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1 Introduction

Over a century ago Frobenius and Schur understood that the complex representation
theory of the symmetric groups Sn for all n � 0 categorifies the graded Hopf algebra
of symmetric functions Sym. The language being used here is much more recent! It
means the following. Let Rep.CSn/ denote the category of finite dimensional CSn-
modules and S.�/ be the irreducible Specht module indexed by partition � ` n. The
isomorphism classes fŒS.�/� j � ` ng give a distinguished basis for Grothendieck
group ŒRep.CSn/� of this semisimple category. Given an Sm-module V and an Sn-
module W , we can form their induction product V B W WD Ind

SmCn

Sm�Sn
V � W . This

operation descends to the Grothendieck groups to give a multiplication making

ŒRep.CS/� WD
M
n�0

ŒRep.CSn/�

into a graded algebra. Moreover the restriction functors Res
SmCn

Sm�Sn
for all m; n � 0

induce a comultiplication on ŒRep.CS/�, making it into a graded Hopf algebra. The
categorificiation theorem asserts that it is isomorphic as a graded Hopf algebra to Sym,
the canonical isomorphism sending ŒS.�/� to the Schur function s� 2 Sym.

There have been many variations and generalizations of this result since then. Per-
haps the most relevant for this article comes from the work of Bernstein and Zelevinsky
in the late 1970s on the representation theory of the affine Hecke algebra Hn associ-
ated to the general linear group GLn.F / over a non-archimedean local field F (e.g.
see [39]). This is even richer algebraically since, unlike CSn, its finite dimensional
representations are no longer completely reducible. Bernstein and Zelevinsky showed
that the direct sum

ŒRep.H/� WD
M
n�0

ŒRep.Hn/�

of the Grothendieck groups of the categories of finite dimensional Hn-modules for
all n � 0 again has a natural structure of graded Hopf algebra. Moreover this graded
Hopf algebra is isomorphic to the coordinate algebra ZŒN � of a certain direct limit N of
groups of upper unitriangular matrices. In [40], Zelevinsky went on to formulate a p-
adic analogue of the Kazhdan–Lusztig conjecture, which was proved by Ginzburg [7].
Zelevinsky’s conjecture implies that the basis for ZŒN � arising from the isomorphism
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classes of irreducible Hn-modules for all n � 0 coincides with the Lusztig–Kashiwara
dual canonical basis. The dual version of this theorem was proved by Ariki in [1], who
also investigated certain finite dimensional quotients of Hn called cyclotomic Hecke
algebras, which categorify the integrable highest weight modules of the corresponding
Lie algebra g D sl1. Ariki’s work includes the case that the defining parameter of
Hn is a primitive pth root of unity, when sl1 is replaced by the affine Kac–Moody

algebra �slp .

Quiver Hecke algebras were discovered independently in 2008 by Khovanov and
Lauda [18], [19] and Rouquier [30]. They are certain Hecke algebras attached to
symmetrizable Cartan matrices. It appears that Khovanov and Lauda came upon these
algebras from an investigation of endomorphisms of Soergel bimodules (and related
bimodules which arise from cohomology of partial flag varieties), while Rouquier’s
motivation was a close analysis of Lusztig’s construction of canonical bases in terms of
perverse sheaves on certain quiver varieties. In a perfect analogy with the Bernstein-
Zelevinsky theory just described, these algebras categorify the coordinate algebra of
the unipotent group N associated to a maximal nilpotent subalgebra of the Kac–Moody
algebra g arising from the given Cartan matrix.

In fact the picture is even better: the quiver Hecke algebras are naturally Z-graded,
so that the Grothendieck groups of their categories of finite dimensional graded repre-
sentations are ZŒq; q�1�-modules, with q acting by degree shift. The resulting “graded”
Grothendieck groups categorify a ZŒq; q�1�-form for the quantum group f that is half of
the quantized enveloping algebra Uq.g/. Moreover there is an analogue of Ariki’s the-
orem, conjectured originally by Khovanov–Lauda and proved by Varagnolo–Vasserot
[32] and Rouquier [31, Corollary 5.8] using geometric methods in the spirit of [7]. There
are even cyclotomic quotients of the quiver Hecke algebras which Kang–Kashiwara
[13], Rouquier [31, Theorem 4.25] and Webster [35] have used to categorify inte-
grable highest weight modules. Rouquier also observed in (finite or affine) type A
that the quiver Hecke algebras become isomorphic to the affine Hecke algebras dis-
cussed earlier (at a generic parameter or a root of unity) when suitably localized (see
[30, Proposition 3.15] and also [4] in the cyclotomic setting). Thus Ariki’s theorem
is a special case of the Rouquier–Varagnolo–Vasserot categorificiation theorem just
mentioned (see [5]).

Even more variations on the quiver Hecke algebras have subsequently emerged,
including a twisted version related to affine Hecke algebras of type B introduced by
Varagnolo and Vasserot [33], and the quiver Hecke superalgebras of Kang, Kashiwara
and Tsuchioka [16]. The latter superalgebras generalize Wang’s spin Hecke algebras
[34] and the odd nil Hecke algebra of Ellis, Khovanov and Lauda [10], and give a
completely new “supercategorification” of the same quantum groups/highest weight
modules as above (see [15]). We also mention the work [14] which connects quiver
Hecke algebras to quantum affine algebras, potentially providing a direct algebraic link
between the categorifications of ZŒN � arising via quiver Hecke algebras and the ones
introduced by Hernandez and Leclerc in [12].
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For the future perhaps the most exciting development arising from these new alge-
bras is the introduction again by Khovanov–Lauda [20] and Rouquier [31] of certain
2-categories called 2-Kac–Moody algebras. These categorify Lusztig’s idempotented
version PUq.g/ of the quantized enveloping algebra of g (see [20], [35], [37]). In the
case g D sl2 this goes back to work of Chuang–Rouquier [8] and Lauda [24]. In the
introduction of [30], Rouquier promises to define a tensor product on the 2-category of
dg 2-representations of the 2-Kac–Moody algebra, the ultimate goal being to construct
4-dimensional TQFTs in fulfillment of predictions made long ago by Crane and Frenkel
[9]. Webster has also suggested a more down-to-earth diagrammatic approach to con-
structing categorifications of tensor products of integrable highest weight modules in
finite types in [35], [36].

In this article we will not discuss at all any of these higher themes, aiming instead
to give a gentle and self-contained introduction to the quiver Hecke algebras and their
connection to Lusztig’s algebra f , focussing just on the case of symmetric Cartan ma-
trices for simplicity. In the last section of the article we specialize further to finite type
and explain some of the interesting homological properties of quiver Hecke algebras
in that setting, similar in spirit to those of a quasi-hereditary algebra, despite being
infinite-dimensional. As we go we have included proofs or sketch proofs of many of
the foundational results, before switching into full survey mode later on. To improve
readability, references to the literature are deferred to the end of each section.

2 Quiver Hecke algebras

In this opening section, we give a general introduction to the definition and structure
of quiver Hecke algebras.

Gradings. Fix once and for all an algebraically closed ground field K. Everything
(vector spaces, algebras, modules, …) will be Z-graded. For a graded vector space
V D L

n2Z Vn, its graded dimension is Dim V WD P
n2Z.dim Vn/qn, where q is a

formal variable. Of course this only makes sense if V is locally finite dimensional,
i.e. the graded pieces of V are finite dimensional. Typically V will also be bounded
below, i.e. Vn D 0 for n � 0, in which case Dim V is a formal Laurent series in q.
We write qmV for the upward degree shift by m steps, so qmV is the graded vector
space with .qmV /n WD Vn�m, and then Dim qmV D qm Dim V . More generally,
for f .q/ D P

n2Z fnqn, we write f .q/V for
L

n2Z.qnV /˚n. Finally we write
Hom.V; W / for the graded vector space

L
n2Z Hom.V; W /n, where Hom.V; W /n

denotes the linear maps f W V ! W that are homogeneous of degree n, i.e. they map
Vm into WmCn. Note then that End.V / WD Hom.V; V / is a graded algebra.

Demazure operators. Recall that the symmetric group Sn is generated by the basic
transpositions t1; : : : ; tn�1 subject only to the braid relations ti tiC1ti D tiC1ti tiC1 and
ti tj D tj ti for ji � j j > 1, plus the quadratic relations t2

i D 1. The length `.w/ of
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w 2 Sn is #f1 � i < j � n j w.i/ > w.j /g. We will denote the longest element
of Sn by wŒ1;n�. This is the permutation 1 7! n, 2 7! n � 1, 3 7! n � 2, …, n 7! 1,
which is of length 1

2
n.n � 1/. Letting Œn� WD qn�q�n

q�q�1 and Œn�Š WD Œn�Œn � 1� : : : Œ2�Œ1�,
we have the well-known factorization of the Poincaré polynomial of Sn:

X
w2Sn

q2`.w/ D q
1
2 n.n�1/Œn�Š : (2.1)

Let Sn act on the polynomial algebra Poln WD KŒx1; : : : ; xn� by permuting the
variables. Viewing Poln as a graded algebra with each xi in degree 2, this is an
action by graded algebra automorphisms. So the invariants form a graded subalge-
bra Symn WD PolSn

n , namely, the algebra of symmetric polynomials. This is again a
free polynomial algebra generated by the elementary symmetric polynomials er WDP

1�i1<���<ir �n xi1 : : : xir for r D 1; : : : ; n, hence

Dim Symn D
1

.1 � q2/.1 � q4/ : : : .1 � q2n/
: (2.2)

For i D 1; : : : ; n � 1, we have the Demazure operator

@i W Poln ! Poln; f 7! ti .f / � f

xi � xiC1

: (2.3)

This is a homogeneous linear map of degree �2 such that @i .fg/ D @i .f /g C
ti .f /@i .g/. From this identity, it is easy to see that @i is a Symn-module homo-
morphism. The endomorphisms @1; : : : ; @n�1 satisfy the same braid relations as in
the symmetric group, hence for each w 2 Sn there is a well-defined operator @w 2
End.Poln/�2`.w/ such that @w D @i1 : : : @ik if w D ti1 : : : tik is a reduced expression
for w, i.e. k D `.w/. Moreover we have that @2

i D 0 for each i D 1; : : : ; n � 1.

