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Abstract

We give a self-contained account of the results originating in the work of James
and the second author in the 1980s relating the representation theory of GL, (F,)
over fields of characteristic coprime to ¢ to the representation theory of “quantum
GL,” at roots of unity.

The new treatment allows us to extend the theory in several directions. First,
we prove a precise functorial connection between the operations of tensor product
in quantum GL,, and Harish-Chandra induction in finite GL,,. This allows us to
obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in
addition for p-singular classes.

From that we obtain simplified treatments of various basic known facts, such as
the computation of decomposition numbers and blocks of GL,,(F,) from knowledge
of the same for the quantum group, and the non-defining analogue of Steinberg’s
tensor product theorem. We also easily obtain a new double centralizer property
between G L, (F;) and quantum GL,,, generalizing a result of Takeuchi.

Finally, we apply the theory to study the affine general linear group, following
ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as
the modular analogues of Zelevinsky’s and Thoma’s branching rules. Using these,
we obtain a new dimension formula for the irreducible cross-characteristic repre-
sentations of GL,(F,;), expressing their dimensions in terms of the characters of
irreducible modules over the quantum group.
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Introduction

This article is a contribution to the study of the modular representation theory of
the finite general linear group GL,(F,) over a field F' of characteristic p coprime to
q. We have attempted in the first place to give a self-contained account of the results
originating in the work of James and the second author [Dy, Do, DJo, DJ3, J1, Jo]
in the 1980s relating representation theory of GL,,(F,;) to representation theory of
“quantum GL,” at roots of unity. Since that time, there have been a number of
conceptual simplifications to the theory, e.g. in [CPS3, D3, Dy, DDu;, DDug, HLo,
T}], which we have incorporated in the present approach from the outset. We mention
above all the centrally important Morita theorem of Cline, Parshall and Scott from
[CPS3, §9]. We will reprove this Morita theorem in the present article in a self-
contained way, thus leading us to a new and independent approach to the results
of [D1, Dg, DJg, DJ3, J1, Jo] assumed in the Cline-Parshall-Scott argument. Along
the way, we make many of these results more precise or more functorial, which is
essential in order to prove the new results of the article described further below.

Our point of view has been to deduce as much as possible of the modular theory
from standard, often purely character theoretic results in the characteristic zero
theory of GL,(F,), combined with knowledge of the highest weight representation
theory of quantum linear groups. For the former, we have adopted the point of view
of the Deligne-Lusztig theory, as described for GL,,(F,) by Fong and Srinivasan [F'S],
supplemented by various other basic results most of which can be found in Carter’s
book [C]; we also appeal to the result of [DDuy, §5],[HLg] showing that Harish-
Chandra induction is independent of the choice of parabolic subgroup, and the basic
result of block theory proved in [BM] (also originally proved in [F'S] though we do not
use the full block classfication of Fong and Srinivasan). For quantum linear groups,
we have followed the treatment by Parshall and Wang [PW] wherever possible, as
well as [Cl, JM, DDo, Doy| for various additional results.

We now summarize the main steps in the development, so that we can describe
the new results of the article in more detail. We restrict our attention in this intro-
duction to the case of unipotent representations, though there is no such restriction
in the main body of the article. So let F' be an algebraically closed field of char-
acteristic p coprime to ¢, and let G,, = GL,(F,). Let M denote the FGy-module
arising from the permutation representation of GG,, on the cosets of a Borel subgroup.
Following the idea of Cline, Parshall and Scott, we introduce the cuspidal algebra,
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which in the unipotent case is the quotient algebra C,, := FG,/annpg, (M). The
cuspidal algebra C), is actually a quotient algebra just of the “unipotent block” B,
of F'G,,, by which we mean the union of blocks of the algebra F'G,, corresponding
to the irreducible constituents of the module M.

Fixing some arbitrary m > n, we let S,,, denote the ¢-Schur algebra. Fol-
lowing [Du], this can be viewed as the quotient algebra Sy, ,, := U,/ anny,, (V")
of Lusztig’s divided power version from [Lg] of the quantized enveloping algebra
Um = Uy(gl,,) (specialized over F' at root of unity v = ¢'/2), where V" is the n-
fold tensor power of the natural m-dimensional U,,-module. (Actually, in the main
body of the article, we work with the quantized coordinate ring rather than with
Up.) At the heart of the theory is an explicit Morita equivalence (see (3.5a)):

Bm,n : mod(Sp,n) — mod(Cy,).

The existence of this Morita equivalence was originally proved (in the unipotent case
only) by Takeuchi [T], but we follow the quite different strategy of Cline, Parshall
and Scott from [CPSs, §9] for its construction. The idea is to exhibit an explicit pro-
jective generator for mod(C),) with endomorphism algebra isomorphic to Sy, . The
projective generator used is roughly speaking the direct sum of the modules obtained
by Harish-Chandra induction from all Steinberg representations of all standard Levi
subgroups of G,, (the Steinberg representation does not in general remain irreducible
on reduction modulo p so we refer the reader to §3.3 for the precise definition we
use for this in characteristic p).

Write Ly, (M) (resp. Ay, (X)) for the irreducible (resp. standard or “Weyl”) U,,-
module of highest weight A, where A is a partition of height at most m. If A is a
partition of n, these modules factor through the quotient S, ., so we obtain the
Cp-modules:

where X denotes the transpose partition. Since [, , is a Morita equivalence, the
modules {L(1,\) | A F n} give a complete set of non-isomorphic irreducible C,-
modules. It turns out moreover that their inflations to the unipotent block B,, give
a complete set of non-isomorphic irreducible B,,-modules, while the standard module
A(1, ) is a reduction modulo p of an irreducible CG,-module affording the irre-
ducible unipotent character x, parametrized by the partition A (cf. Theorem 4.1c,
(4.4b)).

However, the unipotent block B,, has more irreducible characters in characteris-
tic zero than just the characters {x, | A F n}, that is, one does not obtain complete
information about the decomposition matrix of the unipotent block from the results
described so far (only a square submatrix). To understand these additional irre-
ducible characters in terms of the g-Schur algebra, our approach is to first prove an
extension of the above Morita theorem to arbitrary elements o € F; with p/-part
equal to 1 (so the original unipotent case is then the special case that o = 1).
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The key new result in our proof of this extension relates the tensor product
operator on Up,-modules to the Harish-Chandra induction operator ¢ (more usually
denoted by o) on GL-modules. To describe this, first recall that there is a natural
notion of tensor product of two Uy,-modules coming from the comultiplication of
the Hopf algebra U,,,. This means that for ny +ns = n, the tensor product M; ® Mo
of an Sy, n,-module with an S, ,,,-module can be viewed as an S, ,-module in a
natural way. In other words, there is a bifunctor

?7® 7 mod(Sm ;) X mod(Spn,) — mod(Sy,n)-
Also Harish-Chandra induction gives us a bifunctor
707 :mod(FGy,) x mod(FG,,) — mod(FG,).

We show in Theorem 4.2a that these two bifunctors correspond under the Morita
equivalence, i.e. that the bifunctors (Bmmn,?) © (Bmme?’) and Bpn(? @ 7 ) from
mod(Sy,,n, ) X mod(Spy n,) to mod(FG,,) are isomorphic. In order to prove this,
we first prove a g-analogue of the main result of [BK;, §2] concerning polynomial
induction in quantum linear groups, see §§1.4-1.5.

Using the p-singular generalization of the Morita theorem, one obtains additional
standard FGp-modules of the form A(o, ), for o € FY of degree d over F, with
p’-part equal to 1, and A F k& where n = kd. If the image of ¢ is a primitive /-th
root of unity in F'*, there is an integer » > 0 so that d = £p”. We show that the
module A(co, \) can be realized alternatively under the original (unipotent) Morita
equivalence as

A(Uv >‘) = 5m,n(Am()‘/)[r])v

where Ml denotes the Sm,n-module obtained by taking the rth Frobenius twist
of M (cf. Theorem 4.3d). Finally, to construct a general standard module of By,
i.e. a module equal to the reduction modulo p of an arbitrary irreducible complex
character of B,,, one needs to consider modules of the form

A(o1,M)©...0A(0g, Aa)

where the o; are non-conjugate elements of I_F; with p/-part equal to 1 and the \;
are partitions with ). |\;| deg(o;) = n (cf. (4.4a)). In other words, the standard
modules for the unipotent block B, are lifts of C,-modules which correspond under
the Morita equivalence to Frobenius-twisted tensor products of standard modules
for the quantum group of the form

Am()\/l)[rﬂ ® - ® Am()\;)[m]

(cf. Lemma 4.4c).
We then easily obtain alternative, functorial proofs of the main results of [F'S,
Ja, DJs], such as a description of the blocks of the algebra B, (Theorem 4.4g) and
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an explicit formula for the decomposition numbers in terms of familiar (but un-
known!) decomposition numbers and modular Littlewood-Richardson coefficients
for the quantum algebra Uy, (Theorem 4.4d). There is also a non-defining character-
istic analogue of Steinberg’s tensor product theorem (Theorem 4.3e) for irreducible
modules obtained originally by Du and the second author [DDus], which now follows
immediately from the tensor product theorem for Uy, and the other results described
so far.

We mentioned earlier the work of Takeuchi. From our point of view, Takeuchi’s
double centralizer property from [T] follows as an elementary consequence of a more
general double centralizer property, which we regard as the non-defining character-
istic analogue of Donkin-Howe duality [Dos]. This has a particularly simple formu-
lation in the unipotent case. Let T' be the permutation representation of F'G,, on
the set of all m-step flags

Ozfogflggfmzwnu

where W;, = Fy is the natural representation of G,. It turns out that the action of
FG,, on T factors through the quotient C,, of F'G,,, so that T is a Cj-module in a
natural way, and moreover, the endomorphism algebra End¢, (T') is isomorphic to
Sm.n (see Theorem 3.4a). This was originally proved in [DJ3, Theorem 2.24] (see
also the construction in [BLM]). In Theorem 4.5e, we prove the following double

centralizer property:
Endg,, ,(T) = Ch.

This result is very natural from the point of view of quasi-hereditary algebras; since
C', is Morita equivalent to Sy, , and the latter is a quasi-hereditary algebra according
to [PW], C,, is itself quasi-hereditary. The permutation representation 7" is in fact
a full tilting module for the quasi-hereditary algebra C), in the sense of Ringel [R],
so that Sy, is a Ringel dual of C), (cf. Theorem 4.5d).

The final results of the article are concerned with the affine general linear group
H, = AGL,(F,), that is, the semi-direct product G, W, of the elementary Abelian
group W,, by G,. Our results here were motivated by the ideas of Zelevinsky [Z,
§13] in characteristic 0. Corresponding to the natural embedding U,,, < U,,+1 there
is a Levi subalgebra of the ¢g-Schur algebra Sy,41,, which we denote by

n
Sm.<n = D S
J=0

We define an affine analogue D,, of the cuspidal algebra C,,, namely, the algebra
FH,/anngg, (N) where N is the permutation representation of F'H,, on the cosets
of a Borel subgroup of G,, C H,, (“affine flags”). There is an explicit Morita equiv-
alence (cf. (5.3d)):

Brm,<n : m0d(Sp,<n) — mod(D),,).

Regarding (B,41,n (resp. fBm,<n) now as a functor from mod(Sy,4+1.,) to FG,, (resp.
from mod(Sy, <n) to F H,,), our main result on the affine linear group (Theorem 5.4c)
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shows that there is an isomorphism of functors:

. 1H Sm+1,
1ndG: oﬁerl,n ,Bm <n © ressm "

This allows us to relate the problem of decomposing an induced module of the
form inng L for an irreducible F'G,-module L to the problem of decomposing the
restriction of an irreducible U,,41-module to Uy,. From this, we also explain how to
calculate the composition multiplicities of the restriction resg L from knowledge
of the composition multiplicities of restrictions of irreducibles frorn Un to Up—1, a
result which we regard as a modular analogue of Zelevinsky’s branching rule from
[Z, Theorem 13.5] (in turn, this is really an extension of Thoma’s branching rule
[Th)).

Finally, there is a well-known hook formula (2.3.3) for the degrees of the irre-
ducible complex characters of G, but in positive characteristic remarkably little is
known about the dimensions of the irreducible F'G,-modules (see e.g. [GT]). As an
application of our branching rule for the affine linear group, we obtain a dimension
formula (Theorem 5.5d) for the irreducible F'G,-modules in terms of (unknown!)
characters of irreducible U,,-modules. To state this for unipotent representations,
define the polynomial Sy(t) € Z[t] for a partition A = (I3 > ly > --- > I}, > 0) of
height h by

n h
S)\(t) — Z [H(tz - 1) H(tm1+...+mi - 1)] ’
=1

(m1,...,mp) Li=1
where the sum is over all h-tuples (myq,...,my) that can be obtained by reordering
the non-zero parts l1,...,l; of \. Then, we show that

dim L(1,\) = Zm,\“
ukn

where m,) , is the weight multiplicity of the weight y in the irreducible Up,-module
Ly (X) of highest weight A\. Even though the latter weight multiplicities my , are
unknown in general, we expect that this result can be used to improve the known
bounds for the low dimensional representations of GL,(F,) in cross characteristics
of [GT].

We now give a brief description of the layout of the article. First, we mention that
there is a very brief guide to some of our non-standard notation for the expert reader,
immediately following this introduction. Then, there are five further chapters. The
first gives a rapid review of the basic results concerning quantum linear groups and
the g-Schur algebra that we need, as well as proving the g-analogue of the results
on polynomial induction from [BK;]|. Chapter 2 gives a similar review of the basic
results from the characteristic zero theory of GL, (F,).

The core of the theory is explained in chapter 3, where in particular we prove
the most important special case of the Morita theorem and use it to introduce the
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various basic modules. Note that throughout chapter 3 (and the early part of chapter
4), we make certain standing assumptions (A1) and (A2) on the element o € IF‘qX,
which we only know a priori are satisfied if o is p-regular. Only in chapter 4 are
we able to show that these assumptions are satisfied in general, so that the earlier
results are true without restriction, when we prove the extension of the Morita
theorem to p-singular classes. Also in chapter 4 we discuss an integral version of
the Morita theorem allowing us to understand base change and prove the result
relating tensor products to Harish-Chandra induction mentioned earlier. We then
give the applications to reprove the results on decomposition numbers of [DJ3] and
the non-defining tensor product theorem of [DDus], and end by proving the double
centralizer property. Chapter 5 contains the results on the affine linear group.

Acknowledgements. We would like to thank the organizers of the “Algebraic
Representation Theory” conference in Aarhus in 1998, where part of the research
for this article was carried out. We also thank S. Donkin for communicating the
proof of Lemma 4.5a to us, and S. Konig and R. Rouquier for help with the literature
in various places.



Notation

Conventions:

Unless we specify otherwise, F' is a commutative, unital ring (from chapter 2
onwards F' will always be an algebraically closed field of characteristic p) and ®
denotes tensor product over F.

Given an algebra C' over F', a C-module always means a left C-module that is
finitely generated over I unless we explicitly say otherwise. We will write mod(C')
for the category of all such finitely generated left C-modules. Given a C-module M,
the endomorphism algebra End¢ (M) is always assumed to act on M on the right.

For an F-coalgebra A, an A-comodule will always mean a right A-comodule, not
necessarily finitely generated. So an A-comodule M is an F-module together with
a structure map 7 : M — M ® A satisfying the usual axioms, see Sweedler [Sw]. We
write comod(A) for the category of all such right A-comodules.

Notation overview:

G, The general linear group GL,,(IF,) over the finite field F, of ¢ elements, where ¢ is a
prime power not divisible by p.

h, k,d Positive integers such that h > k and n = kd.

Hj, The Hecke algebra Hp ,q(X)) associated to the symmetric group Xy, with standard
basis {T,, | w € T} (p.10).
Sk The ¢?-Schur algebra Sp.qa(h, k), which is the quotient of Lusztig’s divided power

version of the quantum algebra Ug 44/2(gl),) (over F' at root of unity q%?) under its
representation on the kth tensor power of its h-dimensional natural module (p.12).

o An element of IF‘; of degree d over F,, with associated companion matrix (o) € G4
(p-29).
M (o) The irreducible, cuspidal F'Gg-module associated to o (p.37).
MP*(c) The left FG,-module obtained by Harish-Chandra induction from the outer tensor
product M (o) X --- X M(o) (k times); e.g. in the unipotent case, M™(1) is the

permutation representation of F'G,, on cosets of a Borel subgroup. There is an explicit,
fixed isomorphism Endpg, (M*(0)) = Hy, (p.38).

Cor The cuspidal algebra, namely, the image of F'G,, under its representation on M k(o)
(p.51).



(o)
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The largest submodule of M* (o) on which each T, € Hj, acts as (—1)("); e.g. in the
unipotent case, Z"(1) is a modular reduction of the Steinberg module (p.54).

The irreducible FG,,-module M* (@)D wes,
the trivial representation of F'G,, (p.55).

For v = (ki,...,k,) E k, Z%(0) is the FG,-module obtained by Harish-Chandra
induction from Z¥(0) = Z¥1 (o)X .- K Z*a (o). Regarded as a C, y-module, Z” (o) is
projective and €, Z¥ (o), summing over all compositions v of k with at most h rows,

is a projective generator for Cy . The endomorphism algebra Endc, , (D, Z¥ (o)) is
isomorphic to Sy, k, so Spx and Cy  are Morita equivalent (p.57).

Ty); e.g. in the unipotent case, A™(1) is

For v = (ky,...,ks) E k, A¥(0) is the FG,-module Harish-Chandra induced from
A”(0) = A1 (o) B --- X A¥e(g). The endomorphism algebra Endc, , (@, AY(0)),
summing over all compositions v of k with at most h rows, is again isomorphic to
Sh,k- In addition, the double centralizer property holds, that is, Endg, , (65, A¥ (o))
is isomorphic to Cy . From this point of view, @, A¥(o) is a full tilting module for
the quasi-hereditary algebra C, r, and Sy and C, j are Ringel duals (p.57).

The functor Home, , (6D, Z¥(0),?) which yields the equivalence of categories between
mod(Cy i) and mod(Sh k) (p.63).

The functor (6B, Z.V(a))®5h,k? which is inverse to the Morita equivalence o p
(p.63).

For F' = C, the ordinary irreducible characters arising as constituents of M*(c) are
the characters {x, | A+ k} (p-36).

The modules {A(o,\) | A F k} are the standard C, y-modules (in the sense of quasi-
hereditary algebras). The standard module A(o, A) is a modular reduction of a CG,,-
module affording the character x, x, and corresponds under the Morita equivalence
to the standard S, y-module of highest weight A’ (transpose partition). Explicitly,
A(o, A) can be defined as the image of any non-zero element of the one dimensional
space Hompg, (Z* (o), A*(0)) (p.63).

The simple head of A(o, ). The {L(o, A\)|A F k} give a complete set of non-isomorphic
irreducible C, ;-modules (p.63).

An arbitrary semisimple element s € G,, can be written up to conjugacy in block-
diagonal form as s = diag((c1)** ... (04)¥=) for non-conjugate elements o4, ..., o, of
IF‘qX and kq,...,k, > 1. For such an s, fix also a multi-partition A = (A1,...,A,) with
each \; - k; (p.30).

» The ordinary irreducible character obtained from X4, A, - .- Xo.,r, by Harish-Chandra

induction (p.35).

The module obtained by Harish-Chandra induction from Aoy, A1) X - K A(0q4, Aa),
and a modular reduction of a CG,,-module affording the character xs » (p.79).

Suppose in addition that s is p-regular. Then, L(s,)\) is the module obtained by
Harish-Chandra induction from L(o1, A1) K --- X L(04, As), and is isomorphic to the
simple head of A(s,\). All irreducible FG,,-modules have this form (p.79).



Chapter 1

Quantum linear groups and
polynomial induction

In this first chapter, we collect together all the known results about quantum linear
groups and the g-Schur algebra that we will need later. Then we prove some new
results about polynomial induction in quantum linear groups, generalizing results of
[BK1, §2] in the classical setting.

1.1. Symmetric groups and Hecke algebras

Fix an integer £k > 1. We write v F k if v is a composition of k, so that

v = (k1, ks, ...) for non-negative integers ki, ka,... such that ky + ko +--- = k. If
in addition k1 > ko > ..., then v is a partition of k, written v - k. The height
h(v) of a composition v = (k1,ks,...) F k is the smallest integer a > 1 such
that kg11 = kgr2 = --- = 0. For A\ + k, write X' for the transpose partition, i.e.

the partition whose Young diagram is obtained by reflecting the Young diagram
of A\ in the main diagonal. Let < denote the usual dominance order on the set of
all compositions of k, namely, p = (mi,ma,...) < A = (I1,l2,...) if and only if
S _imi <30 1 forall j > 1. We also write > A if A < p, and g < X if p < A
but u # A.

We write ¥ for the symmetric group on k letters. For w € Xy, (w) is the
length of w, that is, the minimal number ¢ of basic transpositions si,...,s; such
that w = sys2...8p. For v = (k1,...,kq) E k, ¥, denotes the Young subgroup of ¥y,
isomorphic to ¥y, X -+ X Xy, .

For A\, i E k, the set D) (resp. D;l) of elements of ¥, which are of minimal length
in their X /3 -coset (resp. their ¥,\¥j-coset) gives a set of distinguished ¥ /X )-
coset representatives (resp. ¥, \Xj;-coset representatives). We set D, \ = D;l NDy,
to obtain a set of distinguished 3,\X; /X -coset representatives. Moreover, if both
¥, and X are subgroups of ¥, for some v F k, the set D;/\ =D, »NX, is a set of
¥, \X, /X \-coset representatives.

We will freely use well-known properties of these distinguished double coset rep-
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resentatives, all of which can be found in [C, §2.7] or [DJy, §1]. We note in particular
the following:

(1.1a) Gien A\, E k and any w € Dy, », ¥, N"E) is also a Young subgroup of ¥.

Now suppose that F' is an arbitrary commutative ring and g € F' is arbitrary.
The Iwahori-Hecke algebra Hp 4(X)) associated to the symmetric group ¥ over F
at parameter ¢ is a certain F-free F-algebra with basis {1}, |w € X} and satisfying
the relations

Tws if l(ws) = L(w) + 1,

Twls = { (Tws + (g — V)T if £ws) = £(w) — 1

for all w € Xi and all basic transpositions s € Y. For an indeterminate t, regard
the ring F' as a Z[t]-module by letting ¢ act on F' by multiplication by q. We have
that:

Hpqo(Xy) = F ®z[t] HZ[t],t(Ek)a (1.1.1)

the isomorphism being the obvious one sending the basis element 1 ® T}, of F' @z
Hzjy (k) to the corresponding basis element T, of Hp4(Xy).

Write simply Hy, for Hp4(2)). There are two F-free Hjp-modules of rank one,
and we next recall their definitions. We let

=y Ty and g = (=1)10) 3 (—g)0) T,

wGZk ’LUGEk

where £(wo) = 2k(k—1). Note that our definition of yj, is different from the original
definition in [DJ;], but only up to a scalar; the present definition allows the basic
results to be stated also if ¢ is not a unit, and is more convenient in view of (1.1c).
According to [DJ;, pp.28-29]:

(1.1b) For w € Xy, Tyrr = 1Ty = ¢"Day and Ty = yuTw = (—l)e(“’)yk.

The left Hp-modules Zg, and Ep,, called the trivial module and the sign module
respectively, can now be defined as the left ideals 7y, = Hpxy and €y, = Hyyi.
We will also write Zy, and g, for the functions from Hj to F' that arise from the
action of Hj on these rank one modules. It will be important to know that if F'
is a field and ¢ # 0, then the modules 7y, and £y, are the only one dimensional
Hj-modules (cf. [DJ;, Lemma 3.1]).

The algebra Hj, possesses an involutive automorphism # defined on generators
by TS# = —Ts+ q — 1 for a basic transposition s. For any left Hp-module M, we let
M# denote the module which is equal to M as an F-module, but with new action
defined by h-m = h¥m for m € M,h € Hy. This is the analogue for the Hecke
algebra of the module M tensored with the sign representation in the symmetric
group setting. We record the elementary calculation, showing that # swaps the
trivial and sign representations (e.g. see [T, Proposition 2.2]):
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(1.1c) xf =y and y?f = .

Let v = (ki,...,kq) E k. The above definitions generalize easily to the Young
subalgebra H, = Hp4(X,) of Hj, which is the subalgebra spanned by {T3, |w € £, }.
Identifying H, and Hj, ® --- ® Hy, in the natural way, we let x,, (resp. y,) denote
the element zg, ®- - - @y, (resp. yg, ®@- - -Qyg,) of H,. The H,-modules Zy, = H,x,
and £, = H,y, are then the trivial and sign representations of H,,.

As in [DJy, §3], we define the permutation module M and signed permutation
module NV of Hy to be left ideals Hyz, and Hyy, respectively. By (1.1c), we have
that (MY)# = N¥. Moreover, H}, is a free right H,-module with basis {T,,|w € D,}.
Therefore, M" can also be defined as the induced module indg’; Iy, = H, ®n, Iy, .
Similarly, NV & indg’; €, = H, ®m, €n,,.

Define uy to be the unique element of Dy ) such that ¥y N“* Xy = {1}. Note
that wuy is precisely the element denoted wy/ in [DJy, p.258]. We need the following
fact proved in [DJ;, Lemma 4.1]:

(1.1d) For A& k, the space yyx Hyxy is an F-free F-module of rank one, generated
by the element yx T, .

The Specht module Sp* is the left ideal Sp* = HypyxTy,zy. Observe that Spt s
both a submodule of M* and a quotient of N*'. As is well-known (see e.g. [DJy,
Theorem 4.15]) if F' is a field of characteristic 0 and ¢ is a positive integer, Hy, is
a semisimple algebra and the Specht modules {Sp* | A - k} give a complete set
of non-isomorphic irreducible Hg-modules. In this case, we also have the following
well-known characterization of Specht modules:

(1.1e) For F a field of characteristic 0 and q a positive integer, Sp* is the unique
irreducible Hy-module that is a constituent of both N and M* (having multiplicity
one in each).

Of course, we can take the very special case with FF' = Q and ¢ = 1. Then,
Hq,1(X) is just the group algebra QX of the symmetric group over Q and we
see that the Specht modules {Sp* | A F k} give a complete set of non-isomorphic
irreducible QX x-modules. We will write X (Xj) for the character ring of 3 over Q.
For Ak, let

P € X(Zg) (1.1.2)

denote the irreducible character of the symmetric group corresponding to the Specht
module Sp* over Q. Given in addition p - k, we write ¢A(p) for the value of the
character ¢, on any element of 3 of cycle-type pu.

1.2. The g-Schur algebra

Continue initially with F' denoting an arbitrary ring and ¢ € F' being arbitrary.
Fix h > 1. We write A(h, k) for the set of all compositions v = (ki1,...,kp) F k of
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height at most h and A" (h, k) for the set of all partitions v € A(h, k). Let A(h) be
the set of all h-tuples of non-negative integers. Given A\, u € A(h), we write X\ + p
for their coordinate-wise sum, and cA denotes A+ - - -+ X (c times). Identifying A(h)
with the union (Jy»oA(h, k), let AT(h) = Upso AT (h, k) € A(h). We refer to the
elements of A*(h) as dominant weights. -

Following [DJ3, DJy4], we define the q-Schur algebra Sy, = Srq(h, k) to be the
endomorphism algebra

Endg, [ @ M"],
veA(h,k)

writing endomorphisms commuting with the left action of Hp on the right. By
convention, the algebra Sy = SF4(0, k) is the trivial algebra F.

The g-Schur algebra is F-free and has a natural basis corresponding to certain
double coset sums in Hy, which we now describe. Fix initially A\, € A(h, k). For
u € X, we note that

Y T,= Yo o Tu= > Ty (1.2.1)

UJEEH”LLE)\ U)EZMUZAPID;:[ 'LUGEM”LLE)\I'-\ID)\

So, right multiplication in Hj by the element ) T, induces a well-

weESuS\ND;, !
defined homomorphism of left Hg-modules

(Z)Z)\ : Hkxu — HkZL')\.

Extending ¢, , to all of @ueA(h,k) MY by letting it act as zero on MY for v # u, we
obtain a well-defined element gb;j ) of Sp . Now we can state the well-known result,
proved originally in [DJ4, Theorem 1.4], under slightly more restrictive assumptions
than here; see also [Ma, Theorem 4.8] for an argument valid in general.

(L.2a) Shy is F-free with basis {¢};, \ [ p, A € A(h, k), u € Dy}

We refer to the basis for Sy of (1.2a) as the natural basis. One shows easily
using (1.2a) that S ; behaves well under base change. To be precise, one has the
analogue of (1.1.1):

Spq(h, k)= F ®z[t] SZ[t],t(h7 k)

where we are regarding F' as a Z[t]-algebra by letting ¢ act on F' as multiplication
by g. We also note at this point the following well-known property, which is an
immediate consequence of the definition of the natural basis of S}, ;, given above:

(1.2b) For h > k, the F-linear map K : Hy — Shj, defined on a basis element T,
forw € Xy by k(Ty) = (f)”é”lk)’(lk), is a Ting embedding.
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We could have chosen to define the g-Schur algebra S}, ;. equally well using the
signed permutation module N instead of M", and we will later need this alterna-

tive point of view. So consider instead the algebra Endg, <@ reA(hi) N A) , writing
endomorphisms on the right again. Applying # to (1.2.1), we note that

Y - Y wrt- Y T (22

wGZHuEA wezuuz/\mD;1 wEEMuZAﬁD)\
Now, as in [DJ3, p.26], the following fact follows easily:

(1.2¢c) The algebras Sp i and Endp, (D reanp) N?) are isomorphic, the natural ba-
sis element (bZJ\ of Sh,i corresponding under the isomorphism to the endomorphism

which is zero on NV for v # u and sends N* into N via the homomorphism induced
. Ca #
by right multiplication in Hj, by ZwGZAuEHﬂD;l Ty € Hg.

Henceforth, we assume that F' is a field and that ¢ € F is non-zero. Now we
briefly recall some basic facts about the representation theory of the finite dimen-
sional F-algebra Sj . The irreducible S}, i-modules are parametrized by the set
AT (h, k) of all partitions of k of height at most h. We will write Lj,()) for the irre-
ducible S, p-module corresponding to A € At (h, k) in the standard way. So Lj(\)
is the unique irreducible S}, -module L with highest weight A, that is, gbi WL #0
and gb}WL =0 for all 4 € A(h, k) with p £ .

Then, Sy is a quasi-hereditary algebra with weight poset (A1 (h, k), <), in the
sense of Cline, Parshall and Scott [CPSg]. This was first proved by Parshall and
Wang [PW]; for other proofs see [Dog, §4] (which follows the original homological
proof from [Dos, Doy] of the classical analogue), or [Gr| or [Ma] (which are more
combinatorial in nature). For recent accounts of the theory of quasi-hereditary
algebras, see [Doy, Appendix] or [KK].

In particular, we have associated to A € AT (h, k) (in a canonical way) the mod-
ules Ap () and Vp,(X), which are the standard and costandard modules corresponding
to Lp(A). We record the well-known properties:

(1.2d) Ap(N) (resp. Vi(X)) has simple head (resp. socle) isomorphic to Ly (\), and
all other composition factors are of the form Ly (u) with p < A.

In addition to being a quasi-hereditary algebra, the algebra S}, possesses an
anti-automorphism 7 defined on the standard basis element qbz, \ by T(Qﬁz, V) = K;l
(see [DJy, Theorem 1.11]). Using this, we define the contravariant dual M™ of an
S r-module M to be the dual vector space M* with action defined by (s.f)(m) =
f(r(s)m) for all s € Sy, m € M, f € M*. This duality fixes the simple modules,
that is, Lp(\) & Lp(\)" for all A € AT (h, k). We also note that Ap(A\) = Vj,(A)7.

Given a left Sy, p-module M, we will write M for the right S}, ;-module equal to
M as a vector space with right action defined by ms = 7(s)m for m € M,s € Sy .
In particular, this gives us modules Lj(\), Ap(X) and V,()) for each A € AT (h, k).

We will use the following well-known result:
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(1.2e) Shi has a filtration as an (Spk, Shi)-bimodule with factors isomorphic to
An(N) @ Ap(N), each appearing precisely once for each X € AT (h, k) and ordered in
any way refining the dominance order on partitions so that factors corresponding to
most dominant A appear at the bottom of the filtration.

Actually, (1.2e) is a special case of a general property of quasi-hereditary algebras
with an anti-automorphism 7 fixing the simple modules as in the previous paragraph.
It follows directly from the definition of quasi-hereditary algebra in terms of heredity
ideals (see e.g. [CPSg, p.92] or [KK, §1]) together with [DR, Statement 7] (one
needs to observe that the module Ae of loc. cit. is a standard module and, by our
assumption that 7 fixes the simple modules, that eA = Ae). For the filtration of
(1.2e) in the classical case, see [Dos, (3.2¢)] and [Doy, (1.5)].

