hold in Hk, hence, there is a strict k-linear monoidal functor A : C → Hk
taking objects ↑, ↓ and generating morphisms x, s, c, d, c′, d′ in C to the elements with
the same names in Hk.

In the other direction, we claim that there is a strict k-linear monoidal functor
B : Hk → C sending the generating objects ↑, ↓ and morphisms x, s, c, d in Hk to
the elements with the same names in C; this will eventually turn out to be a two-sided
inverse to A. To prove the claim, we must verify that the three sets of defining relations
of Hk hold in C. It is immediate for (1.2) and (1.3), so we are left with checking the
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inversion relation. We just do this in case k ≥ 0, since the argument for k < 0 is
similar. Defining the new morphisms

r
♦ := −

∑
s≥0

•s • −r−s−2

in C for r = 0, 1, . . . , k − 1, we claim that
0
♦

1
♦ · · ·

k−1
♦


is the the two-sided inverse of the morphism (1.4). Composing one way round gives
the morphism

−
∑
r,s≥0

r•

•s
•−r−s−2 ,

which is the identity by the relation (1.6) in C. The other way around, we get a
(k + 1) × (k + 1)-matrix. Its 11-entry is the identity by (1.7). This is all that is
needed when k = 0, but when k > 0 we also need to verifying the following for
r, s = 0, 1, . . . , k − 1:

r• = 0,

s
♦

= 0, •r
s
♦

= δr,s11,

Here is the proof of the first of these for r = 0, 1, . . . , k − 1:

r• (1.10)
=

r• (1.2)
=

r• −
∑
s,t≥0

s+t=r−1

•s •t (1.8)
= 0. (3.2)

To prove the second, note by definition for s = 0, 1, . . . , k − 1 that

s
♦

= −
∑
r≥0

r •
•−r−s−2 .

By the definition (1.11), the dotted bubble here is zero if r ≥ k, while for r =
0, 1, . . . , k − 1 the dotted curl is zero by a similar argument to (3.2). For the final
relation involving the decorated dotted bubble, define β : Sym → EndC(1) by send-
ing er 7→ − •r+k−1 for each r ≥ 0. Then by (3.1), we have that β((−1)rhr) =

det
(

•i−j+k
)
i,j=1,...,r

. Assuming r ≤ k, this is exactly the definition of • r−k−1

from (1.11). Now suppose that 0 ≤ r, s < k. Applying β to the symmetric func-

tion identity
∑k−s−1
t=0 (−1)k−s−1−ter−k+1+thk−s−1−t = δr,s and using (1.8) shows that

−
∑k−s−1
t=0 •r+t •−s−t−2 = δr,s11, which is exactly the identity we need. This

proves the claim, so the functor B is well-defined.
Next we check that c′ and d′ are the unique morphisms in C satisfying the relations

(1.6)–(1.9). We do this by using the assumed relations to derive expressions for c′

and d′ in terms of the other generators. Note by the claim in the previous paragraph
that the leftward crossing t′ may be characterized as the first entry of the inverse of
the morphism (1.4) when k ≥ 0; similarly, it is the first entry of the inverse of the
morphism (1.5) when k < 0. This shows that t′ does not depend on the values of c′
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and d′ (despite being defined in terms of them). Then, when k ≥ 0, we argue as in
(3.2) to show that

k• (1.10)
=

k• (1.2)
=

k• −
∑
s,t≥0

s+t=k−1

•s •t (1.8)
= .

This establishes the uniqueness of d′ when k ≥ 0. Similarly, using (1.9) in place of
(1.8), one gets that

=
−k•

when k ≤ 0, hence, c′ is unique when k ≤ 0. It remains to prove the uniqueness of c′

when k > 0 and of d′ when k < 0. In the case that k > 0, the claim from the previous
paragraph shows that the last entry of the inverse of (1.4) is

−
∑
s≥0

•s • −s−k−1 (1.11)
= − .

