3.5. **Separable morphisms.** Recall that a morphism \(\phi : X \to Y \) of irreducible varieties is called **dominant** if its image is dense in \(Y \). In the case of affine varieties, that is equivalent to \(\phi^* : k[Y] \to k[X] \) being injective. Hence, even for arbitrary irreducible \(X, Y \), the map \(\phi^* : k(Y) \to k(X) \) induced by a dominant morphism is injective. So we can view \(k(X) \) as an extension field of \(k(Y) \). The morphism \(\phi \) is called **separable** if \(k(X) \) is a separable extension of \(k(Y) \).

Go back to the case that \(X, Y \) are affine. The composite of \(\phi^* \) and \(d_X : k[X] \to \Omega_X \) is a derivation \(k[Y] \to \Omega_X \). So by the universal property of differentials, we get induced a \(k[Y]\)-module map
\[
\bar{\phi}^* : \Omega_Y \to \Omega_X
\]
such that \(d_X \circ \phi^* = \bar{\phi}^* \circ d_Y \).

Let \(x \in X, y = \phi(x) \). The \(k[X]\)-module \(k_x \) viewed as a \(k[Y]\)-module via \(\phi^* \) is \(k_y \). We used this before to see that \(\phi^* \) induced the linear map
\[
d\phi_x : T_x(X) = \text{Der}_k(k[X], k_x) \to T_y(Y) = \text{Der}_k(k[Y], k_y), D \mapsto D \circ \phi^*.
\]
Equivalently, we can view \(d\phi_x \) as the map
\[
d\phi_x : \text{Hom}_{k[X]}(\Omega_X, k_x) \to \text{Hom}_{k[Y]}(\Omega_Y, k_y), \theta \mapsto \theta \circ \bar{\phi}^*.
\]
Applying adjointness of tensor and hom, we can even view \(d\phi_x \) as a linear map
\[
\text{Hom}_k(\Omega_X(x), k) \to \text{Hom}_k(\Omega_Y(y), k).
\]

Theorem 3.15. Let \(\phi : X \to Y \) be a morphism of irreducible varieties.

(i) Assume that \(x \in X \) and \(y = \phi(x) \in Y \) are simple points and that \(d\phi_x \) is surjective. Then, \(\phi \) is a dominant separable morphism.

(ii) Assume \(\phi \) is a dominant separable morphism. Then the points \(x \in X \) with the property of (i) form a non-empty open subset of \(X \).

Proof. We may assume \(X \) and \(Y \) are affine and \(\Omega_X, \Omega_Y \) are free \(k[X] \)-resp. \(k[Y] \)-modules of rank \(d = \dim X \) resp. \(e = \dim Y \). In particular, \(X \) and \(Y \) are smooth.

The map \(\bar{\phi}^* : \Omega_Y \to \Omega_X \) of \(k[Y]\)-modules induces a homomorphism of free \(k[X]\)-modules
\[
\psi : k[X] \otimes_{k[Y]} \Omega_Y \to \Omega_X.
\]
We can represent \(\psi \) as a \(d \times e \) matrix \(A \) with entries in \(k[X] \), fixing bases for \(\Omega_X, \Omega_Y \). Suppose that \(d\phi_x \) is surjective. Then, \(A(x) \), which represents the dual map \((d\phi_x)^* : \Omega_Y(y) \to \Omega_x(x) \), is injective hence a matrix of rank \(e \). Hence the rank of \(A \) is at least \(e \), hence equal to \(e \) since rank cannot be more than the number of columns. This shows that \(\psi \) is injective.

Hence \(\bar{\phi}^* \) is injective too. Since \(\Omega_X \) and \(\Omega_Y \) are free modules, this implies that \(\phi^* : k[Y] \to k[X] \) must be injective, so \(\phi \) is dominant. Moreover, injectivity of \(\psi \) implies injectivity of
\[
k(X) \otimes_{k[Y]} \Omega_Y \to k(X) \otimes_{k(X)} \Omega_X.
\]
This is the map α in the exact sequence
\[k(X) \otimes_{k(Y)} \Omega_{k(Y)/k} \xrightarrow{\alpha} \Omega_{k(X)/k} \xrightarrow{\beta} \Omega_{k(Y)/k(Y)} \to 0. \]
Hence $k(X)$ is a separable extension of $k(Y)$ by the differential criterion for separability.

The proof of (ii) is similar to the proof of (ii) in 3.12. \qed

Corollary 3.16. Let G be a connected algebraic group.

(i) If X is a variety on which G acts transitively, then X is irreducible and smooth. In particular G is smooth.