1.3. Tensor products and Levi subalgebras

To describe further results about the g-Schur algebra, we need to relate it to the
quantum linear group. Actually, we only need to work with the associated “quantum
monoid”, which is a certain deformation of the coordinate ring of the algebraic
monoid of all n xn matrices over F. The bialgebra structure of the quantum monoid
will allow us to take tensor products of modules for ¢-Schur algebras in a natural
way. We have chosen here to use Manin’s quantization of the coordinate ring, see
[PW], though one could equally well work with the coordinate ring of [DDo].

Continue with F' being a field of characteristic p and assume in addition that
g € F* has a square root in F. Let £ be the smallest positive integer such that
¢ =1 (i.e. ¢ is a primitive fth root of unity), taking ¢ = 0 if no such positive integer
exists. We fix a square root v of ¢ in F' such that if v is a primitive fth root of unity
then f # 2(mod4). Note this is always possible: if £ is odd one of £,/7 is again a
primitive fth root of unity, and if £ is even both of £,/q are primitive 2/th roots of
unity.

The quantized coordinate ring Ay, = Ap,(h) is the associative, unital F-algebra
generated by {c; ; |1 <i,j < h} subject to the relations

CisCjt = CjtCis (i>7,s<t)
CisCit = CjuCis + (V=07 1)ei 4056 (i>j,s>1)
Ci,sCit = VC;tCis (s >t)
Ci,sCj,s = VCjsCis (i>4)

for all admissible 1 < 4,j,s,t < h. Let I(h,k) denote the set of all k-tuples i =
(1,...,1) of integers between 1 and h as in [Gg]. Then, A}, is graded by degree as
A = @k>0 Ap i, and each homogeneous component Ay, ;, is spanned by monomials
Ci.j = Ci1,j1Cia,jo - - - Cik,jk for all ‘multi-indices’ 4, ] € I(h, k‘)

There is an F-bialgebra structure on Ay with counit € : Ay, — F and comultipli-
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cation A : A, — A ® Ay, satisfying

eleig) =05 Ale)) = D cip®cky
kel (h,k)

for all i, j € I(h, k) and k > 0. The subspace Ay, ;; is a subcoalgebra of A. We define
the category of all polynomial representations (resp. polynomial representations of
degree k) to be the category comod(Ap) (resp. the category comod(Ay)). Note
that comod(Ap ) is a full subcategory of comod(Ay). Moreover, any Ap-comodule
M can be decomposed uniquely as M = My ® --- ® My ® ... where each My, is
polynomial of degree k and Hom 4, (My, M;) = 0 for k # L.
Let
< o
I?(h,k) = {(2‘,1‘) € I(h,k) x I(h,k) ghgneve;jik:a?lifl < it } .

This is a set of representatives of the orbits of ¥ acting diagonally by place per-
mutation on I(h, k) x I(h,k). The monomials {c;; | (i,4) € I?(h,k)} give a basis
for the coalgebra Ap . We let {& ;| (i,7) € I?(h,k)} denote the corresponding
dual basis of the F-linear dual A} ,. It is known that A} ,, endowed with the natu-
rally induced algebra structure, isﬁsomorphic to the q—Schur algebra Sy, ;, from §1.2.
Moreover, copying the argument of [DDo, 3.2.5] but for the Manin quantization, the
isomorphism A7 . — Sp, 1 can be chosen so that §; ; corresponds to the natural basis
element ¢ | from (1.2a) for suitable u, A F k and u € D, 5, up to multiplying by
some power of the unit v. To be precise:

(1.3a) There is an algebra isomorphism A} . — Sy under which &; ;, for (i,1) €
I%(h, k), maps to U*Z(“)qbﬁ’/\ where:
(i) p is the weight of © (so p = (my,...,my) with my equal to the number of

times the integer | appears in the tuple (i1,...,i));
(ii) A is the weight of j;
(iii) w is the unique element of D;l such that for each l =1,... k, i,-1; is equal
to the lth entry of the k-tuple (1,...,1,2,...,2,...,h,...,h) (u is then automatically
—— —— ~——
m1 times mso times mp, times

an element of DMA);

Henceforth, we always identify algebras A} , and Sj, ) according to (1.3a). This
allows us to regard a left S, j-module as a right A p-comodule, and vice versa,
in a natural way. In other words, we identify the category mod(Sy, ;) with the full
subcategory of comod(Ay,) consisting of all Ap-comodules that are finite dimensional
and of polynomial degree k. We often switch between these two points of view
without comment.

In particular, for A € AT (h, k), we have Ay, y-comodules, hence Aj-comodules,
Lp(X), Ap(X) and V() induced by the corresponding Sp, z-modules. The modules
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{Lp(X\)|X € AT (h,k)} give a complete set of non-isomorphic irreducibles in the cate-
gory comod(Ay ). It follows directly from this that the modules {Lj,(A)|X € AT (h)}
give a complete set of non-isomorphic irreducibles in the category comod(Ay,).

The bialgebra structure of A endows the category comod(Aj) with a natural
notion of tensor product. As a special case, algebra multiplication

Apk @ Apg — Ap gt

allows us to view the tensor product M @ M’ of an Ay, j-comodule M and an Ap, ;-
comodule M’ as an A, 4;-comodule. Dually, we have an algebra map

Shk+1 = Shk @ Shy, (1.3.1)

which enables us to view the tensor product M ® M’ of an Sy, p-module M and an
Sh-module M’ as an S}, ;;-module.

We next introduce notation for various familiar modules. First, let Vj, = Lj,((1)) =
Ap((1)) = Vi((1)) be the natural module, a right Aj-comodule of dimension h over
F. The kth tensor power V} ® --- ® V}, is naturally a right Aj p-comodule, so can
be regarded as a left Sy, p-module. This gives us tensor space, which we denote by
Vh®k . We also have the symmetric, divided and exterior powers:

) = Vu((k))

)
)

All these modules actually have more natural direct realizations (which we do not
need here) as quotients or submodules of Vh®k , see for instance [DDo, §2.1]. More
generally, given any composition v = (kq, ..., k) E k, define

SY(Vy) =S (V) @ - @ Sk (1), (1.3.2)
2" (Vi) = Z8 (Vi) @ - ® Z"(Vp), (1.3.3)
A (Vi) =AM (V) @ --- @ AR (1), (1.3.4)

all of which can be regarded as right Aj-comodules or left S} p-modules. Observe
that in the special case v = (1¥) all of S¥(V},), Z%(V}) and A¥(V},) are isomorphic
simply to Vh®k. We will need the following known descriptions of these modules as
left ideals of Sp, 1

(1.3b) Forv e A(h, k),

(i) the left ideal Sh’k¢,1/7l, of Sp i is isomorphic to Z¥(V},) as an Sy -module;

(ii) providing h > k, the left ideal Sh yr(yy) of Shy is isomorphic to A¥(V4) as
an Sy -module, where k : H, — Sp i, is the embedding of (1.2b).
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We say an Ap-comodule M has a A-filtration (resp. a V-filtration) if M has an
ascending filtration 0 = My < My < ... with >, M; = M such that each factor
M;/M;_; is isomorphic to a direct sum of copies of Ap(A) (resp. Vi(A)) for some
fixed A € AT (h) (depending on ). The following important fact is well-known, see
for instance [PW, (10.4.1)]:

(1.3c) If M, M’ are right Ap-comodules having V-filtrations (resp. A-filtrations)
then M @ M' also has a V-filtration (resp. a A-filtration).

In particular, (1.3c) implies that for any v € A(h, k), the modules S¥(V}) and
A”(V},) have V-filtrations, while Z¥(V},) and A¥(V},) have A-filtrations. The following
fact is well-known; it can be deduced easily from basic properties of modules with
A- and V-filtrations together with the Littlewood-Richardson rule:

(1.3d) For X\ € At (h,k), regard the transpose partition X' as a composition of k.
Then, the space Homgh’k(ZA(Vh), AN (V1)) is one dimensional, and the image of any
non-zero such homomorphism is isomorphic to Ap(X).

Suppose now that ¢ is a root of unity (i.e. £ > 0). Then, there is an analogue
for Ay (hence for the g-Schur algebras) of Steinberg’s tensor product theorem. This
was proved in [PW, chapter 9] (for ¢ odd) and [C]] (in general). Other proofs (for
the Dipper-Donkin quantization) have been given in [DDug, 5.6] or [Doz, §3.2].

Let A, = Ap1(h) denote the free polynomial algebra over F' on generators
{¢i; |1 <4,j <h} (which is just the above bialgebra Ay, in the special case v = 1).
The comodule representation theory of Ay, is precisely the classical polynomial rep-
resentation theory of GLj, as discussed by Green [Gsg]. For A € AT (h), we will write
Li(N\), Ap()\) and Vj,(A) for the irreducible, standard and costandard comodules of
Ay, to distinguish them from the ones above for Aj. Of course, these are just the
usual polynomial representations of GLj over F.

Recall that we chose v earlier so that it is a primitive fth root of unity with
f # 2(mod4). So we can apply [PW, chapter 9] for ¢ odd and [Cl] for ¢ even to
deduce that there is for each » > 0 a unique bialgebra homomorphism

FT . Ah — Ah (135)

such that ¢;; — cfﬁr for all 1 < 4,5 < h. This map is called the rth Frobenius
morphism. We stress that if ¢ = 1 then A, = A, ¢ = 1 and the zeroth Frobenius
map Fp is just the identity map.

Using the Frobenius map F., we can regard an Aj-comodule M with structure
map 7 : M — M ® Ay, as an Aj-comodule with structure map (idy; ®F,) o7 : M —
M ® A;,. This gives the rth Frobenius twist of M denoted M. Note that if M is
an flmk—comodule, then M is an Ap gepr-comodule.

For any s > 1, we say that A = (I1,...,l) € AT (h) is s-restricted if l; — l;4+1 < s
fori =1,...,h — 1. By convention, X is 1-restricted if and only if A = (0). By an
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(¢, p)-adic expansion of A we mean some (non-unique) way of writing
A= A_1+ 0o+ lphi + pPXa + . ..

such that A_; € AT (h) is f-restricted and each \; € AT (h) is p-restricted for i > 0.
Now we can state the tensor product theorem (after the first twist this is the
usual Steinberg tensor product theorem):

(1.3e) Suppose that X € AT (h) has (¢, p)-adic expansion X = A_1+ g+ +Lp" Ay
Then, Ly(\) 2 Li(A-1) ® Ly(M)% @ Lp(A)M -+ @ Ly (A1,

The next lemma gives a technical character theoretic fact of importance in §4.3.
In the statement, for A F n, ¢ is the number of elements of 3, of cycle-type A. We
also recall that ¢, denotes the irreducible character of the symmetric group defined
in (1.1.2).

1.3f. Lemma. Let £ and p be as above. Set m = £p" for somer > 0 and k = ml
for some l > 1. Then, for any h > k,

(_1 k+1

S eadumA) ().

M-l bk

Ly((m')) =

where the equality is written in the Grothendieck group of mod(Sh ).

Proof. This is a calculation involving symmetric functions; we refer the reader to
[M, §1.2-1.3] for the basic notions used in the proof. In particular, for u - n, we will
write €, for (—1)"Mm | which is the sign of any element of %, of cycle-type p.

By (1.3¢), the module Lj,((m')) is isomorphic to the Frobenius twist Ly, ((1¢))l".
So, the formal character of Ly((m')) is the symmetric function

1<i1<--<y1<h
Now using [M, §1.2, ex.8,10] one sees that 1) can be written as
1
V=1 D excapma
A

where p;,) is the power sum symmetric function of [M, §1.2]. Now applying [M,

1.7.8], we deduce that
1
b= D) exeadu(mA)sy,
TN prk

where s, is the Schur function. Now according to [M, §L.7, ex.2], ¢,(mA) =
Emady (mA). Noting that exepy = (—1)F, we deduce that

(_1 k+l1

l? ZZC)\QSM(TH)\)SM/.

AL pkk

P =
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Finally, recall by Weyl’s character formula that the formal character of Ay (y') is
precisely the Schur function s,,. O

Finally in this section, we review the definition of the analogues of Levi sub-
groups, following [Doy, §4.6]. Fix now ¢ > 1 and p = (hy,...,hs) F h. Let L
denote the standard Levi subgroup of G = GLj,(F) consisting of all invertible block
diagonal matrices of block sizes hq, ..., hq. Let

Q. ={(i,7) € [1,h] x [1, ] | there is some g € L with g;; # 0}.

Define A, to be the quotient of Aj by the biideal generated by {c;; |1 < 7,5 <
h,(i,7) ¢ Qu}. So A, is the quantum analogue of the coordinate ring of the monoid
corresponding to the Levi subgroup L. We note that

Ay Z Ay @@ Ay, (1.3.6)

and that A, is graded by degree. So for k > 0 we can talk about the subcoalgebra
A, i, which is a coalgebra quotient of Ay, x; we have the coalgebra isomorphism:

A= P Anp @@ Apgp,. (1.3.7)
k1+“'+k5a:k

We have the categories of polynomial and polynomial degree k representations for
the Levi subgroup, namely, the categories comod(A,) and comod(A4,, ) respectively.

There are Levi analogues of the g-Schur algebra, also discussed by Donkin in
[Doz, §4.6]. Define S, ;; to be the dual space A;k, with natural algebra structure
inherited from the comultiplication and counit of A, ;. So dualizing (1.3.7), we have
that

Sk P Sk ® @ Shy - (1.3.8)
kit +ka=k

We identify mod(S,, ) with the full subcategory of comod(A,) consisting of all finite
dimensional A,-comodules of polynomial degree k.

Dual to the surjective coalgebra map Ay — A, x we have a natural embedding
Syuk = Shr. We will always regard S, j as a subalgebra of S}, ;, embedded in this
way. Explicitly, we have that:

(1.3g) The subalgebra S, . of S is spanned by the standard basis elements & ; for
i,7 € I(h,k) such that (i,5;) € Q, foralll =1,... k.

1.4. Polynomial induction

We recall briefly the definitions of induction and restriction functors for coal-
gebras, following [Doj]. Let (A, A,e) and (A’, A’,€") be coalgebras over our fixed
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field F, and ¢ : A — A’ be a fixed coalgebra homomorphism. We have the exact
restriction functor
resy, : comod(A) — comod(A’)

defined on a right A-comodule M with structure map 7 : M — M ® A by let-
ting resﬁ, M be the right A’-comodule equal to M as a vector space but with new
structure map (idy ®¢p) o7 : M — M ® A’. On an A-comodule homomorphism
a: M — M, resﬁ, a is the same linear map «, but regarded now as an A’-comodule
map. There is a comodule induction functor that is right adjoint to resﬁ,, namely

ind%, : comod(A’) — comod(A).

To define this on objects, fix M € comod(A’) with structure map 7: M — M ® A'.
Write |M| ® A for the right A-comodule which is equal to M ® A as a vector
space, with structure map idy; A : M @ A - M ® A® A. Then, indﬁ, M is the
subcomodule of |M| ® A consisting of all elements f such that

(T ®@ida)(f) = (idy ®[(¢ ®@ida) o A])(f). (1.4.1)

On a morphism a : M — M’, indf\, « is the restriction to ind‘g, M of the morphism
a®idyg: M@ A— | M| A.

We wish to study induction and restriction (in the sense of coalgebras as just
defined) between Aj and its Levi quotient A, introduced just before (1.3.6). So
choose p F k and consider the polynomial restriction and induction functors:

resﬁﬁ :comod(Ay) — comod(A,),

. Ah .
ind;" :comod(A,) — comod(Ayp).
We record some basic properties:

1.4a. Lemma. (i) The functor resﬁh sends finite dimensional modules to finite di-

mn
mensional modules, and Ay, j,-comodules to A, j.-comodules.

(ii) The functor indﬁz sends finite dimensional modules to finite dimensional
modules, and A, j,-comodules to Ay, j-comodules.

Proof. (i) This is obvious.
(ii) Let M be an A, p-comodule with structure map 7: M — M ® A, ;. Recall
that A; = @120 Ap; as an Ap-comodule. For [ > 0,

T idAh(M X® Ah,l) CM® Au,k ® AhJ,
idy ®[(¢ ®ida,) o Al(M @ Apy) €M @ Ay @ Apy.

So, recalling the definition of the functor indﬁﬁ, we deduce that the only non-zero

f e M® Ay satisfying (1.4.1) in fact lie in M ® Ap, ;. Hence, indﬁz sends degree k
modules to degree k£ modules.
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Moreover, if M is a finite dimensional A, ;-module, ind Ah M is finite dimen-
sional because it is a subspace of the finite dlmensmnal space M ® Ap . Since any
finite dimensional A,-comodule can be written as a direct sum of finite dimensional
A, k-comodules for finitely many different £k, we deduce that ind’gz sends finite di-
mensional modules to finite dimensional modules. O

Now we focus on a special case. So, until just before the end of the section, fix
Il < h,setl' =h—1and consider A, with o = (1,I') F h. In this case, 4, is a
bialgebra quotient of Aj, isomorphic to A; ® Ay; let

gﬁ:Ah—>Al®Al/

be the quotient map. Corresponding to ¢, we have the coalgebra induction and
restriction functors resﬁf® Ay and indﬁlh® Ay

We will also need truncated versions of these functors. There is a natural bial-
gebra embedding i : 4; — A; ® Ap,a+— a ® 1, with image A; ® Ay o, recalling that
Ap o =2 F denotes the degree zero part of Ay. Define the exact truncation functor

trunc : comod(A4; ® Ay) — comod(A;)

as follows. On an object M with structure map 7: M — M ® A; ® Ay, trunc M is
defined as the subspace {m € M|7(m) € M®A;® Ay o}, regarded as an A;-comodule
via the restriction of 7 and the isomorphism idy ®i : M ® 4 — M @ A; ® Ap .
On a morphism, trunc is defined simply as restriction. The functor trunc has an
adjoint, namely, the inflation functor

infl : comod(A;) — comod(A; ® Ay)

defined on an object M with structure map 7 : M — M ® A; by letting infl M be M
as a vector space, but with new structure map 7 = (idy; ®i)o7: M - M Q@ A;® Ay.
On a morphism @, infl # is the same linear map but regarded instead as an 4; ® Ay-
comodule map. Now we define the truncated polynomial restriction and induction
functors:

trunc‘gf : comod(Ay) — comod(4;) by truncﬁ? = trunco resi;l@ Ay
. A o aAn . A .
infl" : comod(4;) — comod(A4,) by infly" = mdA?@Al, oinfl.

Lemma 1.4a easily implies the analogous result for the truncated versions of the
functors:

(1.4b) (i) The functor truncﬁf sends finite dimensional modules to finite dimen-
sional modules, and Ay, ,-comodules to A; j.-comodules.

(ii) The functor inﬂﬁf sends finite dimensional modules to finite dimensional
modules, and A j-comodules to Ay, j-comodules.

The main result of the section is as follows:
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1.4c. Theorem. For non-negative integers ,1" with [+1" = h as above, the following
bifunctors are isomorphic:

ind}y"; 5, (?®?') : comod(4;) x comod(Ay) — comod(Ay,),

(inﬂﬁlh 7)® (inﬂﬁz ?") : comod(4;) x comod(Ay) — comod(Ay).

Proof. The proof proceeds in a number of steps. We fix an A;-comodule M and
an Ap-comodule M’'. Let 7 : M — M ® A; and 7 : M’ — M’ ® Ap be their
respective structure maps. We denote the structure map of infl M (resp. infl M’) as
an A; ® Ay-comodule by 7: M — M ® A; ® Ay (resp. 7/ : M’ — M'®@ A; ® Ap).
Define

J = spanfey; | k> 0,i5 € I(h, k), 1 < ity i < 1,
J’:span{ci,l-|k20,1,i€](h,k),l+1Sil,...,ikgh}.

Note that both J and J’' are subalgebras and right Ap-subcomodules of Ap. It
is routine to check the following, using the fact that algebra multiplication u :
Ap ® Ap, — Ay, is a coalgebra homomorphism:

(1.4d) Multiplication p: J @ J' — Ap, is an isomorphism of right Ap-comodules.
Consider the Ap-comodule maps

0= (7®ida, —idy ®[(¢ ®idy,) 0 Al) : M| @ A, — [M @ A @ Ap| @ Ap,
0 = (+' ®ida, —idyy ®[(¢ @ida,) 0 A]) : [M'| @ Ay — |M' @ A @ Ap| @ Ap,.

Note we are using the symbol |.| to emphasize that the Aj-comodule structure is
coming just from the final term in these tensor products. We claim that:

(1.4e) ker® C |[M|® J and ker¢ C |M'| @ J'.

We prove (1.4e) just for 6, the proof in the case of § being entirely similar. Note
directly from the definition of 7 that (7 ® ida, )(kerf) C M ® A; ® Ay o @ Ap. Now
take v € kerf with v € M ® Ay for some k > 0. Then, v := (7T ®idy,)(v) =
(idy ®[(¢®ida,) 0 A])(v) € M® ALk ® Ay o @ Ap . Write v =37, icri 1) Mii @ Cig
for some m; ; € M. We have that

V=) M @¢(cis) ©cg; € M® Ay ® Ay ® Apg (1.4.2)
i,3,s€1(h,k)

Consider the projection 7, of M ® ¢(Ap k) ® Apj onto the mth term of the direct
sum decomposition

k
M @ ¢(Ang) @ App = @ M@ A j—m @ Ay @ Ap i

m=0
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coming from the grading. We know by (1.4.2) that 7, (v) = 0 for m > 0, hence that

D=mo(0) = Y. mi;®(cis) ®cy;
i.d,s€1(h,F)

summing only over s with 1 < s1,...,s;, < [. For such s, ¢5; € J, hence v €
M@A @A J.
The preceding paragraph shows that

(’f’ & idAh)(keI' 9) C M® Al X Al’,O ® J. (143)

Consider the map idy;®e : M ® A; ® Ay — M such that m ® a — me(a) for
m € M,a € A; ® Ay, where ¢ is the counit of A; ® Ay. By the comodule axioms,
(idpr ®e) o7 = idps. Now applying idys ®e ®id 4, to both sides of (1.4.3), we deduce
that ker# C M ® J to complete the proof of (1.4e).

Consider now the Ap-comodule map

w:Mle@Je M| eJ —|Me M| A,

defined by m®j®@m’®j' — me@m/®jj’. According to (1.4d), this is an isomorphism
of Ap-comodules. Observe moreover that inﬂﬁl” M is precisely ker 6 by the definition

(1.4.1), and similarly, inﬁﬁz M’ = ker#'. So by (1.4e) and the definitions, we have
that

(infly" M) @ (infly M') C M| @ J o M| J,
ind}y’y ,, (MR M) C [M @ M| ® Ap.
We claim that the restriction of w induces an isomorphism between (inﬂﬁf M) ®
(inﬂiz M') and indﬁ;l@ Az/(M &I M’). This will complete the proof of the theorem,

functoriality being immediate as w is clearly functorial in arguments M and M’.
To prove the claim, w is a bijection, so we just need to check that

w (i}, (M B M) = ker 6 @ ker 0/, (1.4.4)

Recall that indﬁZL@Al/ (M X M') is the set of vectors in M @ M’ ® Aj, satisfying the
appropriate version of (1.4.1). So, w‘l(indﬁf®Al/(M X M')) = ker(a — 3), where «
and [ are the maps from M @ J@ M' @ J to M @ A; @ M' @ Ay ® A}, defined by

a:(T®T’®idAh)ow and (= (idyxyr ®[(¢ ®@idg,) o A]) ow,

respectively. Consider instead the maps o’ and ' from M @ J @ M' @ J to M ®
ARAy ® Ay ® M ® A ® Ay ® Ay, defined by

o =7 @idy @ @idy and § =idy @([p @ida,] o A) @ iday ([ ®ida,] 0 A),
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respectively. Define

71':M®AI®A1/®Ah®M,®Al®AZ/®Ah —>M®AI®M/®AZI®Ah,
m®a ®a) @b @m' @ ay ® ay @by — m K ajaz @m' @ alal, @ bybs.
Observe that a = m oo/ and 3 = 7o /. Moreover, the images of both o/ and 3
lieinY =Me@A QA @J@M ® A ® Ay @ J', which is obvious for o/ and
an easy exercise for 3. Since the restriction of 7 to Y is injective, it follows that
ker(aw — ) = ker(o/ — ). Writing n = (o/ — ') for short, we have shown that
w‘l(indﬁf’®Al/ (M X M) =kern. So (1.4.4) is equivalent to showing:

(1.4f) kern = kerf @ ker 6'.

To prove (1.4f), first take a pure tensor k@ k" € ker  @ker ¢'. Then, 7®id;(k) =
idy ®([¢ ® ida,] o A)(k) and analogously for k', which immediately shows that
k ® k' € kern. Conversely, let

dyReRidy - MA QA QT - M®J

be the map m ® ¢ ® j — me(c) ® j = m ® €(c)j, where € is the counit of 4; ® Ap.
Recalling that ¢ is a bialgebra map, the coalgebra and comodule axioms immediately
give that both of the composites

(idy ®e®idy) o (T ®idy) M@ J — M ® J,
(idM Re® idJ) o (idM ®[((Z) X idAh) o A]) MRSJIJ - MJ
are equal to the identity. So,
(idM ®Re®idy ®idM’®Az®Al/®J’) on=idygJ ®d'.

It follows directly that kern C ker(idy;gs ®0') = M ® J@ker 6. A similar argument
shows that kern C ker ® M’ ® J'. Hence,

kern C (kerd @ M' @ J')N (M ® J @ ker'). (1.4.5)

Finally, by linear algebra the right hand side of (1.4.5) is precisely kerf ® ker¢’,
which completes the proof of (1.4f) hence the theorem. O

Finally, we extend Theorem 1.4c to the general case, to obtain the quantum
analogue of [BK;, Theorem 2.7]:

1.4g. Corollary. Fiz y = (h1,...,hs) F h. Then, the following functors are iso-
morphic:

indﬁZ( ?X---X7):comod(Ap,) X -+ x comod(Ap,) — comod(Ay),

(imﬂﬁz1 R ® (inﬂﬁz ?) :comod(Ap,) X -+ x comod(Ap,) — comod(Ay).
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Proof. This follows from Theorem 1.4c by induction on a, using the fact that coal-
gebra induction is transitive. O

We refer the reader to [BKj, §2] for further properties of the polynomial induc-
tion and restriction functors, as well as some consequences of Corollary 1.4g, in the
classical case. The proofs in loc. cit. carry over to the quantum case, now that we
have Corollary 1.4g.

1.5. Schur algebra induction

The goal in this section is to reformulate Corollary 1.4g in terms of the g-Schur
algebra. Fix throughout the section h,k > 1 and u = (hi,...,hs) F h. Recall that
S, 1 denotes the Levi subalgebra of Sy, i, defined as in (1.3.8), over the field F. We
have the restriction and induction functors

resiZ:Z :mod(Sp, 1) — mod(S, 1),

ind?ﬁ:z mod(S), ) — mod(Sh.)

in the usual sense of finite dimensional algebras; so indﬁZ’z = Shk®s,, " Note that

T . .. S
mdsh’k is left adjoint to ressh’k.
W,k ok

We also need truncated versions, so fix [ < h and embed A(l, k) (resp. I(l,k)) in
A(h,k) (resp. I(h,k)) in the natural way. Let e be the idempotent

e=ep| = Z Gpp € Shk- (1.5.1)
peA(Lk)
Note this is the analogue of the idempotent defined by Green in [Ga, (6.5b)]. The
subring eSy, ye is spanned by all standard basis elements & ; with ¢,7 € I(l,k).
Moreover, just as in the classical case [Ga, p. 103],

Sk = eSh ke,

the natural basis element &; ; of Sy, for i, j € I(l, k) mapping under the isomorphism
to the corresponding natural basis element &; ; of Sy, . In what follows, we identify
Sy, with eSy, e in this way. Then, we have the Schur functor

truncgl'i: : mod(Sh k) — mod(S; k), (1.5.2)

defined on an object M by truncglh’: M = eM and by restriction on morphisms. The

functor truncglh’: has a left adjoint, the inverse Schur functor

inflg"" - mod(Sy) — mod(Sh. ), (1.5.3)

which is the functor Sp, xe®es), e?-

k
k

considered by Green [Go, §6.5], and the argument of [Gg, (6.5g)] carries over to
show:

The truncation functor truncggl is the quantum analogue of the functor dj,
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(1.5a) Assuming that k <, the functors
S . aS
truncsi’: : mod (S, ;) — mod(S; k) and 1nﬂSZ’: : mod (S ;) — mod(Sh )

are mutually inverse equivalences of categories.

The effect of the truncation functor truncg * on the standard Sh r-modules is
well-known; we record the basic facts, see e.g. [Gg, (6.5f)], [BKy, 2.3, 2.4], [Dor,
§4.2]:

(1.5b) Take pp = (myq, .. mh) e At(h, k).
S
(i) If myy1 # O then truncS " Lp(p) = truncsl FAR() = truncSZ»: V() = 0.
(ii) If mi+1 = 0, we may regard was an element of AT(I,k) C AT (h,k), and then
truncs " Ln(p) = Li(p), trunCS " Ap(p) = Ay(p) and truncsgﬁ’: V() = Vi(p).

Now we wish to relate these Schur algebra functors to the polynomial induction
and restriction functors of the previous section.

First, recall from §1.2 that the algebra S, ;. has an anti-automorphism 7, which is
easily seen to stabilize the subalgebra S, 1, for instance using (1.3g). This allows us
to define the contravariant dual M7 of an S, x-module M, in the same way as we did
for Sy in §1.2. Contravariant duality gives us functors mod(Sh ) — mod(Sh k),
mod(S, ) — mod(S, ) and mod(S; ;) — mod(S; ), all of which we will denote

h,k

simply by 7. It is obvious that 7 commutes with ress . and truncey*. To be
Sy, Sk

precise, there are isomorphisms of functors:

S S
Toresshk = esshk oT, (1.5.4)

Sh Sh
Totruncsl’lc :truncSl’lc oT (1.5.5)

We remark that contravariant duality does not in general commute with the functor
ind?ﬁiz (resp. inﬂgl’t’: unless k < 1).

Second, notice that, in view of Lemma 1.4a and (1.4b), we can restrict the func-
tors resﬁz , indﬁz, resﬁlh and indﬁf to finite dimensional, polynomial degree & modules
to obtain well-defined functors which we will denote by the same names:

A
resAZ :mod(Sp, ) — mod(Syk),

)

indﬁz : HlOd(Slu,].C — mod(Sh k),

(

(Sh,
— mod (k).

(

inﬂﬁf : mod(S; ) — mod(Sh.x)-

)

Ap .
truncy” : mod (S,

)
)
)
)

To connect all these functors, we have:
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1.5c. Lemma The following pairs of functors are isomorphic:
Shk and resﬁz : mod(Shk) — mod(S,k);

k

(i) resg "
(i) trunc:z and truncﬁh : mod(Shk) — mod(Syk);

(iii) 7 o 1nds oT and 1ndA : mod (S, ;) — mod(Shk);
(iv) 7o mﬂ "or and 1nﬂ " :mod(Sy k) — mod(Shk)-

Proof. (i) This is obvious.
h

(ii) To see this, note that both of the functors truncgf’: and truncﬁl are defined

on objects by taking certain weight spaces, and by restriction on morphisms. To be
more precise, on an object M, both functors send M to ®AEA(l,k) ¢}\,>\M- Hence,
the functors are isomorphic.

(iii) Using (i) and the fact that indﬁh is right adjoint to resﬁh, we just need to

check by uniqueness of adjoint functors that 7o ind2 S, o7' is right adjoint to resg
Well, for M € mod(Sy 1), N € mod(S, ), we have

Homghvk( (lndsh " N7)7) = Homg, k(lndSh FNT.MT)
~ S
= Homg, , (N7, resSZ’fZ (M7))
= Homg,, , (reSEZ’i M,N)

using the fact that contravariant duality commutes with restriction (1.5.4).
(iv) This follows by (ii) and (1.5.5) by the same general argument as (iii). 0O

Finally, we can restate Corollary 1.4g in terms of Schur algebras. To explain
the notation in the statement, note that given modules My, ..., M, with each M; €
mod(Sh, k,), we can regard the outer tensor product M;X---XM, as an S,, p-module
where k = k1 + - -- + k4. We obtain in this way a functor

77 mod(Sh k) X -+ x mod(Sh, k,) — mod (S, k).