Theorem 2.1. The polynomial algebra Poln is a free Symn-module of rank nŠ , with
basis .bw/w2Sn

defined from bw WD @w.x2x2
3 : : : xn�1

n /. Each bw is homogeneous of
degree n.n � 1/ � 2`.w/, and bwŒ1;n�

D 1.

Proof. We first show by induction on n that bwŒ1;n�
D 1. Let wŒ2;n� denote the longest

element of Sn�1 embedded into Sn as the permutations fixing 1, so that wŒ1;n� D
tn�1 : : : t1wŒ2;n�. Then:

@wŒ1;n�
.x2x2

3 : : : xn�1
n / D @n�1 : : : @1@wŒ2;n�

..x2 : : : xn/.x3 : : : xn�2
n //

D @n�1 : : : @1.x2 : : : xn@wŒ2;n�
.x3 : : : xn�2

n // D 1:

Now we use this to show that the elements .bw/w2Sn
are Symn-linearly independent.

Suppose that
P

w2Sn
pwbw D 0 for some pw 2 Symn, not all of which are zero. Let

w 2 Sn be of minimal length such that pw ¤ 0, and write wŒ1;n� D w0w for w0 2
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Sn. Then apply @w0 to the identity
P

w2Sn
pw@w.x2x2

3 : : : xn�1
n / D 0 to deduce that

pw D 0, a contradiction. Finally to complete the proof we check graded dimensions:

Dim
� M

w2Sn

Symnbw

�
(2.2)D

P
w2Sn

qn.n�1/�2`.w/

.1 � q2/.1 � q4/ : : : .1 � q2n/

(2.1)D 1

.1 � q2/n
D Dim Poln:

Corollary 2.2. The endomorphismalgebra EndSymn
.Poln/ is isomorphic to the algebra

of nŠ � nŠ matrices with entries in Symn. More precisely, its center is identified with
Symn, it is free as a module over its center with a basis of matrix units .ex;y/x;y2Sn

defined from ex;y.bw/ WD ıy;wbx , and each ex;y is homogeneous of degree 2.`.y/ �
`.x//.

The nil Hecke algebra. The nil Hecke algebra NHn is the quiver Hecke algebra (to
be defined formally in the next subsection) for the trivial quiver �. By definition, it is
the associative graded K-algebra with homogeneous generators x1; : : : ; xn of degree
2 and �1; : : : ; �n�1 of degree �2, subject to the following relations: the xi ’s commute,
the �i ’s satisfy the same braid relations as in the symmetric group plus the quadratic
relations �2

i D 0, and finally �ixj � xti .j /�i D ıiC1;j � ıi;j : As the �i ’s satisfy the
braid relations, there are well-defined elements �w 2 NHn for each w 2 Sn such that
�w D �i1 : : : �ik whenever w D ti1 : : : tik is a reduced expression. The definition of
NHn ensures that we can make the polynomial algebra Poln into a left NHn-module
by declaring that each xi acts by left multiplication and each �i acts by the Demazure
operator @i .

Theorem 2.3. The nil Hecke algebra NHn has basis

fxm1

1 : : : xmn
n �w j w 2 Sn; m1; : : : ; mn � 0g:

Moreover the action of NHn on Poln induces a graded algebra isomorphism

NHn ��!� EndSymn
.Poln/:

Proof. It is clear from the relations that the given monomials span NHn. To show that
they are linearly independent, suppose there is a non-trivial linear relation

X
w2Sn

X
m1;:::;mn�0

cw;m1;:::;mn
x

m1

1 : : : xmn
n �w D 0:

Let w be of minimal length such that cw;m1;:::;mn
¤ 0 for some m1; : : : ; mn. Write

wŒ1;n� D ww0 then act on the vector bw0 from Theorem 2.1 to obtain the desired contra-
diction. This argument shows in fact that the homomorphism NHn ! EndSymn

.Poln/

induced by the action of NHn on Poln is injective. Finally it is surjective by a graded
dimension calculation.
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The theorem shows in particular that the algebra Poln embeds into NHn as the sub-
algebra generated by x1; : : : ; xn. Using also Corollary 2.2, we deduce that Z.NHn/ D
Symn, and NHn is isomorphic to the algebra of nŠ � nŠ matrices over its center. Let

en WD x2x2
3 : : : xn�1

n �wŒ1;n�
: (2.4)

Recalling Theorem 2.1, we have that enb1 D b1 and enbw D 0 for w ¤ 1. Hence
en corresponds under the isomorphism from Theorem 2.3 to the matrix unit e1;1 of
Corollary 2.2, so it is a primitive idempotent. It follows that

Pn WD q
1
2 n.n�1/NHnen (2.5)

is an indecomposable projective module. It has a unique irreducible graded quotient
which we denote by Ln.

Corollary 2.4. The left regular module NHn is isomorphic to Œn�ŠPn as a graded
module. Hence Dim Ln D Œn�Š .

Proof. Using Theorem 2.3, we identify NHn with EndSymn
.Poln/. Then as in Corol-

lary 2.2 we have that NHn D L
w2Sn

NHnew;w . Right multiplication by ew;1 is an
isomorphism of graded modules NHnew;w Š q2`.w/NHne1;1. Thus

NHn Š
M

w2Sn

q2`.w/NHnen

(2.1)Š Œn�Š
�
q

1
2 n.n�1/NHnen

� D Œn�ŠPn:

Finally Dim Ln D Dim HomNHn
.NHn; Ln/ D Œn�Š Dim HomNHn

.Pn; Ln/ D Œn�Š .

Corollary 2.5. Pn Š q� 1
2 n.n�1/Poln.

Proof. It is clear from Theorems 2.3 and 2.1 that Poln is a projective indecomposable
NHn-module, so it is isomorphic to Pn up to a degree shift. To determine the degree
shift, compare graded dimensions.

The quiver Hecke algebra. Fix now a loop-free quiver with finite vertex set I . For
i; j 2 I , let mi;j denote the number of directed edges i ! j . The corresponding
(symmetric) Cartan matrix C D .ci;j /i;j 2I is defined from ci;i WD 2 and ci;j WD
�mi;j �mj;i for i ¤ j . To C there is an associated (symmetric) Kac–Moody algebra
g. We fix a choice of root datum for g. This gives us a weight lattice P , which
is a finitely generated free abelian group equipped with a symmetric bilinear form
P � P ! Q; .�; �/ 7! � � �, containing simple roots .˛i /i2I and fundamental
weights .$i /i2I such that ˛i � j̨ D ci;j and ˛i � !j D ıi;j for all i; j 2 I . The root
lattice is Q WD L

i2I Z˛i 	 P . Also let QC WD L
i2I N˛i 	 Q, and define the

height of ˛ D P
i2I ci˛i 2 QC to be the sum ht.˛/ WD P

i2I ci of its coefficients.
Finally let hI i denote the set of all words in the alphabet I and, for ˛ 2 QC of height n,
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let hI i˛ 	 hI i denote the words i D i1 : : : in 2 hI i such that ˛i1 C � � � C ˛in D ˛.
The symmetric group Sn acts on hI i˛ by permuting letters in the obvious way.

Let qi;j .u; v/ 2 KŒu; v� denote 0 if i D j or .v � u/mi;j .u � v/mj;i if i ¤ j .
For ˛ 2 QC of height n, the quiver Hecke algebra H˛ is the associative K-algebra on
generators f1i j i 2 hI i˛g [ fx1; : : : ; xng [ f�1; : : : ; �n�1g subject to the following
relations:

F the 1i ’s are orthogonal idempotents summing to the identity 1˛ 2 H˛;

F 1i xk D xk1i and 1i �k D �k1tk.i /;

F x1; : : : ; xn commute;

F .�kxl � xtk.l/�k/1i D ıik ;ikC1
.ıkC1;l � ık;l/1i I

F �2
k
1i D qik ;ikC1

.xk; xkC1/1i ;

F �k�l D �l�k if jk � l j > 1;

F .�kC1�k�kC1��k�kC1�k/ 1i

D ıik ;ikC2

qik ;ikC1
.xk; xkC1/�qik ;ikC1

.xkC2; xkC1/

xk � xkC2

1i :

There is a well-defined Z-grading on H˛ such that each 1i is of degree 0, each xj is
of degree 2, and each �k1i is of degree �˛ik � ˛ikC1

.
Note right away that if ˛ D n˛i for i 2 I , then the quiver Hecke algebra Hn˛i

is just a copy of the nil Hecke algebra NHn. In particular there is just one irreducible
graded left Hn˛i

-module up to isomorphism and degree shift. A representative for it
may be constructed as the irreducible head L.in/ of the projective indecomposable
module

P.in/ WD q
1
2 n.n�1/Hn˛i

en (2.6)

where en 2 Hn˛i
is the primitive idempotent defined like in (2.4). By Corollary 2.4,

L.in/ has graded dimension Œn�Š .
It is common – and convenient for calculations – to interpret H˛ diagrammatically.

In this paragraph we explain this point of view under the simplifying assumption that
the underlying quiver is simply-laced, i.e. mi;j C mj;i � 1 for all i ¤ j . Start with
the free graded K-linear monoidal category H 0 generated by objects i .i 2 I / and
homogeneous morphisms x W i ! i of degree 2 and � W ij ! j i of degree �˛i � j̨ for
all i; j 2 I . We represent x and � diagrammatically by:

x D�
i

i

� D
�
�
�

�

i j

j i

Composition of morphisms corresponds to vertical concatenation of diagrams (so a Bb
is the diagram a on top of the diagram b), while tensor product is horizontal concate-
nation (so a˝b is a to the left of b). Arbitrary objects are tensor products i1˝� � �˝ in
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of the generators i1; : : : ; in 2 I , which we identify with words i D i1 : : : in 2 hI i.
Then, for two words i ; j 2 hI i, an arbitrary morphism i ! j is a linear combination
of diagrams obtained by composing x’s and � ’s horizontally and vertically to obtain
braid-like diagrams with strings consistently colored by the letters of the word i at the
bottom and the word j at the top. In particular, HomH 0.i ; j / D ¿ unless i and j

both lie in hI i˛ for some ˛ 2 QC. Then the quiver Hecke category H is the K-linear
monoidal category obtained from H 0 by imposing the following relations:

�
�
�

�

i ¤j

� D
�
�
�

�

i ¤j
� �

�
�

�

i ¤j
� D �

�
�

�

i ¤j

�
�
�
�

�

i i

� D
�
�
�

�

i i
� C

i i
�
�
�

�

i i
� D �

�
�

�

i i

� C
i i

i j

D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

0 if i D j ,

i j

� � �
i j

if i ! j ,

i j

� � �
i j

if i  j ,

i j

otherwise,

�
�

��

�
�

��

i j k

�
�

�
��

�
�

��

i j k

D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

�
i j k

if i D k ! j ,

i j k

if i D k  j ,

0 otherwise.