(ii) Let $\phi : X \to Y$ be a G-equivariant morphism between two varieties on which G acts transitively. Then ϕ is separable if and only if $d\phi_x$ is surjective for some $x \in X$ which is if and only if $d\phi_x$ is surjective for all $x \in X$.

(iii) Let $\phi : G \to H$ be a surjective homomorphism of algebraic groups. Then, ϕ is separable if and only if $d\phi_e$ is surjective.

Proof. (i) Take $x \in X$. The orbit map $g \mapsto gx$ is onto, so X is irreducible as G is. Since at least one point of x is simple, and the action is transitive, we see that all points of x are simple, so X is smooth.

(ii) This follows at once from the theorem.

(iii) Apply (ii) to $X = G, Y = G'$. \qed

3.6. **Lie algebras.** Notation: if G is an algebraic group, let \mathfrak{g} denote the tangent space $T_e(G)$ to G at the identity. At the moment, \mathfrak{g} is just a vector space of dimension $\dim G$ (we will see in a while that it has additional structure as a Lie algebra). For example, the tangent spaces to GL_n, SL_n, Sp_{2n}, SO_n, ... at the identity will be denoted \mathfrak{gl}_n, \mathfrak{sl}_n, \mathfrak{sp}_{2n}, \mathfrak{so}_n, ... At the moment these are all just vector spaces!

Example 3.17.

(1) First, GL_n. Then:

$$\mathfrak{gl}_n = \text{Der}_k(k[GL_n], k_e)$$

is the n^2 dimensional vector space on basis $\{e_{i,j} | 1 \leq i, j \leq n\}$ where $e_{i,j}$ is the point derivation

$$f \mapsto \frac{\partial f}{\partial T_{i,j}}(e).$$

Here, $T_{i,j}$ is the ij-coordinate function, and $k[GL_n]$ is the localization of the polynomial ring $k[T_{i,j}]$ at determinant. I will always identify the vector space \mathfrak{gl}_n with the vector space of $n \times n$ matrices over k, so that $e_{i,j}$ is identified with the ij matrix unit.

(2) SL_n. Since $SL_n = V(\det -1)$ inside of GL_n, \mathfrak{sl}_n is a canonically embedded subspace of \mathfrak{gl}_n. Indeed, it will be all matrices

$$X = \sum_{i,j} a_{i,j} e_{i,j}$$
such that
\[X(\det - 1) = 0. \]

But (calculate!)
\[\sum_{i,j} a_{i,j}e_{i,j} \left(\sum_{w \in S_n} \text{sgn}(w)T_{1,w1} \cdots T_{n,wn} - 1 \right) = \sum_i a_{i,i}. \]

So \(\mathfrak{sl}_n \) is all matrices in \(\mathfrak{gl}_n \) of trace zero.

(3) \(\mathfrak{sp}_{2n} \). Recall that \(\mathfrak{sp}_{2n} = \{ x \in \mathfrak{gl}_n \mid x^t J x = J \} \) where
\[J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \]
as a closed subgroup of \(GL_{2n} \). Let \(T \) be the \(2n \times 2n \) matrix with \(ij \) entry \(T_{i,j} \), the \(ij \)-coordinate function on \(GL_{2n} \). Then, \(\mathfrak{sp}_{2n} = V(T^tKT - J) \) (4n² polynomial equations written as one matrix equation!). Then \(\mathfrak{sp}_{2n} \) is the \(X \in \mathfrak{gl}_{2n} \) such that \(X(T^tJT - J) = 0 \). You calculate: this is exactly the condition that \(X^tJ + J X = 0 \). Now you can calculate \(\dim \mathfrak{sp}_{2n} \) by linear algebra...

(4) Similarly, \(\mathfrak{so}_n \) (in characteristic \(\neq 2 \)) is all \(X \in \mathfrak{gl}_n \) satisfying \(X^T + X = 0 \).

(5) Also recall that \(T_n \) is all upper triangular invertible matrices. The tangent space \(t_n \) will be all upper triangular matrices embedded into \(\mathfrak{gl}_n \). Similarly you can compute the tangent spaces of \(D_n, U_n \ldots \)

Okay, now let’s introduce on \(\mathfrak{g} \) the structure of a Lie algebra. It is convenient to go via an intermediate: \(L(G) \). This is defined to be the vector space
\[L(G) = \{ D \in \text{Der}_k(k[G], k[G]) \mid D(\lambda_x f) = \lambda_x D(f) \text{ for all } f \in k[G], x \in G. \]
(Recall: \((\lambda_x f)(g) = f(x^{-1}g) \)). We call \(L(G) \) the left invariant derivations because they are the derivations commuting with the left regular action of \(G \) on \(k[G] \).