Similarly, the tensor product operation on modules over Schur algebras, induced via
the map (1.3.1), gives us a functor

7TR®---®7: mOd(Sh,kl) X oo X mOd(Stha) — mOd(Sh,k)
where k = ki1 4+ - - - + k,. With this notation:

1.5d. Theorem. For p = (hy,...,hq) E h and v = (k1,...,kq) F k, the following
functors are isomorphic:

mds“(? ®--& ?) :mod(Sp, k) X -+ x mod(Sh, x,) — mod(Sh),

(mﬂsz k; )R- ® (inﬂg:;’iza ?7) : mod(Sh, &) X - -+ X mod(Sh, x,) — mod(Shz)-
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Proof. Combine Corollary 1.4g and Lemma 1.5¢(iii),(iv). O

Later, Theorem 1.5d will be important because it gives a way to realize the tensor
product operation induced by the bialgebra structure of Ay directly within the finite
dimensional algebras Sp, (for all k).



Chapter 2

Classical results on GL,,

We next collect all the results about GL,,(F,) from the literature that we will need
later. Most of these results are of a purely character theoretic nature. At the
same time, we will deduce their basic consequences for the modular theory using
elementary base change arguments.

2.1. Conjugacy classes and Levi subgroups

We begin with some basic notation that will be in place for the remainder of
the article. Choose some prime power ¢ and denote the finite general linear group
GL,(F,) by Gp. Let p be a prime not dividing g, F' be an algebraically closed field
of characteristic p and fix a p-modular system (F, O, K) with K sufficiently large
(see [Ka, §3.1]). So O is a complete discrete valuation ring with residue field F' and
field of fractions K of characteristic 0, and moreover K is a splitting field for all
finite groups that we meet.

For o € F;, we let (o) denote the associated companion matriz. So if o is of
degree d over Fy, (o) is the d x d-matrix corresponding to the automorphism of
F,lo] induced by left multiplication by o, when written in terms of the Fy-basis
1,0,...,0% 1. We say that o is p-regular if its multiplicative order is coprime to p;
otherwise, we say that o is p-singular. Given in addition 7 € IF';, we say that ¢ and
T are conjugate if they have the same minimal polynomial over [y, or equivalently,
if the matrices (o) and (7) are conjugate matrices.

For d > 1, let £(d) denote the smallest positive integer such that ¢**(?) = 1(mod p)
(i.e. the image of ¢¢ in F is a primitive £(d)th root of unity). We record the basic
number theoretic fact (cf. [DJ2, Lemma 2.3]):

(2.1a) Let o € ]F; be a p-regqular element of degree d over Fq. There exists a p-
singular element T € F of degree e over Fy with p-regular part conjugate to o if
and only if e = dl(d)p" for some r > 0.

For o € F) and k > 1, let ()" denote the block diagonal matrix consisting of
k copies of (o) along the diagonal. Every semisimple conjugacy class of G, can be

29
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represented as a block diagonal matrix
s = diag((c1)™, ..., (54)%) (2.1.1)

for o; € F; with o; not conjugate to o; for 7 # j, and integers k1,...,k, > 0. We
will say s € Gy, is block-diagonal if it is a semisimple element of the form (2.1.1).
For such an s, we associate the following compositions:

k(s) = (k1,...,kq), (2.1.2)
5(s) = ((d)*, ..., (dy)*) En, (2.1.3)
W(S) = (dlkl, N ,dak'a) = n, (2.1.4)

where d; is the degree of o; over F,. The centralizer Cg, (s) is isomorphic to
GLkl (qu1) X oo X GLka (qua). (2.1.5)

Recalling that the unipotent classes of GG, are parametrized in a standard way by
partitions A F n, we see from (2.1.5) that the unipotent classes of Cg, (s) are
parametrized by multi-partitions A = (A1,..., ;) where \; - k; for i = 1,...,a.
We will write A - k(s) if A is such a multi-partition.

Let Css be a set of representatives of the semisimple classes of G,,, such that
each s € Cys is block-diagonal, and let Cy, ;s denote the p-regular elements s € Cgs,
that is, the elements of Cys of order coprime to p. By the Jordan decomposition, the
conjugacy classes of Gy, are parametrized by pairs (s, A) for all s € Cs5 and A - k(s).
Moreover, as p is coprime to ¢, the p-regular conjugacy classes are parametrized by
pairs (s, A) for all s € Cygspy and A F K(s).

We turn next to describing various Levi subgroups of G,,. Let G,, = GLn(IF‘q)
denote the corresponding algebraic group and

fq :Gp — Gy (2.1.6)

be the Frobenius map defined by raising all the entries of a matrix ¢ € G,, to the
gth power. Then, the finite general linear group G, is precisely the set of f,-fixed
points in G,,. By a Levi subgroup of G,,, we mean the set of f,-fixed points in an
fq-stable Levi subgroup of Gy,. For example, the centralizer Cg, (s) of (2.1.5) is a
Levi subgroup of G since it is the set of f,-fixed points in the Levi subgroup Cg, (s)
of Gy,

Another special case gives us maximal tori: a maximal torus of G, is the set
of fs-fixed points in an f,-stable maximal torus of G,. By Lang’s theorem, the
conjugacy classes of maximal tori of GG,, are parametrized by conjugacy classes of
the symmetric group ,, hence by partitions of n. For A F n, we let T) be a
representative of the corresponding conjugacy class of maximal tori of G,,, so

T, = GLl(Fqll) X oo X GLl(qua) (2.1.7)

if A= (l1,...,l.) F n
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Let G, = Gy, x -+ x G, (embedded into Gy, as block diagonal matrices) denote
the standard Levi subgroup of Gy, parametrized by the composition v = (nq,...,n,) F
n. We write U, (resp., U,) for the subgroup of all upper uni-triangular matrices in
G, (resp., G,) and Y, for the unipotent radical of the standard parabolic subgroup
of Gy, with Levi factor G, so U,, = U, Y, (semi-direct product).

We always henceforth identify the symmetric group 3, with the subgroup of
G, consisting of all permutation matrices, so that for v E n, ¥, = X, N G,. The
following fact follows from (1.1a):

(2.1b) Given A, E n, where again n = kd, and w € D, 5, G, N"“Gy is a standard
Levi subgroup of Gy,.

Now suppose that n = kd for integers k,d > 1. There is an embedding of ¥y
into G, as the subgroup of all “d x d-block permutation matrices”, so for example,
the basic transposition (1 2) € X3 corresponds to the matrix

0 Iy O
Iy 0 O
0 0 I

in Gsq. For z € ¥y, let m, denote the corresponding block permutation matrix in
Gn. v =(ki,...,kq) F k, we write dv for the composition (dkq,...,dk,) En. We
will often appeal to the following observation. Although the proof is not immediate,
it is a purely combinatorial statement about coset representatives in the symmetric
group which we leave as an exercise for the reader, referring to [DJy, p. 23] for
guidance.

(2.1c) Given A\, F k and w € Dgyax, Gau N“Gay contains G gry if and only if
w = m; for some x € D, . In that case, Ggqy NYGay = Ggq, where v F k is
determined by G, N*Gy = G,.

2.2. Harish-Chandra induction and restriction

Let G = G, for some v E n and L be any standard Levi subgroup of G. Let
P be the standard parabolic subgroup of G with Levi factor L. Let Y denote the
unipotent radical of P, so that there is a surjection P — L with kernel Y. We write
infi¥ for the usual inflation functor from mod(F L) to mod(F P) along this surjection,
and invy for the truncation functor from mod(F P) to mod(F'L) induced by taking
Y-fixed points. Define the Harish-Chandra induction and restriction functors

RY : mod(FL) — mod(FG) by RS = ind$ oinfll,
‘RS : mod(FG) — mod(FL) by *RE = invy ores§ .
It is known (cf. [DDuy, §5], [HL2]) that if some other parabolic subgroup is used

in these definitions, one obtains isomorphic functors. However, it is then not imme-
diately obvious that our later definitions (specifically, the modules defined in §3.3)
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are independent of this choice. This is indeed the case, as shown in [Ac|, but for
simplicity, we almost always work with the fixed choice of the standard parabolic in
this article.

We record two well-known basic properties of the functors Rg and *Rg; the first
depends on the assumption that (p,q) = 1. See [DF, §1] for proofs.

(2.2a) The functors *Rf and Rg are both exact, and are both left and right adjoint
to one another.

(2.2b) Given standard Levi subgroups L' < L < G, the functors Rg o Rf, and Rg,
(resp., *RE, o *Rg and *Rg,) are isomorphic.

We will need the fundamental Mackey decomposition theorem (see e.g. [DF,
Theorem 1.14]), which makes sense in view of (2.1b):

2.2¢ Given standard Levi SUbQ? oups G ,G)\ of G = GV o1 )\,/L = n, there is an
m
isommphism of iunctms

*pG G ~ G . *pGa
B0 RE = @) R, oonu T
wEDZVA

1

where conj,, : mod(F(GyNY G,)) — mod(F(G,NYG,)) denotes the functor in-
duced by conjugation by w € G.

The functors RY and *RY can also be defined in the same way as above over
the ground ring O (similarly, over K). This gives us functors which we will denote
with the same names, namely, RY : mod(OL) — mod(OG) and *R : mod(OG) —
mod(OL). The functors over O commute with base change, so this notation should
not cause confusion:

2.2d. Lemma. (i) For any OL-module Mo, the FG-modules F ®@¢ (RfM@) and
RY(F ®0 Mo) are naturally isomorphic.

(ii) For any OG-module No, the F L-modules F Qo (‘RS No) and *R$ (F 0 No)
are naturally isomorphic.

Proof. These results are well-known, but since we could not find a suitable reference
we include a proof. First, let H be any group and A (resp. B) be a right (resp. left)
OH-module. Write Ap = FF ®0 A and Bp = F ®» B. Then

Ap 2 ARp F =2 (A®oyg OH)®0 F 2 A®oy (OH @0 F) = A®oy FH.
Similarly, Br 2 FH ®ong B. Now

Ap @pg Br 2 (A®on FH) @pp (FH ®op B) 2 (A®og FH) ®on B
~ (A®o F) @0y B (F ®0 A) @ou B
= F®o (A®og B).
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Now take H = L,B = Mp and A = OGe where e is the idempotent ‘—}1,‘ Zer Y.
Then, RgMo = A ®oy B, while REMF = Ar ®@pg Br. So (i) follows directly
from the general fact just proved. The proof of (ii) is entirely similar, since Harish-
Chandra restriction can also be interpreted as tensoring with a certain bimodule.
O

We also need to know that the basic properties of Harish-Chandra induction
and restriction, namely, (2.2a), (2.2b) and (2.2c), are true also over O; indeed, the
references cited above prove the results over any ground ring in which ¢ is invertible.

In the category mod(F'G), there is a notion of contravariant duality. Let T :
G — @G denote the anti-automorphism given by matrix transposition. Given a left
FG-module V let V7 denote the left F'G-module which as an F-space is equal to
the dual V* = Homp(V, F'), but with action defined by (g.f)(v) = f(7(g)v) for
veV,ge G, f eV Since 7 leaves conjugacy classes of GG invariant, V and V7
have the same Brauer character. In particular, if V' is an irreducible F'G-module,
then V' = V7 (cf. [Jo, (7.27)]). The same remarks apply to the standard Levi
subgroup L of G, since 7 stabilizes any such subgroup.

2.2e. Lemma. For a left FL-module V, RS (V™) = (REV)T. Similarly, for a left
FG-module U, *R¢(UT) = (*RSU)".

Proof. We first prove that the functors (?)70*RY o(?)™ and *RY are isomorphic. Let
P be the standard parabolic subgroup of G with Levi factor L and unipotent radical
Y, and let e = ﬁ Y uey U € FG. Then, the functor *Rg is given on objects by left
multiplication by the idempotent e, and by restriction on morphisms. The corre-
sponding idempotent for the opposite parabolic subgroup 7(P) of G containing L is
7(e), and by [DDuy, §5] or [HLg] the functor given on objects by left multiplication
by 7(e) is isomorphic to *RY. So now it suffices to show that for V' € mod(F @), the
FL-modules 7(e)V and (eV7)" are naturally isomorphic. Identifying V' and V77,
we have the natural isomorphism (eV7)” = V/(eV7)° where

(eVT)Y ={veV|(ef)(v)=0foral feVT}
={veV|f(rle)v)=0forall feVT}=(1-r7(e))V.
We see that (eV7)” 2 V/((1 —7(e))V) = 7(e)V as required.

Now to show that the functors (?)7 o RY o (7)™ and R} are isomorphic, we note
that by what we have proved so far and (2.2a), RS is left adjoint to (7)™ o *R% o (?)".
So by uniqueness of adjoint functors, it suffices to check that (?)™ o RY o (?)7 is also
left adjoint to (?)7 o *RY o (?)7. For any U € mod(FL),V € mod(FG), we have

Hompg((RE(UT))7,V) & Hompe(V7, RE (UT))
= Hompp, ("R (V7),U7) 2 Hompr, (U, ("RE (V7))")

as required for adjointness. O
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2.2f. Corollary. Given any irreducible left F'L-module M, the FG-module RfM 18
isomorphic to (RY M)T.

Proof. We have observed that M = M7. So, Rf M = R¢(M™) = (R¢ M) by the

lemma. 0O

2.3. Characters and Deligne-Lusztig operators

Let G = G}, and write QQ, for the p-adic field with algebraic closure Qp. We
write X (G) for the character ring of G over Qp, and similarly for any Levi subgroup
of G. The irreducible characters in X (G) were originally constructed by Green [G1].
We will adopt for brevity the point of view of Fong and Srinivasan [FS|, where
Green’s results are reformulated in terms of the Deligne-Lusztig theory; see also
[LS], [DM;] and [DMa, §15.4] for this point of view. The very elegant approach of
[Z] (which contains many but not all of the results we need) might also serve as a
useful introduction.

The parametrization of irreducibles described in [F'S, §1] depends on first fixing
an embedding IF‘qX — @;, as well as on the choice of parametrization of the irre-
ducible characters of the symmetric groups by partitions reviewed in §1.1. Having
made these choices, we obtain an irreducible character x5 € X(G) for each block-
diagonal element s € G and each A I k(s). The irreducible characters in X (G) are
the characters {xs|s € Css, A K(5)}.

We say a little more about the construction of x, . For a Levi subgroup L of
G, RY : X(L) — X(G) now denotes the Deligne-Lusztig operator as introduced in
[DL, L;]. Note we are abusing notation somewhat here: strictly speaking we should
denote the operator Rg by R%, where G is the algebraic group GLn(IF‘q) and L is
a Levi subgroup of G stable under the Frobenius map f, of (2.1.6), with the Levi
subgroup L of G equal to the set of f,-fixed points in L.

If L happens to be a standard Levi subgroup of G, we also have operators
RS . X(L) — X(G) and *RY : X(G) — X (L) induced by the Harish-Chandra
induction and restriction functors of §2.2 over Q,. It is known that the Harish-
Chandra operator Rf coincides with the Deligne-Lusztig operator in this special
case that L is standard.

Recall that for p = n, T}, denotes a representative of the corresponding conjugacy
class of maximal tori of G, as in (2.1.7). Also, as in Lemma 1.3f, we write ¢, for
the number of elements of ¥, of cycle-type p. For A F n, the class function

,ZCM@ ) RE, (1) (2.3.1)
pkEn

is an irreducible unipotent character of G. The formula (2.3.1) (which is [F'S, (1.13)])
can be inverted to give the formula [FS, (1.14)]:

RE (1) = éalp (2.3.2)

AFn
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For A = (l1,...,l,) with transpose X' = (l,...,[}), set

a

b
m(N) =Y _(1)* = il;.

j=1 i=1

The degree of the unipotent character x) is given by [F'S, (1.15)]:

"N =D(¢" ' =1)...(¢— 1)
Hh(qh - 1)

where h runs over the hook lengths of .

Suppose now in general that s € G is a block-diagonal element of the form (2.1.1).
The choice of embedding qu — @5 allows us to associate to s a linear character
§ € X(Cg(s)), as in [FS, (1.16)]. Recalling the structure of Cg(s) from (2.1.5), we
have for each A = (A1,...,Aq) I K(s) the irreducible unipotent character yy, ... X,
(outer product) of Cg(s). Note we are abusing notation here (and later) by allowing
q to vary to give the definition of the unipotent character x), € X(GLy,(q%)),
i=1,...,a. Define the sign ¢, by

xa(1) = (2.3.3)

£g = (—1)Thttha, (2.3.4)
Then,

Xsa = €sRG (0 (3Xa - Xa) (2.3.5)

is precisely the irreducible character of G parametrized by the pair (s, ).
Using [F'S, (1.3)] (cf. [DMjy, 3.10]), we see that the degree of x; ) can be computed
from (2.3.3) by the formula:

Xsa(1) =[G = Ca(s)lgxn (1) - xa, (1), (2.3.6)

where for an integer N, Ny denotes its largest divisor coprime to q. We repeat:
in calculating the degree xy,(1) using (2.3.3) ¢ needs to be replaced by ¢%, since
xXn € X(GLy, (¢%)) not X(GLy(q)) as there.

The following property, proved in [FS, p. 140], is of great importance to the
modular theory:

(2.3a) Let t = sy be a block-diagonal element of G with p-regular part s. For
any A = (Ai,..., ) F k(t), the generalized characters Rgc(t)(f.x)\l S..Xy,) and
RgG(S)(é.RggEf)) (XA1 ---X»,)) agree on all p-regular conjugacy classes of G.

As our first application of (2.3a), we have:

2.3b. Lemma. With t = sy and X\ as in (2.3a), the Brauer character obtained by
restricting the character x ) to the p-reqular classes of G' can be written as a Z-
linear combination of the restrictions of the characters {xs . |pt k(s)} to p-reqular
classes.
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Proof.  Using (2.3a), we just need to observe that all of the irreducible constituents
of RCGE )) (X, - --X»,) are unipotent characters of Cg(s). Let T' be a maximal split

CG(t)(]_).

torus of Cg(t). Then, xy, ...X), is a constituent of R So it suffices by

transitivity of Deligne-Lusztig operators to observe that all constituents of RCG(S)( 1)
are unipotent characters of Cg(s), which follows by (2.3.2) (noting that T is also a

maximal torus of Cg(s)). O

Now fix o € IF‘qX of degree d over [F, and suppose that n = kd for some k > 1.
Abbreviate X ) in the special case s = (0)* by x5, where A = (\) for A - k. Recall
again that ¢, denotes the number of elements of ¥ of cycle-type A\. The second
fundamental consequence of (2.3a) (cf. Lemma 1.3f and [DJ2, Lemma 3.2]) is as
follows:

2.3c. Lemma. Let T € F; be of degree e = md over Iy, with p-reqular part conju-
gate to o. Then, for anyl > 1, k =ml and n = kd = le, the character x ) agrees
with the generalized character

k—i—l

Z Z C)\¢,u m)‘ Xa,u

Py

on all p-regular classes of G,.
Proof. Lett= (1)} and s = (o), so that Cg(t) = GLl(q ) and Cg(s) = GLk(q?).
(s)(8:x

By definition, Rgc(t)(f.x(l)) = (-1)""x, ) and R u) = (=) Fy,, for
any p b k. So applying (2.3a), it suffices to show that

RCG i Z Z exdu(mA)x

'Aklpkk

Now, ¢ is the trivial character of the symmetric group, so by (2.3.1), we can write
the unipotent character x(;) of Cq(t) = GLi(¢°) as

1 Calt
X =g 2 R

TR

where T < Cg(t) is a maximal torus isomorphic to GL1(¢®1) x - - x GL1(ge) for
A= (l1,...,1lg) F I. Observe that T} is also a maximal torus of C(s); we should then
denote it instead by T),» < Cg(s). Now, using transitivity of the Deligne-Lusztig
operators, we deduce from (2.3.2) that

C s)
ch(t) -n Z R il ch/\% (mA)x
AL N1 bk

as required to complete the proof. O

By tramnsitivity of Deligne-Lusztig induction, we see immediately from the defi-
nition (2.3.5) that:
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(2.3d) Suppose that s and t are block-diagonal element of G,, with Cg,, (t) C Cg, (s).
For A = (A1,..., ) F K(t), x¢.0 = RgTr(s)XtL,eAVi where xth/_\Vi denotes the irreducible
G‘/r s) (1
character etRCG((t)) (tXAr -+ X)) Of Grs)-
As a special case of this (taking s = t), we see that an arbitrary irreducible
character x, ) can easily be expressed in terms of the x, »’s:

(2.3e) For a block-diagonal s € Gy, of the form (2.1.1) and A = (A1,...,Aa) F K(s),
XS,A = Rg:(s) (XU‘1,>\1 tet XUc“)\a)'

In view of (2.3e), it will simplify notation in what follows to always restrict our
attention initially to characters of the form x, x. Now that we have this notation in
place, we will not need to use the Deligne-Lusztig operators again.

We record the following formula for the degree of x, x, which follows easily from
(2.3.3) and (2.3.6):

(" =) (" 1) (g 1)
Keall) = (e =1

(2.3.7)

where h runs over the hook lengths of A. We will also use the following inner product
formula which is a special case of [FS, (1B), (1C)]:

(2.3f) Fix v = (k1,...,kq) F k and a multi-partition A\ = (A1,...,Aq) F v. Then,
every irreducible constituent of RgZVXU,/h .- Xox, 18 of the form xo, for p = k.
Moreover, given u & k,

n . >
(Xa,ua RngXa,)q .. Xcr)\a) = (Qb/u lndgf ¢A1 <. qb)\a)

where the inner products are the usual ones on X (Gy,) and X (X) respectively.

2.4. Cuspidal representations and blocks

If G is a standard Levi subgroup of G, a cuspidal FG-module is an F'G-module
M with the property that *REM = 0 for all standard Levi subgroups L < G.
Similarly, a cuspidal character x € X(G) is a character with the property that
*fo = 0 for all standard Levi subgroups L < G.

The irreducible cuspidal characters of Gy, are precisely the X, 1) for o € ]F;
of degree n over F;. We will write simply x, for the cuspidal character x, ) for
such 0. We fix a KG,-module M(c)x affording the character x,, for each o.
Choose an O-free OGy,-module M (0)e such that M(o)x = K ®o M(0)o, and set
M(o)=M(o)r = F ®o M(0)p. Since Harish-Chandra restriction commutes with
base change, M (o) is a cuspidal FGp,-module. We will later see (cf. Lemma 2.5f
and Theorem 4.3b) that M (o) is actually an irreducible FG,-module, so that its
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definition does not depend on the particular choice of the O-lattice M (o)p, but this
is not yet clear. We just note for now that by (2.3.7),

dimM (o) = (g—1)(¢* =1)...(¢" 1 = 1), (2.4.1)

interpreted as 1 if d = 1.

Now let R be one of the rings F, K or O. For ¢ € I_FqX of degree d over F, and
n = kd, the module M(o)r X ---X M(o)pg, that is, the outer tensor product of k
copies of M(0)r, is a cuspidal RG 4 )-module. We define

M*(o)r = R&" M(0)g W --- K M(o)g. (2.4.2)

(k)

Since Harish-Chandra induction commutes with base change, M* (o) o is an O-lattice
in M*(0)x, and M*(0) := M*(0)r = F @0 M*(0)o.

Observe that M*(o)x is a module affording the character Rg:bdk) Xo---Xo (k
times). So according to (2.3f), the irreducible constituents of M* (o) have charac-
ters among {x, x| A k}. Moreover, by (2.3f) again, (x, Rg:;k)xa cXe) = oa(1).
Since the only one dimensional characters of the symmetric group are the trivial and
sign characters ¢y and ¢ xy respectively, we deduce:

(2.4a) The irreducible constituents of M* (o) have characters {x, | A k}, and
the only constituents appearing with multiplicity one are those with characters X o (x)

and X g (1%)-
More generally, for a block-diagonal element s as in (2.1.1), set
M(s)r = Rgr M*(o)p® - B M (0q)r (2.4.3)

and write simply M(s) for M(s)p. By transitivity of Harish-Chandra induction,
M (s)gr is precisely the RG,-module Harish-Chandra induced from the cuspidal
RGs(s)-module

k1 times ko times

M(o1)g® - R M(o1)g X R M(og)g R R M(og)R - (2.4.4)

Applying (2.4a) and (2.3e), we see immediately that the irreducible constituents of
M (s)k in characteristic 0 correspond to the irreducible characters {xs x| At &(s)}.
These irreducible constituents for fixed s constitute the geometric conjugacy class
of irreducible K G,,-modules corresponding to s.

Now we can state a fundamental result from block theory, which follows as a
consequence of the classification of blocks obtained by Fong and Srinavasan [FS]. It
also has a short direct proof, valid for arbitrary type and independent of the full
block classification of loc. cit., due to Broué and Michel [BM].
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(2.4b) Suppose s and t are block-diagonal elements of G, such that the p-reqular
parts of s and t are not conjugate in Gy. Then, the irreducible characters x, ) and
Xt.u belong to different p-blocks, for all At k(s), ut K(t).

Let s be a p-regular block-diagonal element of G,. By (2.4b), we can find a
central idempotent e; € OG,, such that e; acts as the identity on M (t)x for all
block-diagonal t € G, with p-regular part conjugate to s and as zero on M (t)g
for all other block-diagonal t € G),. The set {es|s € Cs5,} is a set of mutually
orthogonal central idempotents in OG,, summing to the identity. For R = K, F' or
O, let B, r be the union of blocks of RG,, corresponding to the central idempotent
es, and write simply B, for the algebra B r. So, the set

Ufea [ A s(8)}, (2.4.5)

as t runs over all elements of Css with p-regular part conjugate to s, gives a complete
set of non-isomorphic irreducible characters belonging to the block By i. Then,

RGn= @ Binr (2.4.6)
seC

ss,p’

is a decomposition of the group algebra as a direct sum of two-sided ideals. Let
Pary, denote the number of partitions of k£, and more generally for a composition
k = (ki,...,kq) write Par, for the number of multi-partitions of k, so Par, =
Pary, ...Parg,. We have (see also [GH, §3]):

2.4c. Lemma. For a p-regular block-diagonal s € G, the F-algebra Bs has pre-
cisely Pary ;) non-isomorphic irreducible modules, all of which appear as constituents
of M(s). In particular, for a p-reqular o € I_qu, MP¥(o) has precisely Pary, non-
isomorphic composition factors.

Proof. 'We may assume that s € Cys,,. Using (2.4.5), the ring of Brauer characters
of By is spanned by the restrictions to p-regular classes of the characters [ J,{x¢|A F
k(t)} as t runs over all elements of Cgs with p-regular part conjugate to s.

Given this, Lemma 2.3b implies in fact that the ring of Brauer characters of By is
spanned just by the restrictions of the {xs | F £(s)}. Hence, the algebra B, has at
most Par,,) distinct irreducibles, for all s € Css 5. The total number of irreducible
FGp-modules is equal to the number of p-regular conjugacy classes, so now (2.4.6)
and an elementary counting argument shows that in fact B has precisely Par,y)
distinct irreducibles.

We have now shown that the Brauer characters obtained by restricting {xsx|A
k(s)} to p-regular classes give a basis for the ring of Brauer characters of Bs. Since
each X ) appears as a constituent of M(s), it follows that all of the Par, ) distinct
irreducible Bs-modules definitely appear as composition factors of M(s). O
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We will also need to consider blocks of Levi subgroups of G,, in one special
case. So fix now a p-regular block-diagonal element s € G,,, suppose that 7(s) =
(n1,...,nq) F n is defined as in (2.1.4), and write s = s;...5, with s; lying in the
factor Gy, of Gr(s). For R = F, K or O, define B;“ﬁ to be the block By, r®---®Bs, r
of RG,T(S) = RGp, ®--- @ RGy,,.

2.4d. Lemma. With notation as above, the Harish-Chandra operator Rg"< ) gives

a bijection between the set of irreducible characters of B¢ and the set of irreducible
characters of By .

Proof. 1f t is a block-diagonal element of G, with p-regular part s, we observe
that Cg, (1) € Cg,(s) C Gr). For A = (A1,..., ) F K(2), let x;§" denote

the irreducible character eth;((‘?) (txa -+ Xn,) Of Gr(s) as in (2.3d). Then, the
irreducible characters of B, i (resp. BL%J) are precisely the characters x; ) (resp.
x;y') for all A = k(t), as t runs over a set of representatives of the block-diagonal
elements ¢ € G, with p-regular part equal to s. So the lemma follows directly from

(2.3d). O

2.4e. Theorem. With notation as above and R = F, K or O, the Harish-Chandra
induction functor Rg”( : induces a Morita equivalence between BL%' and Bs g

Proof. We just need to prove this in the case R = O, the other cases following
immediately from this since Harish-Chandra induction commutes with base change.
Let us first observe that Rg:(s) does indeed restrict to a well-defined functor from
B;eg to Bs . Thanks to Lemma 2.4d, it certainly sends torsion free B;eg—modules
to Bs o-modules. But an arbitrary SLfg—module M is a quotient of a projective,
which is torsion free, so by exactness, Rg:(s)M is a quotient of a B; o-module, hence
itself a B, o-module.

Now let G = Gy, and L = G (,). Denote the standard parabolic subgroup of G
with Levi factor L by P. Let X be a projective generator for mod(B{¢) and set
Y = Rg(X) = 0OG ®@op X. We will also write KX = K ®p X, KY = K®pY and
identify KY with R (KX) = KG®kp KX. In view of the previous paragraph and
(2.2a), Y is a projective Bs o-module.

Writing endomorphisms on the right, consider the endomorphism algebras

FlLevi — EndBL%i (X), E = EndBS’o (V).

The functor Rg determines an algebra homomorphism 6 : Etevi — FE which
is clearly injective. We claim that € is surjective, hence an isomorphism. Ap-
plying Lemma 2.4d, every irreducible constituent of KX is mapped to an irre-
ducible constituent of K'Y and multiplicities are preserved. Consequently, com-
paring dimensions, Rg certainly induces an algebra isomorphism from End g, (K X)
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to Endgg(KY'). In particular, every K G-endomorphism of K'Y preserves the (K P-
direct) summand 1 ®xp KX of KY = KG ®xp KX. We conclude that every
OG-endomorphism of ¥ = R%(X) also preserves the direct summand 1 ®op X
of Y, since it preserves Y and the space 1 ® xp KX when extended to an endo-
morphism of KY. In other words, every OG-endomorphism of Y is induced by an
O L-endomorphism of X, that is, 8 is surjective as claimed.

As a consequence, there is a one-to-one correspondence between the primitive
idempotents in the endomorphism algebras Etevi and E. We deduce that Rf takes
projective indecomposable summands of X to projective indecomposable summands
of Y, and preserves distinct isomorphism types. Applying Lemma 2.4c, the algebras
Bl and By r have the same number of non-isomorphic irreducibles, so B:%) and
Bs:@ have the same number of non-isomorphic projective indecomposables. So since
X was a projective generator, Y must also be a projective generator for mod(B;s,0).
So now the fact that the endomorphism algebras ELlevi and F are isomorphic proved
in the previous paragraph means that the algebras B!} and B, o are Morita equiv-
alent. 7

It remains to check that the functor Rf itself gives the Morita equivalence. For
this, we will identifying Elevi and F via the isomorphism 6. Then, we can regard X
(resp. Y) as a (B¢, E)-bimodule (resp. a (Bs 0, E)-bimodule). We have a diagram
of functors:

RG
mod(B{y) —~— mod(Bs )
X®E7T TY@E?

where the vertical functors are Morita equivalences since X and Y are projective
generators. Moreover, the diagram commutes, that is, the functors Rf o (X®pg?)
and (RfX )®pg? are isomorphic, which follows directly by associativity of tensor
product. So the top functor, Rf, is also a Morita equivalence. O

Theorem 2.4e plays the role of (2.3e) in the modular theory: it allows us almost
all of the time to restrict our attention to studying the blocks of Bs g with s of
the form (o)* for p-regular o € IF‘qX, rather than the more general By g for arbitrary
5 € Cssp. The following notation will be convenient: given p-regular o € F; and
k > 1, let B, r denote the algebra B, r in the special case that s = (0)*. Write
simply B, ;. for B, 1 r. We remark at this point that as a special case of a conjecture
of Broué [B, p. 61], it is expected that the algebra B, j o is Morita equivalent to
the ‘unipotent block’ By o of GLy(F,a), where d is the degree of o over F,.

2.5. Howlett-Lehrer theory and the Gelfand-Graev representation

Suppose now that o € qu is of degree d over F, and that n = kd for some
k > 1. Let R denote one of the rings F, K or O throughout the section. Recalling
the definition of the Hecke algebra from §1.1, we let Hy g = Hp ,a(X)). Applying
(1.1.1), we may identify Hy p (resp. Hy k) with the algebra F' ®o Hjp o (resp.
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K ®o Hy,0). We will usually write simply Hj, in place of Hy p over the modular
field. We wish to construct a right action of Hj, g on the module M k(o)R, as a very
special case of the theory of Howlett and Lehrer [HL].