The quiver Hecke algebra H˛ D L
i ;j 2hI i˛

1j H˛1i from before is identified with
the vector space

L
i ;j 2hI i˛

HomH .i ; j /, so that multiplication in H˛ corresponds to
vertical composition of morphisms in H .

For ˛ 2 QC of height n again, the relations imply that there is an antiautomorphism
T W H˛ ! H˛ defined on generators by

T.1i / D 1i ; T.xk/ D xk; T.�k/ D �k : (2.7)

In diagrammatic terms, T reflects in a horizontal axis.

Basis theorem and center. Suppose in this subsection that ˛ 2 QC is of height n.
In general the braid relations are only approximately true in H˛ . So, to write down a
basis, we must fix a choice of a distinguished reduced expression w D ti1 : : : tik for
each w 2 Sn, then define �w WD �i1 : : : �ik 2 H˛ . Also, for w 2 Sn and i 2 hI i˛ , let

deg.wI i / WD �
X

1�j <k�n
w.j />w.k/

˛ij � ˛ik : (2.8)

The following theorem is proved in a similar way to the special case Theorem 2.3, by
constructing a certain polynomial representation of the quiver Hecke algebra on the
underlying vector space Pol˛ WDL

i2hI i˛
Poln1i .
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Theorem 2.6 (“Basis theorem”). The monomials

fxm1

1 : : : xmn
n �w1i j i 2 hI i˛; w 2 Sn; m1; : : : ; mn � 0g

give a basis for H˛ . Hence, for i ; j 2 hI i˛ , we have that

Dim 1j H˛1i D 1

.1 � q2/n

X
w2Sn

w.i /Dj

qdeg.wIi /: (2.9)

Note that Theorem 2.6 shows in particular that H˛ is locally finite dimensional
and bounded below. The final basic result in this section is concerned with the center
Z.H˛/. To formulate it, we pick i 2 hI i˛ so that Si WD StabSn

.i / is a standard
parabolic subgroup of Sn, i.e. all equal letters in the word i appear consecutively. For
j D 1; : : : ; n, let

zj WD
X

w2Sn=Si

xw.j /1w.i /; (2.10)

where Sn=Si denotes the set of minimal length left coset representatives. In view of
Theorem 2.6, these elements generate a free polynomial algebra KŒz1; : : : ; zn� inside
H˛ . We let Si � Sn act on KŒz1; : : : ; zn� by permuting the generators.

Theorem 2.7 (“Center”). We have that

Z.H˛/ D KŒz1; : : : ; zn�Si :

Hence H˛ is free of finite rank as a module over its center; forgetting the grading the
rank is .nŠ/2.

To illustrate how the second statement of the theorem is deduced from the first,
consider the special case I D f1; 2g and ˛ D 2˛1 C ˛2, and take i D 112. Then

z1 D x11112 C x11121 C x21211;

z2 D x21112 C x31121 C x31211;

z3 D x31112 C x21121 C x11211:

By the first part of the theorem, Z.H˛/ is freely generated by the elements z1 C z2,
z1z2 and z3. The algebra KŒz1; z2; z3� is free with basis f1; z1g as a Z.H˛/-module; the
algebra Pol˛ embedded in the natural way into H˛ is free as a KŒz1; z2; z3�-module with
basis f1112; 1121; 1211g; and finally H˛ is a free left Pol˛-module on basis f�w jw 2 S3g.
Putting it all together we see that H˛ is a free Z.H˛/-module of rank 36.

Notes. Our discussion of nil Hecke algebras follows [31, �2].
Quiver Hecke algebras were introduced by Khovanov and Lauda [18], [19] and

independently by Rouquier [30] (in a slightly more general form); consequently they
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are also often called Khovanov–Lauda–Rouquier algebras. We have restricted to sym-
metric Cartan matrices for simplicity, but note that all of the definitions and results
described in this article can be extended to arbitrary symmetrizable Cartan matrices,
with the notable exception of Theorem 3.11. The precise normalization of the relations
chosen here matches that of [31, �5] and [32], where quiver Hecke algebras for sym-
metric Cartan matrices are realized geometrically as ext-algebras of a certain direct
sum of degree-shifted irreducible perverse sheaves on a quiver variety.

Theorems 2.6 and 2.7 are proved both in [30, Theorem 3.7 and Proposition 3.9] and
in [18, Theorem 2.5 and Theorem 2.9].

3 Categorification

Now we describe the main results relating the representation theory of the quiver Hecke
algebras H˛ (or the quiver Hecke category H ) to Lusztig’s algebra f , i.e. half of the
quantized enveloping algebra associated to the Kac–Moody algebra g.

Rep and Proj. By an H -module we henceforth mean a QC-graded vector space
V D L

˛2QC 1˛V such that each 1˛V is a graded left H˛-module. Occasionally
we talk about ungraded modules, meaning each 1˛V is a left H˛-module without any
prescribed grading. In view of Theorem 2.6, each H˛ is locally finite dimensional and
bounded below, hence irreducible H -modules are automatically finite dimensional.
Also Theorem 2.7 implies that there are only finitely many irreducible graded H˛-
modules for each ˛ 2 QC up to isomorphism and degree shift.

Lemma 3.1. Every irreducible H -module remains irreducible as an ungraded mod-
ule. If L1 and L2 are two irreducible H -modules which are isomorphic as ungraded
modules then there exists a unique m 2 Z such that L1 Š qmL2 as graded modules.

Proof. The first part is [28, Theorem 4.4.4 (v)], and the second part follows from
[2, Lemma 2.5.3].

We have that 1˛ D L
i2hI i˛

1i as a sum of mutually orthogonal idempotents,
hence any H -module V decomposes as a vector space as V DL

i2hI i 1i V: We refer
to the subspace 1i V as the i -word space of V . The character of a finite dimensional
H -module V is defined from

Ch V WD
X

i2hI i
.Dim 1i V /i ; (3.1)

which is an element of the free ZŒq; q�1�-module ZŒq; q�1�hI i on basis hI i. Forgetting
the grading, we also have the ungraded character ch V WDP

i2hI i.dim 1i V /i , which
is the specialization of Ch V at q D 1.
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Lemma 3.2. Fix a total order < on I . For a word i 2 hI i of length n define

p.i / WD
X

1�j <k�n
ij <ik

˛ij � ˛ik .mod 2/:

Then every H -module V decomposes as a direct sum of modules as V D V
N0 ˚ V

N1
where

V q WD
M

i2hI i;n2Z
n	p.i /Cq .mod 2/

1i Vn:

Proof. We just need to check for ˛ 2 QC that 1˛V
N0 and 1˛V

N1 are stable under
the action of the generators of H˛ . This is clear for the generators 1i and xj since
these are even and preserve the word spaces. For �k , note that it maps 1i Vn into
1tk.i /Vn�˛ik

�˛ikC1
, and we have that p.tk.i // 
 p.i / � ˛ik � ˛ikC1

.mod 2/.

We are going to focus now on the categories

Rep.H/ D
M

˛2QC

Rep.H˛/; Proj.H/ D
M

˛2QC

Proj.H˛/

of finite dimensional H -modules and finitely generated projective H -modules, respec-
tively. Morphisms in both categories are module homomorphisms that are homoge-
neous of degree 0. In particular, this ensures that Rep.H/ is an abelian category.
We continue to write HomH .V; W / for

L
n2Z HomH .V; W /n, where HomH .V; W /n

means homomorphisms that are homogeneous of degree n. In other words, we are
viewing Rep.H/ and Proj.H/ as graded categories equipped with the distinguished
degree shift automorphism V 7! qV , and HomH .V; W / is the graded vector spaceL

n2Z hom.qnV; W / defined via the internal hom.
The following theorem is fundamental. Its proof is essentially the same as the proof

of the analogous statement for the affine Hecke algebra Hn from the introduction, which
is classical. The argument uses the Shuffle Lemma (formulated as Corollary 3.7 below)
and the properties of the nil Hecke algebra proved already.

Theorem 3.3 (“Linear independence of characters”). For ˛ 2 QC, suppose that
L1; : : : ; Lr are representatives for the irreducible graded left H˛-modules up to iso-
morphism and degree shift. Their ungraded characters ch L1; : : : ; ch Lr 2 ZhI i are
Z-linearly independent.

Let ŒRep.H/� denote the Grothendieck group of the abelian category Rep.H/ and
ŒProj.H/� be the split Grothendieck group of the additive category Proj.H/. The
isomorphism classes of irreducible H -modules give a basis for ŒRep.H/�, and the iso-
morphism classes of projective indecomposable H -modules give a basis for ŒProj.H/�,
both as free Z-modules. We often view ŒRep.H/� and ŒProj.H/� as ZŒq; q�1�-modules,
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with action of q induced by the degree shift automorphism. The character map from
(3.1) induces a ZŒq; q�1�-linear map

Ch W ŒRep.H/�! ZŒq; q�1�hI i:
Corollary 3.4. The map Ch W ŒRep.H/�! ZŒq; q�1�hI i is injective.

Proof. Let L1; : : : ; Lr be as in Theorem 3.3, so that ŒL1�; : : : ; ŒLr � give a basis for
ŒRep.H/� as a free ZŒq; q�1�-module. We need to show that their characters Ch L1; : : : ;

Ch Lr are ZŒq; q�1�-linearly independent. Take a non-trivial linear relation

rX
iD1

fi .q/ Ch Li D 0

for fi .q/ 2 ZŒq; q�1�. Dividing by q � 1 if necessary we may assume that fi .1/ ¤ 0

for some i . Then we specialize at q D 1 to deduce that
Pr

iD1 fi .1/ ch Li D 0,
contradicting Theorem 3.3.