Hence, c′ is unique when k > 0. The uniqueness of d′ when k < 0 is proved similarly.
Now we can complete the proof of the theorem. First we show that C and Hk are

isomorphic, thereby establishing the equivalent presentation from the statement of the
theorem. To see this, we check that the functors A and B are two-sided inverses. We
have that A ◦ B = IdHk

obviously. To see that B ◦ A = IdC , it is clear that B ◦ A is
the identity on the generating morphisms x, s, c, d, and follows on the morphisms c′, d′

by the uniqueness established in the previous paragraph. Finally, since Hk ∼= C, the
uniqueness of c′ and d′ established in the previous paragraph implies they are also the
unique morphisms in Hk satisfying (1.6)–(1.9), and we are done. �

Proof of Theorem 1.3. Parts (i), (ii), (iv), (v) and (vi) are proved in Lemmas 2.3, 2.7,
2.5, 2.8 and 2.9, respectively. Part (iii) for dots follows from (2.13), while for crossings
it is an easy consequence of the “pitchfork relations” from Lemma 2.6 (combined with
the adjunction relations). �

Proof of Theorem 1.4. Let us first make the identification with Khovanov’s category
H from [K, §2.1]. Taking k := −1, Theorem 1.2 gives a presentation of H−1 with
generating morphisms x, s, c, d, c′ and d′. Comparing the relations (1.2)–(1.3) and
(1.6)–(1.9) with the local relations in Khovanov’s definition, we see that there is a
strict monoidal functor H−1 → H sending ↑ and ↓ to Khovanov’s objects ↑ = Q+ and
↓ = Q−, s, c, d, c′ and d′ to the morphisms in Khovanov’s category represented by the

same diagrams, and x to the right curl . This functor sends = • to the figure-

of-eight, which is zero since it involves a left curl. Hence, our functor factors through
the specialization to induce a functor from the additive envelope of H−1(0) to H. To
see that this functor is an isomorphism, we construct its two-sided inverse. This sends
any diagram representing a morphism in Khovanov’s category to the morphism in the
additive envelope of H−1(0) encoded by the same diagram. It is well-defined since all
of Khovanov’s local relations hold in H−1(0), and also we have shown in Theorem 1.3
that H−1(0) is strictly pivotal (something which is required implicitly in Khovanov’s
definition).

The identification of Hk(δ) with the Mackaay-Savage category H̃λ follows by a very
similar argument. Let λ =

∑
i λiωi be a dominant weight (in the notation of [MS]), and

set k := −
∑
i λi and δ :=

∑
i iλi. In one direction, the monoidal isomorphism from

the additive envelope of Hk(δ) to H̃λ sends our x, s, c, d, c′ and d′ to the morphisms
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in [MS] denoted by the same diagrams. The morphism denoted cn in [MS, (2.1)] for
0 ≤ n ≤ −k is our − •n+k−1 , thanks to the definition of negatively dotted clockwise
bubble at the end of Theorem 1.2. Using this, it is straightforward to check that the
local relations in [MS, (2.2)–(2.9)] agree with the defining relations for Hk(δ) from
(1.2)–(1.3) and (1.6)–(1.9). Finally, Hk is strictly pivotal, which again is required
implicitly in the approach of [MS]. �

Proof of Theorem 1.6. By induction on the number of crossings, it is straightforward
to see from the relations established in §2 that any diagram representing a mor-
phism θ ∈ HomHk

(X,Y ) can be written as a Sym-linear combination of morphisms in
B∞,∞(X,Y ) with the same or fewer crossings. So B∞,∞(X,Y ) spans HomHk

(X,Y ).
The problem is to prove it is also linearly independent. This is done already in the case
k = 0 in [BCNR, Theorem 1.2]. When k < 0, we will explain how to deduce it from
[MS, Proposition 2.16] in the next paragraph. Then it follows for k > 0 by applying
the isomorphism ω from Lemma 2.1.