Write Ng = M(0)gp R --- X M(0)g (k times) and Mr = M*(0)r = Rg?dk)NR
for short. We identify Mgz with RG,, ®rp Ng, where P is the standard parabolic
subgroup of G, with Levi factor G 4r) and unipotent radical ¥(4r). Let f denote the

idempotent
1
f= Z u € RP
Y(ar)l wey,

dk)
so that *Rg?dk)M r = fMpg. Finally, recall the embedding 7 : ¥} — G, as d x d-block

permutation matrices, from §2.1.

2.5a. Lemma. fMpg = @ fme ® Np
TEX

Proof. One argues using the Bruhat decomposition as in [D;, Lemma 3.4] to show
that the sum

> fme® Nr C fMg

TEX
is direct and has a complement in fMg as an R-module. It then just remains to
check that the R-rank of fMpg is kl(rank Ng). But by the Mackey decomposition,
writing L = G g,

Gn ~Y M L
fMgr="R;"Mp = @ RY . o conjy, 'R} -1 (NR).
WED gk), (ak)
Since Np is a cuspidal RL-module, the summand corresponding to w is zero unless
Lv 'L = L, in which case according to (2.1c) w = 7, for x € ¥j. So, fMpr =
D.cx, conjr, (Ng) which has the required R-rank. O
Notice that each summand fm, ® Ng appearing in the lemma is an RG gk)-

submodule of fMpg. Moreover, given w € X, there is an isomorphism of RG(dk)-
modules A, : Ng — fmy, ® Ng, such that

V1@ QU = [T @ Uyl & -+ ® Uy
for all vy,...,vx € M(o)g. Identifying *R_g?dk)MR with ®$€Ek fme ® Ng according
to Lemma 2.5a, we extend the range of A,, to obtain an RG 4 )-module monomor-
phism
Ay : Np — *Rg?dk)MR, (2.5.1)
for each w € ¥j. Clearly, the maps {A,, | w € ¥} are linearly independent. Now

for each w € X, let
By : Mp — Mp
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be the RG,-module homomorphism induced by A,, under the isomorphism

Hompg, ., (Nr,"RG", M) = Hompg, (Mg, M)

(dF)
arising from adjointness (2.2a). So, we have constructed k! linearly independent
RGy-endomorphisms of Mg, namely, {B,, | w € ¥;}. The Howlett-Lehrer theory
[HL1] in our special case (see [D;, Lemma 3.5] and [J2, Theorem 4.12]) computes
relations between the By, (observe that knowing a relation over K implies the relation
over O, hence over F') to show:

(2.5b) There is an algebra embedding 0 : Hy, p — Endgrg, (MRg) (writing endomor-
phisms on the right) with 0(T,,) = ((—1)O(U)+1q%d(d+1))g(w)3w for allw € Xy, where
o(0) is the order of o € F. In the case R = K, 0 is an isomorphism.

Later on we will show that 6 is an isomorphism for R = F, O too, but we cannot
prove this yet. In view of (2.5b), we will henceforth always regard M*(o)g as
an (RGj, Hi r)-bimodule; it is clear from (2.5b) that the bimodule structure is
compatible with base change.

Next, we focus on the case R = K. Then, M*(c)x is a completely reducible
KGp-module and its endomorphism algebra

Hy, x = Endgg, (M*(0)k)

is semisimple. Fitting’s lemma gives a bijection between the irreducible KG,,-
modules appearing as constituents of M k(a) k and the irreducible Hy g-modules.
We are interested here in the constituents of M¥(o)x corresponding to the triv-
ial representation Zp, , and the sign representation &, , of Hy i, as defined in
§1.1. These appear in M*(o)x with multiplicity one since Th,, ; and &g, . are one
dimensional. Over K, (1.1b) easily implies that x and yj are idempotents up to
multiplication by non-zero scalars, so these constituents of M* (o) are according
to Fitting’s lemma precisely the irreducible submodules M* (o) gz and M* (o) gys,
respectively.

2.5c. Lemma. The KG,,-module M*(o)gxy, (resp. M*(o)yr) corresponds to the
irreducible character X4 (1) (Tesp. Xo.7(1k)).

Proof. We may assume k > 1, the case k = 1 being trivial. Note that according to
(2.3.7), we know the degrees:

kd ' k ‘
Yo =@ - 1) / T~ 1. (2.5.2)
=1 =1
k

p kd ‘ '
Xoary (1) = q2*F DT (e" - 1)/ [T~ . (2.5.3)
=1

i=1
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For £ > 1 these degrees are different. Moreover, by Fitting’s lemma, the only
irreducible constituents of M* (o) appearing with multiplicity one are the modules
M*(0)kx), and M* (o) gyx. So applying (2.4a), we see that it suffices to check that

dim M* (o) gy, = Xo,(k) (1) not Xo.’(lk)(l).
The dimension of M(o)k is given by (2.4.1). Using this, an easy calculation
gives the dimension of the induced module:

kd
dimdro) = TJ - 1) /(@ 1)

=1

Now [C, Proposition 10.9.6] tells us that

dim M*(o)gzi, = dim Mk(O')K/ Z (¢h)™),
weEk
It is well-known that >, v ) =TT (¢ - 1)/(t — 1)*, and one easily verifies
now that dlka(O')K[Bk = XU,(k)(l)' O
We conclude the chapter by reviewing the fundamental properties of the Gelfand-
Graev representation introduced in [GG]|. Fix a non-trivial homomorphism

Xi @ (Fg,+) — K*. (2.5.4)

Note that the values of x, lie in O, so we can restrict x, to x, : (Fq,+) — O%,
then reduce module p to obtain the non-trivial character x = x, : (Fq, +) — F*.
Forue U, and R=F,K or O, let

n—1
On,r(u) = XR(Z Uiit1)
i=1

where u; ;11 denotes the (i,7 + 1)-entry of the matrix u. We associate to this linear
character of RU,, the idempotent
1
U,|

> Onr(u")u € RGy. (2.5.5)

Yn,R = |
UGUn

In particular, v, := v, . The left ideal FG,,y, is the Gelfand-Graev representation
I, of FG,. Observe that I',, is a projective FG,-module. Moreover, it is the
reduction modulo p of I'y, k = KGypyp, i via the O-lattice I',, 0 = OGrym,0.

More generally, given v = (nq,...,n,) E n, we have the analogous left FG,-
module denoted I',, which is just the outer tensor product I'y,, X --- X I, . This is
the left ideal F'G,~, where

Y= @ @Y, € FG, =FGp, @@ FGy,.

We also write I', o and I', i for the Gelfand-Graev representations over O and K,
defined in the same way using the idempotents v, 0 and v, k.
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We will need the following key facts, due originally to I. Gelfand and M. Graev
[GG] and S.Gelfand [Ge| (see e.g. [Z, Proposition 9.4]), about the Gelfand-Graev
representation in characteristic 0, all of which we deduce here from standard results
in [C]:

2.5d. Theorem. For any puF n,

(i) "RE; Toic = Dy

(ii) Ty i s a multiplicity-free KG,-module;

(ili) the number of irreducible constituents of I'y, i is equal to the number of
semisimple conjugacy classes in Gy, namely, (¢ —1)g";

(iv) for any block-diagonal element s € G, dimHomgq, (T'n x, M(s)Kk) = 1;

(v) given o € F; of degree d over Fy and n = kd, the image of any non-zero
homomorphism from Ty, ic to M¥ (o) is precisely the irreducible module M* (o) .

Proof. (i) By [C, Theorem 8.1.5], *Rgzl“nﬁK and I', g have the same character.

(ii) This is [C, Theorem 8.1.3].

(iii) That the number of semisimple classes in G, is equal to (g—1)¢™ ! is proved
for example in [C, Theorem 3.7.6(ii)]. So now the result follows using (ii) and [C,
Proposition 8.3.1].

(iv) Note that by (i) and adjointness,

HomKGn (Fn7K7 M(S)K) = HomKG5<S) (F6(s),K7 NK)

where Nj is the cuspidal module of (2.4.4). The right hand side is either 0 or
1-dimensional by (ii). To see that it is actually always 1-dimensional, use (iii)
and the observation that the sum as s runs over all semisimple classes of G, of
dimHompgg, (I'n, k', M (s) k) must count the total number of irreducible constituents
of I'y k.

(v) By (iv) and Frobenius reciprocity, the space v, x M*(c) k is one dimensional.
S0 Y,k M k(o) is a one dimensional right module for the Hecke algebra H, kK- Since
there are just two one dimensional right Hj, g-modules, namely 7, Hiy i and £ Hy.xc (or
rather, the analogous right modules), we deduce that Hy, g acts on KGn'ymKMk(a)K
either by Ty, . or by &p, . So, as xy and y, are idempotents up to a scalar over K,
the image Y of I',, i in M*(0) under any non-zero homomorphism satisfies either
Y = M*(o)gxy, or Y = M¥(0)kyr. But the dimension of Y is calculated in [C,
Theorem 8.4.9] (thanks to [C, Propositions 8.4.4-8.4.5] and (iii)):

dimY = |G, : Cg,(s)|¢]Caq, (5)lq

where s = (o). Recalling that Cg, (s) = G Li(F ), this is easily checked to be the
same as dim M* (o) gy = Xo,(1#)(1) as in (2.5.3), not dim M*(0) ke = Xo,k)(1)
which is (2.5.2). O

Since I';, is a projective F'G,-module, many of the properties in Theorem 2.5d
generalize to the modular case:
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2.5e. Corollary. For any uEn and R equal to F' or O,

(i) *Rgzrn,R = Fy,R;'

(ii) for any block-diagonal s € Gy, Hompgg, (I'n,r, M (s)r) is R-free of rank 1;

(iii) given o € I_FqX of degree d over Fy and n = kd, we have mT,, = (—1))m
for allw € Xy, and for all m lying in the image of any non-zero homomorphism from
I'yr to Mk(O')R.

Proof. (i) Since Harish-Chandra restriction commutes with base change, we see
easily from Theorem 2.5d(i) that *Rng n and I', have the same Brauer characters.

By (2.2a), *Rgz sends projectives to projectives. Therefore *Rgzl’n and I', are
projective F'G,-modules having the same Brauer character, so they are isomorphic.
The result over O follows immediately since any projective F'G,-module has a unique
lift to O.

(ii) Taking R = O, Homog,, (I'n,0, M (s)o) is an O-lattice in the corresponding
space over K, hence is O-free of rank 1 by Theorem 2.5d(iv). By the universal
coefficient theorem, F' ®p Homog, (I'n,0, M (s)o) = Hompg,, (I'n, M(s)) as I'y o is
projective. This implies the result over F'.

(iii) Let 0o be a generator of Homog,, (Tn.0, M¥(0)0), applying (ii). Extending
scalars, we obtain non-zero maps

0[( S HomKGn(FmK,Mk(U)K), GF S HomFGn(Pn,Mk(U)).

By Theorem 2.5d(v), the image of 0 is M* (o) xyx, so by (1.1b), for any v € T',, x,
Ok (V)T = (—1)" ™k (v) for all w € . In particular, we see that for v € T, 0 C
Ty 10, 00 (v) Ty = (—1)®) 00 (v) for all w € By. This proves the result in case R = O.

Over F, 0p(T'),) is certainly a quotient of F' ®p 0o (I'n,0) (though we cannot
yet assert that the two are isomorphic). Since the action of Hy r on M¥(o)g is
compatible with base change, the conclusion follows directly. O

Finally, we can now prove that M (o) is an irreducible F'G,-module, as we men-
tioned earlier, at least if o is a p-regular element. Later, we will also prove this if
o is not p-regular. We remark that the first proof of this fact (for arbitrary o) was
given in [Dj, Do| using the classification of irreducible F'G,-modules. There is also
a simple direct proof due to James [J2, §3], which depends on the earlier work of
Gelfand [Ge].

2.5f. Lemma. Ifo € IF‘qX is p-regular of degree n over Fy, the FG,-module M (o) is
wrreducible.

Proof. In view of Lemma 2.4c, we know that there is just one irreducible F G-
module, N say, in the same block as M (o). In other words, all composition factors
of M (o) are isomorphic to N. But by Corollary 2.5e(ii), I',, is a projective FG,-
module such that Hompgg, (T'), M(0)) is one dimensional. So, I';, must contain the
projective cover of N as a summand and now the one dimensionality implies that
N appears with multiplicity one as a constituent of M (o), hence M(o) = N is
irreducible. O



Chapter 3

Connecting GL,, with quantum
linear groups

In this chapter, we prove the Morita theorem at the heart of the modular theory.
This was first proved by Cline, Parshall and Scott [CPSs, §9]. The proof in loc. cit.
depends fundamentally on the work of James [Jo] and Dipper-James [DJs], whereas
the approach here is self-contained, independent of this earlier work.

3.1. Schur functors

We begin with a short review of the “Schur functors” used heavily throughout
the remainder of the chapter. The results described here are based on the results in
[Ga, chapter 6] and [JS], though we work in terms of projective modules instead of
idempotents. We also mention the work of Auslander [A], where a thorough study
of the functors in this section was made in a more general setting.

Fix a finite dimensional F-algebra C' (for this section only, F' can be taken to be
an arbitrary field). Assume that we are given a fixed projective module P € mod(C).
We set H = End¢(P), writing endomorphisms commuting with the left C-action on
the right. Define the functors

a :mod(C) — mod(H), a = Hom¢ (P, 7), (3.1.1)
B :mod(H) — mod(C), 0 =Pg?. (3.1.2)

Since P is projective, « is exact. Moreover, by adjointness of ‘tensor’ and ‘hom’, g
is left adjoint to a. The basic example to keep in mind (e.g. as in (1.5.2)) is the
case that P = C'e for some idempotent e € C, when H = eCe. Then the functor
a is the familiar Schur functor, since Homg(Ce, V') = eV for any left C-module V',
and [ is the inverse Schur functor.

Given a left C-module V', let Op(V') denote the largest submodule V' of V' with
the property that Homg(P, V') = 0. Let OF (V) denote submodule of V generated
by the images of all C-homomorphisms from P to V. Since P is projective, these
have alternative descriptions: Op(V) (resp. OF(V)) is the largest (resp. smallest)

47
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submodule V' of V' such that no composition factor of V' (resp. V/V') appears in
the head of P. We remark that in [A], Auslander refers to O (V) as the P-trace
and Op (V) as the P-torsion part of V.

Clearly any C-module homomorphism V' — W sends Op(V) into Op(W) and
OF (V) into OF (W), so we can view Op and OF as functors mod(C) — mod(C), by
defining their action on morphisms to be restriction. Finally, any homomorphism
V — W induces a well-defined C-module homomorphism V/Op(V) — W/Op(W).
We thus obtain an exact functor Ap : mod(C) — mod(C) defined on objects by
V= V/Op(V).

3.1a. Lemma. The composite functors o3 and cco Ap o 8 are both isomorphic to
the identity.

Proof. For any left H-module U, the fact that P is projective and [AF, 20.10]
implies that

Home(P, P @y U) = Home(P,P) @y U = H @y U 2 U.

All isomorphisms are natural, so this proves that «o 3 is isomorphic to the identity.
Now apply the exact functor a to the exact sequence 0 — Op o B(U) — pB(U) —
ApofB(U) — 0, using the fact that Homg (P, Opo3(U)) = 0, to deduce that o 5(U)
and a o Ap o B(U) are naturally isomorphic, completing the proof. O

3.1b. Lemma. For V € mod(C), let V = foa(V) = P @y Home(P,V) and let
: V. — V be the natural C-homomorphism defined by p ® @ o(p) for ¢ €
HomC(P V) and p € P. Then, imw = OF (V) and kerw C Op(V).

Proof. Tt follows directly from the definitions that imw = OF (V). Let Z = ker w;
we need to show that a(Z) = Hom¢ (P, Z) = 0. Using the short exact sequence

0 — a(Z) — a(V) — a(0"(V)) — 0,

we just need to check that (V) 2 a(OF(V)). By Lemma 3.1a, a(V) = Hom¢ (P, V)
which is obviously isomorphic to a(OF (V) = Home (P, OF (V)) by definition of OF.
O

3.1c. Corollary. If V,W € mod(C) satisfy OFV =V and OpW =0, then
Home(V, W) = Homp (a(V'), a(1V).

Proof. By adjointness, Homp (a(V), a(W)) = Homc(Boa(V), W). By the lemma,
there is a natural homomorphism 3o «(V) — V which is surjective as OFV =V,
and has kernel Z contained in Op (5 o a(V)). Moreover, any homomorphism from
Boa(V) to W must act as zero on Z since Op(W) = 0, hence factors through the
quotient V of 5o a(V). Thus, Homa(B o a(V), W) = Home(V,W). O

Now we have the main result about Schur functors, see [JS, §2]:
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3.1d. Theorem. The restrictions of the functors o and Ap o 8 induce mutually

inverse equivalences of categories between mod(H) and the full subcategory MM of
mod(C) consisting of all V € mod(C) such that Op(V) = 0,07 (V) =V.

Proof. We first note that Ap o 3 is a well-defined functor from mod(H) to 9.
Take U € mod(H). Then, Ap o S(U) is a quotient of S(U) which is a quotient
of the left C-module P ®@p U = P94mU_ The latter is certainly generated by the
images of all C-homomorphisms from P, so OF(ApoB(U)) = Apo3(U). Moreover,
Op(Apo B(U)) =0, so we do indeed have that Ap o 5(U) € M.

Now for the theorem, take V' € 9t and consider Ap o o (V). By Lemma 3.1b
and the assumption that OF(V) = V, we know that 8 o (V) has a submodule
Z C Op(Boa(V)) such that (Goa(V))/Z = V. Since Op(V) = 0, we see that in
fact Z = Op(Boa(V)), so Apofoa(V) =V, and this isomorphism is certainly
functorial. Finally, by Lemma 3.1a, we know already that oo Ap o (3 is isomorphic
to the identity, completing the proof. O

3.1e. Corollary. Let {E;|i € I} be a complete set of non-isomorphic irreducible
C-modules appearing in the head of P. For i € I, set D; = a(E;). Then, the
set {D; | i € I} is a complete set of non-isomorphic irreducible H-modules, and
Ap O ﬁ(DZ) = EZ

Proof. Note that each E; (i € I) is an irreducible module belonging to the Abelian
category 9. Consequently, by Theorem 3.1d, each D; is an irreducible H-module
with Ap o B(D;) = E;, and the D;’s are pairwise non-isomorphic. To see that all
irreducible H-modules arise in this way, use Fitting’s lemma. O

Finally, we include a useful lemma which gives a more explicit description of the
effect of the composite functor Ap o § on left ideals of H:

3.1f. Lemma. Suppose that Op(P) = 0, that is, that every composition factor of the
socle of P also appears in its head. Then for any left ideal J of H, Apo3(J) = PJ.

Proof. Our assumption on P implies that Op(PJ) = 0 hence Ap(PJ) = PJ. Now
we prove the more general result that Apo(J) = Ap(PJ), without any assumption
on P. There is a short exact sequence 0 — 7 — P ®p J £, PJ — 0 where
1 is the natural multiplication map. Applying the exact functor Ap to this, we see
that it suffices to show that Ap(Z) = 0, or equivalently, that Homg (P, Z) = 0.

Now apply « to this short exact sequence, using Lemma 3.1a, to obtain the exact
sequence: 0 — Hom¢ (P, Z) — J SN Homg (P, PJ) — 0. The second map f
maps j € J to the homomorphism P — PJ given by right multiplication by j.
Since P is a faithful H-module, i is injective. This implies that Homg (P, Z) = 0 as
required. O
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3.2. The cuspidal algebra

Now we come to a key technical lemma underlying the modular theory; it will
allow us to apply the results of §3.1 to study the module M*(¢) from (2.4.2). This
lemma was noticed originally (in a slightly different form) by Cline, Parshall and
Scott [CPS3, Lemma 9.1] and simplifies the original theory of [DJs] considerably.
The version we present here is due to V. Schubert [S, 12.4/1]; we are grateful to
Schubert for allowing us to include the proof of this lemma.

3.2a. Lemma. Let A be a ring and 0 — Z — P 5 M — 0 be a short ezact
sequence of A-modules with P projective. If every A-module homomorphism from P
to M annihilates Z, then M is a projective A/ anns(M)-module, where anny (M)
denotes the annihilator of M in A.

Proof. 'We need to show that every A/ann4(M )-module homomorphism from M
to a quotient of an A/anny(M)-module V' can be lifted to a homomorphism to
V. Equivalently, we show that every A-module homomorphism « : M — U, where
U is a quotient of an A-module V with anng(M) C anng(V), can be lifted to
a homomorphism 6 : M — V. Well, a o 7 gives an A-module homomorphism
from P to U so can be lifted (as P is projective) to a map v : P — V. So the
result will follow if we can show that + annihilates Z, so that v factors through
P =5 M to induce the required map 3. In other words, we need to check that
every A-module homomorphism v : P — V annihilates Z, for every A-module V
with anng (M) C anng (V).

Given such a module V, the map Homa (P, A) ®4 V — Homyu(P,V) sending
a generator f ® v € Homy (P, A) ®4 V to the map p — f(p)v for p € P, is an
isomorphism by [AF, 20.10] (this requires the projectivity of P). Therefore, we just
need to check that f(p)v = 0 for all f € Homa(P,A), p € Z and v € V, or in
other words, that f(Z) C anny(V) for all f € Homg(P, A). Now take such an
f € Homu (P, A). For m € M, the map P — M defined by p — f(p)m for p € P
is an A-module homomorphism, so by hypothesis annihilates Z. That is, f(Z) C
ann4(M). By our initial assumption on V, this finally implies that f(Z) C anny (V)
as required. O

3.2b. Remark. In [S], Schubert also proves the converse to this lemma, namely, if
M is a projective A/ ann4(M)-module, then every A-module homomorphism from
P to M annihilates Z. The latter condition is easily checked to be equivalent to the
hypothesis adopted in the earlier work of Dipper [Dg, Dy].

Now for the remainder of the chapter, we fix o € F(j of degree d over F,. We
assume moreover that the following two properties are satisfied:

(A1) M(o) is an irreducible F'Ggz-module;

(A2) the FGyg-module M¥ (o) has exactly Par;, non-isomorphic composition factors
for all kK > 1.
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We know for instance by Lemma 2.4c and Lemma 2.5f that the assumptions (A1)
and (A2) are satisfied if o is p-regular. In fact, we will prove later in Theorem 4.3b
that (Al) and (A2) are satisfied for arbitrary o, so these assumptions will turn out
to be redundant.

Fix also now some k£ > 1 and set n = kd. As our first consequence of the
assumptions on o, we have:

3.2c. Lemma. The module M* (o) is self-dual, that is, M*(c) = M*(o)7. In par-
ticular, the socle and the head of M* (o) are isomorphic.

Proof. Since M (o) is irreducible by assumption, this follows immediately as a spe-
cial case of Corollary 2.2f. O

Introduce the cuspidal algebra
Co = Cp (o)t (GLn(Fy)) = FG,/ annpg, (M*(0)). (3.2.1)

So, Uy 1 is the image of F'G), under the representation afforded by the F'G,-module
M* (o). Note in view of (2.4b) that for p-regular o, C, is a quotient algebra of the
corresponding block algebra B, j of FG,, (as defined at the end of §2.4).

3.2d. Theorem. M (o) is a projective Cy .-module with endomorphism algebra iso-
morphic to Hy = Hp ,a(3), acting as in (2.50).

Proof. Write G = Gy, L = G(gry, N = M(0)X--- KM (o) and M = M*(o) = RN
for short. By our assumption (A1), N is an irreducible cuspidal F'L-module. Let @
be the projective cover of N in the category mod(F'L). By the Mackey formula,

a := dim Hompg (RS (Q), M) = dim Hompr(Q, *RS o RS (N))

= Z dim Hompr,(Q, RY 1wy o conj, O*Rﬁmw—lL(N)).
weD

(ak),(dF)

Now since N is cuspidal, (2.1c) gives that the summand corresponding to w is
zero unless w = m, for some z € Xj. So, a = ) v dimHompr(Q, conj,, (N)).
Finally, observe that conj, (N) = N as an FL-module (the isomorphism sends
VI® @ €N to vy ® - ®@ vy, € conj, (N)). So since N is irreducible and @
is its projective cover, we see that a = ZmeEk dim Hompr(Q, N) = k!.

As @ is projective and maps surjectively onto N, R%Q is projective and maps
surjectively onto M. So, RgQ contains the projective cover P of M as a summand.
Also recall from (2.5b) that Hj, which has dimension k!, embeds into Endpg(M).

Combining these remarks with our calculation that o = k!, we have shown that
dim Hompg (P, M) < dim Hompg(RYQ, M) = k! < dim Hom pg (M, M),

whence that equality holds everywhere. Now the criterion of Lemma 3.2a implies
that M is a projective Cy, p-module, while by dimension, the embedding of Hj, into
Endrg(M*(0)) from (2.5b) is an isomorphism. O
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We mention the following immediate corollary, which is relevant to the point of
view (not pursued further here) of modular Harish-Chandra theory:

3.2e. Corollary. There is a bijection between the isomorphism classes of irreducible
Hy-modules and the isomorphism classes of irreducible FGy-modules appearing as
constituents of the head (resp. socle) of M* (o).

Proof. By Lemma 3.2c, a copy of every composition factor of the socle of M*(o)
appears in its head. So the corollary follows from the theorem by Corollary 3.1e,
taking C' = Cpy, H = Hy, P = M*(0). O

Suppose now that v = (ki,...,ks) F k. Regard M*i (o) as an (FGa,, Hy,)-
bimodule for each i = 1,...,a in the same way as explained after (2.5b). Then,
identifying F'Gg, with FGg, ®---® FGq, and H, with Hy, ®---® Hy,, we obtain
an (FGg,, H,)-bimodule:

MY (o) = MM (o) R --- K M*(5) =2 RE™ (M(o)®--- K M(c)). (3.2.2)

(k)

k times

We have the Levi analogue of the cuspidal algebra, namely,
CU,V = FGdu/ ANngG,, (MV(O')) = Cg’,kl R ® Co"ka- (323)

Theorem 3.2d immediately gives that MY (o) is projective as a Cy,-module, and
that H, is precisely the endomorphism algebra Endc, ,(M"(0)).

Now, MV (o) is an (FGay, Hy,)-bimodule, so we can regard RgZVMV(O') as an
(FGh, H,)-bimodule. Similarly, M*(c) is an (FG,, Hy,)-bimodule, so *Rg" M*(c)
is an (FGgy,, H)-bimodule in a precise way. On the other hand, M*(o) is an
(FG,, H)-bimodule, hence also an (FG,,, H,)-bimodule, restricting the Hy-action
to the subalgebra H, of Hy, while M" (o) ®pg, Hy, is an (F Gy, Hi)-bimodule. The
following basic lemma identifies these various bimodule structures:

3.2f. Lemma. ForvEk,

(1) RgZVMV(O') is isomorphic to M*(o) as an (FG,,, H,)-bimodule;

(ii) *RgZuMk(U) is isomorphic to MY (o) ®p, Hy as an (F Gy, Hy)-bimodule.
In particular, the FGg,-action on *RgguMk(a) factors through the quotient Cy ,,, so
*RgZUMk(U) is a Cy-module in the natural way.

Proof. (i) Let N = M(co)R---KM(c) (k times). As in (3.2.2), M" (o) jo:k)N

So by transitivity of Harish-Chandra induction, we see that M*(o) = RgZVM Y(0)
as F'G,-modules. We need to check that the isomorphism is compatible with the
right H,-module structures. We have a canonical embedding of N into M"(o)
(resp. into M*(o)) as an FG gvy-module. Take w € X,. Then the action of By,

(hence Ty, € Hy,) on M* (o) is by definition the unique FGy-endomorphism of M* ()
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whose restriction to IV is the map A,, of (2.5.1). Similarly, the action of B,, (hence
Ty, € H,) on M¥(0) is the unique F'Gg,-endomorphism of MY (o) whose restriction
to N is the map A,,. So the induced action of T}, € H, on Rg; MY (o) has the same
restriction to N as the action of T}, € Hy on M¥(o), identifying RgZVM V(o) with
MP¥ (o). This shows that the two actions of T}, coincide.

(ii) Writing N = M(o) X --- X M(o) and L = G 4, we have

Ren o R{"(N)= @ Rg™nup o conjy, o'Ry i, (N)-

W&y, (ak)

As N is a cuspidal F'L-module the summand corresponding to w is zero unless
LN" "Gy, = L. In that case, by (2.1¢), w = m, for = € D, qr = D;!. Now
recalling that conj, (N)= N as an F'L-module, we have shown that

RG;, MY (o) = P RE™(N) = MY(0)?1P

zeD; !

as an F'Gg,-module. In particular, this shows that the F'Gg,-action on *Rgz,, MF (o)
factors through Cy .

By (i), we can identify M*(c) and FG, @pp M" (o) as (FG,, H,)-bimodules,
where P is the standard parabolic subgroup with Levi factor Gg,. This allows
us to identify MY (o) with the (FGg,, H,)-subbimodule 1 @ pp MV (o) of MF (o).
Multiplication then gives us an (F'Ggy,, Hy)-bimodule map p : MY (0) ®py, Hp —
M* (o) whose image M (o) Hy, is clearly contained in the fixed point set *Rggu M* (o).
Moreover, the calculation in the preceding paragraph shows that

dim M" (o) ®p, Hy, = dim "RG" M* (o).

So it just remains to check that p is injective.
We have an exact sequence

0 — Z — M"(0) @y, Hy, > M"(0)H), — 0

of C,,-modules. Since M"(c) ®@p, Hy = MY (0)®P*l as an FGg,-module, and
MY (o) is self-dual by Corollary 2.2f, every constituent of the socle of M" (o) ®p, Hy,
appears in the head of M" (o). Therefore to show that Z = 0, it suffices to show
that Homc, , (M"(0),Z) = 0. Applying the exact functor Homg, , (M"(c),?) to the
above exact sequence using Lemma 3.1a, we obtain the exact sequence

0 — Homg, , (M"(0), Z) — Hj, <= Homg, ,(M" (o), M¥ (o) Hy,) — 0.

We just need to check that the map f, which sends h € Hy to the map M" (o) —
MY (o) Hy, given by right multiplication by h, is injective. Suppose for some h € Hy,
that fi(h) = 0 so M¥(o)h = 0. Then, as M (o) generates M* (o) = R M¥(0) as
an F'Gp,-module, we deduce that h annihilates all of M*(s), whence h =0. O
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3.2g. Corollary. The following pairs of functors are isomorphic:
(i) RG o (MY (0)®m,?) and (M*(0)®m,?) o indg’; :mod(H,) — mod(FG,);
(i) *Rg:y o (Mk(o)®p,?) and (MY (0)®m,?) o resg’; :mod(Hy) — mod(FGyay).

Proof. (i) Take N € mod(H,). Let P denote the standard parabolic subgroup of
G, with Levi factor Gy,. Using Lemma 3.2f(i) and associativity of tensor product,
we have natural isomorphisms

M*(0) @, indfgt N = M*(0) ©, (Hy @n, N) = (M*(0) ©n, Hi) @n, N
=~ M*(0) ®u, N = (FG,, @pp M"(0)) ®u, N
= FGy @pp (MY (o) ®n, N) = RG: (MY(0) ©m, N),
as required.
(ii) We first claim that the functors *Rgzyo(Mk(U)Q@Hk?) and (*Rgzy M~ (o)) ®m,?
are isomorphic. Recall that *Rgzy is defined by taking Yy, -fixed points, so can be
viewed as the functor Hompy, (Z,7) where 7 is the trivial representation of Yy,.

Now, F'Yy, is a semisimple algebra so Z is a projective F'Yy,-module. So e.g. [AF,
20.10] immediately gives a natural isomorphism

Hompy, (Z, M*(0) @, N) = Hompy, (T, M*(0)) @m, N

for any Hy-module N, to prove the claim. Hence, using Lemma 3.2f(ii) as well, there
are natural isomorphisms

RGr (M*(o) @, N) = (Rgr M*(0)) @, N = (M"(0) ®p, Hy) ®u, N
=~ M"(0) @u, (Hy @u, N) = M*(0) @, vesy N

for any N € mod(Hj). This completes the proof. O

3.3. ‘Symmetric’ and ‘exterior’ powers

Now we are ready to introduce modules which play the role of symmetric and
exterior powers in the non-defining characteristic theory. As motivation, recall the
defining characteristic theory, where V is a finite dimensional vector space over F'
and Y, acts on the right on V¥ by permuting tensors. The symmetric power S*(V)
can be defined as the largest quotient of V®* on which ¥ acts trivially. The dual
notion, the divided power Z¥(V), is the largest submodule of V®* on which ¥, acts
trivially; in positive characteristic, S¥(V) and Z*(V') need not be isomorphic as left
GL(V)-modules. We define the analogues of symmetric and divided powers in our
theory by

S¥(o) = M*(o)/{mh — Em,(h)ym | h € Hy,m € M* (o)},
Zk (o) = {m € M*(0) | mh = Ex, (h)m for all h € Hy}.
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Observe these are left F'G,,-modules which factor through the quotient Cj ;, to induce
well-defined C, j-modules.