There are dualities ~ and # on Rep.H/ and Proj.H/, respectively, defined by
V ~ WD HomK.V; K/ and P # WD HomH .P; H/, with the left action of H arising
via the antiautomorphism T. These dualities induce involutions of the Grothendieck
groups ŒRep.H/� and ŒProj.H/� which are antilinear with respect to the bar involution
�W ZŒq; q�1�! ZŒq; q�1�; q 7! q�1: There is also a non-degenerate bilinear pairing
.�; �/ W ŒProj.H/� � ŒRep.H/�! ZŒq; q�1� defined from

.ŒP �; ŒV �/ WD Dim HomH .P #; V / D Dim HomH .P; V ~/: (3.2)

Lemma 3.5. Any irreducible H -module L can be shifted uniquely in degree so that it
becomes ~-self-dual. In that case its projective cover P is #-self-dual.

Proof. Let L be an irreducible H -module. It is immediate from the definition of ~
that the word spaces of L and L~ have the same dimensions (although they might
not have the same graded dimensions). In other words, we have that ch L D ch.L~/.
Combined with Theorem 3.3 and Lemma 3.1, this means that there is a unique m 2 Z
such that L~ Š qmL. Now pick i such that 1i L ¤ 0. By Lemma 3.2 we have that

Dim 1i L D a0qp C a1qpC2 C � � � C akqpC2k

for some p 2 Z, k � 0 and a0; : : : ; ak 2 N with a0; ak ¤ 0. Hence

Dim 1i L~ D qm.a0qp C � � � C akqpC2k/ D akq�p�2k C � � � C a0q�p:

We deduce that mCp D �p� 2k, hence m is even. Then .qm=2L/~ Š q�m=2L~ Š
qm=2L and we have proved the first part. For the second part, suppose that L Š L~

and that P is the projective cover of L. We need to show that the projective inde-
composable module P # also covers L. This follows because dim HomH .P #; L/0 D
dim HomH .P; L~/0 D dim HomH .P; L/0 ¤ 0, using (3.2).
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Lemma 3.5 implies that the sets

B WD fŒP � j for all #-self-dual projective indecomposable H -modules P g ; (3.3)

B� WD fŒL� j for all ~-self-dual irreducible H -modules Lg (3.4)

give bases for Proj.H/ and Rep.H/, respectively, as free ZŒq; q�1�-modules. Moreover
these two bases are dual to each other with respect to the pairing .�; �/.

Induction and restriction. For ˇ; � 2 QC, tensor product (horizontal composition)
in the quiver Hecke category defines a non-unital algebra embedding Hˇ ˝ H� ,!
HˇC� . We denote the image of the identity 1ˇ ˝ 1� 2 Hˇ ˝H� by 1ˇ;� 2 HˇC� .
Then for a graded left HˇC� -module U and a graded left Hˇ ˝H� -module V , we set

ResˇC�

ˇ;�
U WD 1ˇ;�U; IndˇC�

ˇ;�
V WD HˇC�1ˇ;� ˝Hˇ˝H�

V;

which are naturally graded left Hˇ ˝H� - and HˇC� -modules, respectively. Both are
exact functors; for induction this is a consequence of the basis theorem (Theorem 2.6).
The following Mackey-type theorem is one of the main reasons quiver Hecke algebras
are so amenable to purely algebraic techniques.

Theorem 3.6 (“Mackey filtration”). Suppose ˇ; �; ˇ0; � 0 2 QC are of heights m, n,
m0, n0, respectively, such that ˇ C � D ˇ0 C � 0. Setting k WD min.m; n; m0; n0/, let
f1 D w0 < � � � < wkg be the set of minimal length Sm0 � Sn0nSmCn=Sm � Sn-double
coset representatives ordered via the Bruhat order. For any graded left Hˇ ˝ H� -
module V , there is a filtration

0 D V�1 � V0 � V1 � � � � � Vk D Resˇ 0C� 0

ˇ 0;� 0 B IndˇC�

ˇ;�
.V /

defined by Vj WDPj
iD0

P
w2.Sm0 �Sn0 /wi .Sm�Sn/ 1ˇ 0;� 0�w1ˇ;� ˝V . Moreover there is

a unique isomorphism of graded Hˇ 0 ˝H� 0-modules

Vj =Vj �1 ��!�
M

ˇ1;ˇ2
�1;�2

q�ˇ2��1 Indˇ 0;� 0

ˇ1;�1;ˇ2;�2
BI � B Resˇ;�

ˇ1;ˇ2;�1;�2
.V /;

1ˇ 0;� 0�wj
1ˇ;� ˝ v C Vj �1 7�!

X
ˇ1;ˇ2
�1;�2

1ˇ1;�1;ˇ2;�2
˝ 1ˇ1;ˇ2;�1;�2

v;

where I W Hˇ1
˝ H�1

˝ Hˇ2
˝ H�2

�!� Hˇ1
˝ Hˇ2

˝ H�1
˝ H�2

is the obvious
isomorphism, and the sums are taken over all ˇ1; ˇ2; �1; �2 2 QC such that ˇ1Cˇ2 D
ˇ; �1 C �2 D �; ˇ1 C �1 D ˇ0; ˇ2 C �2 D � 0 and min.ht.ˇ2/; ht.�1// D j .
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Proof. Think about the picture

wj D

ˇ1 ˇ2 �1 �2

ˇ1 �1 ˇ2 �2

„ ƒ‚ …
ˇ

„ ƒ‚ …
�

ˇ 0‚ …„ ƒ � 0‚ …„ ƒ

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�

�
�

�

�
�

�
�

�

If X is a graded left Hˇ -module and Y is a graded left H� -module, hence their
outer tensor product X � Y is a graded left Hˇ ˝H� -module, we set

X B Y WD IndˇC�

ˇ;�
.X � Y /:

This is finite dimensional if both X and Y are finite dimensional (by the basis theo-
rem), and it is projective if both X and Y are projective (indeed we obviously have that
H1i B H1j D H1ij ). Hence B defines a tensor product operation on both Rep.H/

and Proj.H/, making these into monoidal categories. So the Grothendieck groups
ŒRep.H/� and ŒProj.H/� become ZŒq; q�1�-algebras. Also introduce a bilinear mul-
tiplication B on ZŒq; q�1�hI i, which we call the shuffle product, by declaring that for
words i and j of lengths m and n, respectively, that

i B j WD
X

w2SmCn

w.1/<���<w.m/
w.mC1/<���<w.mCn/

qdeg.wIij /w.i j /; (3.5)

recalling (2.8). This makes ZŒq; q�1�hI i into an associative ZŒq; q�1�-algebra, which
we call the quantum shuffle algebra. The first important consequence of the Mackey
theorem (iterated!) is as follows.

Corollary 3.7 (“Shuffle Lemma”). For finite dimensional H -modules X and Y , we
have that

Ch.X B Y / D .Ch X/ B .Ch Y /:

Hence Ch W ŒRep.H/� ,! ZŒq; q�1�hI i is an injective algebra homomorphism.

The restriction functor ResˇC�

ˇ;�
sends finite dimensional modules to finite dimen-

sional modules (obviously) and projectives to projectives (by the basis theorem). Sum-
ming over all ˇ; � , we get induced ZŒq; q�1�-module homomorphisms ŒRep.H/� !
ŒRep.H/�˝ZŒq;q�1� ŒRep.H/� and ŒProj.H/�! ŒProj.H/�˝ZŒq;q�1� ŒProj.H/� mak-
ing our Grothendieck groups into coalgebras. The Mackey theorem also implies the
following.
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Corollary 3.8. The Grothendieck group ŒRep.H/� is a twisted bialgebra (i.e. co-
multiplication is an algebra homomorphism) with respect to the multiplication on
ŒRep.H/�˝ZŒq;q�1� ŒRep.H/� defined by

.a˝ b/.c ˝ d/ WD q�ˇ ��ac ˝ bd (3.6)

for a 2 ŒRep.H˛/�, b 2 ŒRep.Hˇ /�, c 2 ŒRep.H� /� and d 2 ŒRep.Hı/�. Similarly
ŒProj.H/� is a twisted bialgebra in the same sense.

Note finally that if we extend the pairing between ŒProj.H/� and ŒRep.H/� diago-
nally to a pairing between ŒProj.H/� ˝ZŒq;q�1� ŒProj.H/� and ŒRep.H/� ˝ZŒq;q�1�

ŒRep.H/�, i.e. we set .a˝b; c˝d/ WD .a; c/.b; d/, then the multiplication on ŒRep.H/�

is dual to the comultiplication on ŒProj.H/�, and vice versa. This follows from the
definition (3.2) together with Frobenius reciprocity. In other words the QC-graded
twisted bialgebras ŒRep.H/� and ŒProj.H/� are graded dual to each other.

The categorification theorem. We now connect ŒRep.H/� and ŒProj.H/� to Lusztig’s
algebra f , that is, the Q.q/-algebra on generators �i .i 2 I / subject to the quantum
Serre relations X

rCsD1�˛i � j̨

.�1/r�
.r/
i �j �

.s/
i D 0

for all i; j 2 I and r � 1, where �
.r/
i denotes the divided power � r

i =Œr�Š . There is a
QC-grading f D L

˛2QC f˛ defined so that �i is in degree ˛i . We use this to make
f˝ f into an algebra with twisted multiplication defined in the same way as (3.6). Then
there is a unique algebra homomorphism

r W f ! f ˝ f ; �i 7! �i ˝ 1C 1˝ �i (3.7)

making f into a twisted bialgebra. We also need Lusztig’s ZŒq; q�1�-form fZŒq;q�1�

for f , which is the ZŒq; q�1�-subalgebra of f generated by all �
.r/
i . We always identify

f with Q.q/ ˝ZŒq;q�1� fZŒq;q�1�. The first important categorification theorem is as
follows.