So assume henceforth that k < 0. In order to make an observation about base
change, let us add a superscript Hk

k to indicate the ground ring: it suffices to establish
linear independence for HZ

k ; then one can obtain the linear independence for arbitrary
k by using the obvious functor Hk

k → HZ
k ⊗Z k. Thus we are reduced to the case that

k = Z. Suppose we are given some linear relation∑
θ∈B∞,∞(X,Y )

pθθ = 0

for pθ ∈ Sym. Take any dominant integral weight λ for sl∞ with k = −
∑
i λi, and set

δ :=
∑
i iλi. By Theorem 1.4, the specialized categoryHk(δ) embeds into the Mackaay-

Savage category H̃λ over ground ring Z. So we can appeal to [MS, Proposition 2.16]
to deduce that B∞,∞(X,Y ) is a basis for HomHk(δ)(X,Y ) as a free right module over
Sym specialized at e1 = −δ. We deduce that pθ|e1=−δ = 0 for each θ. Since there are
infinitely many possibilities for δ as λ varies (keeping k < 0 fixed), this is enough to
show that all pθ are zero. �

Proof of Theorem 1.7. Noting thatHf
0
∼= k, we denote the one-dimensionalHf

0 -module

also by k. As f(x1) = 0 in Hf
1 , the functor Ev ◦Ψf sends f(x) to zero, hence, it factors

through the quotient category Hf,1 of Hk. Since k is a projective Hf
0 -module and

the induction and restriction functors are biadjoint, it follows that Ev ◦Ψf has image
contained in the full subcategory

⊕
n≥0 pmod-Hf

n of
⊕

n≥0 mod-Hf
n . This subcategory

is additive and Karoubian, hence, the functor Hf,1 →
⊕

n≥0 pmod-Hf
n constructed so

far extends to the functor ψf on Kar(Hf,1) from the statement of the theorem.

Now take n ≥ 0. The functor ψf maps ↑⊗n to (Indnn−1 ◦ · · · ◦ Ind1
0)k = Hf

n , hence,
it defines an algebra homomorphism

ψn : EndHf,1
(↑⊗n)→ EndHf

n
(Hf

n) ≡ Hf
n . (3.3)

We claim that ψn is actually an algebra isomorphism. To see this, note by the relations
that there is a homomorphism

φn : Hf
n → EndHf,1

(↑⊗n), (3.4)

xi 7→ (1↑)
⊗(n−i) ⊗ x⊗ (1↑)

⊗(i−1),

sj 7→ (1↑)
⊗(n−j−1) ⊗ s⊗ (1↑)

⊗(j−1).

Bubbles on the right edge become scalars in EndHf,1
(↑⊗n) (e.g., by the last part of

Lemma 1.9), hence, the easy spanning part of Theorem 1.6 implies that φn is surjective.
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Also ψn ◦ φn = IdHf
n

as the two sides agree on generators. These two facts combined
show that ψn and φn are two-sided inverses, and we have proved the claim.

By the claim, for any primitive idempotent e ∈ Hf
n , there is a corresponding idem-

potent e ∈ EndHf,1
(↑⊗n) defining an object (↑⊗n, e) ∈ Kar(Hf,1) which maps to eHf

n

under the functor ψf . This shows that the functor ψf is dense. It remains to show
that it is full and faithful. To see this, it suffices to take words X = X1⊗ · · · ⊗Xr and
Y = Y1 ⊗ · · · ⊗ Yr in the letters ↑ and ↓ representing objects of Hf,1 such that

n := #{i |Xi = ↑} −#{i |Xi = ↓} = #{j | Yj = ↑} −#{j | Yj = ↓},
and show that ψf : HomHf,1

(X,Y ) → HomHf
n
(ψf (X), ψf (Y )) is an isomorphism. To

prove this, we first reduce to that case that X = 1 using the following commutative
diagram, whose horizontal maps are the canonical isomorphisms coming from adjunc-
tion/duality:

HomHf,1
(X,Y )

∼−−−−→ HomHf,1
(1, X∗ ⊗ Y )

ψf

y yψf

HomHf
n
(ψf (X), ψf (Y ))

∼−−−−→ HomHf
0
(k, ψf (X∗ ⊗ Y )).