To define the exterior power in defining characteristic, the definition as the largest
quotient (resp. submodule) of V" on which Y, acts as sign is of course wrong in
characteristic 2, so the best definition from the point of view of the symmetric group
is AF(V) = Ve (—1)w). We define our analogue, a C, z-module again,
by

WED
A (o) = M¥ (o).

It is perhaps unfortunate that our “symmetric powers” correspond now to the sign
representation and our “exterior power” corresponds to the trivial representation,
unlike in the classical case.

As an example, in the special case 0 = 1 when k = n, the module A™(1) is pre-
cisely the trivial F'G,,-module, whereas Z"(1) is a modular reduction of the Steinberg
module (these statements follow as special cases of Theorem 3.5¢ and Theorem 4.1c).

3.3a. Lemma. A*(0) is an irreducible F'G,,-module.

Proof. We know that MP"(o) is a projective Cs -module and that every com-
position factor of the socle of M*(c) appears in its head, by Theorem 3.2d and
Lemma 3.2c¢ respectively. Also, the left ideal Hyxy is an irreducible Hp-module.
Using these remarks, the lemma follows at once from the general theory of Schur
functors; see Lemma 3.1f and Corollary 3.1e. O

The structure of S¥(¢) and Z¥(o) is more subtle. Observe though that by
definition and (1.1b), M*(o)yy is a quotient of S¥(o) and Z*(o) contains M*(o)yy
as a submodule.

3.3b. Lemma. (i) S¥(0) = M*(0) ®pu, €, ;

(ii) S*(0) has simple head equal to the irreducible quotient M*(o)yy of M*(a),
and no other composition factors of S*(o) are isomorphic to quotients of M*(o);

(iii) Z%(0) = S*(0)7;

(iv) Z¥(0) has simple socle equal to the irreducible submodule M* o)y, of M* (o),
and no other composition factors of Z*(c) are isomorphic to submodules of M* (o).

Proof. (i) By definition, M* (o) @y, Ep, is the quotient of M* (o) @ Ex, by
{mh®1—Ey, (ym®1|h € Hy,m e M*(o)}.

If we identify M*(0) @ €y, and M*(o) as vector spaces in the natural way, this
immediately gives (i).

(ii) Let o, B and Ap be the functors defined in §3.1, taking the projective module
P to be the C, y-module M*(o) of Theorem 3.2d. Then, (i) shows that S*(o) =
B(Em,). Just as in Lemma 3.3a, Lemma 3.1f shows that

Ap o B(Em,) = Ap(S¥(a)) = MF(o)y,
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is an irreducible C, g-module. Hence, M*(o)y,, appears in the head of S*(o) and
no other composition factors of S¥(s) appear in the head of M*(s). Since S*(o) is
a quotient of M¥ (), this means that S¥(c) actually has simple head.

(iii) Write M = MP*(o) for short. We can by Corollary 2.2f choose some iso-
morphism ¢ : M — M™ as FGp-modules. This choice induces an isomorphism
j : Endpg, (M) — Endpg,(M™) with fj(0) = i((i~'f)0) for all f € M7,0 €
Endpg, (M) (recall we are writing endomorphisms on the right). On the other
hand, there is a natural anti-isomorphism # : Endpg, (M) — Endpg, (M™) defined
simply by letting 6% be the dual map to # € Endpg, (M), that is, (f0%)(m) = f(mf)
for all m € M, f € M™ = M*. Now if we set 7 = j~! o #, we have defined an anti-
automorphism of Hy = Endgg, (M). Define a non-degenerate bilinear form on M
by (m,n) =1i(m)(n) for m,n € M. For any h € Hj we have

(mr(h),n) = (i (i(m)#),n) = (i(m)h#)(n) = i(m)(nh) = (m, nh).

In other words, the bilinear form (.,.) is ‘contravariant’ for the action of Hy with
respect to the anti-automorphism 7.
By definition, S¥(0) = M/J where J = {mh — Eg, (h)m | h € Hy,,m € M}. So:

Sk(o)" = J° ={ne M| (n,mh—Eg, (h)m) =0 for all m € M, h € Hy}
={ne M| (nr(h) —En,(h)n,m) =0 for all m € M, h € Hy}
={ne M |nh=_Ey, (r(h))n for all h € Hy}.

It now just remains to show that Eg, (7(h)) = Em, (h) for all h € Hy.

Certainly Eg, o7 is a linear representation of Hy, so since the only one dimensional
Hj-modules are £y, and Zp, , we either have that £y, o7 = £p, as required, or that
Em, o7 = Iy,. In the latter case, we see from (1.1b) that S¥(0)7 contains My,
as an irreducible submodule, whence that S¥(o) contains Muxy, in its head. But
this is not so according to (ii) unless in fact Mxp = My, in which case applying
Corollary 3.1e, Zg, = £p, and we are done.

(iv) This follows from (ii) on dualizing, using (iii). O

Slightly more generally, for v = (k1,...,kq) F k, we have analogous left Cy -
modules S¥ (o), Z¥(0) and A (0):

SY(c) = M"(o)/{mh — En,(h)m | h € H,,m € M"(0)}, (3.3.1)
ZV (o) ={m e M" (o) | mh = Eg,(h)m for all h € H,}, (3.3.2)
A (o) = MY (0)xy,. (3.3.3)

Recalling (3.2.2) and (3.2.3), if v = (ky, ..., k,) then S¥(c) = S*1 (o)X - .- K S (o),
and similarly for Z, A. In view of this observation, the basic properties of S” (o),
Z¥ (o) and A¥ (o) follow directly from Lemma 3.3a and Lemma 3.3b.

3.3c. Lemma. For any v F k, *RgZUSk(J) = S¥(o) and *RgZUZk(U) = 7Y(o).
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Proof. We just need to prove the first statement, the second following directly
from Lemma 3.3b(iii) since Harish-Chandra restriction commutes with contravari-
ant duality. For the first, by Lemma 3.3b(i), S*(0) = M*(0) ®p, m,. So using
Corollary 3.2g(ii), we have immediately that

*RgZVSk(J) =~ MY (o) ®p, 1resg’yC Eu, = M (o) @u, En, .-

So by Lemma 3.3b(i) (or rather its Levi analogue) we see that *Rggu Sk(o) = 87 (0).
O

We are mainly interested in what follows in the C, j;-modules obtained from
SY(o), Z¥(o) and AY(o) by Harish-Chandra induction. Set

(o) = M* (o) /{mh — Ex,(h)m | h € H,,m € M*(c)}, (3.3.4)
7" (o) = {m € M"*(o) | mh = &y, (h)m for all h € H,}, (3.3.5)
AV (o) = M*(0)z,,. (3.3.6)

If we identify M* (o) with RZr MY (o) as (FGy, Hy)-bimodules as in Lemma 3.2£(i),
it is easy to check that the quotient S¥(c) of M* (o) is identified with the quotient
RE" S¥(0) of RG» M (o). Similarly, we can identify RG" Z(o) with Z”(0) and
RE" A¥(0) with A¥ (o).

Note by (1.1b) again that Z¥(o) contains M*(o)y, as a submodule. Recall the
definitions of the Hp-modules M* = Hpxz, and N¥ = Hyy, from §1.1. The next
result generalizes Lemma 3.3b:

3.3d. Lemma. For any v E k, we have:
(i) 8¥(0) = M*(0) @, NV.
(i) Z%(0) = 8 (0)".
(iii) No composition factors of Z”(U)/Mk(a)yy are isomorphic to submodules of
MF(o).

Proof. (i) Since S¥(0) = RgZVSU(O'), this is immediate from Corollary 3.2g(i) and
the Levi analogue of Lemma 3.3b(i).

(ii) This follows from the Levi analogue of Lemma 3.3b(iii), since Harish-Chandra
induction commutes with contravariant duality.

(iii) Let o, f and Ap be the functors defined in §3.1 taking the projective module
P to be the Cj p-module MP¥ (o) of Theorem 3.2d. Now, N is the left ideal Hyy, of
Hy. So, using Lemma 3.2c and Lemma 3.1f, we know that

Ap o B(NY) = M*(o)y,.

So using (i) and the definition of the functor Ap o (3, we see that S¥ (o) = B(NV) is
an extension of M*(o)y, and a module having no composition factors in common
with the head (or equivalently by Lemma 3.2¢ the socle) of M* (). Now (iii) follows
on dualizing using (ii). O
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3.4. Endomorphism algebras

Now fix in addition an integer h > 1 and let Sy denote the q%-Schur algebra
Spqa(h, k) of §1.2. Our first connection between G, and the ¢%-Schur algebra arises
as follows (cf. [DJs, Theorem 2.24(iii)]):

3.4a. Theorem. There is an algebra isomorphism

Shp — Endg, , @ A”(U)
veA(h,k)
under which the natural basis element gbﬁ»\ of Sp 1. maps to the endomorphism which

is zero on the summand AY (o) for v # p and sends A¥(o) into AMo) via the
homomorphism induced by right multiplication in M* () by Zwezuusz;l Tw.

Proof. Let Apo 3 denote the equivalence of categories from Theorem 3.1d, for the
projective Cy p-module P = M*(c). According to Lemma 3.1f and Lemma 3.2c,

D Moy=apes| @
veA(h,k) veA(h,k)

We deduce that the endomorphism algebras of @,¢ 1) A”(0) and @D, ep g 1) M”
are isomorphic; the latter is S, ; by definition. It remains to check that the image
of ¢}i, , under the functor Ap o 3 is precisely the endomorphism described, which
follows using Lemma 3.1f. O

Recalling from (1.2c) that S}, can also be described as the endomorphism alge-

bra Endg, <@A6A(h,k) NA) , the same argument as the proof of Theorem 3.4a shows
(cf. [DJ3, Theorem 2.24(iv)]):

(3.4b) There is an algebra isomorphism Spr — Endg, (@ueA(h,k) Mk(a)y,,)
under which the natural basis element (bjj»\ of Sy maps to the endomorphism which
is zero on the summand M*(o)y, for v # p and sends M*(o)y, into M*(o)yy via
the homomorphism induced by right multiplication in M* (o) by ZwEEHuEAﬂD,Zl TY.

The next theorem gives the second important connection between G,, and the
q?-Schur algebra (cf. [DJ3, Theorem 2.24(vi)]):

3.4c. Theorem. There is an algebra isomorphism

Sh.k AN Endc, EB ZV(J)
veA(h,k)
under which the natural basis element gbZA of Sp 1. maps to the endomorphism which
is zero on the summand Z' (o) for v # p and sends ZM(o) into Z*(o) via the
homomorphism induced by right multiplication in M* (o) by Zwez“usz;1 TH.
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Proof. Let us first check that the endomorphisms in the statement are well-defined.
We need to observe that as submodules of M*(c), Z#(o)h C Z*(0) where

h = > o Tf

weL, us\ND; !

To prove this, it suffices by (3.3.5) to show that Ty — 1 annihilates Z”(U)h for
all basic transpositions s € ¥,. Right multiplication by h(Ts — 1) gives an F G-
module homomorphism from Z*(c) to M*(s). Obviously, h(Ts — 1) annihilates the
submodule M*(o)y, of Z*(o) by (1.1b) and (1.2.2). So in fact, h(Ts — 1) must
annihilate all of Z#(¢) by Lemma 3.3d(ii).

Now let S be the subalgebra of Endrg,, (®ueA(h,k) ZV(O)) consisting of all en-

domorphisms which stabilize the subspace @, At k) M (0)yy. Restriction gives an
algebra homomorphism

S — Endpg, @ M~ (o)y,
veA(h,k)

which is injective by Lemma 3.3d(iii) and surjective by the previous paragraph and

(3.4b). This shows in particular that the endomorphisms of €D, ¢, 1) £2”(0) defined
in the statement of the theorem are linearly independent and span S. It remains to

check using dimension that S equals all of Endpg,, (@Ve Ahk) zv (a)). On expand-
ing the direct sums, this will follow if we can show that

dim Hompg, (Z"(0), Z o)) = dim Homg, (N, N*)
for all A\, u € A(h,k). Let a and [ be the functors defined in (3.1.1) and (3.1.2) for
P = M*(0). We calculate using Lemma 3.3d and Lemma 3.1a:
Hompg, (2(0), Z*(0)) = Hompg, (5*(0), (o))
= Hompg, (B(N*), B(N"))
>~ Homp, (N*, a0 B(N*)) = Homp, (N*, N*).
The result follows. O

To proceed further, we need to utilize the properties of the Gelfand-Graev rep-
resentation from §2.5. Recall the idempotent v, € FG, from (2.5.5) and its Levi
analogue vy, € FGg, for v = (ki,...,kq) E k. Define

Yk(a) = FGn’Yan(O'%
YV(O') = FGd,/ydl,MV(O').
Note these definitions are only temporary: at the end of the section, we will see that
Yk(o) = Z¥(0). Tt is obvious that Y¥ (o) 2 Y* (o) X --- K Yk (o), so this will also
give that Y (o) = Z¥(0).
Recall for the next lemma that by definition, Z*(o) (resp. Z¥ (o)) is a submodule
of M*(c) (resp. M (0)).
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3.4d. Lemma. ForvF k,

(i) Y¥(o) is the image of any non-zero element of the one dimensional space
Hompg,, (T, 2"(0));

(i) "RG" Y*(0) 2 Y"(0).

Proof. (i) According to Corollary 2.5e, the space Hompg, (I'y, M*(c)) is one di-
mensional and the image of a non-zero such homomorphism lies in Z¥(s). So, by
Frobenius reciprocity and the fact that -, is idempotent, Yk(a) is precisely the
image of any non-zero element of the one dimensional space Hompg, (I'y, Z*(0)).
Generalizing to the Levi analogue in the obvious way gives (i).

(ii) We first observe that *RgZVYk(U) is non-zero. For this, note by (i) that
Y*(s) is non-zero and a submodule of M*(c), so Hompg, (Y*(0), M¥(0)) #
Since Hompg,, "RG" Y*(0), M"(0)) = Hompg, (Y*(0), M*(0)), "RE" V(o) must
therefore also be non-zero.

Now let 6 : T',, — Z¥(0) be a non-zero homomorphism, with image Y*(o) by (i).
Applying the exact functor *Rg , recalling that *RG" I, =Ty and *RG" Z k( ) &
Z" (o) by Corollary 2.5¢e(i) and Lemma 3. 3c, we obtaln a homomorphism 9 Ly —
Z¥ (o) with image *RgZVYk (o). But @ is non-zero, and by (i) again, the image of
such a non-zero homomorphism is precisely Y” (o). O

3.4e. Lemma. Suppose that we are given A\, u = k and an FG g,-submodule M of

MH# (o). If w € Dgy gy is such that «RC 1., (M) #0, then w is of the form m,
’ Gduﬁw Gax

for some x € D) ;.

Proof. By exactness of Harish-Chandra restriction, it suffices to prove this in the
special case M = M*# (o). As usual, write L = Ggry and N = M (o) X --- K M (o).
Define v F n by G\, = Gg, ﬂwflGd,\. Then a Mackey calculation gives that

*pG ~ Gy L
R M = @ RE yp, 0 conjy, o°RY 1, (N).

veD ] ry

Since this is non-zero and N is cuspidal, there must be some y € D v such that

k)
L=LnYy G,,, in which case YL = G, NYL is a standard Levi subgroup of G,
conjugate to L. But the only such Levi subgroup is L itself, so in fact YL = L and
we have that L C G, = Gy, ﬂ“’_lGdA. We deduce from (2.1c) that w=! = 7, for
some x € Dy \. O

The next Mackey calculation is of central importance.
3.4f. Lemma. For any A\, pu E k, all of the spaces
HomFGn(Rg;AY)‘(U%RSZHY“(U)), (3.4.1)
Hompg, (RG:, Tax, RG: Y (), (3.4.2)
Hompg, (RG:, Tax, RG: Z*(0)) (3.4.3)
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have the same dimension, namely, |Dy ,|.

Proof. Consider (3.4.1). By the Mackey theorem and Lemma 3.4e, we have that

Hompg, (RG Y N0),RG: YH(0) = @ Hu= @ H,

wWEDg,du z€D)

where for w € ¥,

G .
H,, = Hompg,, (V(0), BE\ g, @ conju RGY L (V9(0)),
So to prove the result for (3.4.1), we need to show that each H, is one dimensional.
Fix z € D/\,,u- Applying (2.10), Gg) N™= Gd,u = G4, and Gdu ﬂﬂgl Ggn = Gy for
some v,V F k. Using Lemma 3.4d(ii) and adjointness,

dim H,, = dim Homgg,, (Y (), conj,_ V" (o).

Conjugating the standard Levi subgroup Gy, by m, simply rearranges the diag-
onal blocks to obtain Gg,. Since Y’/(a) is an outer tensor product over these
diagonal blocks, we see that conj, YV (0) = Y¥(0). Finally, Y”(0) is a quo-
tient of I'y, and a submodule of Z¥(0) so Lemma 3.4d(i) implies that dim H,, =
dimHompg,, (Y"(0),Y"(0)) is one dimensional.

This proves the lemma for (3.4.1), and the proofs for (3.4.2) and (3.4.3) are en-
tirely similar, using instead that *RggA ZF(0) =2 Z*0) and *Rg:A I'), = I'gy according
to Lemma 3.3c and Corollary 2.5e(i) respectively. O

Now we can prove what we regard as the fundamental theorem:

3.4g. Theorem. Maintaining assumptions (A1) and (A2) from §3.2, ZV(U) is a
projective C, ,-module, for all v E k. Moreover for any h > k, @%A(hm ZV(o) is a
projective generator for mod(Cy ).

Proof. Fix some h > k and set

7= @ rG270= @ 20
veA(h,k) veA(h,k)

Y= P RG Y (0)
veA(h,k)

D FE, L

veA(h,k)

As Y"(o) is a non-zero submodule of Z¥ (o), it contains the simple socle MY (o)y, of
Z"(0) as asubmodule (see Lemma 3.3b). Applying Rg;y to the inclusions MY (o)y, C
Y¥(0) C Z¥(0), we deduce that

M*(o)y, C R YY(0) C R 2% (o)
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as naturally embedded submodules of M¥(s). So, Doecamnp M*(o)y, CY C Z.
Also observe that Y is a quotient of @, since each Y” (o) is a quotient of T'g,,.
It follows easily from Lemma 3.4f (on expanding the direct sums) that all of

Hompg, (Y,Y),Hompg, (Q,Y), Hompg, (Q, 2)

have the same dimension, namely, > ApEA(RK) |D,, x| which is precisely the dimen-
sion of Sy by (1.2a). Since @ is projective it contains the projective cover P of
Y as a summand. Now the equality dim Hompg, (Y,Y) = dimHompg, (Q,Y) im-
plies that dim Hompg, (Y,Y) = dimHompg, (P,Y). This verifies the condition in
Lemma 3.2a, showing that Y is a projective F'G,/annpg, (Y')-module.

Now we compute Endpg, (Y'). The fact that Hompg, (Q,Y) and Hompg, (Q, Z)
have the same dimension implies that every F'G,-homomorphism from ) to Z has
image lying in Y. So since Y is certainly a quotient of @, we can describe Y
alternatively as the subspace of Z spanned by the images of all F'G,,-homomorphisms
from @ to Z. This alternative description makes it clear that Y is stable under all
FG,-endomorphisms of Z. So, restriction gives a well-defined map

Endpe, (Z) — Endpe, (Y).

It is injective since we know from Theorem 3.4c and (3.4b) that the homomor-
phism Endre, (Z) — Endre, (@,eamp MP¥(o)y,) induced by restriction is injec-
tive. Since Endpg, (Z) = Sh 1 and Endpg, (Y) has the same dimension as Sp, ;, we
deduce that Endrq, (Y) = S .

For h > k, the algebra S}, , has Parj non-isomorphic irreducible modules. Com-
bining the previous two paragraphs and Fitting’s lemma, we deduce that Y has
precisely Parj non-isomorphic irreducible modules appearing in its head. Since Y
is a direct sum of submodules of M¥ (o), assumption (A2) now gives that every ir-
reducible constituent of M*(o) appears in the head of Y. Hence every irreducible
constituent of M*(o) appears in the head of the projective FG,-module Q. Now
we know that every homomorphism from @ to Z has image lying in Y, while every
composition factor of Z/Y appears in the head of the projective module Q. This
shows Z =Y.

Then, observe that M*(c) is a summand of Y = Z, so

annpg, (Y) = annpg, (Mk (0)).

In other words, FG,/annpg,(Y) = Cs,. We have already shown that Y is a
projective F'G,/annpg, (Y)-module, which means that Z and all its summands
are projective Uy p-modules. Taking h large enough, this shows in particular that
R ZV(0) = ZV (o) is projective for each v F k.

It remains to show that every irreducible C, -module appears in the head of Z.
As M*(0) is a faithful C, j-module, every irreducible C, ;-module appears as some
composition factor of M* (o). Now we know that a copy of every composition factor
of M* (o) does appear in the head of Z. O
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We also record at this point the following fact obtained in the proof of the
theorem:

(3.4h) The submodules Z*(c) and Y*(o) of M*(c) coincide. So Z¥(o) can be
characterized as the image of any non-zero homomorphism from T, to M*(o).

In view of (3.4h), we will not need the notation Y*(o) again.

3.5. Standard modules

Choose an integer h > k and let Sp = Spga(h, k). Let Z = @, cppp) 27 (0).
We always regard Z as a (Cy, Sp 1;)-bimodule, with S}, ;, acting as in Theorem 3.4c.
Define the functors

Qo hk - mOd<CU,k) - mOd(Sh,k)a Ao hk = HomCU,k(Zv ‘?)7 (351)
Boh e : mod(Sh k) — mod(Co k), Bohk = Z®s),,,"- (3.5.2)

)

Because of Theorem 3.4c, Theorem 3.4g and our standing assumptions (Al) and
(A2) on o, Z is a projective generator for mod(Cy ) with endomorphism algebra
Sh,k» sO:

(3.5a) The functors oy p 1, and By p 1 are mutually inverse equivalences of categories.

Recall now the basic facts about the representation theory of Sy, described in
§1.2. In particular, Sy, , is a quasi-hereditary algebra with weight poset A™ (h, k) par-
tially ordered by <. Also, for A € A*(h, k), we have the S, -modules Ly,(\), Ap(N)
and Vj(\). For A - k, we can regard its transpose X as an element of At (h, k),
since h > k. Define the C, j-modules (hence F'G,-modules, inflating in the usual

way):

L(0, A) = Bonk(Ln(N)), (3.5.3)
A0, ) = Boni(Ar(N)), (3.5.4)
V(g,A) = Bopk(Vi(N)), (3.5.5)
for any partition A + k. For example, as we shall see shortly, if ¢ = 1 then

L(1,(n)) = A(1,(n)) = V(1,(n)) is the trivial FG,-module, while the (not nec-
essarily irreducible) modules A(1,(1™)) and V(1,(1™)) are modular reductions of
the Steinberg module.

Since (45,1 is a Morita equivalence, we see at once that the algebra C, is a
quasi-hereditary algebra with weight poset {\  k} partially ordered by > (the
opposite order to Sjj since we have transposed partitions). Moreover, {L(o, )},
{A(o,\)} and {V(0,\)} for all A k give the irreducible, standard and costandard
Cs r-modules. Recall also that F'G,, possesses the anti-automorphism 7, induced
by taking transpose matrices. Since M* (o)™ = M*(o) by Corollary 2.2f, 7 factors
to induce an anti-automorphism of the quotient C,; = FG,,/annpg, (M*(c)). So
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we also have a notion of contravariant duality on mod(C, ), and moreover, as this
is true even as F'G,-modules, L(o,\)” = L(o,\) for each A - k. The following
basic facts now follow immediately from the Morita equivalence or from standard
properties of quasi-hereditary algebras (cf. (1.2d)):

(3.5b) (i) A(o,\) has simple head isomorphic to L(o,\), and all other composition
factors are of the form L(o, ) for p > .

(i) For X ok, [A(, )+ L(o, )] = [A(X) : Ln(s)]

(iii) For A\F k, L(o,\)™ = L(o,A) and A(o,\)” = V(a, A).

We pause to explain why the definitions (3.5.3)—(3.5.5) are independent of the
particular choice of h > k. Take h > | > k and, as explained in §1.5, identify
Si i with the subring eSj e of Sy, where e = ey is the idempotent of (1.5.1).

Recall the equivalence of categories inﬂglh’: : mod(Sy ;) — mod(Shy) from (1.5.3)
and (1.5a).

3.5¢c. Lemma. The functors
. oS
Bohk © 1nﬂsi‘: :mod(S; ) — mod(Cyp) and Boi i - mod(S; ) — mod(Cy )
are isomorphic.

Proof.  The module @ ¢ x( ) Z o) is precisely the (Cy 1, S) x)-subbimodule Ze of
Z. So, the functor 5 is by definition the functor Ze®cg, ,.”. Now associativity
of tensor product gives the isomorphism

Z @5y, ,, (Shre esy, e M) = (Z @g,,,, Shke) Qesy e M = Ze Res,, e M

for any M € mod(S; ). The isomorphism is clearly functorial. O

Now by (1.5a) and (1.5b), Lp(\) = inﬂgf’: L;(N'). So Lemma 3.5¢ shows imme-
diately that Gy x(Li(N)) = Bonk(Ln(N)) as Cy r-modules. Hence, the definition
(3.5.3) is independent of the choice of h, and the same argument gives independence
of h for (3.5.4) and (3.5.5).

The next goal is to give two alternative definitions of the standard module A(o, \)
without reference to the Schur algebra. Since L(o, A) is the simple head of A(o, ),
this also gives a more implicit realization of irreducibles. First, recalling the defini-
tions (1.3.3) and (1.3.4), we have the following lemma which motivates our choice
of notation:

3.5d. Lemma. For vk k, Z%(0) = Boni(Z2% (Vi) and A (0) = B, p 1 (MY (V).

Proof. By (1.3b)(i), Z”(V}) is isomorphic to the left ideal Sy ¢y, of Spi. By
Lemma 3.1f, ﬁa,h,k(Sh,iny) = Z¢i}w which is precisely the summand Z”(J) of Z
by the definition of the action of qSll,J, from Theorem 3.4c.
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Similarly, by (1.3b)(ii), A”(Vi) = Shxk(Y), 50 Bonk(Shrk(yy)) = ZK(yy). By
definition of the embedding « from (1.2b), together with (1.1c) and Theorem 3.4c,

Zr(y) = M*(o)yf = M*(0)z, = A" (0)

as required. O

Now we obtain the desired characterizations of A(c, ). Recall the definition of
uy € ¥, from (1.1d).

3.5e. Theorem. For A+ k,

(i) the space HOmCo’k(Z'X(O'),AA(O')) is one dimensional, and the image of any
non-zero such homomorphism is isomorphic to A(o, \);

(i) A(o, \) is isomorphic to the submodule ZN (o) Ty x5 of M*(0).

Proof. (i) This is immediate from Lemma 3.5d, the definition (3.5.4) and (1.3d),
since (3, .k is an equivalence of categories.

(i) First observe that Z*' (¢)Ty,x is both a homomorphic image of Z*' (¢) and
a submodule of A*(¢). So in view of (i), the result will follow once we show that
ZN (0) T,y is non-zero. Well, Z*' (o) contains M*(o)yy as a submodule. Moreover,
MP*(0)yx Ty, is non-zero, as M* (o) is a faithful Hy-module and yy /Ty, 5 # 0 by
(1.1d). o

3.5f. Remark. In [Jo, Definition 7.7], James defines right F'G,-modules S(c, \) for
each A\ F k. In view of (3.4h), Theorem 3.5¢(ii) is a left module analogue of James’
definition.

As we did in §1.2, we will write M for the right Cs r-module obtained from
M € mod(Cy ) by twisting the left action into a right action using 7. In this way,
we obtain right C, j-modules A(c,)), L(o,\) and V(o,)\). Now we conclude the
section with some extensions of (1.2e):

3.5g. Theorem. (i) C, has a filtration as a (Cy i, Co1)-bimodule with factors iso-
morphic to Alo,\) ® A(o,\), each appearing precisely once for each \ - k and
ordered in any way refining the dominance order on partitions so that factors corre-
sponding to most dominant \ appear at the top of the filtration.

(i) Z = Doeamr) Z¥(0) has a filtration as a (Cy 1, Shx)-bimodule with factors
Ao, \) @ AR(N) appearing precisely once for each A+ k and ordered in any way re-
fining the dominance order so that factors corresponding to most dominant \ appear
at the top of the filtration.

Proof. (i) This follows immediately from the general theory of quasi-hereditary
algebras, in the same way as explained after (1.2e).
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(ii) The functor Z®g, ,7 can also be viewed as an exact functor from the category
of (Sh k, Sh,k)-bimodules to the category of (Cy j, Sp i)-bimodules. Clearly,

Z @s,, (An(N) ©@ Ap(N)) 2 (2 ®s, , An(N) ® Ap(N)
>~ Ao, N) @ Ap(N).

So now applying Z®g, ,? to the filtration of (1.2e) gives the result. O



Chapter 4

Further connections and
applications

In this chapter, we prove a number of results that supplement the main Morita
theorem of the previous chapter. In particular, we make precise the idea that tensor
products in the quantum linear group correspond to Harish-Chandra induction under
the Morita equivalence, and extend the Morita theorem both to the ground ring O
and to p-singular elements o.

4.1. Base change

Let o € F) be of degree d over F, satisfying the conditions (A1) and (A2) from
§3.2. Write n = kd for some k > 1 and let R denote one of the rings F, K or
O. Recall that we have defined the (RG,,, Hy g)-bimodule M*(o)g in (2.4.2), with
MP*(0) = M*(o) . Define

Z¥(o)r = {m € M*(0)r | mh = Eny x(R)m for all h € Hy g},
so our original module Z* (o) from (3.3.2) is precisely Z*(o)p.
4.1a. Lemma. Z*(0)o is an O-free O-module of finite rank, with
K ®o ZF(0)o = Z%(0)k,
F®o Z¥0)o = Z*(0)r.

Proof. Recalling that M*(c)o is an O-lattice in M*(c)x, we have by definition
that
Zk<0)0 = Zk(O')K N Mk(O')O.

It is immediate from this that Z¥(0)o is an O-lattice in Z¥(0)x, and also that it
is a pure submodule of M*(c)p (see [La, 17.1(i)]). Consequently, the natural map
i:F®oZ%0)o — M*(o)r induced by the embedding Z*(o)o — M*(0)o is also

67
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an embedding. Clearly, since the action of Hj on M¥ (o) is compatible with base
change, the image of i is contained in Z¥(o)p.

Now for R = F, K or O, let Y*(0) g denote the submodule of M* (o) g spanned by
the images of all RG,,-homomorphisms from I';, g to Z k(o)g. Since Iy, is projective,
any FG,-homomorphism from I',, to M*(o) is induced by base change from some
OG,,-homomorphism from T',, o to M*()e. It follows directly that the natural (not
necessarily injective) map from F ®0 Y*(0)o to M*(0)r has image Y*(0)r. Now
by Corollary 2.5e(iii), Y*(0)o C Z*(0)o, so we deduce that the image of i contains
Yk (0’) F-

Finally, we appeal to (3.4h), where we observed that Y*(o)r = Z¥(0)r. So
the two previous paragraphs show in fact that i : F ®p Z¥(0)o — Z¥(0)F is an
isomorphism. O

For v = k, let H, r denote the parabolic subalgebra of Hj r with sign represen-
tation &g, ,. Define

Z"(0)g = {m € M*(o)g | mh = Eg, ,(h)m for all h € H, g}, (4.1.1)

so our original module Z¥ (o) from (3.3.5) is precisely Z%(o)p. For v = (ki,. .., ka),
Z" (o) = Rgzy Zi (0)R- - - K Zy, (o) (cf. the comments after (3.3.6)). So since Harish-
Chandra induction commutes with base change, we deduce from Lemma 4.1a that:

(4.1b)  Z¥(0)o is an O-free O-module of finite rank, with

K ®0 Z"(0)o = 2" (0)k,
F®o ZV(U)@ = 'V(U)F.

Now we can define standard modules over O. For R = F, K or O and \ F k, set
Ao, g = ZX () gTuy -
By Theorem 3.5¢, A(o,\)r = A(o, A).
4.1c. Theorem. A(o,\)o is O-free of finite rank with

K Ko A(Ja )‘)O = (07 )\)Kv
F®o A(Ua )‘)(9 = (07 >‘)F

Moreover, the character of the KGy-module A(o, Nk is precisely xqx, so Ao, \)
is the reduction modulo p of a KGy-module affording the character xq .