Theorem 3.9 (Khovanov–Lauda). There is an isomorphism of twisted bialgebras

� W fZŒq;q�1� ��!� ŒProj.H/�

such that �i 7! ŒH˛i
� for each i 2 I .

In the rest of the subsection we are going to explain the proof of this, since it is
instructive, elementary, and reveals many further connections between f and H . To
start with we extend scalars and show that there is a Q.q/-algebra homomorphism

O� W f ! Q.q/˝ZŒq;q�1� ŒProj.H/�; �i 7! ŒH˛i
�:
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To prove this we must show that the Serre relations hold in the right hand algebra. For
i D i1 : : : in 2 hI i let �i WD �i1 : : : �in . Note that the homomorphism � (if it exists)
should send �i to ŒH1i �. Hence, recalling the definition (2.6) and using Corollary 2.4,
it should send �

.n/
i to ŒP.in/�. Thus we need to show thatX

rCsD1�˛i � j̨

.�1/r ŒP.i r/ B P.j / B P.i s/� D 0

in ŒProj.H/�. This follows from the following stronger statement, which gives a cate-
gorification of the Serre relations.

Lemma 3.10. Take i; j 2 I with i ¤ j and let n WD 1 � ˛i � j̨ . Let ˛ WD n˛i C j̨ .
For r; s � 0 with r C s D n, let er;s 2 H˛ denote the image of er ˝ 1j ˝ es

under the embedding Hr˛i
˝H

j̨
˝Hs˛i

,! H˛ , so that P.i r/ B P.j / B P.i s/ D
q

1
2 r.r�1/C 1

2 s.s�1/H˛er;s . Then there is an exact sequence

0! q
1
2 n.n�1/H˛e0;n ! � � �

� � � ! q
1
2 r.r�1/C 1

2 s.s�1/H˛er;s

dr;s��! q
1
2 .rC1/rC 1

2 .s�1/.s�2/H˛erC1;s�1 ! � � �
� � � ! q

1
2 n.n�1/H˛en;0 ! 0:

The homomorphism dr;s is given by right multiplication by

�r;s WD

i i i i i j i i i i

i i i i j i i i i i

„ ƒ‚ …
rC1

„ ƒ‚ …
s�1

r‚ …„ ƒ s‚ …„ ƒ

�
�

�
�

�

	
	
	
	
		

	
	
	
	
		

	
	
	
	
		

	
	
	
	
		

	
	
	
	
		

Proof. It is a complex because er;s�r;s�rC1;s�1 D 0. To see this observe that the
product �r;s�rC1;s�1 can be rewritten as �rC2	 for some 	 , and er;s�rC2 D 0 by
the definition (2.4). It is exact because it is homotopy equivalent to 0. To see this
let d 0

r;s W q
1
2 .rC1/rC 1

2 .s�1/.s�2/H˛erC1;s�1 ! q
1
2 r.r�1/C 1

2 s.s�1/H˛er;s be defined by
right multiplication by

� 0
r;s WD .�1/rCmj;i

i i i i j i i i i i

i i i i i j i i i i

„ ƒ‚ …
r

„ ƒ‚ …
s

rC1‚ …„ ƒ s�1‚ …„ ƒ
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Then check miraculously that d 0
r;s B dr;s C dr�1;sC1 B d 0

r�1;sC1 D id.

Hence the homomorphism O� is well defined. Moreover both f and Q.q/˝ZŒq;q�1�

ŒProj.H/� are twisted bialgebras in the same sense, O� respects the QC-gradings, and
it is easy to see that the analogue of (3.7) also holds in ŒProj.H/�. So O� is actually
a homomorphism of twisted bialgebras. We’ve already observed that it sends �

.r/
i to

ŒP.in/� 2 ŒProj.H/� 	 Q.q/ ˝ZŒq;q�1� ŒProj.H/�. So O� restricts to a well-defined
homomorphism � as in the statement of Theorem 3.9.

It remains to show that � is an isomorphism. To establish its surjectivity, we dualize
and exploit Corollary 3.4. In more detail, Lusztig showed that f possesses a unique
non-degenerate symmetric bilinear form .�; �/ such that

.1; 1/ D 1; .�i ; �j / D ıi;j

1 � q2
; .ab; c/ D .a˝ b; r.c//

for all i; j 2 I and a; b; c 2 f ; on the right hand side of the last equation .�; �/ is the
product form .a ˝ b; c ˝ d/ WD .a; c/.b; d/ on f ˝ f . Let f�

ZŒq;q�1�
be the dual of

fZŒq;q�1� with respect to the form .�; �/, i.e.

f�
ZŒq;q�1�

WD ˚
y 2 f j .x; y/ 2 ZŒq; q�1� for all x 2 fZŒq;q�1�

�
:

It is another ZŒq; q�1�-form for f , that is, it is a twisted bialgebra such that f D
Q.q/˝ZŒq;q�1� f�

ZŒq;q�1�
. Taking the dual map to � with respect to Lusztig’s pairing

between fZŒq;q�1� and f�
ZŒq;q�1�

and the pairing (3.2) between ŒProj.H/� and ŒRep.H/�

gives a twisted bialgebra homomorphism

�� W ŒRep.H/�! f�
ZŒq;q�1�

:

For x 2 f�
ZŒq;q�1�

, we let 
.x/ WD P
i2hI i.�i ; x/i , thus defining an injective map


 W f�
ZŒq;q�1�

,! ZŒq; q�1�hI i. Then we claim that the following diagram commutes:

ŒRep.H/�

Ch �����������
��

�� f�
ZŒq;q�1�

�
����������

ZŒq; q�1�hI i.

To see this, just observe for a finite dimensional H -module V that

.�i ; ��ŒV �/ D .�.�i /; ŒV �/ D .H1i ; ŒV �/ D Dim HomH .H1i ; V / D Dim 1i V;

(3.8)
which is indeed the coefficient of 1i in Ch V . The map Ch is injective by Corollary 3.4,
hence �� is injective, and � is surjective as required.
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Finally we must show that � is injective. To see this we lift the pairing between
ŒProj.H/� and ŒRep.H/� to define a bilinear form on ŒProj.H/� such that

.ŒP �; ŒQ�/ WD Dim HomH .P #; Q/:

At first sight this takes values in the ring of formal Laurent series in q. However, the
surjectivity established in the previous paragraph implies that ŒProj.H/� is spanned by
the classes fŒH1i j i 2 hI ig, and .ŒH1j �; ŒH1i �/ D Dim 1j H1i , which lies in Q.q/

by (2.9). Thus our form takes values in Q.q/ and, extending scalars, we get induced a
symmetric Q.q/-bilinear form .�; �/ on Q.q/˝ZŒq;q�1� ŒProj.H/�. It remains to observe
from the definition of Lusztig’s form above that

.�j ; �i / D 1

.1 � q2/n

X
w2Sn

w.i /Dj

qdeg.wIi / (3.9)

for i ; j 2 hI i with i of length n. This agrees with the right hand side of (2.9), hence
. O�.x/; O�.y// D .x; y/ for all x; y 2 f . Now if O�.x/ D 0 for some x 2 f we deduce
from this that .x; y/ D 0 for all y 2 f , hence x D 0 by the non-degeneracy of Lusztig’s
form. This shows that O� , hence � , is injective. This completes the proof of Theorem 3.9.

In the above argument, we have shown not only that fZŒq;q�1� Š ŒProj.H/� but
also that ŒRep.H/� Š f�

ZŒq;q�1�
(both as twisted bialgebras). We have also identified

Lusztig’s form with our representation-theoretically defined form (3.2). There is one
other useful identification to be made at this point. Let b W f ! f be the anti-linear
algebra automorphism such that b.�i / D �i for all i 2 I . Also let b� W f ! f be
the adjoint anti-linear map to b with respect to Lusztig’s form, so b� is defined from
.x; b�.y// D .b.x/; y/ for any x; y 2 f . The maps b and b� preserve fZŒq;q�1� and
f�
ZŒq;q�1�

, respectively. The map b� is not an algebra homomorphism; instead it has the
property

b�.xy/ D qˇ ��b�.y/b�.x/ (3.10)

for x of weight ˇ and y of weight � . It is obvious for any i 2 hI i that b.�i / D �i and
H1#

i
D H1i , which is all that is needed to prove that the isomorphism � intertwines

b with the anti-linear involution on ŒProj.H/� induced by the duality #. Because ~
is adjoint to # thanks to (3.2), we deduce that �� intertwines b� with the anti-linear
involution on ŒRep.H/� induced by the duality ~.

For the remainder of the article we will simply identify ŒProj.H/� with fZŒq;q�1�

and ŒRep.H/� with f�
ZŒq;q�1�

via the maps � and ��. In particular the bases B and B�

from (3.3)–(3.4) give bases for fZŒq;q�1� and f�
ZŒq;q�1�

, respectively. Here is the next
remarkable result.

Theorem 3.11 (Rouquier, Varagnolo–Vasserot). Assume K is of characteristic 0. Then
B coincides with the Lusztig–Kashiwara canonical basis for f , and B� is the dual
canonical basis.
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Some examples. Here we give a few rather special examples which illustrate the
algebraic techniques (characters, shuffle products, etc...) that we have developed so
far. First suppose that the graph underlying the quiver is the Dynkin diagram 1—2 of
type A2, and consider H˛ for the highest root ˛ D ˛1C ˛2. By Frobenius reciprocity,
any irreducible graded H˛-module must appear in the head of one of L.1/ B L.2/ or
L.2/ B L.1/. By the Shuffle Lemma, we have that

Ch.L.1/ B L.2// D 12C q21; Ch.L.2/ B L.1// D 21C q12:

Because of Corollary 3.5 this means that there can only be two irreducible graded H˛-
modules up to isomorphism and degree shift, namely, the one-dimensional modules
L.12/ and L.21/ with characters 12 and 21, respectively. So in this case, H˛ is already
a basic algebra. In fact it is easy to see directly that H˛ is isomorphic to A˝ KŒx�,
where A is the path algebra of the quiver

��! ��
�

�
(3.11)

graded by path length and x is of degree 2 (corresponding to the central element
x1112 C x2121 2 H˛). We deduce from this that H˛ has global dimension 2.