(3.5)

Assume henceforth that X = 1. We then proceed by induction on the length s of Y ,
the case s = 0 following since ψ0 is an isomorphism. If s > 0, then at least one letter
Yi of Y must equal ↓. If i = s, i.e., the letter ↓ is on the right, then Y ∼= 0 as 1↓ = 0
in Hf,f ′ , and the conclusion is trivial. Otherwise, we may assume that Yi = ↓ and
Yi+1 = ↑ for some i < s. Let Y ′ be Y with these two letters interchanged and Y ′′ be
Y with these two letters removed. Using the induction hypothesis and the following
commutative diagram, whose horizontal maps are the canonical isomorphisms coming
from (1.5), we see that the conclusion follows for Y if we can prove it for Y ′:

HomHf,1
(1, Y )

∼−−−−→ HomHf,1
(1, Y ′ ⊕ Y ′′⊕(−k))

ψf

y yψf

HomHf
0
(k, ψf (Y ))

∼−−−−→ HomHf
0
(1, ψf (Y ′)⊕ ψf (Y ′′)⊕−k).

(3.6)

Repeating in this way, we can move the letter ↓ of Y to the right, and then we are
done as before. �

Proof of Lemma 1.9. Suppose that

f(u) = u` + z1u
`−1 + · · ·+ z`, f ′(u) = u`

′
+ z′1u

`′−1 + · · ·+ z′`′ ,

for z1, . . . , z`, z
′
1, . . . , z

′
`′ ∈ k. Also set z0 = z′0 := 1.

We first show that If,f ′ contains r−k−1• −δr11 for all r ≥ 0. Proceed by induction
on r. If r ≤ `′, we are done by the definition of If,f ′ , so assume that r > `′. By (1.26),

ukδ(u)f(u) = f ′(u), which is a polynomial in u. Hence, its u`
′−r-coefficient is zero.

This shows that ∑̀
s=0

zsδr−s = 0. (3.7)

Since r− k− 1 = `+ r− `′− 1 ≥ `, we can use x` + z1x
`−1 + · · ·+ z` ∈ If,f ′ to deduce

that
∑`
s=0 zs r−s−k−1• ∈ If,f ′ . Then by induction we get that

r−k−1• − δr11 = r−k−1• +
∑̀
s=1

zsδr−s11 ≡
∑̀
s=0

zs r−s−k−1• ≡ 0

modulo If,f ′ , as required.



20 J. BRUNDAN

Next, let e(u), h(u) ∈ Sym[[u−1]] be the power series from (2.22). The previous para-
graph and (2.24) shows that β(h(−u)) ≡ δ(u)11 (mod If,f ′). Since e(u) = h(−u)−1

and δ′(u) = −δ(u)−1, it follows that β(e(u)) ≡ −δ′(u)11 (mod If,f ′). In vew of (2.23),

this shows that If,f ′ contains r+k−1• − δ′r11 for all r ≥ 0.

Now we can show that f ′(x′) ∈ If,f ′ . By (1.26), z′r =
∑`
s=0 zsδr−s. So

f ′(x′) =

`′∑
r=0

z′r • `′−r =

`′∑
r=0

∑̀
s=0

zsδr−s • `′−r ≡
∑̀
s=0

zs

`′∑
r=0

• `′−r r−s−k−1•

(2.14)
=

∑̀
s=0

zs
∑
r≥0
• r `−s−1−r• (1.17)

=
∑̀
s=0

zs `−s• ≡ 0 (mod If,f ′).

So far, we have shown that the left tensor ideal generated by f(x) and r−k−1• −
δr11 for r = 1, . . . , `′ contains f ′(x′) and r+k−1• − δ′r11 for r = 1, . . . `. Similar
argument shows that the left tensor ideal generated by the latter elements contains the
former elements. This proves the lemma. �
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