Proof. First observe that A(o, A)ep is torsion free as it is a submodule of the tor-
sion free O-module M*(c)p. There is a natural map K ®o Ao, \)o — M*(0)x,
which is injective as K is flat over O. One easily checks that its image is precisely
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A(o, \) i, hence proving that A(o, A\)p is an O-lattice in A(o, A)x. Hence, in par-
ticular, A(o, \)o has rank equal to dim Ag (o, A\)x. Now applying Theorem 3.5g(ii)
(or rather, its easier analogue over K), taking h = k for definiteness, we see that

> dimZ%(o)k = > _(dim Ao, A k) (dim A () k)
veA(k,k) Ak

where Ag(N)g denotes the (irreducible) standard module for the Schur algebra
algebra Sy a(k, k) over K. Using (4.1b), dim ZV(0)g = dim Z(0)F, while it is
well-known that the dimension of standard modules for the Schur algebra do not
depend on the ground field. So, we see that

> dimZ%(o)p =) _(dim Ao, X)) (dim Ap(N)p).

veA(k,k) Ak

Now again, there is a natural map i : F ®o A(o, \)o — M¥(0)o induced by the em-
bedding A(o, Mo — MF¥(0)e, with image A(o, \)p. This shows that dim A(o, \) g >
dim A(o, A)p. On the other hand, applying Theorem 3.5g(ii) over F', we have that

> dimZ¥(o)p =Y (dim A(e, M) ) (dim Ap(N)p).

veA(k k) M-k

Comparing with our previous expression, we see that dim A(o, A) g must actually
equal dim A(o, \) g for all A F k, hence that 7 is injective.

It remains to explain why A(o, X\) x has character x, x. Write A = ({1,...,[,) and
N = (l},...,1}). First observe by (1.1e) and (2.3f) that x,  is the unique irreducible

character that is a constituent of both of the characters Rg;&(xm(ll) -+ Xoy(ly)) and

Rg;x, (XU,(llll) e Xa,(ll’a))- So recalling Lemma 2.5¢, the modules

M*(o)gwn = RE" (MM 0) k),

M*(o)ryn = RE" (MY (o) kyn)

2\

have a unique irreducible composition factor in common, with character x, . But
in characteristic zero, Z* (0)x = M*(c)kyy as then yy is an idempotent (up to a
non-zero scalar). So by definition, A(a, \) g = M*(0) gyn Ty, so is an irreducible
quotient of M*(o)xyy and an irreducible submodule of M*(o)xzy. So A(o, N
does indeed have character x, ). 0O

Using Theorem 4.1c, we can extend all our earlier results to the ground ring O.
For R=F, K or O, set

Cok,r = CR,(o)k(GLn(Fq)) = RGy/ anngg, (Mk(U)R)-

So, Cy,r is precisely the algebra C,j as defined in (3.2.1). We call C, 1 g the
cuspidal algebra over R. Note that if o is p-regular, Cy 1 g is in fact a quotient of
the block algebra B\ r introduced at the end of §2.4.



70 REPRESENTATIONS OF GENERAL LINEAR GROUPS

4.1d. Theorem. Maintaining the assumptions (A1) and (A2) on o from §3.2,

(i) Cok,0 is O-free of finite rank with K @ Cyrp0 = Cyix and F @0 Co k0 =
Co kiP5 .

(ii) for each v E k, Z¥(0)o is a projective Ca7k7@-m0.dule;

(iii) the endomorphism algebra Endc, , o (D, ennr) £2"(0)0) is isomorphic to the
q%-Schur algebra S04 (h, k);

(iv) for h = k, @,eamp 2" (0)o is a projective generator for mod(Cor,0), so
Cok,0 is Morita equivalent to Sp ja(h, k).

Proof. (i) By definition, C,; g is the R-submodule of Endr(M*(0)g) spanned by
the images of the elements of G,,. So it is finitely generated, Cy 1 0 is contained in
Cok,x and spans Cy 1 i over K. This shows that Cy 1 0 is an O-lattice in Cy . g
Tensoring the inclusion C, ; 0 — Endp(M k(0)o) with F, we obtain a natural map
F ®0 Coro — F ®0 Endo(M*(0)p) = Endp(M*(c)r) whose image is clearly
Cos.k,r- To show that this surjection is injective, we need to check that dim Cy 1 =
dim Cy, , . But by Theorem 3.5g(i), its analogue over K and Theorem 4.1c:

dim Copp = Y (dimA(o,M)p)® = (dim Ao, A)g)* = dim Cp i
Ak Ak

(i) As Z¥(0)F is a projective Cy j, p-module from Theorem 3.4g, we see from (i)
and lifting idempotents (e.g. see [La, 14.4]) that it has a unique lift to a projective
Cy i, 0-module. This must be Z¥(co)o thanks to (4.1b).

(iii) Write B for Ende, . (Byeani 2”(7)r). We know by Theorem 3.4c (or
its analogue over K) that Er = Sp a(h, k) and Ex = Sk a(h, k). Moreover, Ep is
an O-lattice in Ex and there is a natural embedding F ®» Ep — Er which is an
isomorphism by dimension. So we can identify K ®¢» Fp with Ex and F ®0 Eo
with Erp

Now, the basis element ¢ , of B = .5 .2 (D, k) acts as zero on all summands ex-

LT
weX uXaND,~ ~W
By (4.1.1), Z%(0)o = Z"(0)x N M*(0)o. Also, h lies in Hp 4a(2) so stabilizes
MF*(0)o. Hence, Z"(o)oh C Z*(c)e, so each ¢, \ € Ek restricts to give a well-
defined element of F». We have constructed an isbmorphic copy S of Saqd(h, k)
in E», namely, the O-span of the standard basis elements ngl”i LVES K7qd(h, k).

It remains to show that Sp = E»n. We have a short exact sequence 0 — Sp —
Eop — Qo — 0 of O-modules. To prove that Qp = 0, it suffices to show that
F ®0p Qo = 0. Tensoring with F', we have an exact sequence

cept Z"(o) i where it is induced by right multiplication by h = 3

F®o0So —= Er — F®0 Qo — 0.

Now, the map ¢ sends 1 ® gZ)Z ) to the corresponding endomorphism gb/qj y defined as
in Theorem 3.4c. Hence, ¢ is injective so an isomorphism by dimension. We deduce
that F ®0 Qo = 0 to complete the proof.
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(iv) We have seen in (ii) that €,ca ) Z¥(0)o is a projective C, j o-module.
It is a generator because this is so on tensoring with F', using (i) and Theorem 3.4g.
The statement about Morita equivalence follows directly from this and (iii). O

4.1e. Remark. We remark that the fundamental theorem of Cline, Parshall and
Scott [CPS3, §9] follows easily at this point from Theorem 4.1d and the results of
§2.4. We refer the reader to loc. cit. for the precise statement, as well as for
applications to cohomology of FG,,.

4.2. Connecting Harish-Chandra induction with tensor products

Let o € F)* be of degree d over F, satisfying the conditions (A1) and (A2) from
§3.2. For any h > k > 1, Sy denotes the algebra SF’qd(h, k) and By pk is the
functor of (3.5.2), but regarded now as a functor from mod(Sj, ;) to mod(F'Gpq) via
the evident full embedding mod(Cy p 1) — mod(FGyq). Now fix integers h > k > 1,
a composition v = (ki,...,k,) E k and set n = kd.

The main result of the section relates tensor products in the quantum linear
group to Harish-Chandra induction in the finite linear group, as follows:

4.2a. Theorem. The following functors are isomorphic:

Rggu (ﬂU,h,kl ? XX Bohka 7): mOd(Sh,kl) X oo X mOd(Sh,ka) — mod(FGy),

ﬁa,h,k( 7R Q@ 7) : mOd(Sh,kl) X oo X mOd(Sh,ka) — mOd(FGn)
Proof. Choose i = (hi,...,hs) F h with each h; > k;. Let S,, denote the
algebra Sp, g, ® -+ ® Sp, r, for short. Write A(u,v) for the set of all compo-

sitions v = (g1,...,9n) € A(h,k) such that, defining vi = (g1,---,9n,),72 =

(ghl-f—la s aghl-i-hg)? o Ya = (gh1+~--+ha71+17 s agh)a we have that Yi € A(h’n kl)
for each i = 1,...,a. Consider the set of triples:

Q= {(776710 |775€A(,U, ) u € Dyé}

For a triple (v, d,u) € €, so that v;,0; € A(h;, k;) for each i = 1,...,a, we have that
u=(u1,...,uq) € Xy = g, X -+ X By, with each u; € D,, 5,; so we can associate
the element

P = P15 @ OB,

of Sy. The set {gi_):ﬁ | (7,6,u) € Q} gives a natural basis for the algebra S, , .

Now define
1= @ K= @ 2o
AEA(h,k) AEA(R,k)

= P RE#Zo) b M) x--x PB 20

AEA(u,v) A1 €A(hy,k1) Aa€A(ha ka)

I

HZ
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We regard Z as an (F'Gj, Shk)-bimodule in the usual way, and also view Z, as an
(FGay, Syuv)-bimodule, where the action of Sy, = Sk, ® -+ ® Sk, k, O0 Z, is as
described in Theorem 3.4c¢ for each term in the above outer tensor product.

Then, Rgzy Z, is an (FGy, Sy, )-bimodule in a natural way. Moreover, by tran-
sitivity of Harish-Chandra induction,

RG Z,= B ZMo),
XEA(p,v)

SO Rgzy Z, can be identified with the summand Ze, of the (FG,, S, ;;)-bimodule Z,
where e, is the idempotent

€= O\xE S

AEA(pv)

Identifying e, Sy, e, with Endrg,, (Ze, ), we obtain an algebra embedding of S, ,, into
€, Sh,xey. By definition of the actions of S%,,iand e, Sh ey on Ze, and Lemma 3.2f(i),

this embedding maps the basis element ¢$5 of S, to qﬁ:(s € eySy ey, for all
(v,6,u) € Q. In other words:

(4.2b) Identifying Sy, with a subalgebra of e, Sk e, via the map GZ_% = 9
the (FGp, Sy,)-bimodule RgZVZ,, 18 1somorphic to Ze,, regarding the latter as an
(F'Gp, Suv)-bimodule by restricting the natural action of e, Sy ke, to S, ..

Now let S, denote the Levi subalgebra of Spj as in (1.3g). Recalling the
decomposition (1.3.8), the idempotent e, € Sj i, is precisely the central idempotent
of S, x such that e,S,, re, is isomorphic to S, ,. So in fact, the embedding of S), ,,
into e, Sy, pe, from (4.2b) identifies S, , with the summand e, S, re, of S, . Making
this identification, define the functor

I : mod(S,,) — mod(Sh), I' = Shrev®e,s, pe,

Using associativity of tensor product, the functor I can be thought of as the com-
posite of the natural inflation functor S, xe,®e, 5, e, ? : M0d(S), ) — mod(S,, k) fol-
lowed by ordinary induction ind?ﬁ‘z : mod (S, ;) — mod(Sy ) as defined in §1.5. In

view of this, the following fundamental fact follows immediately from Theorem 1.5d:

(4.2c) The following functors are isomorphic:

I( 7KK ?) : mOd(Shl,kl) X oo X mOd(Sha,ka) — mOd(Sth),

. aS . S
mﬂsz;’f;l ? @ @inflg ™ 7 imod(Shy k) X -+ X mOd(Sh, k,) — mod(Sp)-
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We next claim that the diagram

Z,®s, 7
mod(S,,,,) AN mod(FGgy,)

Il lRé’;; (4.2.1)
mod(Sp) —— mod(FGy)

”
®Sh’,€-

commutes, i.e. that the following Schur algebra analogue of Corollary 3.2g(i) holds:

(4.2d) The functors Rg;‘u °Z,®s,,"7 and Bopr o I : mod(S,,,) — mod(FG,) are
isomorphic.

To prove (4.2d), (4.2b) and associativity of tensor product gives the natural
isomorphisms
RG: (Zy ®s,, N) = (RG) 2,) ®s,, N = Ze, ®s,, N = Zey @e,5, e, N
= 7 @8y, 1, Shkev De, 5, pev N = Bong 0 I(N)
for any N € mod(S,,,).

Now, we obviously have the isomorphism of functors:

ﬂo’,hl,kl? Ig""Z’ﬁa,ha,ka? gZ}/@S#W(? @@7)

as functors from mod(Sy, k,) X - -+ x mod(Sh, k,) to mod(FGgy,). In view of this,
(4.2c) and (4.2d), we deduce:

(4.2e) There is an isomorphism

G ~ . Sh,k . Sh,ka
RGZV(BUJHJQ PR By hak, 7)) ﬁa,h,k(mﬂshL; 7Q0--® 1nﬂsha7ka 7)

as functors from mod(Sh, k,) X -+ x mod(Sh, k,) to mod(FG,,).

Finally, by (1.5a), the functor 1nﬂgzzkl; : mod(Sh, ;) — mod(Sh,) is an equiv-
alence of categories, for each i = 1,...,a. By Lemma 3.5c, the functors B, ©
mﬂgz,k;, and (B, p, k, are isomorphic. The theorem follows on combining these state-
ments and (4.2e). O

We now give an immediate application of Theorem 4.2a. Say that a Cj p-module
M has a A-filtration (resp. a V-filtration) if it has a filtration

O=My<M i <---<My=M

such that for each i = 1,...,b, the factor M;/M;_; is isomorphic to A(o, \) (resp.
V(o,A)) for some partition A - k (depending on i). Analogously, we say that a
Cyp-module M has a A-filtration (resp. a V-filtration) if it has a filtration

O=My<M i < ---<My=M

such that for each i = 1,...,b, the factor M;/M;_; is isomorphic to A(o, \;)X---X
Ao, Ag) (resp. V(o, A1) K- K V(a,),)) for some partitions \; - kq,..., A\q F kq.
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4.2f. Theorem. (i) The functor Rg sends Cg ,-modules with A-filtrations (resp.
V-filtrations) to Cy 1-modules with A ﬁltmtwns (resp. V-filtrations).

(ii) The functor *RG sends Cy ,-modules with A-filtrations (resp. V-filtrations)
to C,1,-modules with A ﬁltmtzons ( resp. V-filtrations).

Proof. (i) We first need to observe that the functor Rgzu sends Cy ,-modules to
Cos r-modules. It suffices to check this on projective Cy ,-modules. In turn, since
according to the Levi analogue of Theorem 3.4g every projective U, ,-module is a
submodule of M"(o), we just need to check that RG M”( ) is a Cyg-module.
But this is clear since by transitivity of Harish- Chandra induction, RG" MY (o) =
M* (o). So it makes sense to regard the functor RGZ as a functor from mod( )
to mod(Cy 1). ’

Now to show that RGZ sends modules with A-filtrations to modules with A-
filtrations, we just need to check by exactness that

REn (Ao, A) K-+ - K A(0, Aa))
has a A-filtration, for any A\; F k1,...,\q I ko. According to Theorem 4.2a,
REn (A(o, M) B RA(0,Aa)) 2 Bo s (An(M) @ -+ @ Ap(Ay))-

So the result follows since Ap(\])®- - -@Ap(A,) has a A-filtration as an S}, y-module
thanks to (1.3c).

This proves (i) in the case of A-filtrations, and the result for V-filtrations follows
immediately on taking duals, since contravariant duality commutes with Harish-
Chandra induction.

(ii) Again we first check that *Rgsu sends C, p-modules to Uy ,-modules. Making

the same reductions as before, we need to observe that *Rg;u M* (o) is a Cy,-module,

which we checked in Lemma 3.2f. So it makes sense to regard the functor *Rg;‘u as
a functor from mod(Cy 1) to mod(Cy.,).

Now we prove (i) in the case of V-filtrations; the analogous result for A-
filtrations follows on dualizing as before. So take N € mod(C, ) with a V-filtration.
Using the cohomological criterion for V-filtrations [Doy, A2.2(iii)], we need to show
that

Extg, (M,"RG" N) =0

for all M € mod(Cy,) with a A-filtration. So take such a module M. By (i) and
the cohomological criterion for V-filtrations, we know that

Exté , (RG" M,N) =0,
So the result will follow if we can prove:
(4.2g) For all M € mod(Cy,,), N € mod(Cy ) and i > 0,

Ext(, ,(M,"RG" N) = Bxt,  (RG" M, N).
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Fix M € mod(Cy,). The adjoint functor property gives us an isomorphism
of functors Homc, , (M,?) o *Rggu = Homg, , (Rg" M,?). Since *Rg:y is exact and
sends injectives to injectives (being adjoint to the exact functor Rgzu), a standard
degree shifting argument (cf. [Ja, .4.1(3)]) now gives (4.2g). O

4.2h. Corollary. Take A F k and partitions A\ F k1,..., e F ko. Then, both of
(1) the multiplicity of A(o, \) in a A-filtration of RgZVA(O', M- KA(0, Ag),
(ii) the multiplicity of A(o, A\1)X---KA(0, \,) in a A-filtration of *RgZVA(U, A),
are the same as in characteristic zero, i.e. are given by the Littlewood-Richardson
rule.

Proof. The fact that the modules in (i) and (ii) have A-filtrations follows from
Theorem 4.2f. That the multiplicities are the same as in characteristic zero follows
in case (i) from the analogous well-known fact about tensor product multiplicities
over the ¢?-Schur algebra, using Theorem 4.2a. The conclusion in case (ii) follows
from (i) and adjointness, together with the usual properties of A- and V-filtrations.
O

4.3. p-Singular classes

Throughout the section fix a p-singular element 7 € I_F; of degree e over F;. Let o
be the p-regular part of 7, of degree d over F,. By (2.1a), e = dm where m = {(d)p"
for some r > 0. Choose [ > 1, set k = Im and let n = kd = le.

Fixing an integer h > k, let Spj (vesp. Sh,) denote the ¢%Schur algebra
Spqa(h, k) (vesp. the ¢°-Schur algebra Spge(h,[)). We observe that the image of ¢°
in F'is 1, so in fact Sy is just the classical Schur algebra Sgi(h,l). Also let A
(resp. Ap) denote the quantized coordinate ring A ,a(h) (resp. Ap;1(h)), choosing
a square root v¢ of ¢% in F in the same way as in §1.3. Let V}, (resp. V},) denote the
natural h-dimensional Aj-comodule (resp. the natural Aj-comodule).

Recall that for a right Aj-comodule M, we have defined its 7th Frobenius twist
MU which is a right Aj,-comodule, by inflation along the bialgebra map F, : A; —
Ap of (1.3.5). If M is an S’M—module, then the Frobenius twist M) is an Sh. k-
module. Since F, is a bialgebra map, the operation of taking Frobenius twists
commutes with tensor products.

Now, o is p-regular, so the theory of the previous sections holds for o, thanks
to Lemma 2.4c and Lemma 2.5f. Let (,p % : mod(Sh,) — mod(Cyy) denote the
equivalence of categories of (3.5.2). Our first goal is to extend our theory to the
p-singular element 7.

4.3a. Lemma. The Brauer character of L(o, (")) agrees with the restriction of
Xr,@1) to p-regular classes of Gn,.

Proof. Recall that By pk(Ln(m')) = L(o, (I™)) by (3.5.3). Applying the Morita
equivalence (3, to Lemma 1.3f, using Theorem 4.1c, we see that the Brauer char-
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acter of L(o, (")) is equal to the restriction of the generalized character

(_1 k+1

l? Z Z CA¢u(mA)XU,u

Py

to p-regular classes. So the lemma follows from Lemma 2.3c. O

4.3b. Theorem. For anyl > 1, there is an isomorphism of FGy,-modules:

MY (7) = Bepn(VM @ - 0 VI,
l t;:nes

Hence, M (7) is an irreducible FG¢-module and, for any 1 > 1, M'(t) has precisely
Par; non-isomorphic composition factors.

Proof. Consider first the case that [ = 1. By Lemma4.3a, M(7) has the same
Brauer character as L(o, (1™)). Since the latter is an irreducible module, this im-
plies immediately that M (1) = L(o, (1)), so that M(7) is also irreducible. Since
L(o,(1™)) = Bohi(Ln((m))) = Bonk( _h[r]), this proves the result in the case [ = 1.

Now for [ > 1, the isomorphism M!(r) = ﬂg,h’k(vh[r} ®:-® V}ET]) is immediate
using Theorem 4.2a and the definition of M!(r).

Finally, to see that M!(7) has precisely Par; non-isomorphic composition factors,
observe that

e oVl oW,

1 times [ times

This has precisely Par; non-isomorphic composition factors as an Sy, p-module, as the
untwisted tensor space Vh®l has precisely Par; non-isomorphic composition factors
as an Sp-module. O

Theorem 4.3b (combined with Lemma 2.4c and Lemma 2.5f) verifies the assump-
tions (A1) and (A2) from §3.2 for every o € F,. So the main Morita theorem of
(3.5a), and the subsequent results obtained so far, are true for general o, hence
for our fixed p-singular element 7. In particular, we associate to 7 the (p-singular)
cuspidal algebra C;, defined as in (3.2.1). By the analogue of (3.5a), there is an
equivalence of categories

6T,h,l . mod(S’hJ) — mod(Cﬂl),

defined as in (3.5.2). We have now recovered the main results from the paper of
James [Jo] with our approach.

4.3c. Remarks. (i) One can also consider an analogue of the cuspidal algebra for
an arbitrary block-diagonal element s € GG, namely, the quotient algebra

Cs =Crs(GL,(Fy)) = FGy/ annpg,, (M (s))
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where M (s) is as in (2.4.3). If s is p-regular, the Cline-Parshall-Scott theorem
mentioned in Remark 4.1e gives an analogue of the Morita theorem (even over Q)
for the algebra Cj: the algebra Cy is Morita equivalent to @ ;S Fyqdi(hi,ki) for
integers h; > k;, where s is of the form (2.1.1). The same is true for somewhat more
general s, namely, if s is “reduction stable” (see [DF] or [Dy4, 4.26]), but certainly
false in general.

(ii) Theorem 4.3b also yields an alternative proof of [Do, 3.5]: for an arbitrary
block-diagonal element s € Gy, the associated cuspidal Gs,)-module of (2.4.4) re-
mains irreducible modulo p, since it is an outer tensor product of factors all of which
remain irreducible.

We now associate to 7 the C,;- (hence FG)-) modules L(7,\),A(7,\) and
V(7,A) for each X\ I [, defined as in (3.5.3)-(3.5.5) but using the functor [,
instead. The next result realizes these modules alternatively as modules in the
category mod(C, ) (for (iv), see also [DJs, [Lemma 2.3]).

4.3d. Theorem. For any v F | and A F [, we have the following FGy-module
isomorphisms:
(i) A(7) = Bo (A (Vi)
(i) 2¥(7) = Bon k(2" (Vi)
(111) (, ) /Bahk(Al( )[
(1V) ( T, ) ﬂahk(Ll(A/)[T

Proof. (i) Since A (1) = Rg:VA” (1), it suffices applying Theorem 4.2a to prove this
in the special case v = (I). Recall (e.g. by Theorem 3.5¢) that A!(7) is isomorphic to
the module A(7, (1)). So by Theorem 4.1c, the Brauer character of A!(7) is equal to
the restriction of X, ) to p-regular classes, which by Lemma 4.3a is the same as the
Brauer character of L(o, (I"™)). Since the latter is an irreducible module, we deduce
that

A () 2= Lo, (")) = Bok(La((m'))) 2 Bopge( (1)) 2 By (A (Vi)').

ii) Again, we just need to prove this in the special case v = (I). So, we need to
ii) Agai just need t this in th ial ). S d t
prove that

)
D;
) = Lo, (mX')).

ZN7) 2 By (ZH(V)ID).

We first observe that Z!(V;,)I"l is a quotient of Z*(V},) as Sj, p-modules. This fol-
lows from the universal property of standard modules [PW, (8.10.2)]: Z!(Vj,)l' =
Ay (1)) is generated by a highest weight vector of weight (k) so is a quotient of the
universal highest weight module Z*(V3,) = A, ((k)). Now, Z!(V},)I" is a submodule
of (Vh@)l)[r]. So we see that there is a non-zero homomorphism

Zk:(vh) — (‘_/h@l)[ﬂ
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with image Zl(l_/h)m. Now apply the Morita equivalence 3, 1 and Lemma 4.3a to
deduce that there is a non-zero homomorphism

ZH (o) — M'(7)

with image By (2! (V3)I). Now, Z*(o) is a quotient of T, so we have shown that
the image of some non-zero homomorphism

r, — Ml(T)

is isomorphic to By.px(Z4(V4)I). But by (3.4h), the image of any such homomor-
phism is precisely the submodule Z!(7) of M'(7).

(iii) By Theorem 3.5e(i), A(7, ) is isomorphic to the image of any non-zero
homomorphism from Z* (1) to A*(7). So using (i) and (ii), A(7, \) is isomorphic to
the image of any non-zero homomorphism

Boni(ZN (V)IT) — Bopx(ANT3)I).

So using the Morita equivalence, we just need to check that the image of any non-zero
homomorphism

Z)\/(Vh)[ﬂ _ A)\(‘_/h)[T]
is isomorphic to Ay, (M), But by (1.3d), the image of any non-zero homomorphism
ZXN (Vi) = A (Vi)

is isomorphic to Ay ()'), so the conclusion follows on taking Frobenius twists.

(iv) The simple head of Ay ()\') is isomorphic to Ly (\). So the simple head of
Ap (W) s isomorphic to Ly, (X)), Now applying (iii), we see that B, 1 (Ln(N)IM)
is isomorphic to the simple head of A(7, A), namely, L(7,A). This proves the first
isomorphism. For the second isomorphism, note that

Bonik(Ln(W)) 22 8, 4k (Ln(mN)) = L(a, (mN'))

using a special case of (1.3e). O

Now we can deduce the non-defining characteristic analogue of Steinberg’s tensor
product theorem (cf. [DDuy]).

4.3e. Theorem. Suppose that o € IF‘qX is a p-reqular element of degree d over F,.
Let X\ be a partition of k and let A\_1, Mo, ..., Ay be the partitions such that

N =N +L(d)Ny + L(d)pN] + -+ £(d)p* N,

is the (¢(d),p)-adic expansion of X' (the \; are uniquely determined as h > k). For
each i = 0,...,a, choose a p-singular element o; € IF‘qX of degree di(d)p’ over F,
with p-regular part conjugate to o (such elements exist by (2.1a)). Then, L(o, \) is
isomorphic to the module obtained by Harish-Chandra induction from

L(U, )\_1> X L(Uo, )\0) X L(Jl, )\1) X...X L(O’a, )\a)-
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Proof. Because of Theorem 4.2a and Theorem 4.3d(iv), the theorem is a direct
restatement of (1.3e) under the Morita equivalence. O

4.3f. Remark. There are two different parametrizations of the irreducible FG,,-
modules that appear in the literature. The first arises from Harish-Chandra theory
and was introduced in [Dg, Do]. It involves pairs (s, ), where s runs over all p-
regular semisimple classes of GG), together with certain p-singular classes, and A runs
over p-regular multipartitions of k(s). The second parametrization is described in
the next section and was introduced by James in [J2]. It involves pairs (s, A) where
s runs over representatives for the p-regular semisimple classes only but now A runs
over all multipartitions of k(s). The combinatorics to translate between the two
parametrizations was explained originally in [DJs]. Theorem 4.3e can be used to
give an alternative, more representation theoretic proof of main result of loc. cit..
We refer the reader to [DDug, Dy] for further details of these matters.

4.4. Blocks and decomposition numbers

Let us now introduce notation for irreducible and standard modules of FG,,
associated to an arbitrary semisimple element. So suppose that s is a block-diagonal
element of G,, written in the form (2.1.1). For A = (A1,..., \q) F £(s) and R equal
to one of K, F or O, define the standard FG,-module:

A($7 A)R = Rg:(s>(A(Ulv )‘I)R - A(0a7 )‘G)R)

We will write simply A(s,A) for A(s,A)r over F. Since Harish-Chandra induction
commutes with base change, we have immediately by Theorem 4.1c¢ and (2.3e):

(4.4a) A(s,A)o is O-free of finite rank with

A(s, Mgk =2 K ®0o A(s, Ao,
A(s, \)Fr = F ®0 A(s, N)o.

Moreover, the character of A(s,A)k is Xs.x, s0 A(s, A) is a p-modular reduction of
a KGyp-module affording the character X .

To describe all irreducible F'Gy,-modules, suppose now in addition that s is p-
regular. Define

L(s,\) = Rg:(s)(L(al, MR- B L(0a, Aa)). (4.4.1)

The FGp,-module L(0;,\;) is an irreducible module for the block By, ,, and is
isomorphic to the simple head of A(oy, A;). So, in the notation of Theorem 2.4e,
L(o1,\) X --- X L(0g, \y) is an irreducible module for BLevi, and is isomorphic the
simple head of A(o1, A1) X -+ X A(0g,Aq). Now Theorem 2.4e immediately gives
that L(s, ) is irreducible and is isomorphic to the simple head of A(s, A). Moreover,
recalling (2.4.6) we have:
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(4.4b)  For p-regular s, the modules {L(s,\) | A F k(s)} give a complete set of non-
isomorphic irreducible Bg-modules. So, the modules {L(s,A) | s € Csspr, A K(5)}
give a complete set of non-isomorphic irreducible F'G,-modules.

Now we discuss two closely related problems. First, we would like to describe
the p-blocks of the group G,,. So we would like to know precisely when the ordinary
irreducible characters x y and x; , belong to the same p-block, for any s,t € Cys, A =
k(s),u F k(t). In view of (4.4a), we can equivalently consider when the modules
A(s, ) and A(t, u) belong to the same block of the algebra F'G,,. Second, we would
like to say something about the p-modular decomposition numbers of G, that is,
composition multiplicities of the form [A(s, A) : L(t, u)] for any s € Cys,t € Cospr, A
K(s), uF k().

We can make some basic reductions to both of these problems which will simplify
notation considerably. First, we apply (2.4.6) to see that we just need to describe the
p-blocks and the decomposition numbers of the algebra B;, for some fixed t € Cy .
Then we can apply the Morita equivalence of Theorem 2.4e to reduce further to the
special case that ¢t = (o) for some p-regular o € IF‘qX of degree d over IF,, where
n = kd. In other words, we just need to describe the blocks and the decomposition
numbers of the algebra B .

So fix now a pregular 0 € F)* and h > k > 1. We recall from (2.4b) that
the standard B, j-modules are precisely the modules A(s, A) (corresponding to the
characters x; ) for A - k(s) and s € Cq of the form (2.1.1) with the p-regular part of
each o; conjugate to o. Our first lemma relates this module A(s, A) to the ¢?-Schur
algebra Sy = Spga(h, k).

4.4c. Lemma. For any block-diagonal element s = (o1)* ...(04)" of the form
(2.1.1), with the p-regular part of each o; conjugate to o, and any A = (A1,...,\q) F
k(s),

A5, ) 2= fogie (B @@ A (X))

where each r; is determined by the equation deg(o;) = dé(d)p™.

Proof. By definition, A(o, A) is the F'G,-module obtained by Harish-Chandra in-
duction from the F'G,)-module Aoy, A1) X --- K A(0q4, As). By Theorem 4.3d(iii),
each A(o;, \;) is isomorphic to By .k (An(X)I). The lemma now follows on apply-
ing Theorem 4.2a. O

Now we can explain the algorithm in [DJs, §7] showing how to calculate the
p-modular decomposition numbers of G,, from knowledge of the decomposition
numbers of quantum linear groups. Actually, we will give a somewhat more pre-
cise formula relating the two. We need a little notation for the statement: for
Ay V1, v € AT (R) and e > 1, DS ,, denotes the decomposition number [Ap(A) :
Lp(p)] of the quantized coordinate ring Apge(h) and LR}, ., denotes the tensor
product composition multiplicity [Lp(v1) ® -+ ® Lp(va) : Ly(p)] for Apge(h).
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4.4d. Theorem. Suppose that s = (o1)* ... (04)% is a block-diagonal element of
Gy, of the form (2.1.1), with each o; of degree d; = m;d over Fy having p-regular
part conjugate to o. Then, for any A = (A1,..., ) F k(s) and any p + k, we have
the equality:

[A(s,2) =2 > )

1/1|_k1 l/2}_k‘2 l/a'_ka

LRY

MIV] e M V1,

d;
[,

=1

Proof. Using Lemma 4.4c and the Morita equivalence, we need to prove that for
any \; € AT (h,k;) and p € AT (h, k),

LRY

M1V1,..;MaVa;h

HDA i

i=1

A @@ B! L) = 3 S

vik1 Vot ka

where the 7; are defined by m; = ¢(d)p"i. For v € At (h,m;k;), the composition
multiplicity [An (M) @ Ly(v)] is zero unless v = myu; for some v; € AT (h, k;),
when it equals Di"i . Tt follows that Ap(A\)" @ -+ @ Ap(Ag)el has the same
composition factors as

@ EB [H i yl] Lp(mivi) @ -+ @ Lp(mgg).

vitky vobkqe Li=1

Now the theorem follows. O

Now consider the block theory. We first recall the description of the blocks of the
¢%Schur algebra Sh, i, from [JM, Theorem 4.24]. For s > 1, recall that the s-core of a
partition A is the partition obtained by successively removing as many rim hooks of
length s as possible. Then, for A\, u € AT (h, k) (and h > k as always), the irreducible
Sh,x-modules Ly () and Ly (1) belong to the same block if and only if either:

(i) £(d) =1 and X\ and p have the same p-core;

(ii) 4(d) > 1 and A and p have the same ¢(d)-core.