We pause briefly to discuss homogeneous representations. So return for a moment
to a general quiver Hecke algebra. Let � be the equivalence relation on hI i generated
by permuting adjacent pairs of letters ij in a word whenever ˛i � j̨ D 0. Call a
word i 2 hI i a homogeneous word if every j D j1 : : : jn � i satisfies the following
conditions:

F jk ¤ jkC1 for each k D 1; : : : ; n � 1;

F if jk D jkC2 for some k D 1; : : : ; n � 2 then j̨k
� j̨kC1

¤ �1.

In that case, by the relations, there is a well-defined H -module L.i / concentrated in
degree zero with basis fvj j j � i g such that

F 1kvj D ıj ;kvj ;

F xkvj D 0;

F �kvj D vtk.j / if j̨k
� j̨kC1

D 0, �kvj D 0 otherwise.

It is obvious that L.i / is irreducible. Moreover for two homogeneous words i ; j , we
have that L.i / Š L.j / if and only if i � j .

Theorem 3.12 (Kleshchev–Ram). Let � be a set of representatives for the �-equi-
valence classes of homogeneous words i 2 hI i. Up to isomorphism, the modules
fL.i / j i 2 �g give all irreducible H -modules that are concentrated in degree zero.

Proof. Let L be an irreducible H -module that is concentrated in degree zero. Let i

be a word of L, i.e. a word such that 1i L ¤ 0. We claim first that i is homogeneous.
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To see this, note for j � i that dim 1j L D dim 1i L since �2
k
1i D 1i whenever

˛ik � ˛ikC1
D 0. Hence j is also a word of L. If jk D jkC1 for some k we get a

contradiction to the relation .�kxkC1 � xk�k/1j D 1j , since the left hand side has to
act on L as zero by degree considerations. Similarly if jk D jkC2 and j̨k

� j̨kC1
D �1

for some k we get a contradiction to the relation .�kC1�k�kC1��k�kC1�k/1j D ˙1j .
To complete the proof of the theorem, it remains to observe that

Ch L D
X
i2�

.dim 1i L/ Ch L.i /:

Hence L Š L.i / for some i 2 � by Corollary 3.4.

Now back to examples. We next suppose that the graph underlying our quiver is the
A3 Dynkin diagram 1—2—3, and take ˛ D ˛1C ˛2C ˛3. Because ˛ is multiplicity-
free, all words i 2 hI i˛ are homogeneous, hence all irreducible graded H˛-modules
are homogeneous representations. Here are all of the skew-hooks with three boxes:

1 2 3 1
2 3

1 2
3

1
2
3

(3.12)

We have filled in the boxes with their contents 1 2 3 in order from southwest to northeast.
Reading contents along rows starting from the top row, we obtain a distinguished set
f123; 231; 312; 321gof representatives for the�-equivalence classes of (homogeneous)
words in hI i˛ . The corresponding irreducible representations L.123/, L.231/, L.312/

and L.321/ have characters 123, 231C 213, 312C 132 and 321, respectively. They
give all of the irreducible graded H˛-modules up to degree shift. Their projective
covers P.123/, P.231/, P.312/ and P.321/ can be obtained explicitly as the left
ideals generated by the idempotents 1123; 1231; 1312 and 1321, respectively. This is so
explicit that one can then compute the endomorphism algebra of the resulting minimal
projective generator P.123/˚ P.231/˚ P.312/˚ P.321/ directly, to see that it is
isomorphic to the tensor product A ˝ A ˝ KŒx� where A is the path algebra of the
quiver (3.11) as above. This is a graded algebra of global dimension 3, and H˛ is
graded Morita equivalent to it, so H˛ has global dimension 3 too.

Theorem 3.13 (Brundan–Kleshchev). Suppose the graph underlying the quiver is
the Dynkin diagram An and that ˛ D ˛1 C � � � C ˛n is the highest root. Then all
irreducible graded H˛-modules are homogeneous and are parametrized naturally by
the skew-hooks with n boxes as in the example above. Moreover H˛ is graded Morita
equivalent to A˝.n�1/ ˝KŒx�, which is of global dimension n.

In fact, as we’ll discuss in more detail later on, all the quiver Hecke algebras whose
underlying graph is a finite type Dynkin diagram are of finite global dimension. We
expect the converse of this statement holds too: it should be the case that H˛ has finite
global dimension for all ˛ 2 QC if and only if the underlying graph is a finite type
Dynkin diagram.
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We end with one example of infinite global dimension: suppose the underly-
ing graph is 0 ===1, that is, the affine Dynkin diagram A.1/

1 . The words 01 and
10 are homogeneous, so we have the one-dimensional homogeneous Hı -modules
L.01/ and L.10/, where ı D ˛0 C ˛1 is the smallest imaginary root. Working in
f D Q.q/˝ZŒq;q�1� ŒRep.H/�, we have that �i D ŒL.i/�=.1 � q2/. Hence

�01 D ŒL.0/ B L.1/�=.1 � q2/2 D .ŒL.01/�C q2ŒL.10/�/=.1 � q2/2;

�10 D ŒL.1/ B L.0/�=.1 � q2/2 D .ŒL.10/�C q2ŒL.01/�/=.1 � q2/2:

We deduce that ŒL.01/� D 1�q2

1Cq2 .�01 � q2�10/: Using also (3.8), we can then compute
the inner product

.ŒL.01/�; ŒL.01/�/ D 1 � q2

1C q2
.�01 � q2�10; ŒL.01/�/ D 1 � q2

1C q2
… ZŒq; q�1�:

On the other hand, if Hı has finite global dimension, we can find a finite projective
resolution Pn ! � � � ! P1 ! P0 ! L.01/! 0 to deduce that

.ŒL.01/�; ŒL.01/�/ D
nX

iD0

.�1/i .ŒPi �; ŒL.01/�/ 2 ZŒq; q�1�:

This contradiction establishes that Hı has infinite global dimension.

Notes. The main categorification theorem (Theorem 3.9) is [18, Theorem 1.1], and
our exposition of the proof is based closely on the original account there. The linear
independence of characters (Theorem 3.3) is [18, Theorem 3.17]; the proof given there
is essentially the same as the proof of the analogous result for degenerate affine Hecke
algebras in Kleshchev’s book [21, Theorem 5.3.1] which in turn repeated an argument
written down by Vazirani in her thesis based on the results of [11]; in the context
of affine Hecke algebras this result goes back to Bernstein. The second equality in
(3.2) is justified in [23, Lemma 3.2]. The Mackey Theorem (Theorem 3.6) is [18,
Proposition 2.18]. The categorification of the Serre relations (Lemma 3.10) was first
worked out in a slightly weaker form in [19, Corollary 7], and in the form described
here in [30, Lemma 3.13].

The identification of the canonical and dual canonical bases (Theorem 3.11) is
[31, Corollary 5.8] or [32, Theorem 4.5]. The proof of this theorem depends on the
geometric realization of quiver Hecke algebras, hence is valid only for the case of
symmetric Cartan matrices. If K is of positive characteristic then the bases B and B�
arising from the quiver Hecke algebras are different in general from the canonical and
dual canonical bases. For a while there was a conjecture formulated by Kleshchev
and Ram [23, Conjecture 7.3] asserting that they should be the same independent of
characteristic at least in all finite ADE types, but this turned out to be false. Various
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counterexamples are explained by Williamson in [38]; see also [6, Example 2.16]. Note
though that B� is always a perfect basis in the sense of Berenstein–Kazhdan [3].

The classification of homogeneous representations (Theorem 3.12) was worked
out by Kleshchev and Ram in [22, Theorem 3.4]. The version proved here is a slight
generalization since we include quivers with multiple edges. In [22, Theorem 3.10],
Kleshchev and Ram go on to introduce a special class of “minuscule” homogeneous
representations, showing that the dimensions of these representations are given by
the Petersen–Proctor hook formula, thus revealing another unexpected connection to
combinatorics.

Theorem 3.13 is unpublished but makes a good exercise!

4 Finite type

In the final section we restrict our attention to finite ADE types, i.e. we assume that the
graph underlying the quiver is a finite ADE Dynkin diagram.

PBWanddual PBWbases. Since we are now in finiteADE type, the underlying Kac–
Moody algebra g is actually a finite dimensional simple Lie algebra. Let W denote
the (finite) Weyl group associated to g, which is the subgroup of GL.P / generated
by the simple reflections fsi j i 2 I g defined from si .�/ D � � .˛i � �/˛i . Let
R WDS

i2I W.˛i / 	 Q be the set of roots and RC WD R\L
i2I N˛i be the positive

roots. We fix once and for all a reduced expression w0 D si1 : : : siN for the longest
word w0 2 W (so N D jRCj). There is a corresponding convex order 
 on RC
defined from ˛i1 
 si1.˛i2/ 
 � � � 
 si1 : : : siN �1

.˛iN /. By a Kostant partition of
˛ 2 QC, we mean a sequence � D .�1; : : : ; �l/ of positive roots summing to ˛ such
that �1 � � � � � �l with respect to this fixed convex order. Let KP.˛/ denote the set of
all Kostant partitions of ˛ and KP WDS

˛2QC KP.˛/.
Associated to the reduced expression/convex order just fixed, Lusztig has introduced

a PBW basis for f , indexed as it should be by KP. To construct this, Lusztig first defines
root vectors fr˛ j ˛ 2 RCg. Then the PBWmonomial associated to � D .�1; : : : ; �l/ 2
KP is defined from

r� WD r�1
: : : r�l

=Œ��Š ; (4.1)

where Œ��Š WD Q
ˇ2RC mˇ .�/, and mˇ .�/ denotes the multiplicity of ˇ in �. In

Lusztig’s approach, the definition of the root vector r˛ depends on a certain action
of the braid group hTi j i 2 I i associated to W on the full quantized enveloping
algebra Uq.g/: fixing an embedding f ,! Uq.g/ one sets r˛ WD Ti1 : : : Tir�1

.�ir / if
˛ D si1 : : : sir�1

.˛ir /. We skip the precise details here because there is also a more
elementary recursive approach to the definition of the root vector r˛ , well known in
type A but only recently established in full generality in types D and E. To formulate
this we need the notion of a minimal pair for ˛ 2 RC: a pair .ˇ; �/ of positive roots
such that ˇ � � , ˇ C � D ˛, and there is no other pair .ˇ0; � 0/ of positive roots with
ˇ0 C � 0 D ˛ and ˇ � ˇ0 � ˛ � � 0 � � .
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Lemma 4.1. Let ˛ 2 RC. If ˛ D ˛i for some i 2 I then r˛ D �i . If ˛ is not simple
then r˛ D r�rˇ � qrˇ r� for any minimal pair .ˇ; �/ for ˛.