Now, \(\text{Der}_k(k[G], k[G]) \) is a Lie algebra with operation being the commutator: \([D, D'] = D \circ D' - D' \circ D\). Obviously, if \(D \) and \(D' \) are left invariant derivations, so is \([D, D']\). Therefore \(L(G) \) is a Lie subalgebra of \(\text{Der}_k(k[G], k[G]) \).

Lemma 3.18. Let \(G \) be a connected algebraic group, \(\mathfrak{g} = T_e(G) \). The maps
\[L(G) \rightarrow \mathfrak{g}, D \mapsto ev_x \circ D \]
and
\[\mathfrak{g} \rightarrow L(G), X \mapsto \tilde{X}, \]
where \(\tilde{X} : k[G] \rightarrow k[G] \) is the derivation with \((\tilde{X} f)(g) = X(\lambda_g^{-1} f) \) for all \(g \in G \), are mutually inverse isomorphisms.
Proof. We’d better first make sure the maps make sense, i.e. that $ev_e \circ D$ is a point derivation and that \tilde{X} is a left invariant derivation. Only the last thing is tricky:

$$(\tilde{X}(\lambda_g f))(h) = X(\lambda_{h^{-1}} \lambda_g f) = X(\lambda_{h^{-1}} g h) = (\tilde{X} f)(g^{-1} h) = (\lambda_g (\tilde{X} f))(h).$$

Now let’s compute $ev_e \circ \tilde{X}$:

$$(ev_e \circ \tilde{X})(f) = (\tilde{X} f)(e) = X(f)$$

for all $f \in k[G]$, hence $ev_e \circ \tilde{X} = X$.

Finally, let’s compute $ev_e \circ D$ for a left invariant derivation D:

$$(ev_e \circ D(f))(g) = (ev_e \circ D)(\lambda_{g^{-1}} f) = (D(\lambda_{g^{-1}} f))(e) = (\lambda_{g^{-1}} (D f))(e) = (D f)(g).$$

Hence $ev_e \circ D = D$. □

Because of the lemma, we get on \mathfrak{g} an induced structure as a Lie algebra, induced by the Lie algebra structure on $L(G)$:

$$[X, Y] := ev_e \circ [\tilde{X}, \tilde{Y}].$$

Example 3.19. Let’s compute the Lie algebra structure on \mathfrak{gl}_n. We need to work out $\tilde{e}_{i,j}$. Well, for $g \in G$,

$$(\tilde{e}_{i,j} T_{p,q})(g) = e_{i,j} (\lambda_{g^{-1}} T_{p,q}) = \frac{\partial}{\partial T_{i,j}} (\sum_r T_{p,r}(g) T_{r,q})(e) = \delta_{q,j} T_{p,i}(g).$$

Therefore $\tilde{e}_{i,j} T_{p,q} = \delta_{j,q} T_{p,i}$.

Now you can compute the commutator $[\tilde{e}_{i,j}, \tilde{e}_{k,l}]$: it acts on each $T_{p,q}$ in the same way as $\delta_{j,l} \tilde{e}_{i,l} - \delta_{i,l} \tilde{e}_{k,j}$. Hence we’ve worked out

$$[e_{i,j}, e_{k,l}] = \delta_{j,k} e_{i,l} - \delta_{i,l} e_{k,j}.$$

The right hand side is just the commutator $e_{i,j} e_{k,l} - e_{k,l} e_{i,j}$ of the matrix units. So in general:

$$[X, Y] = XY - YX$$

for $X, Y \in \mathfrak{gl}_n$ – the usual commutator as matrices!

Lemma 3.20. Let H be a closed subgroup of G and set $I = I(H)$. Then,

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid X I = 0 \} = \{ X \in \mathfrak{g} \mid \tilde{X} I \subseteq I \}.$$

In particular, \mathfrak{h} is a Lie subalgebra of \mathfrak{g}.

Proof. That

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid X I = 0 \}$$

is just the definition of tangent space of a closed subvariety... If $XI = 0$, consider $\tilde{X} f$ for $f \in I$. Evaluating at $h \in H$,

$$(\tilde{X} f)(h) = X(\lambda_{h^{-1}} f)$$

which is zero as $\lambda_{h^{-1}} f$ is still in I (as H is a subgroup!). So $\tilde{X} f$ vanishes on H, i.e. is containing in I. This shows $\tilde{X} I \subseteq I$.