Now, since C, ), is Morita equivalent to Sp ; (and the cores of A and X are always
transpose to one another), this combinatorics also determines when the modules
L(o,\) and L(o, i) belong to the same block of the cuspidal algebra C, . Recalling
that Cy ) is a quotient of the algebra B, and that the two algebras have the same
irreducible modules, B, j can in general have fewer blocks than Cj .

4.4e. Lemma. If¢(d) =1 (i.e. ¢® =1 (modp)), then the algebra By has just one
block.

Proof. Let A = (l1,...,l,) and p = (l1+1q4, 1o, .. .,lq—1) be partitions of k. Following
the strategy of [DJ3, Lemma 7.10], we show that L(o, \) and L(o, p) are linked. This
is enough to complete the proof, for then by induction on a, we see that L(o, \)
belongs to the same block as L(o, (k)), whence all L(o, \) belong to the same block.
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Since £(d) = 1, we can by (2.1a) choose some p-singular 7 € F of degree d over
F, with p-regular part conjugate to o. Writing v = (I1,...,l,—1), the FG,-module
M obtained from A(o,v) & A(T,(l,)) by Harish-Chandra induction is a standard
module for B, j. So to prove that L(c, A) and L(o, 1) are linked, it suffices to show
that they are both composition factors of M.

Equivalently, thanks to Lemma 4.4c and the Morita equivalence, we need to show
that the Sj, p-module Ay (V') ® Ap((1%)) contains both Ly (\') and Ly (u') as com-
position factors. But now Ap(v) ® Ap((1%)) has a A-filtration, and a calculation
involving the Littlewood-Richardson rule shows that this filtration has factors iso-
morphic to A (') and to Ap(p'). Hence, it certainly has composition factors Ly ()
and Lp(y') as desired. O

4.4f. Lemma. Suppose that s = (01)k' ... (04)% is of the form (2.1.1), with oy
conjugate to o, and all other o; having p-regular part conjugate to o. If L(o, p) is a
composition factor of A(s, ), for some A = (A1,...,a) F K(s) and p - k, then p
and \1 have the same £(d)-cores.

Proof. If ¢(d) = 1, the lemma is trivially true. So assume that ¢(d) > 1. Then by
(2.1a), all of 01, . . ., 0, are of degree strictly greater than d. So applying Lemma 4.4c,
we see that A(s, ) corresponds under the Morita equivalence to an S, x-module of
the form Ap(\]) ® M where M is a pure Frobenius twist. Now it suffices to prove
that Lp(x') is a composition factor of Ap(N]) ® M only if 1/ and A} have the same
¢(d)-cores.

Using Steinberg’s tensor product theorem (1.3e) and the known block theory of
Sh i, all composition factors of Ap(A\]) are of the form L (v) ® N where v is £(d)-
restricted and has the same £(d)-core as A}, and N is a pure Frobenius twist. Hence,
using the tensor product theorem once more, all composition factors of Ay (\)) @ M
are of the form Ly,(v) ® Ly (7)1 for such v. So, if Ly (i) is a composition factor of
AR (M) ® M then p/ = v+ £(d)~y, which has the same ¢(d)-core as v hence as \]. O

Finally, we can determine the blocks of B, .. The following theorem is equivalent,
after making the elementary reductions described above, to Fong and Srinivasan’s
theorem [FS, (TA)].

4.4g. Theorem. The blocks of the algebra B, ), are parametrized by the set of £(d)-
cores of partitions of k. Moreover, given s = (a1)* ... (c,)% of the form (2.1.1),
with o1 conjugate to o and all other o; having p-reqular part conjugate to o, and A =
(A,...,Aa) F K(s), the standard module A(s,A) belongs to the block parametrized
by the ((d)-core of A;.

Proof. 1f¢(d) = 1, this is immediate from Lemma 4.4e. For ¢(d) > 1, use Lemma 4.4f
and the block theory of S} as described above. O
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4.5. The Ringel dual of the cuspidal algebra

If S is any quasi-hereditary algebra over F with weight poset (A1, <), an S-
module M has a A-filtration (resp. a V-filtration) if it has a filtration with sections
isomorphic to modules of the form A(\) (resp. V()A)), A € AT. Recall that in
any such A-filtration of M, the multiplicity of a particular A(\) for fixed A € AT
us uniquely determined; we write [M : A(X)]a for this multiplicity. Say that an S-
module is tilting if it has both a A-filtration and a V-filtration. Ringel [R] has shown
that for each A € AT, there is a unique indecomposable tilting module T'(\) such that
[T(A\) : AN)]a =1 and, for p € AT, [T(X) : A(u)]a = 0 unless p < A. Furthermore,
every tilting module is isomorphic to a direct sum of these indecomposable tilting
modules modules T'(A\), A € A™.

Following the language of [Do7, Appendix], a full tilting module is a tilting module
that contains every T'(\), A € AT as a summand with non-zero multiplicity. Given
such a full tilting module T, the Ringel dual of S relative to T is the algebra S* =
Endg(T)°P. Here, we are writing endomorphisms on the right, so T is naturally a
right Endg(7")-module, hence a left S*-module. Ringel [R] showed that S* is also a
quasi-hereditary algebra with weight poset A™, but ordered with the opposite order
to the original partial ordering on A*. We briefly indicate one approach to the proof
of this, since we will need the notation shortly. We define the contravariant functor

v : mod(S) — mod(S*), v = Homg(?, 7). (4.5.1)

By definition, v(7T') = S* so, using Fitting’s lemma, ~ takes indecomposable tilting
modules over S to indecomposable projectives over S*. Moreover, the functor
is exact on short exact sequences of modules with A-filtrations, so if we define
A'(X) =~v(A(N)), we see that P'(X) := (T ()\)) has a filtration with sections A’(\).
Then, as in [Do7, A.4.7], we deduce that S* is a quasi-hereditary algebra with
indecomposable projectives {P’(A)} and standard modules {A’(\)}.

We will need the following known result. Although a proof of this can be deduced
from the literature (using [HR, Theorem 2.1] or [CPS;, Theorem 2.1(d)] together
with [Dog| to verify that our tilting modules coincide with the original notion of
tilting module in [HR, CPS;]), we include a short direct proof working purely in the
framework of quasi-hereditary algebras. The argument was explained to us by S.
Donkin, and we are grateful for his permission to include it here.

4.5a. Lemma. Regarded as a left S*-module, T is a full tilting module for S*. More-
over, the Ringel dual Endg«(T)°P of S* relative to T is isomorphic to S.

Proof. Let v be the contravariant functor defined in (4.5.1) and A’(X) = v(A(X))
for each A € A*. For M, N € mod(S) with A-filtrations, we have that Ext’ (M, N) =
Ext4. (y(N),v(M)) by [Doy, A.4.8] (or rather its analogue for the functor ). In
particular, Exti. (A'(A), v(9)) = Ext§(S, A()\)) = 0, so that v(S) has a V'-filtration
by the cohomological criterion [Doy, A2.2(iii)]. Also S has a A-filtration so, using
the fact that - is exact on short exact sequences of modules with A-filtrations, we see



84 REPRESENTATIONS OF GENERAL LINEAR GROUPS

that «(S) also has a A’-filtration. So v(S) is a tilting module, and more generally,
passing to indecomposable summands of S, v takes each indecomposable projective
P(\) to a tilting module. Since P(\) has a A-filtration with A()\) appearing with
multiplicity one and all other factors being of the form A(u) for p > A, v(P(\)) also
has a A’-filtration with A’(\) being the most dominant appearing (for the opposite
ordering). So, the tilting module v(P(\)) definitely contains 7”()\) as a summand.
We deduce finally that «v(S) is a full tilting module for S*, and from the definition
of 7, v(S) = T. This shows that T is a full tilting module for S*. Finally,

Endg«(T)°? = Endg« (7(S5))°? = Endg(S) = S

using [Doy, A.4.8] once more (recall that 7 is a contravariant functor). O

Now for the remainder of the section, we choose o € ]F; of degree d over F, and
n = kd for some k > 1. Let C,j denote the cuspidal algebra of (3.2.1). Thanks to
Theorem 4.3b, the hypotheses (A1) and (A2) of §3.2 are satisfied, so C, ) is Morita
equivalent to the g?-Schur algebra Sy, = Spqa(h, k), for some fixed h > k.

Applying Ringel’s theorem first to the ¢%Schur algebra Shx = Spqa(h, k), for
any h,k > 1, we obtain the indecomposable tilting modules of S, ;. We denote
these modules by {T},(\) |A € AT (h,k)}. Applying Ringel’s theorem to C, j instead,
we obtain indecomposable tilting modules {T'(o,\) | A = k} for Cyp. It follows
immediately from (3.5a) and the definitions that

T(0,\) = Bonk(Th(N)).

Now, in view of Lemma 3.5d, the following statement follows from the elementary
weight argument of [Do7, §3.3(1)], on applying the functor G, k-

(4.5b)  The indecomposable tilting modules for C, j, are precisely the indecomposable
summands of A (o) for all v E k. Furthermore, for A+ k, the module T'(o, \) occurs
exactly once as a summand of AMo), and if T(o,p) is a summand of A(o) for
some =k then pu > .

As a corollary of (4.5b), we obtain the following alternative description of T'(o, \):

4.5c. Lemma. For A & k, the module T'(o,\) can be characterized as the unique
indecomposable summand of A*o) containing a submodule isomorphic to Ao, \).

Proof. By Theorem 3.5¢(i), A*(0) has a unique submodule isomorphic to A(c, \).
By (4.5b), A*(0) has a unique summand isomorphic to T(c, ) and for any other
summand M of AMo), Homg, , (A(o,A), M) = 0. These two statements imply the
lemma. 0O

Next, we explain the role of Theorem 3.4a in the theory. Recall that h > k.

4.5d. Theorem. The Cop-module T = @, cp ) A¥(o) is a full tilting module.

Moreover, the Ringel dual C7 . of Co relative to T' is precisely the algebra P
where Sy . acts on T as in Theorem 3.4a.
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Proof. (4.5b) shows immediately that 7" is a full tilting module. The second state-
ment is a restatement of Theorem 3.4a. O

As consequences of Theorem 4.5d, we have the following double centralizer prop-
erties; of these, (ii) is a generalization of Takeuchi’s theorem [T].

4.5e. Theorem. The following double centralizer properties hold, for h > k:

(i) Endc,, (®V€A(h,kz) AV(U)) = Shk and Endg, , (@ueA(h,k) AV(O’)) = Coks
where the right Sy, i-action is as in Theorem 3.4a;

(ii) Endc, , (M*(0)) = Hy and Endp, (M*(0)) = Cop, where Hy = Hp ja(Sk)
and the right Hy, action is as in (2.5b).

Proof. (i) Combine Theorem 4.5d with Lemma 4.5a.
(ii) Let e € Sp be the idempotent ¢%1’€),(1k)' We note that as in [Doy, §3.3(1)],

the indecomposable tilting module T}, (\) is a summand of AN (V},), for any A €
AT (h, k). Consequently, by (1.3b)(ii), T,()\) is both a submodule and a quotient of
the S, p-module Sy, pe. Moreover, Sy, e is isomorphic to Vh®k, so is (contravariantly)
self-dual. These observations imply that every composition factor of both the socle
and the head of T}, () belong to the head of the projective S} -module Sy, ye.

Now let T = D, en(nr) A¥(0). Writing T for the left Sy, j-module obtained

from the right module T by twisting with 7, T is a full tilting module for Sh.k
by Lemma 4.5a and Theorem 4.5d. The previous paragraph therefore shows that
every composition factor of the socle and the head of T belong to the head of
Sh,ke. In other words, V =W = T satisfy the conditions of Corollary 3.1c, taking
C = Sk, P = Shre and H = eSSy, re. We deduce at once from Corollary 3.1c that
Endg, , (T) = Endeshyke(ef). Switching to right actions, and using (i), we have now
shown that

Cop = Endesh,ke(Te). (4.5.2)

Now we can prove the theorem. We know already that Hy = Endc, , (M k(a)).
As a left Cy -module, MP¥ (o) = Te. Moreover, by the way the action of Spon T
was defined in (3.4b), the (Cy 1, €Sy re)-bimodule T'e is isomorphic to the (Cy , Hy)-
bimodule M* (o), if we identify Hj, with eSh, ke so that T, — K(Tf) for each w € Xy,
where x is as in (1.2b). In view of this,

Endg, (M*(0)) = End.s, ,c(T€)

which is isomorphic to Cy j, thanks to (4.5.2). O

We end with the non-defining characteristic analogues of [Dos, Lemma 3.4(i)] and
[MP, Corollary 2.3]. For A\ -k, let P(o, \) denote the projective cover of L(o, \) in
the category mod(Cy ). Similarly, for 4 € AT (h, k), let Py,(p) denote the projective
cover of Ly (p) in the category mod(Sh ). Obviously we have that:

P(Uv )‘) = Bo,h,k(Ph(A/))- (453)
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4.5f. Theorem. For v € A(h,k),

Z"(0) = P P(o, X))o, (4.5.4)
AFE

A" (o) 2 P T (0, \) ™, (4.5.5)
A=k

where my ,, is equal to the dimension of the v-weight space of Ly (\).

Proof.  Using Fitting’s lemma, there is a unique decomposition 1 =), A+ (k) €
of the identity of S}, 1 into orthogonal idempotents such that for each A,

Sh,ke)\ o~ Ph()\)@dimLh(/\),

We observe that dim Lp(A) = dimHomg, , (Sprex, Ln(A)) = dimeyLp(A). This
shows that exLp(X) = Lp()). Now, for any v € A(h, k), ¢7,,, € Sh is an idempotent
which obviously commutes with each ey. So, <Z>i7ue » is an idempotent. Observe that

Homg, , (Shxdy.,ex, Ln(N) = ¢, exLn(A) = ¢y, , Lin(N),

which is the v-weight space of Lj(\). So, Sh,k¢,1,,,,€)\ is a direct sum of precisely m, ,
copies of Pp(\).

To prove (4.5.4), we have so far shown that Sy ¢y, = @, Pa(A)™ . Now
apply the equivalence of categories (3, k, using (4.5.3) and the fact observed in the
proof of Lemma 3.5d that (g.p(Shro,,,) = Z¥(0).

Now consider (4.5.5). Certainly by (4.5b), all indecomposable summands of T =
Doecamnp A¥(o) are of the form T'(o,\), A F k. Combining this with Theorem 3.4a
and Fitting’s lemma, we see that there is some permutation 7 of the set of partitions
of k such that, for each X\ F k, Tey is the largest summand of T isomorphic to a
direct sum of copies of T'(o,m())). Recall from the definition of the action of ¢},
from Theorem 3.4a that T¢}, = A¥(o). So, T} ,ex is the largest summand of
A¥ (o) isomorphic to a direct sum of copies of T(c,m(\)). Moreover, using the first
paragraph, we know that in fact Td)ivye » is a direct sum of precisely m, , copies of
T(o,7m(N)). In other words, we know that for each v F k:

A (o) = P T (o, m(N) o™, (4.5.6)
AFE

It therefore remains to prove that m(A) = A for each A\ - k. We prove this by
downward induction on the dominance order on A. The induction starts with A =
(k); here, 7((k)) = (k) immediately from (4.5.6), since A¥(o) = T'(o, (k)). Now take
any u < (k) and suppose we have proved inductively that 7 fixes all more dominant
partitions. Using the inductive hypothesis, (4.5.6) tells us that

A (o) = T(o,7(p) & @T(a, ) O,
A>p

Finally, we know by (4.5b) that T'(c, 1) appears as a summand of A#(o), so we must
have that T'(o,u) = T(o,m(u)), whence 7(p) = p as required. O



Chapter 5

The affine general linear group

In this chapter we prove results that can be regarded as the modular analogues of
the branching rules of Zelevinsky [Z, Theorem 13.5] and Thoma [Th]. Following
the idea of Zelevinsky, we study the affine general linear group AGL,(FF,) with the
same methods as we have developed so far for GL,,(F,). Roughly speaking, our main
result relates restriction from GL,,(F,) to AGL,_1(F,) to restriction from quantum
GL, to quantum GL,_1. As an application, we obtain a new dimension formula for
irreducible modular representations of G L,,(IF;), in terms of weight space dimensions
of irreducible modules over quantum GL,,.

5.1. Levels and the branching rule from AGL,, to GL,,

For a group G, Zg will denote the trivial F'G-module, where F' is as usual our
fixed algebraically closed field of characteristic p coprime to ¢q. Also, for a subgroup
H C G and an FH-module M (resp. an FG-module N), we will often write M ¢
(resp. N | ) for ind$ M (resp. res$ N).

Let W,, denote an n-dimensional vector space over I, with basis w1, ..., w,. Let
Gy, denote GL,(F,) acting naturally on W,,. Let H,, denote the affine general linear
group AGLy(F,), which is the semi-direct product G, W,, of W), (regarded now just
as an Abelian group) by G,,. By convention, we allow the notations Go, Hp and Wy,
all of which denote groups with one element.

We make some remarks about the representations of the Abelian group W,, over
F. Let X,, denote the set of irreducible characters W,, — F*, regarded as an n-
dimensional Fg-vector space via (¢ + x)(w) = e(w)x(w) and (ce)(w) = e(cw) for
g, X € Xp,c € Fg,w € W,. To describe a parameterization of these characters, let
X : Fg — F* be the non-trivial character fixed after (2.5.4). For any element 6 of
the Fy-linear dual W}, let €, denote the character sending w € W, to x(6(w)) € F*.
Then, X, is precisely the set {¢, | 0§ € W;}. We let 61,...,0, denote the basis of
W, dual to wy, ..., wy,, and set €; = ¢, to obtain a basis €1, ..., &, for the Fg-vector
space X,,. '

The group G, acts on the characters X,, by (ge)(w) = (g~ w), for g € Gp,w €

87
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Wh,e € X,,. Under this action, the trivial character 0 € X, is fixed by G,, and all
other characters are permuted transitively. An elementary calculation shows that
the group Cgq,, () is isomorphic to H,_;, embedded into G,, as the subgroup of
matrices of the form

We always identify H,_; with this subgroup of G,. Thus, we have a chain of
subgroups
1=H0CG1CH1CG2CH2C....

Given an F'H,-module M and ¢ € X,,, let
M. ={m e M |wm = e(w)m for all w € W,,}

be the corresponding weight space. Since F'W,, is a semisimple algebra, M decom-
poses as a direct sum of such weight spaces. Observe that the action of G,, on M
induces an action on the weight spaces, so that gM. = M. for all g € Gy, e € X,,.
In particular, the 0-weight space My is stable under the action of G,,, while the
en-weight space M, of M is stable under the action of the subgroup H,_1 < G,
since H,,_1 centralizes &,,.

Now we introduce some functors. First, for n > 0, we have functors

fo :mod(FH,) — mod(FG,),
eq :mod(FGy) — mod(FH,,).

For these, f7 is defined on an object M by M +— My, the zero weight space of
M, which we observed in the previous paragraph is G,-stable. On a morphism,
fo' is defined simply to be its restriction to zero weight spaces. The functor ef is
defined on an object M to be the same vector space, but regarded as an F'H,-module
by extending the action of G,, on M to H, by letting W,, act trivially, and on a
morphism by simply regarding the morphism as a homomorphism over H,, instead
of G,. Next, for n > 1, we have functors

f{ mod(FH,) — mod(FH,_1),

et mod(FH,_1) — mod(FH,).
On an object M, f% sends M to its e,-weight space M., , which is stable under
the action of H,_1; on a morphism, f% is defined by restriction. The functor e’}
is defined to be the composite of the inflation functor from H,, 1 to H,_1W,, with

the action of W), being via the character ¢,, followed by ordinary induction from
H, W, to H,. Finally, for n > 1 and 1 < i < n, we have functors

fi* mod(FH,) — mod(FGp—;),
e; :mod(FGp—;) — mod(F Hy).
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These are defined inductively by f;* = i”__ll ofand e} =efo e?__ll. By convention,
if 7 > n, the functor f* denotes the zero functor. It will usually be obvious from
context which group H,, we have in mind, so we will from now on drop the index n
from our notation for the functors e’} , e, f* and f1.

5.1a. Lemma. (i) For any n > 1, the functors

fo® ft+ : mod(FH,)— mod(FG,) x mod(FH,_1),
eo @ e4 : mod(FG,) x mod(FH,_1) — mod(FH,)

are mutually inverse equivalences of categories. Here, fo @ fi denotes the functor
T (fo?, f+7) and eg @ ey is the functor (7,7) — (eg ?7) & (e4 7).
(ii) For any n > 0, the functors

fo® i@ @ fn:mod(FH,) — mod(FG,) x mod(FGy,_1) X -+ x mod(FGy),
egDerd D ey mod(FGy) X mod(FGy—1) X -+ Xx mod(FGy) — mod(FH,,)

are mutually inverse equivalences of categories.

Proof. (i) As in [Z, §13.1], this is a special case of a general result about repre-
sentations of a semi-direct product GW where W is an Abelian normal subgroup
of GW, see [Se, 8.2]. Although the argument in loc. cit. is in characteristic 0, it
applies equally well to our case since F'W is a semisimple algebra.

(ii) Apply (i) and induction on n. O

With Lemma 5.1a as our motivation, we now make the basic definition for un-
derstanding the representation theory of H,. Say that an F'H,-module M belongs
to the ith level if f;M = 0 for all j # ¢. We will also refer to the F'H,-module
e; o fi(M) as the ith level of M. By the lemma, any F'G,,-module M splits uniquely
as the direct sum of its levels.

We will now write C;lsyp, for the set Cy;,y of representatives of the p-regular classes
of semisimple elements G,, chosen in §2.1. We allow the notation Cg&p,, which is the
set containing just one element, namely, the identity element 1 € G; the composition
k(1) is then just the zero composition (0).

Applying Lemma 5.1a(ii), the irreducible F'H,,-modules belonging to the ith level
are precisely the modules e;L as L runs over the irreducible F'G,,_;-modules. We
obtain immediately from (4.4b) the following description of the irreducible F'H,,-
modules:

(5.1b) The set {eiL(s, MN|0<i<nseC" Ak E(S)} is a complete set of non-

88,p
isomorphic irreducible F'H,-modules.

Our aim in the remainder of the chapter is to understand induction and restric-
tion of irreducibles between GL and AGL. To start off with, we have the basic:
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5.1c. Lemma The following pairs of functors are isomorphic:
i) resH ,and fi o indg" : mod(FG,) — mod(FH,_1);

ii) 1ndG" and ey © (e+ o resg" ) :mod(FGy) — mod(F Hy);
iii) 1ndG"_1 and resG oey : mod(Fanl) — mod(FGy);

(
(
(
(iv) reSG" and fo ® (de _, of+) : mod(FH,) — mod(FGh).

Proof. 'We only need to prove (i) and (ii); then, (iii) and (iv) follow immediately
on taking adjoints. The subgroup W,, C H, is a set of H,,/G,-coset representatives.
Since F'W,, is a semisimple algebra, we can pick a basis {z. | ¢ € X,,} for FW,, such
that wz. = e(w)z. for each w € W), and € € X,,. Then, for any FG,-module M, we
see that indgz M = FH, ®rqg, M can be written as a direct sum:

indf" M = P 2z @ M.
EEXn

Then, fo(indf" M) = 20 ® M = M and f,(indi" M) = 2., ® M = M |p, ,. We
deduce that there are isomorphisms of functors:

dan =
n

N . : Hn Iav) Gn
fooindg" = idpeq(ra,); f+oindg"

= resy”
In particular, this proves (i), while (ii) follows on applying Lemma 5.1a(i) and the
properties above. O

Before the next theorem, we introduce some further notation. Given m,n > 0,
let Sy, , and Z,, , be the subgroups of G,,4, consisting of all matrices of the form:

*m * Im *

0 1 L J

We view the group U, of all upper uni-triangular matrices in G, as a subgroup
of Spn, embedded in the obvious way into the bottom right hand corner of the
matrices. Doing this, we can regard the Gelfand-Graev idempotent v, € FU, of
(2.5.5) as an element of F'S,,,. We also recall for use shortly that F'y, is a one
dimensional FU,-module, and the induced module (Fy,) 1¢" is the Gelfand-Graev
representation I';, of FG,,.

Now, there is an obvious surjective homomorphism

S — G X U, (5.1.1)
with kernel Z,, ,. Define the functor

inflg"" : mod(FGy) — mod(F Sy, )
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to be the composite of the functor ? X Fy, : mod(FG,,) — mod(F (G, x Uy))
followed by natural inflation functor along the surjection (5.1.1). Note that Sy, n41
is a subgroup of H,,4y,.

5.1d. Lemma. For any m,n > 0, the functor en : mod(FGyy,) — mod(F Hyyyp,) is

isomorphic to the composite functor 1nds’"+n oinﬂg’;:"“.

Proof. We proceed by induction on n, the case n = 0 being trivial. Recalling
that e, = ey o en—1, the inductive step reduces at once to proving that there is an
isomorphism of functors:

S, . 1
ey oindg” Hmin=1 5 infl o =ind m*: oinfl;" Smntl
n

To see this, it is easier to show instead that the adjoints of each of these functors
are isomorphic.

The adjoint functor to ey is fi : mod(F Hyyqp) — mod(F Hyyqp—1). This can
be viewed simply as left multiplication by the idempotent

1
Remin — Wi Z €m+n(—w)w € FWyhym C FHpyipy
| m+n| WEWmin

corresponding to the character €,,4n € Xpyn. The adjoint of indg Hintn-1 o1nﬂSm "
is given by first restriction from H,,4,—1 to Sy, n, followed by multlphcatlon by the
idempotent (p,.nVn, where

1
Cm,n:T Z z 6IPSm,n

| Zm.nl
" 2€mon

and we are viewing 7, as an element of F'S,,, as eXplained above. Hence, the
adjoint of the composite functor e; o indg Hmin-1 oinfl; Smon g given on objects just
by multiplication by the idempotent ¢y, n’ynzem in EF Hm+n, and by restriction on
morphisms.

On the other hand, the adjoint of the functor indg::il oinﬂé’l’”+1 is given on
objects by multiplication by the idempotent (, n+1vn+1 € F'Hyyyr,. Now an easy ma-
trix calculation in the group algebra F'Hy, , reveals that (ni17n+1 = GmnYnZemin -
Hence our functors are isomorphic. O

Now we obtain the following fundamental result:

5.1e. Theorem. For any m,n > 0, the following functors are isomorphic:

RG™ (TRT,) : mod(FG) — mod(FGian)

resg’"i" oep, : mod(FGp,) — mod(FGpin)-

m—+n
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Proof.  We will view all of the groups Gp4n, Smn; Sm,n+1 as naturally embedded
subgroups of Hy,4n C Gpynti1. Also, write Py, , for the standard parabolic sub-
group of Gp,4p with Levi factor G, x G, and unipotent radical Z,,, .

Take any FG,,-module M. We first observe that as (Fy,) 19" T,,, there is an
isomorphism of functors:

RG™ e, (7 ®Ty) 2 indg™ " oinflg” (5.1.2)
Now, there is a factorization Hy,+n = GmtnSmn+1, and Gt N Smn+1 = Smn- SO
the Mackey theorem gives an isomorphism of functors

H’m+n : Hm+n ~ Gm+n Sm,n+1
5 o = o ) 1.
resg " 1ndsmm+1 1nd5m’n resg (5.1.3)

n

Since (Fyn+1) lu,= Fyn, there is an isomorphism of functors
Sm,n+1 . Sm,n+1 ~J Sm,n
resg” " oinflg" " = infl" " (5.1.4)

Now combine (5.1.2), (5.1.3), (5.1.4) and Lemma 5.1d to complete the proof. O

Theorem 5.1e has a number of important consequences. First, we obtain a proof
of Gelfand’s theorem [Ge]:

5.1f. Corollary. Take o € IF'; of degree d over Fy. Then,
(i) M(O’) THd% 60M(0’) ) edIGO N
(i) M (o) L m, = ea-1Zc,-

Proof. (i) For any 0 < i < d and any irreducible F'G4_;-module L, compute using
Frobenius reciprocity and Theorem 5.1e:

Hompg,(e; L, M (o) THd) = Homg,((e;L) lg,, M(0))
= Homg, (RG! ,  (L®T;), M(0))
=~ Homg, ,xq,(LRT;,"RE: | o M(0)).

Since M (o) is cuspidal and irreducible, this is zero unless either i = 0,L = M(o)
ori=d,L =17g,. In the former case, the resulting hom space is obviously one di-
mensional, while in the latter case, it is one dimensional thanks to Corollary 2.5e(ii).
This shows that the socle of M (o) 14 has just two irreducible constituents, namely,
eoM (o) and eqsZg,. Finally, by a dimension calculation using (2.4.1), we must have
in fact that M (o) 714 is equal to its socle.

(ii) Apply (i) and Lemma5.1c. O

The next corollary describes the restriction of an arbitrary irreducible F H,-
module to F'G,,.

5.1g. Corollary. If M = e;L is an irreducible F'H,-module belonging to the ith
level, then
M |g,= RG" o (LRTY).
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Proof. This is immediate from Theorem 5.1e. O

5.1h. Remark. Using Corollary 5.1g in characteristic 0, one can obtain alternative
proofs of the branching rules of Zelevinsky [Z, Theorem 13.5] and Thoma [Th]. We
sketch the argument. First, using (2.3f) one can decompose Rg:_i wq, (L L") for
any irreducible modules L, L: in characteristic zero this reduces to the Littlewood-
Richardson rule. Second, one knows how to decompose I'; into a direct sum of
irreducibles in characteristic 0: as in Theorem 2.5d, one gets all irreducible modules
L(s, )s) for all s € Cys, where for s of the form (2.1.1) As = ((1%1),...,(1%e)), each
appearing with multiplicity one. Hence, using Corollary 5.1g, one can decompose
the restriction of any irreducible K H,,-module to KG,,. Finally, one uses Frobenius
reciprocity and Lemma 5.1¢(i) to deduce the formula for the restriction of any irre-
ducible KGp-module to K H,,_1. This gives the branching rules of Zelevinsky, and
some further combinatorial argument deduces Thoma’s branching rule from this.

5.2. Affine induction operators

As motivation, we recall the definition of Green’s induction operator ¢, originally
introduced in [G;]. Take integers m,n > 0. Given an F'G,,-module M and an FG,,-
module N, let M ¢ N denote the F'G,4+n-module

MoN = RE™m (MK N).

nXGm

The resulting operator ¢ allows one to ‘multiply’ two G L-modules to obtain a new
G L-module. We will define two new operators ¢, and ¢,, which will allow one to
‘multiply’ an AGL-module by a G L-module on the left and on the right, respectively,
to obtain a new AG L-module.

To define ¢y, let M be an FGy,-module and N be an F H,-module. Consider
the subgroups Q. and X, ,, of Hpypy C Grignt1 consisting of all matrices of the
form

*m * * Im k *
Qm,n : Xm,n :
0 %, * 0 I, 0
L0 ... 010 ... O]|1 ] | 0 ... 0|0 ... O]|1 ]

There is an obvious surjective homomorphism
Qm,n — Gy X Hy,

with kernel X, ,. Now define M ¢y N to be the F'H,,,-module obtained by first
inflating the F(G,, x H,)-module MXN to @y, , along this surjection, then inducing
as usual from Q. to Hypgp.
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Next, to define ¢, let M be an F'H,,-module and N be an FG,-module. Con-
sider the subgroups R, , and Y, ,, of Hy, 1y, C Giqnt1 consisting of all matrices of
the form

*m * * I, * 0

Rm,n: Ym,n
0 % 0 0 I, 0
L0 ... 010 ... 0|1 ] L0 ... 010 ... 0O]1 ]

This time, there is a surjective homomorphism
Ryn — Hy X Gy

with kernel Yy, ,. Define Mo, N to be the F'H,,,-module obtained by first inflating
the F(Hp, x Gp)-module M XN to Ry, , along this surjection, then inducing as usual
from Ry, to Hppip.

The next lemma explains our interest in the operators ¢, and ©,..