Proof. This follows from Theorem 4.8 below.

Also define the dual root vectors fr �̨ j ˛ 2 RCg by setting r �̨ WD .1�q2/r˛ . Then
for � D .�l ; : : : ; �l/ 2 KP define the dual PBW monomial

r�
� WD qs�r�

�1
: : : r�

�l
(4.2)

where s� WD 1
2

P
ˇ2RC mˇ .�/.mˇ .�/� 1/. Lusztig’s fundamental result about PBW

and dual PBW bases is as follows.

Theorem 4.2 (Lusztig). The sets fr� j � 2 KPg and fr�
�
j � 2 KPg give bases for

fZŒq;q�1� and f�
ZŒq;q�1�

, respectively. Moreover these two bases are dual with respect
to the pairing .�; �/.

For a Kostant partition � D .�1; : : : ; �l/, we set �0
k
WD �lC1�k for k D 1; : : : ; l .

Then introduce a partial order � on KP by declaring that � 
 � if and only if both of
the following hold:

F �1 D �1; : : : ; �k�1 D �k�1 and �k 
 �k for some k such that �k and �k both
make sense;

F �0
1 D �0

1; : : : ; �0
k�1
D �0

k�1
and �0

k
� �0

k
for some k such that �0

k
and �0

k
both

make sense.

We note for ˛ 2 RC that the unique smallest element of KP.˛/ is the one-part Kostant
partition .˛/, and the next smallest elements are the minimal pairs .ˇ; �/ defined above.
The important point is that the bar involutions b and b� act on the PBW and dual PBW
bases in a triangular way with respect to this order:

b.r�/ D r� C .a ZŒq; q�1�-linear combination of r� for � � �/; (4.3)

b�.r�
� / D r�

� C .a ZŒq; q�1�-linear combination of r�
� for � 
 �/: (4.4)

Combined with Lusztig’s lemma, this triangularity implies the existence of unique
bases fb� j � 2 KPg and fb�

�
j � 2 KPg for fZŒq;q�1� and f�

ZŒq;q�1�
, respectively, such

that

b.b�/ D b�; b� D r� C (a qZŒq�-linear combination of r� for � � �); (4.5)

b�.b�
�/ D b�

�; b�
� D r�

� C (a qZŒq�-linear combination of r�
� for � 
 �). (4.6)

The basis fb� j � 2 KPg is the Lusztig–Kashiwara canonical basis. The following
lemma shows that fb�

�
j � 2 KPg is the dual canonical basis.

Lemma 4.3. For �; � 2 KP we have that .b�; b�
�/ D ı�;�.

Proof. By (4.5), (4.6) and the duality of the PBW and dual PBW basis vectors, we
have that .b�; b�

�/ 2 ı�;� C qZŒq�. Now it remains to observe that it is bar-invariant:

.b�; b�
�/ D .b.b�/; b�

�/ D .b�; b�.b�
�// D .b�; b�

�/:
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Proper standard modules. If � D .˛/ for ˛ 2 RC then it is minimal in KP.˛/,
hence by (4.6) the dual canonical basis element b�

�
must simply be equal to the dual

root element r �̨. For K of characteristic 0, we deduce immediately from this and the
geometric Theorem 3.11 that for each ˛ 2 RC there is a (unique up to isomorphism)
irreducible H -module L.˛/ such that ŒL.˛/� D r �̨. These modules are known as
cuspidal modules. McNamara has recently found an elementary inductive proof of
the existence of cuspidal modules based just on Theorem 3.9, which works for ground
fields K of positive characteristic too. In fact in many cases, including all positive roots
and all convex orders in typeA, the cuspidal module L.˛/ turns out to be homogeneous,
so can be constructed explicitly via Theorem 3.12.

Now suppose we are given ˛ 2 QC and � D .�1; : : : ; �l/ 2 KP.˛/. Define the
proper standard module

x�.�/ WD qs�L.�1/ B � � � B L.�l/: (4.7)

Comparing with the definition (4.2), we have that that Œx�.�/� D r�
�

, i.e. proper standard
modules categorify the dual PBW basis. Then let

L.�/ WD x�.�/= rad x�.�/:

Now we can state the following classification of irreducible H -modules.

Theorem 4.4 (Kleshchev–Ram, Kato, McNamara). The modules fL.�/ j � 2 KPg
give a complete set of pairwise inequivalent~-self-dual irreducible H -modules. More-
over, all composition factors of rad x�.�/ are of the form qd L.�/ for � 
 � and d 2 Z.

Theorem 4.4 can be viewed as a vast generalization of Zelevinsky’s classification of
irreducible representations of affine Hecke algebras via “multisegments.” Zelevinsky’s
result can be interpreted as treating the case that the Dynkin diagram is 1—2— � � �—n,
so the positive roots are ˛i;j WD ˛i C ˛iC1 C � � � C j̨ �1 for 1 � i � j � n, and the
convex order is defined by ˛i;j 
 ˛k;l if and only if i < k or i D k and j < l . The cusp-
idal module L.˛i;j / is the one-dimensional homogeneous module corresponding to the
homogeneous word Œi; j � WD i.iC1/ : : : j . We call this a segment. Then a Kostant par-
tition � D .˛i1;j1

; : : : ; ˛ir ;jr
/ is the same thing as a multisegment, i.e. a non-increasing

sum of segments Œi1; j1�C� � �C Œir ; jr �. The proper standard module x�.�/ has charac-
ter qs� Œi1; j1� B � � � B Œir ; jr � obtained by taking the shuffle product of these segments.one "B" added

The irreducible heads of these modules give all the irreducible H -modules up to iso-
morphism and degree shift. For example if ˛ D ˛1;3 then the irreducible graded H˛-
modules are indexed by KP.˛/ D f.˛1;3/; .˛2;3; ˛1/; .˛3; ˛1;2/; .˛3; ˛2; ˛1/g. These
modules are the homogeneous representations parametrized by the skew-hooks from
(3.12). To translate from skew-hook to Kostant partition, record the contents in the
rows of the skew-hook from top to bottom to obtain the corresponding multisegment.

If K is of characteristic zero then we have that Œx�.�/� D r�
�

and ŒL.�/� D b�
�

thanks to Theorem 3.11. Thus the coefficients p�;�.q/ defined from the equivalent
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expansions

r�
� D

X
�2KP

p�;�.q/b�
�; b� D

X
�2KP

p�;�.q/r�

compute the graded composition multiplicities Œx�.�/ W L.�/�. Thus Theorem 4.4 has
the following application.

Corollary 4.5. We have that p�;�.q/ D 0 unless � � �, p�;�.q/ D 1, and p�;�.q/ 2
qNŒq� if � 
 �.

Finally we record a lemma which is at the heart of McNamara’s inductive proof of
the existence of cuspidal modules and his approach to Theorem 4.4. We will apply this
several times also in the next subsection.

Lemma 4.6 (“McNamara’s Lemma”). Suppose we are given ˛ 2 RC and ˇ; � 2 QC
with ˇ C � D ˛. If Res˛

ˇ;� L.˛/ ¤ 0 then ˇ is a sum of positive roots � ˛ and � is a
sum of positive roots � ˛.

Proof. Forget about the grading throughout this proof. We just explain how to show
that ˇ is a sum of positive roots � ˛; the statement about � follows similarly. In the
next paragraph, we’ll prove the following claim:

Claim. If Res˛
ˇ;� L.˛/ ¤ 0 for ˇ 2 RC, � 2 QC with ˇ C � D ˛ then ˇ � ˛.

Now suppose that we are in the situation of the lemma for non-zero ˇ, � . Let L.�/ �
L.�/ be a composition factor of Res˛

ˇ;� L.˛/ for some � 2 KP.ˇ/ and � 2 KP.�/.
Then it’s clear that Res˛

�1;˛��1
L.˛/ is non-zero. Invoking the claim, we deduce that

�1 � ˛. Hence the parts of � are positive roots � ˛ summing to ˇ, and we are done.
To prove the claim, suppose for a contradiction that it is false, and look at the

counterexample in which ˇ is maximal; of course we have that ˇ � ˛ and � ¤ 0. Let
L.�/ � L.�/ be a submodule of Res˛

ˇ;� L.˛/ for � 2 KP.ˇ/; � 2 KP.�/. As in the
previous paragraph, we have that Res˛

�1;˛��1
L.˛/ ¤ 0, so by the maximality of ˇ we

must have that �1 � ˇ. Since .ˇ/ is minimal in KP.ˇ/ this implies that � D .ˇ/. We
have shown that L.ˇ/ � L.�/ is a submodule of Res˛

ˇ;� L.˛/ for some � 2 KP.�/.
By Frobenius reciprocity, we get a non-zero homomorphism L.ˇ/ B L.�/ ! L.˛/.
If ˇ � �1 then L.ˇ/ B L.�/ is a quotient of x�.ˇ t �/, where we write ˇ t � for
the Kostant partition obtained from � by adding the root ˇ to the beginning. By
Theorem 4.4 we know that x�.ˇ t �/ has irreducible head L.ˇ t �/, and we deduce
that L.ˇ t �/ Š L.˛/. This shows that ˇ t � D .˛/, hence ˇ D ˛, contradicting
ˇ � ˛.