The opposite, namely that if $\tilde{X} I \subseteq I$ then $XI = \{0\}$ is easy.
Finally, observe that if \(D, D' \in L(G) \) satisfy \(DI \subseteq I, D'I \subseteq I \), then the commutator \([D, D']\) also does. This implies that \(\mathfrak{h} \) is a subalgebra of \(\mathfrak{g} \). \(\square \)

Now we get the Lie algebra structure in all the above examples: \(\mathfrak{so}_n, \mathfrak{so}_n, \ldots \), since they are all just Lie subalgebras of \(\mathfrak{gl}_n \), where the Lie bracket is just the commutator as matrices.

The next lemma I'm going to leave to you to supply the proof (hint: its easier to rephrase things in terms of \(L(G) \) and \(L(H) \))...

Lemma 3.21. Let \(\phi : G \to H \) be a morphism of connected algebraic groups. Then \(d\phi : \mathfrak{g} \to \mathfrak{h} \) is a Lie algebra homomorphism.

3.7. **Some differential calculations.** I now want to compute differentials of various natural morphisms. In all cases, since an arbitrary algebraic group can be embedded as a closed subgroup of some \(GL_n \), it is enough to make the computation in the case of \(GL_n \), when we can be very explicit.

Example 3.22.

1. Let \(\mu : G \times G \to G \) be multiplication. Then, \(d\mu_{(e,e)} : \mathfrak{g} \oplus \mathfrak{g} \to \mathfrak{g} \) is addition.

Proof: Suppose \(G = GL_n \). Recall \(\mathfrak{g} \oplus \mathfrak{g} \cong \text{Der}_k(k[G] \otimes k[G], k_{(e,e)}) \), the isomorphism mapping \(\langle X, Y \rangle \) to the map \((f \otimes g) \mapsto X(f)g(e) + f(e)Y(g) \). By definition,

\[
(d\mu_{(e,e)}(e_{i,j}, e_{k,l}))(T_{r,s}) = (e_{i,j}, e_{k,l})(\sum T_{r,t} \otimes T_{t,s}) = \delta_{i,r}\delta_{j,s} + \delta_{k,s}\delta_{r,k} = (e_{i,j} + e_{k,l})(T_{r,s}).
\]

Hence \(d\mu_{(e,e)}(e_{i,j}, e_{k,l}) = e_{i,j} + e_{k,l} \), i.e. \(d\mu_{(e,e)} \) is addition.

2. Let \(i : G \to G \) be the inverse map. Then, \(di : \mathfrak{g} \to \mathfrak{g} \) is the map \(X \mapsto -X \).

Proof: Consider the composite \(G \to G \times G \to G, g \mapsto (g, i(g)) \mapsto gi(g) = e \). The composite is a constant function, so its differential is zero. But the differential of a composite is the composite of the differentials, so applying (1), \(0 = d\text{id}_e + di \). The differential of the identity map is the identity map, so we are done.

3. Fix \(x \in G \). Let \(\text{Int} x : G \to G \) be the automorphism of algebraic groups \(g \mapsto xgx^{-1} \). The differential \(d(\text{Int} x)_e : \mathfrak{g} \to \mathfrak{g} \) is a Lie algebra automorphism. It is usually denoted \(\text{Ad} x : \mathfrak{g} \to \mathfrak{g} \).

For example, suppose \(G = GL_n \). Then, for a matrix \(X \in \mathfrak{gl}_n \), \((\text{Ad} x)(X) = xXx^{-1} \), i.e \(\text{Ad} x \) is just the Lie algebra automorphism given by conjugation by \(x \). Hence, for \(H \) and closed subgroup of \(G \) and \(x \in H \), \(\text{Ad} x : \mathfrak{h} \to \mathfrak{h} \) is just conjugation by \(x \) too – it leaves the subspace \(\mathfrak{h} \) of \(\mathfrak{gl}_n \) invariant.

Proof: Let us compute \((\text{Int} x)^*T_{i,j} \):

\[
((\text{Int} x)^*T_{i,j})(g) = T_{i,j}(xgx^{-1}) = (\mu^*(\mu^*T_{i,j}))(x, g, x^{-1})
\]

\[
= \sum_{k,l} T_{i,k}(x)T_{k,l}(g)T_{l,j}(x^{-1}).
\]
Hence:

\[(\text{Int } x)^*T_{i,j} = \sum_{k,l} x_{i,k} T_{k,l}(x^{-1})_{l,j}.\]

The \(ij\)-entry of \((\text{Ad } x)(X)\) is

\[(\text{Ad } x)(X)(T_{i,j}) = \sum_{k,l} x_{i,k} X(T_{k,l})(x^{-1})_{i,j}\]

which is the \(ij\)-entry of \(x X x^{-1}\).