5.2a. Lemma. Given an FG,,-module M and an FG,-module N,
(M o N) leﬁ»nfl%J M Og (N *Lanl) @ (M \LHmfl) <>T N

Proof. Let P, , denote the standard parabolic subgroup of G, with Levi factor
Gy X Gy, which is the stabilizer of the subspace of W,,,1,, spanned by {w1, ..., wm,}.
The subgroup H,,+n—1 has precisely two orbits on the set of m-dimensional sub-
spaces of Wi, +,, with representatives the subspaces spanned by {w1, ..., Wmn—1, Wn}
and {wi, ..., Wn—1, Wnn}. So there are two Hyyyn—1\Gm4n/Pmn-double cosets in
Gm+n, With representatives 1 and 7, where 7 is the permutation matrix correspond-
ing to the cycle (m+n m+4+n—1 ... m) (so Twy,, = Wmnin). Now the Mackey
formula gives us that (M o N) |g,,,,_, is isomorphic to

(M#N) iPm,,an'mﬁ»nfl THm+n71 @(CODJW(M#N)) lﬂ'Pm,anmﬁ»nfl THm+n717

where M#N denotes the F'P,, ,-module obtained by inflation from the F(G,, x Gy, )-
module M X N. Observe that P, , N Hyppn—1 = Qm,n—1, so that the first term gives
us precisely M oy (N g, ), and Py, 5, N Hyppn—1 = Ryy—1,n so the second term is
isomorphic to (M |, _,)or N. O

5.2b. Theorem. (i) Given an FGy,-module M and an F Hy-module N,

fo(MOg N) = MO(foN),
S (M og N) = M oy (fN).
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(ii) Given an FHy,-module M and an FGp-module N,

fo(MOT N) = (fOM)ON,
f+(M o N) = (foM) o (N lg,_,) ® (f+M)or N.

Proof. We just explain how to prove the final formula
f+(M o N) = (foM) o¢ (N La,_,) © (f+ M) op N (5.2.1)

appearing in (ii). The other three formulae are proved in similar (actually much
easier) ways and we omit the details.

We shall identify W, (resp. W,) with the subspace of W,,1, spanned by
Wiy« Wiy (TESP. Wit 1y -« o s Wintn ), SO Wi = Wy, @ Wy, Identify X4, with
X @ X, in a similar way. We also need some notation for coset representatives, so
write Py, , for the standard parabolic subgroup of G,,1, with Levi factor Gy, x G,.
Let €,y denote the set of (m + n)-tuples:

Qm,n:{Zz(Z1,12,...,zm+n) Z{k1’<Z+1 ’uﬁ;sg}k:{n;, ) } }

For i = (i1,...,im4n) € Qmn, let w; € Xy C Grygyn be the permutation matrix
corresponding to the permutation j — i; for 1 < j < m +n. We note that {w; |i €
Q. } is precisely the set of distinguished ¥, 4y, /%, X ¥;,-coset representatives. Also
define

Ui = {u € Upyn | uijs, = 0 for every 1 < j <k <m +n with i; <},

Finally, let m be the permutation matrix for the cycle (m+nm+n—1 ... m+1m)
of ¥y 4n. Now, regarding all of Hy,4p—1, Qmn—1 and R,,—1, as naturally embedded
subgroups of Gy 4n C Hpyqn, we claim:

(5.2¢) (1) {uwiy |i € Qp,u € U,y € Wy} is a set of Hytn /R n-coset represen-
tatives.

(ii) {vw; | i € Qn,imin = m+n,u € U}t is a set of Hyn—1/Qmn—1-coset
representatives.

(iii) {uwzﬂ_l i€ Qn,im =m+n,u € U} is a set of Hypn—1/Rm—1,n-coset
representatives.

To prove (5.2c), we first observe by the Bruhat decomposition that {uw; | i €
Qo u € Uit is a set of Gpyqn /P n-coset representatives. Parts (i) and (ii) follow
easily from this. To see (iii), let W}, denote the set

{w € Upqn|for 1 <j<k<m+n, wj, =0unless j > m,k=m+n}.

As a variant of (i), the set {vw;y | i € Q—1n41,%min =m+n,u € U,y € W)} is
a set of Hyqn—1/Rm—1,n-coset representatives, working inside the group Gy, 4n. An
explicit matrix calculation reveals that this is precisely the same set as in (iii).
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Now we can prove (5.2.1). Let M and N be as in (ii). Choose a basis ni,...,n
for N and, for each € € X, a basis mc1,...,meq. for M.. Also let {z:|( € X,,}
be a basis of the semisimple group algebra F'W,, such that wz; = ((w)z¢ for each
w € Wy,. Using (5.2¢)(i) and the definition of induced module, we can write down a
basis of M ¢, N = FHy i ®FR,,,, (M ® N) as follows:

{uwize @ mej @np | i € Qp,u € Uj,e € Xy, ( € Xy, 1 < j < ae, 1 <k < b}

The basis vector vw;zc @ me j ® ny, has weight ww;({ +¢). Now, for i € Qp, 1, u € U,
we have that w; lu*15m+n =w; 1€m+n which either equals €y, 1y, if tm4n = m +n,
or &, if 4,;, = m + n. Hence:

(5.2d) For i € Qun,u € U;,( € Xp,e € Xy, we have that uw;(( + €) = emn if
and only if either € = 0,( = €ppn,iman =M+ n 0r € =€y, ( = 0,9, = m + n.

We deduce that the e,,4,-weight space of M ¢, N splits as a direct sum of
H, 1 n—1-modules, where the first has basis

' A 1€ Qs iman = m+n,u € U,
{(uwl)zgmw ® mo,; @ Ny, | <j<apl<k<b (5.2.2)
and the second has basis
g ' 1€ Qs im =m+n,u €U,
{(uwzw )T20 @ Me,, j @ N, | <j<a. 1<k<b } (5.2.3)

Now, the 2., ®mg j®@ny span an F'Qp, ,—1-submodule of M ¢, N isomorphic to the
module obtained by inflating (foM) X (N | H,—_1) along the natural quotient map
Qmn—1 — Gm x Hyp—1. Combining this with (5.2¢)(ii), the definition of the operator
o¢ and the characterization of induced modules, we see that the vectors (5.2.2) span
a module isomorphic to (foM) o¢ (N |g,_,). Similarly, the 72y ® me,, ; ® nj span
an F'R,,_1-submodule of M ¢, N isomorphic to the module obtained by inflating
(f+M)XN along the natural quotient map Ry,—1,, — Hp—1XGy. So using (5.2¢)(iii)
and the characterization of induced modules, we see that the vectors in (5.2.3) span
a module isomorphic to (f+M)o, N. O

5.2e. Corollary. (i) Given an FGy,-module M and an F Hy-module N,
filM oy N) = M o (fiN).

(ii) Given an FHp,-module M and an FG,-module N,
i1
fi(M or N) 2 (fiM) o N & D(f3M) & (fimjm1(N L, ).
=0

Proof. Use the corresponding parts of Theorem 5.2b and induction on 2. O
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5.2f. Corollary. Suppose that fori =1,2,3, we are given an FG,,-module M; and
an FH, -module N;. Then, there are isomorphisms:

My o (Mg o Ms) = (My o Ms) o Ms,
Ny op (Mo o M3) = (Ny op M3) o, Ms,
M o¢ (N3 o M3) = (M7 ¢y Na) o Ms,
(My o Ma) oy N3 =2 Mj op (Ms op N3).
Proof.  Of these, (5.2.4) is a consequence of associativity of Harish-Chandra induc-
tion (2.2b). The remaining formulae follow in very similar ways from (5.2.4) and

Corollary 5.2e, so we just prove (5.2.5) (the hardest) to illustrate the argument. In
view of Lemma 5.1a, it suffices to check that for each i > 0,

fi(N1 o (Ma o Ms)) = fi((N1 o Ma) o, Ms).

One then expands both sides using (5.2.4), Corollary 5.2e and Lemma 5.2a; in both
cases, one obtains the formula

i—11—j—2
(filN1) © M o M3 & (fiN1) o fiu(M2 LH,,—1) © fimj—k—2(M3 L H,, 1)
=0 k=0
’ i-1
®EP(fiN) o Myo fij1(Ms |u,,_,)
=0
’ i-1
& EP(fiNi) o fioj1(Ma Lp,, 1) © M.
=0

Hence, the two are isomorphic. O

In view of Corollary 5.2f, any multiple product involving the operators ¢, ¢, and
op can always be rewritten as an expression containing the operators ¢, and ¢, at
most once, and there is never any ambiguity over brackets.

5.2g. Corollary. Let M be an FG,,-module and N be an FGp-module. Write
M 1Hm= @5 eiM; and N 1= @D,>0¢ejN;. Then:

(M o N) tHnin = (0 er;(Mi o N), (5.28)
0,j>0
(MoN) |Hyyn = @ eitj—1(M;i o Nj). (5.2.9)
0,j>0
(4,)#(0,0)

Proof. 'We prove (5.2.9); (5.2.8) then follows immediately by Lemma 5.1c(ii). It
suffices by Lemma 5.1a(ii) and Lemma 5.2a to show that for all & > 0,

fe(M |p, )or N)®& Moy (N lu, )= @ M; o N;.
1,j>0,i4+j—1=k
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Note that M = My and M |g, = @izo e;M;41, and similarly for N, thanks to
Lemma 5.1c. So, using in addition Corollary 5.2e, we see

k-1
Fel(M g, ) or N)® Moy (N | g,_,)) = Moo N1 @ My10 No @ @D Mjy1 0 Ny—j.
=0

The proof follows. 0O

5.3. The affine cuspidal algebra

Now we introduce an affine analogue of the cuspidal algebra. Fix o € IF‘qX of
degree d over IF; and £ > 0. Set n = kd throughout the section. Recall the definition
of the FG,,-module M*(c) from (2.4.2); in the case k = 0, this is the trivial module
over the trivial group Gg. Note that for each 0 < j < k, the module edek_j(a) is
an F'H,-module. Define the affine cuspidal algebra

Do = Dy oo (GLn(F,)) = FH / ﬂ annpy, (e M* ().

So D, can be thought of as the image of F'H, under the representation afforded
by the module @J _oediM k=i(o). The following lemma should serve as motivation
for this definition:

k
5.3a. Lemma. Mk(a) 1Hn @ <I€,>€dek_j(U)-
J

J=0

Proof. Use induction on k. The case k = 1 follows from Corollary 5.1f(i). For the
induction step, write M* (o) = M*~1(s) o M (o) and apply Corollary 5.2g. O

5.3b. Corollary. If M is a C,-module, then M 1Hn s q D, j.-module.

Proof. 1t suffices to check this on projective indecomposables. In turn, since every
projective indecomposable C; ;-module is a submodule of M k(o) according to The-
orem 3.4g, we just need to check this in the special case M = MP¥(o). But in that
case, the corollary follows from Lemma 5.3a and the definition of D, ;. O

Now fix h > k for the remainder of the chapter. Write Sy, j for the q%-Schur
algebra Sp a(h, k) as in §1.2. We need to work now with the algebra

k
Sh<k = ED Sh,i- (5.3.1)

This is a quasi-hereditary algebra with weight poset A*(h,< k) = Uf:o AT (h,1),
partially ordered by the union of the dominance orders on each A*(h,i). For
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A € AT(h,< k), we write Ly(\), Ap(N), etc... for the usual modules over Sp <k

corresponding to the partition A. So if A € AT (h,4) then these are the usual mod-

ules over the summand S}, ; of Sj, <i, with all other summands acting as zero.
Also, for any 0 < j < k, define

Zj= @ 2", (5.3.2)

veA(h,k—j)

which is an (FGp_gj, Shk—j)-bimodule. Applying the functor eq;, we obtain an
(FH,, Sh7k,j)—bimodule eqjZj. Hence, the module

k
Z=Peqz (5.3.3)
j=0

is naturally an (F'H,,, Sp <k )-bimodule.

5.3c. Theorem. With notation as above, 7 isa D, i.-module which is a projective

generator for mod(Dy ), and the endomorphism algebra Endp, , (2) is precisely the
algebra Sy, <j.

Proof. Let us first recall some known facts from Theorem 3.4g. First, for each
0 <j <k, Spr—j is the endomorphism algebra Endrg,, 4 (Z;). Second, Z; contains
a copy of each of its composition factors in its head. Finally, as explained in the
proof of Theorem 3.4g, Lemma 3.4f gives that

dim HOH’lFGn_d]. (Pj, ZJ) = dim HOH’lFGn_dj (Zj, Z])

where P; is the projective cover of Z; in the category mod(F'Gy,—g).

Now, for 0 < j < k, we regard Z; (resp. P;) as an FG,, ® FGp—1 ®--- ® FGo-
module so that the summand F'G,,_q; acts on Z; (resp. P;) as given and all other
summands act as zero. Then, applying the Morita equivalence eg & --- @ e, of
Lemma 5.1a(ii) to the statements in the previous paragraph, we deduce immediately
that: R

(i) Endrp, (Z) = Sh<t;

(i) Z contains a copy of every composition factor in its head;

(iil) dim Homppy,, (P Z) = dim HomFHn(Z Z), where P is the projective cover
of Z in the category mod(FH,).

Now we prove the theorem. Since each Z; is a direct sum of submodules of
MF*=3(5) by definition, eq4; Z; is a direct sum of submodules of 4 M*~7(c). Hence,
annpp, (eqiM"* (o)) annihilates eg;Z;. This shows that the action of FH, on Z
factors through the quotient D, ;. to induce a well-defined D, j-module.

Moreover, Z contains a summand isomorphic to @k_o ed]M F=i (o), hence Z is

a faithful D, y-module. The endomorphism algebra Endp, , (Z) is just Endpg, (Z),
hence isomorphic to Sp, <; by (i). Using (iii), Lemma 3.2a and faithfulness, Zisa
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projective D, i-module. Finally, it is a projective generator for mod(D, ) by (ii)
and faithfulness, using the same argument as in the last paragraph of the proof of
Theorem 3.4g. O

Now we proceed as we did in §3.5. Introduce functors

Qg h,<k * mOd(Dgyk) — mOd(Sh,gk)a g h,<k = HOHIDUJC (2, ?), (5.3.4)
5a,h,§k : mOd(Sh,Sk) — mOd(Dmk), ﬁa,h,gk = 2®Sh,§k?‘ (5.3.5)

Theorem 5.3c immediately implies that:

(5.3d) The functors agp <k and By p <k are mutually inverse equivalences of cate-
gories between mod(Dy 1) and mod(Sp <i)-

The next lemma identifies the various standard modules for D, ; coming from
the above Morita equivalence:

5.3e. Lemma. For any 0 < j <k and A+ (k — j),

eqjL(o,\) = By n<i(Ln(N)),
iAo, \) = By <k(AR(N)),
eqjV(o,\) = By n<k(Vr(\)),
e T (0, N) 22 By <k (Th(XN)).

Proof.  We prove something more general. For each 0 < j < k, the algebra S, j,_;
is a summand of S}, <. So there is a natural inflation functor

inﬂj : mOd(Sh,kfj) — mOd(Sh,§k>-
The lemma follows immediately from the claim:
(5.3f) The following functors are isomorphic:

edj © Bohk—j : mod(Sp ;) — mod(FH,y),
,Bg’h’sk o inﬂj : mOd(Sth_j) — mOd(FHn).

To prove (5.3f), let i; € S, <; be the central idempotent corresponding to the
identity of the summand Sy, ;_; of Sp <k. So, Spr—; = i;5n,<ki;, and the functor
infl; is the functor Sp <xi;®s, ,_,; 7 Also observe that Zi; = eg4;Z;, so there is an
isomorphism of functors

ﬂa,h,gk © inﬂj =Z ®Sh,§k (Shygkij®sh,k7j?) = Zij@sh,kﬂ'? = (edej)(X)Shvk*j?'
Now use Lemma 5.1d and associativity of tensor product to deduce that

(edjzj)®sh,kfj? = €qj © (Zj®sh,k—j ?) = €g; © ﬁcr,h,k—j,
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completing the proof of (5.3f). O

To summarize: the algebra D, is a quasi-hereditary algebra with weight poset
{AF (k—7)]0 < j < k} partially ordered by > (the opposite order to Sp, <}, since we
have transposed partitions). Moreover, the {eq; L(c,\)}, {eq;A(o, N}, {eq;V(o,A)}
and {eqT'(o,\)} for all 0 < j < k,A F (k — j) give the irreducible, standard,
costandard and indecomposable tilting D, -modules.

5.4. The branching rule from GL,, to AGL,,_4

According to Lemma 5.1¢(ii), understanding induction from Gy, to H,, or restric-
tion from G, to H,_1 are essentially equivalent problems. It turns out that it is more
convenient to study induction first and then deduce the consequences for restriction.
Continue with the notation set up in the previous section. Also, let Sp41 1 denote
the ¢?-Schur algebra Spqi(h+1,k) and Z denote the (F'Gp, Sh11,k)-bimodule

Z= & 20

veA(h+1,k)

So Z is a projective generator for mod(Cy, ). Now, the Levi subalgebra S, of
(1.3g), in the special case v = (h, 1), is a subalgebra of Sj, 1 j, isomorphic by (1.3.8)
to

k

@ Shk—j ® 51,5

§=0
For any j, the algebra Si ; is one dimensional, so we can identify this subalgebra
with the algebra Sp, <, of (5.3.1). To be explicit, for u € A(h, k—j), write p[j] for the
(h+ 1)-tuple in A(h+ 1, k) with (h + 1)-entry equal to j, and all other entries being
the same as in the h-tuple p. Also view Xj;_; as the naturally embedded subgroup
of Y. Then:

(5.4a) The embedding Sp < — Shi1k maps the standard basis element (ﬁ!“m of
Shi—j C Sh<k, for p, X € A(h,k—3),u € D, x to the standard basis element (;S;‘jl[j} Al
of Sh+1,k, where v’ is the image of u under the natural embedding ¥j_; — Xj,.

For the next lemma, we regard the restriction A la, of the (FH,,Sh<k)-
bimodule Z of (5.3.3) as an (F'Gy, Sh <k)-bimodule in the natural way.

5.4b. Lemma. There is a surjective (F Gy, Sy <k)-bimodule homomorphism
0:7 |a,— 7,

such that all other FG,-homomorphisms Z lg,— Z factor through 0.
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Proof. Consider
k .
7' = z;0 7o), (5.4.1)
=0

where Z; is as in (5.3.2). Each Z; is an (FGy,—g;, Shk—j)-bimodule, so the summand
ZjoZI (o) of Z'is an (F Gy, Sh—;)-bimodule (we have applied the functor 70 Z7(0)).
This makes Z’ into an (FG,,, Sp,<k)-bimodule. Now let w : Z’ — Z be the evident
FG,-module isomorphism that identifies the summand Z* (o) o Z7(c) of Z', for any
0<j<kand v e A(h,k — j), with the summand Z*Ul(¢) of Z. We claim that
w is a right Sp <x-module homomorphism, hence an isomorphism of (F G, Sp <k)-
bimodules.

For the claim, we consider a standard basis element (;SZ’ y of the summand S}, ;—;
of Sy, <k, for p, A € A(h,k — j) and u € D, . By (5.4a), this coincides with the
element (bZI[J'L Al of Sh41.k, so by Theorem 3.4c it acts as zero on all summands of Z

except for the ones of the form 2VUl(o) for v € A(h, k — 7). Moreover, the action of
¢ZU] AL o0 such a summand Z*U)(¢) is zero unless v = 1, in which case the action is

71fnﬁ S

nls] wld]

Hj.. On the other hand, the action of the element ¢l‘j , on Z' is zero on all summands
of Z' except ZjoZI(0), while on any summand Z"(c)o Z7 (o) of Z;0Z7 (o) the action
of ¢},  is induced by applying the functor 7o 77 (o) to the action coming from right
multiplication in M*~7 (o) by the element Y

induced by right multiplication in M* (o) by the element >

weX u’EA[j]ﬂD

uS\ND; ! Tf € Hj_;. To prove the
AD-1 T of H; is
wls]

wey,

claim, it just remains to observe that the element ZweE RN
123 J

the same as the element ZwEZH uSAnD; ! Tf of the naturally embedded subalgebra
Hy_; C Hy_; ® H; C Hj. So the two actions do indeed agree under the bijection w
because of Lemma 3.2f(3).

Now we can prove the lemma. For each 0 < j < £, fix a non-zero surjection 0; :
I'y; — Z7(0), which exists and is unique up to scalars by Lemma 3.4d(i) and (3.4h).
According to Theorem 5.1e, the (F'Gy, Sp, <j)-bimodule 7 L@, can be identified with
the bimodule @?:0 ZjoTg. Also, by the claim, we can use the map w to identify
the (FGh, Sp,<i)-bimodule Z with @_, Z;0 Z7(0). Now define § = @_,idz, @¢;,
to give the desired a surjective (F'Gy,, S <k)-bimodule homomorphism

k k
0:Z e, =@ ZioTy—PZo2(0)=2
i=0 j=0

It just remains to check that any other F'G,-homomorphism @?zo Zjoly —

@?zo Zj o Z3(0o) factors through 6. Expanding the direct sums in the definition
of Zj, this follows if we can show that

dim Hompg, (£”(0) ¢ T4j, Z"(0)) = dim Hompg, (2" (o) © Z/ (), Z"(0))
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for every v € A(h,k—j),n € A(h+1,k). But given (3.4h), this follows at once from
the stronger statement of Lemma 3.4f. O

We remark that Cj . is not a subalgebra of D, ; in any natural way. However,
by Corollary 5.3b, we can still define a functor

indg;’: : mod(Cy ) — mod(Dy ),

namely, the restriction of the functor indgz : mod(F'G,) — mod(FHy) to the full
subcategories mod(Cy 1) C mod(F'G),) and mod(Dy ) C mod(F H,). The following
theorem relates this induction functor to the restriction functor from Sj 1 to the
Levi subalgebra S, <j:

5.4c. Theorem. The following functors are isomorphic:

. D,
mdcm’: Boht1,k : Mod(Spi1,6) — mod(Dg k),

Bo.h,<k © resgz"j: : mod(Sp+1,,) — mod(Dq k).
Proof. Since Z is an (F'Gy, Sp+1,k)-bimodule, we can view Hompg, (Z,Z) as an
(Sh41,ks Sh41,6)-bimodule, where the actions are defined by (si)(z) = v¥(zs) and
(¥s)(z) = Y(z)s for s € Spy1 4,2 € Z and ¢ : Z — Z. Then we can restrict the left
action to the subalgebra Sj, < C Shi1 to view Hompg, (Z, Z) an (Sh.<k, Sht1,k)-
bimodule. We first show that

¢ : Hompg, (Z,2) ;HomFGn(Z\ la,., Z), fr—fob,

is an (S, <k, Sh+1,k)-bimodule isomorphism, where 6 is the surjection of Lemma 5.4b.
Well, ¢ is bijective since @ is a surjection and every F'G,-homomorphism 7 la,— Z
factors through 6. It is obviously a right Sj1 r-module map, and a routine check
using the fact that 6 is S, <j-equivariant shows that it is a left Sj, <z-module map.
Now note that the (Shi1k, Sht1,k)-bimodule Hompg, (Z, Z) is just the regu-
lar bimodule Sj41 itself, in view of Theorem 3.4c. So, viewing Sp41, as an
(Sh,<k, Sh+1,k)-bimodule by restricting the left action, we have shown that the bi-
modules Hompg,, (2 la,,Z) and Sp1 ) are isomorphic. Hence, by Frobenius reci-
procity, there is an isomorphism Sp1; = Hompg, (Z,Z 1Hn) as (Sh.<k> Sh41,k)-
bimodules. Since Z is a C, p-module, we even have by Corollary 5.3b that

Sh+1x = Homp, , (Z,indg™" Z) (5.4.2)

as (Sh,<k, Sh41,k)-bimodules.
Now regard the functors ag j <k and Gy ;< of (5.3.4)-(5.3.5) as bimodule func-
tors in the obvious way to obtain functors:

Qg <k : bimod(Dy ., Spy1,x) — bimod(Sh <k, Sht1.k),
ﬁg,hék . bimOd(Shék, Sh+1,k) — bimOd(Dg’k, Sh+1,k)-
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By (5.3d) and naturality, By h <k © Q4 n <k is isomorphic to the identity functor on
bimod(Dy i, Sh41,%)- So if we apply Bon,<k to (5.4.2) we deduce at once that there
is a (Dg k, Sp+1,%)-bimodule isomorphism

Z ®Sh <k Sh+1 k= lndcglC Z. (543)

Now we can prove the theorem. For any Sj1 p-module M, (5.4.3) and associativity
of tensor products gives us natural isomorphisms:

S
Boh.<k © 1ressh+1 (M) =Z ®DSh. <k (ressztlkk M)

~7 @Sy, <k (Sh-i-l,k OShi1k M)
= (2 ®Sh,§k Sh-l-l,k) ®Sh+1,k M
. D,

(1nd * Z) @Sy M

lndC (Z ®Sh+1 k M) lndc oﬁa h k(M)

12

IZ

h+1,k

S
Hence, the functors 3, < o res Shen and mdc oﬁg hk are isomorphic. O

Using Theorem 5.4c, we obtam the followmg description of composition multi-
plicities:

5.4d. Corollary. Suppose that \ + k.
(i) All composition factors of L(a, \) TH» are of the form eqgiL(o,p) for0 < j <k
and pt (k — j). Moreover, for such p,j,
[L(0, A) 177 eg L(o, )] = [resa™* Ly 1 (X) : Ly(1))-

h,<k

(ii) All composition factors of L(o,\) |u,_, are of the form egi_1L(o, ) for
1<j<kandput (k—j). Moreover, for such u,j,

S
[L(0,A) L,y eqj—1 Lo, p)] = [resg " Lyna (X) = Li(p')]-
Proof. (i) By the theorem, (3.5.3) and the definition of indg"’k,
o,k

. Do Sy
L(o, ) 1 md(’?a;,’j Bont1,k(Lnt1 (X)) = Bon,<k o resg 1 Ly (X))

Now the result follows immediately from Lemma 5.3e.
(ii) Apply Lemma 5.1c(i) to (). O

5.4e. Remarks. (i) Corollary 5.4d can be generalized easily to give a formula for
the composition multiplicities in L 1#» (resp. L |p,_,) for an arbitrary irreducible
FGp-module of the form (4.4.1), using Corollary 5.2g and induction.

(ii) Theorem 5.4c can also be used to reduce other natural questions about the
structure of L(o, ) | #,_, to analogous problems about Lpy1()\') |s, _,- The latter
can in turn be answered by studying the branching rule from quantum GLj; to
quantum GLj. For instance, the problem of determining the socle of L(o,\) g, ,,
or a criterion for complete reducibility of L(c,A) | g, ,, can be tackled in this way.
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5.5. A dimension formula for irreducibles

In this section, we prove a dimension formula for irreducible F'G,-modules in
terms of the characters of the irreducible S}, y-modules (the latter being conjecturally
determined by the Lusztig conjecture in many cases). Continue with the notation
of the previous section. In addition, for A € AT(h + 1,k),u € AT(h,< k) and
veAh+1,k), we will write

Sh+
bau = [ressh <kk Lpi1(N) : Ly(p)], (5.5.1)
my, = dim Ly 1 (N)y, (5.5.2)

i.e. by, is the branching coefficient for restricting from the quantized enveloping
algebra Ajy1 to Ay, and my , is the dimension of the v-weight space of Lj1(A).
We will need the following inductive description of the weight multiplicities:

5.5a. Lemma. For0<j <k, A€ AT(h+1,k) and p = (mq,...,mp) € A(h,k—7j),
Maug = Y, b
veA+(hk—j)

where p[jl = (ma,...,mp,j5) € A(h+1,k).

Proof. The restriction resg ¥ Lpy1()) splits as a direct sum of ‘levels’

S,
resSZtkk Lpta(A) = @ Ly (W)Y

where Lh+1(/\)( 7) is a module for the summand Sh,k—j of Sp.<k. Explicitly, Lh+1()\)(j)
is the sum of all weight spaces of Lpy1(\) corresponding to weights of the form
v = (ni,...,np41) € AMh + 1,k) with np4q = j. Equivalently, it is the largest
submodule of resgzz;k Lpy1(N\) all of whose composition factors are of the form

Ly(v) for v € A*(h,k — 5). This means that Lj41(A\)Y) has the same composition

factors over Sy, j—; as
B o Ln).
veA+(hk—j)
We see that the p[j]-weight space of Lj41(\) has the same dimension as the p-weight
space of @VGAJr(hyk_j) bayLp(v). The lemma follows. O

The next theorem describes of the restriction of the FG-module L(o, ) to
FGn_li

5.5b. Theorem. For A+ k,

k

where M is an F'G,,_g;-module having the same composition factors as the semisim-
ple module @B, 1, ;) bx,uL(o, 1').
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Proof. By Corollary 5.4d(ii),

k
Lo, N) L, = EB eqj—1M;.
j=1

Now apply Theorem 5.1e. O

5.5¢c. Corollary. For A&k,

ko [di—1
dim L(o, \') = Z [H (¢" "t — 1)] Z b, dim L(o, 1)

pH(k—j3)

Proof. 1f M is an FG,,-module, then an elementary calculation shows that

n
dim M o T,, = dim M [H(qmﬂ' — 1)] .
i=1
Now the corollary follows easily from Theorem 5.5b. O
Now we introduce some polynomials. For a composition p = (my,ma,...) F n,

define the polynomial R, (t) € Z[t] by

n

R,(t) =[] -1 I ™t tm-.

=1 1>0 with m; >0

Let A\ = (l1,...,ly) be a partition of n of height a. We will write p ~ X if p is
any composition of height a obtained from A by reordering the non-zero parts. For
example, if A = (3,2, 2), there are precisely three compositions p with g ~ A, namely,
w=(3,2,2),(2,3,2) and (2,2, 3). Define the polynomial Sy(t) € Z[t] by the formula

Sa(t) = Ru(t). (5.5.3)
U
For some very simple examples:
S(ln)(t) — 1,
Smyt) = ("1 =1)(" 2= 1)...(t—1),
kd ' k '
San(®) =1 -1 / TTa" - 1),
i=1 i=1

Sean-2)(t) = (" = 1)/(t = 1) —n.

We note in particular that Sig(¢) = |GLka(q) GL(¢%) |y Our main result is as
follows:
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5.5d. Theorem. Suppose that o € I_F; is of degree d over Fy, and n = kd for some
k > 1. Then, for any A+ k,

dim L(a, ) (@)D mauSu(a?),
ukk

where my ,, is as in (5.5.2).

Proof. For the proof, we will use the notation v IF k to mean that v ~ u for some
uwhk k. SoifviF k, vis a composition of £ with as many non-zero parts as its height.
Now, if v ~ pu, then my , = m),. So we can rewrite the statement we are trying to
prove equivalently as

dim L(o, \) Zm,\y . (5.5.4)
vtk

We will prove (5.5.4) by induction on k, the case k = 1 following from (2.4.1). For
k > 1, we use Corollary 5.5¢ and the inductive hypothesis to obtain:

ko [dji—1
dimL(Uv )‘,) = Z [H (qn—i - 1)] Z bA,uS(dk*j)(Q) Z mu,uRu(qd)

Hk—j vibk—j
k dj—1 '

- Z Z [S(dk_J)(q)RV(qd) H (qnil - 1) Z b)\,umu,u
‘ ' i=1 pk—j

Write v[j] for the composition obtained from v by replacing the first part equal to
zero with j. Then, a calculation from the definitions shows that for v IF k — j,

dji—1

Stae-iy (@) Ru(g?) T] (@* " = 1) = Sty (@) Rupj (g%
=1

Also, Lemma 5.5a shows that

D by = ma g
pkk—j

Using these formulae, we can replace the two summations over j and v with one
summation over v Ik k (so v = v[j]). We obtain:

dim L(o, \') ZS ) ( (gh)yma
Ik

which verifies the induction step. 0O
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5.5e. Remarks. (i) For the unipotent case o = 1, it is interesting to “set ¢ = 1”
in the right hand side of the dimension formula in Theorem 5.5d. Observe that
Sx(1) is 0 unless A = (1™), when it is 1. So the right hand side of the expression
in the theorem is equal simply to my (1»), the weight multiplicity of the (1")-weight
space of the irreducible module L, (\) for the classical Schur algebra Sj(n,n). This
is well-known to be same as the dimension dim D" of the irreducible F Y ,-module
parametrized by the partition X', or zero if A is not p-restricted.

(ii) The idea in this section is extended in [Br| to give a similar result to Theo-
rem 5.5d concerning the Brauer character values of the irreducible F'G,-modules at
unipotent elements. In particular, it is shown there that

Sx(q) =Y K5 1 Ky 1my(q)
uEn

where K1 = (K;i) is the inverse of the matrix of Kostka numbers of [M, I, (6.4)]

and K = (K A,u(q)) is the matrix of renormalized Kostka-Foulkes polynomials as in
M, III, (7.11)].
(iii) For an application of Theorem 5.5d, see [BKj].
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