So we have that ˇ 
 �1. Let N� 2 KP.� � �1/ be the (possibly empty) Kostant
partition obtained from � by removing its first part, so � D �1 t N�. Since L.�/ is a
quotient of L.�1/ B x�. N�/, Frobenius reciprocity gives us a non-zero homomorphism
.L.ˇ/BL.�1//� x�. N�/! Res˛

ˇC�1;���1
L.˛/. Hence there’s some 
 2 KP.ˇC�1/

such that L.
/ � L. N�/ is a composition factor of Res˛
ˇC�1;���1

L.˛/. As above, the
maximality of ˇ implies that 
1 � ˇ, hence all parts of 
 are � ˇ. The parts of 
 sum
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to ˇ C �1, so we deduce that ˇ C �1 is a sum of roots � ˇ, as well as already being
a sum of ˇ and another root �1 � ˇ. This contradicts a general property of convex
orders (e.g. see [6, Lemma 2.4]).

Standard modules and homological algebra. Just as the proper standard modules
x�.�/ categorify the dual PBW basis vectors r�

�
, there are standard modules �.�/ which

categorify the PBW basis vectors r�. The definition of these parallels the definition of
the PBW basis elements: we first define root modules �.˛/ for each ˛ 2 RC so that
Œ�.˛/� D r˛ , then introduce divided power modules �.˛m/ for ˛ 2 RC and m � 1 so
that Œ�.˛m/� D rm

˛ =Œm�Š , then finally set

�.�/ WD �.�
m1

1 / B � � � B�.�
mk

k
/ (4.8)

for a Kostant partition � written as � D .�
m1

1 ; : : : ; �
mk

k
/ for �1 � � � � � �k . It is then

automatic from (4.1) that Œ�.�/� D r�.
Perhaps the easiest way to define the root module �.˛/ is by inducing the cuspidal

module L.˛/ from the previous subsection (although this only works in simply-laced
types). Given ˛ 2 RC of height n, let H 0̨ be the subalgebra of H˛ generated by the
elements f1i ; �j ; xj � xj C1 j i 2 hI i˛; 1 � j � n � 1g. Then set

�.˛/ WD H˛ ˝H 0
˛

L.˛/: (4.9)

Recalling (2.10), we can choose the special word i there so that i1 appears with a
multiplicity k which is non-zero in the field K; this is always possible by inspection
of the ADE root systems. Then, letting z WD z1 C � � � C zk 2 Z.H˛/2, we have that
H˛ D H 0̨ ˝ KŒz� as an algebra. Hence we have that �.˛/ D L.˛/ � KŒz� as a
module, i.e. it is an infinite self-extension of copies of L.˛/. The following is obvious
from this description combined with Schur’s Lemma.

Lemma 4.7. The root module �.˛/ has irreducible head L.˛/, and we have that
Œ�.˛/� D ŒL.˛/�=.1 � q2/ in the Grothendieck group, hence Œ�.˛/� D r˛ . Moreover
EndH˛

.�.˛// D KŒz�.

There is also a quite different recursive description of �.˛/ which is essentially
a categorification of Lemma 4.1. First if ˛ D ˛i for i 2 I then we have that
�.˛/ Š H˛i

. Then if ˛ 2 RC is of height at least two, we pick a minimal pair
.ˇ; �/ for ˛. As Œ�.ˇ/� D .1 C q2 C q4 C � � � /ŒL.ˇ/�, all composition factors of
�.ˇ/ are isomorphic to L.ˇ/ up to a degree shift. Similarly all composition factors
of �.�/ are isomorphic to L.�/ up to a degree shift. Now an application of McNa-
mara’s Lemma reveals that there is only one non-zero layer in the Mackey filtration of
Res˛

ˇ;� �.�/ B�.ˇ/ from Theorem 3.6, and this layer is isomorphic to q�.ˇ/ � �.�/.
Hence Res˛

ˇ;� �.�/ B �.ˇ/ Š q�.ˇ/ � �.�/. Frobenius reciprocity then gives us a
canonical homomorphism

� W q�.ˇ/ B�.�/! �.�/ B�.ˇ/; 1˛ ˝ .v1 ˝ v2/ 7! �w ˝ .v2 ˝ v1/;
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where w is the permutation .1; : : : ; mC n/ 7! .nC 1; : : : ; mC n; 1; : : : ; n/ for m WD
ht.ˇ/ and n WD ht.�/.

Theorem 4.8 (Brundan–Kleshchev–McNamara). The homomorphism � just defined
is injective and its cokernel is isomorphic to the root module �.˛/ from (4.9). Hence
there is a short exact sequence

0 �! q�.ˇ/ B�.�/
	�! �.�/ B�.ˇ/ �! �.˛/ �! 0:

The proof of Theorem 4.8 depends in a crucial way on some homological algebra:
it requires knowing in advance that

Ext1
H˛

.L.˛/; L.˛// Š q�2K; Exti
H˛

.L.˛/; L.˛// D 0 for i � 2. (4.10)

This is surprisingly tricky to prove. McNamara found a proof assuming the finiteness of
global dimension of H˛ , and another way based on some explicit computations which
can be made just for certain special choices of the convex order (for which almost
all L.˛/ are homogeneous). He also showed how to deduce the finiteness of global
dimension from (4.10). Thus one first proves (4.10) for a particular convex order, then
deduces the finiteness of global dimension, then from that extends (4.10) to arbitrary
convex orders, and finally uses that to prove Theorem 4.8.

Next we explain how the divided powers �.˛m/ are defined. Using the decompo-
sition �.˛/ D L.˛/ � KŒz�, it is easy to deduce from (4.10) that

Exti
H˛

.�.˛/; �.˛// D Exti
H˛

.�.˛/; L.˛// D 0 for i � 1. (4.11)

Using McNamara’s Lemma once again, one checks that the Mackey filtration of
Res2˛

˛;˛ �.˛/ B �.˛/ has exactly two non-zero layers, �.˛/ � �.˛/ at the bottom
and q�2�.˛/ � �.˛/ at the top. Then (4.11) implies that this extension splits, hence
there is a non-zero homogeneous homomorphism �.˛/��.˛/! Res2˛

˛;˛ �.˛/B�.˛/

of degree �2. Applying Frobenius reciprocity we get from this a canonical degree �2

endomorphism

� W �.˛/ B�.˛/! �.˛/ B�.˛/; 12˛ ˝ .v1 ˝ v2/ 7! �w ˝ .v2 ˝ v1/;

where w W .1; : : : ; 2n/ 7! .n C 1; : : : ; 2n; 1; : : : ; n/. Recalling Lemma 4.7, one then
shows that �.˛/ has a unique degree 2 endomorphism x such that � B.1x/ D .x1/B�C1

on �.˛/ B�.˛/. Then setting �i WD 1i�1�1m�i�1 and xi WD 1i�1x1m�i we obtain a
right action of the nil Hecke algebra NHm on �.˛/Bm. Finally, recalling the idempotent
em 2 NHm from (2.4), we set

�.˛m/ WD q
1
2 m.m�1/�.˛/Bmem; (4.12)

and get from Corollary 2.4 that Œ�.˛/Bm� D Œm�ŠŒ�.˛m/�. Hence we have indeed
categorified the divided power rm

˛ =Œm�Š .
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This completes our sketch of the definition of the standard modules �.�/. The
following theorem collects various homological properties of the finite type quiver
Hecke algebras. Most of these are deduced from the definition (4.8), either using
generalized Frobenius reciprocity together with (4.10)–(4.11) or by arguing inductively
via Theorem 4.8. They are reminiscent of the homological properties of a quasi-
hereditary algebra.

Theorem 4.9 (Kato, McNamara, Brundan–Kleshchev–McNamara). Suppose we are
given ˛ of height n and �; � 2 KP.˛/.

(1) The standard module �.�/ has an exhaustive descending filtration with x�.�/ at
the top and all other sections of the form q2d x�.�/ for d > 0.

(2) We have that Exti
H˛

.�.�/; �.�// D Exti
H˛

.�.�/; x�.�// D 0 for i � 1.

(3) Setting Nr.�/ WD x�.�/~, we have that Dim Exti
H˛

.�.�/; Nr.�// D ıi;0ı�;� for
i � 0.

(4) The projective dimension of �.�/ is bounded above by n � l , where l is the
number of parts of �.

(5) The global dimension of H˛ is equal to n.

Corollary 4.10. For � 2 KP, let P.�/ be the projective cover of L.�/. Then P.�/

has a finite filtration with sections of the form �.�/ (up to a degree shift) and graded
multiplicities satisfying ŒP.�/ W �.�/� D Œx�.�/ W L.�/�.

Corollary 4.11. For any � 2 KP, we have that

�.�/ Š P.�/
ı X

�6
�

X
f WP.�/ ! P.�/

im f; x�.�/ Š P.�/
ı X

�6��

X
f WP.�/ ! rad P.�/

im f;

summing over all (not necessarily homogeneous) homomorphisms f .

Notes. The key facts about the algebra f summarized here are all proved in Lusztig’s
book [26]. The “bilexicographic” partial order � was introduced originally in [27,
�3]. The triangularity (4.4) of the bar involution on the dual PBW basis follows from
Theorem 4.4; more direct proofs avoiding quiver Hecke algebras also exist.

Cuspidal modules and the definition (4.7) arose first in the work of Kleshchev and
Ram [23], which only treats certain rather special convex orders as in [25]. Kato then
gave a completely different approach to the construction of cuspidal modules working in
the framework of [32], and based on the geometric definition of so-calledSaito reflection
functors which categorify Lusztig’s braid group action. McNamara subsequently found
an elegant algebraic treatment which can be found in [27, Theorem 3.1]. The positivity
of the coefficients of p�;�.q/ from Corollary 4.5 was conjectured a long time ago by
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Lusztig and proved for the first time in full generality by Kato in [17]. It is one of the
first genuine applications of quiver Hecke algebras to the theory of canonical bases.

A geometric approach to the definition of standard modules can be found in [17].
The construction explained here is based instead on our article [6], which also covers the
non-simply-laced finite types BCFG; non-simply-laced types are more complicated as
we cannot exploit the naive approach of inducing from H 0̨ . The homological properties
in Theorem 4.9 are proved in [17], [27] and [6]. In particular the finiteness of global
dimension for simply-laced types in characteristic zero was established originally by
Kato; in type A it can also be deduced from [29]. The exact value for the global
dimension of H˛ was determined later by McNamara; in type A this follows also from
Theorem 3.13.
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