(4) Here is a consequence of (3). For each \(x \in G\), \(\text{Ad } x : g \to g\) is an invertible linear map (even a Lie algebra automorphism) so you can think of Ad as a group homomorphism from \(G\) to \(GL(g)\) (or even to \(\text{Aut}(g)\) which is a closed subgroup of \(GL(g)\)). I claim that \(\text{Ad} : G \to GL(g)\) is a morphism of algebraic groups.

Proof: Embed \(G\) as a closed subgroup of some \(GL_n\). Then by (3), \(\text{Ad } x\) is conjugation by \(x\), which is clearly a morphism of varieties — since it is given by matrix multiplication and inversion which are polynomial operations.

(5) The image of \(\text{Ad} : G \to GL(g)\) is a closed connected subgroup of \(\text{Aut}(g)\), denoted \(\text{Ad } G\). It is interesting to consider the kernel of \(\text{Ad}\), a closed normal subgroup of \(G\). Obviously, every element of \(Z(G)\) belongs to \(\ker \text{Ad}\), i.e. \(Z(G) \subseteq \ker \text{Ad}\). I warn you that equality need not hold here. However it usually does, for example it always does in characteristic 0.

For example, if \(G = GL_n\), \(\ker \text{Ad} = Z(G)\) (check directly: \(\ker \text{Ad}\) is the invertible matrices which commute with all other matrices), the scalar matrices. In this case \(\text{Ad } G\) is the group known as \(PGL_n\). As an abstract group, \(PGL_n \cong GL_n/\{\text{scalars}\}\).

Similarly, if \(G = SL_n\), \(\ker \text{Ad}\) is the scalar matrices of determinant one, i.e. the matrices

\[
\begin{pmatrix}
\omega & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \omega
\end{pmatrix}
\]

where \(\omega\) runs over all \(n\)th roots of unity. The group \(\text{Ad } SL_n\) is known as \(PSL_n\). As an abstract group \(PSL_n \cong SL_n/\{\text{scalars}\}\).

Warning. In characteristic \(p|n\), \(Z(SL_n)\) is trivial. So \(PSL_n \cong SL_n\) as an abstract group, the isomorphism being the map \(g \mapsto \text{Ad } g\). However, \(SL_n\) is not isomorphic to \(PSL_n\) as an algebraic group: the problem is that \(\text{Ad}\) is a bijective morphism that is NOT an isomorphism of varieties, i.e. its inverse is not a morphism of varieties.

(6) Because of (4), we have a morphism \(\text{Ad} : G \to GL(g)\). So we can consider its differential again,

\[d \text{Ad} : g \to \mathfrak{gl}(g)\].
The map \(d\text{Ad} \) is usually denoted \(\text{ad} \). I claim that \(\text{ad} X \in \mathfrak{gl}(g) \) is the map \(Y \mapsto [X,Y] \) (in particular, \(\text{ad} X \) is a derivation of \(g \), so \(\text{ad} \) is a Lie algebra homomorphism \(g \to \text{Der}(g) \)). In other words,

The differential of \(\text{Ad} \) is \(\text{ad} \).

The proof is so nasty I’m not going to type it in...

Exercise 3.23. (8) Here is an example to show that \(\ker \text{Ad} \) may be larger than \(Z(G) \) if \(\text{char} k = p > 0 \). Let \(G \) be the two dimensional closed subgroup of \(GL_2 \) consisting of all matrices of the form

\[
\begin{pmatrix}
a & 0 \\
0 & a^p \ b
\end{pmatrix}
\]

where \(a \neq 0 \) and \(b \) are arbitrary elements of \(k \). Describe the Lie algebra \(g \) explicitly as a subspace of \(\mathfrak{gl}_2 \). Now compute \(Z(G) \) and \(\ker \text{Ad} \) and show that they are *not* equal.

(9) Consider the morphism \(\text{Ad} : SL_2 \to PSL_2 \). Both \(SL_2 \) and \(PSL_2 \) are three dimensional algebraic groups, so their Lie algebras are three dimensional too. Consider the differential \(\text{ad} : \mathfrak{sl}_2 \to \mathfrak{psl}_2 \). Using Example (8) above, compute the kernel of \(\text{ad} \), an ideal in the Lie algebra \(\mathfrak{sl}_2 \). Deduce by 3.16 that the morphism \(\text{Ad} \) is separable if and only if \(\text{char} k \neq 2 \). (So in characteristic 2 – when \(\text{Ad} \) is a bijective morphism – it is inseparable so it cannot be an isomorphism).

(10) Let \(\text{char} k = p > 0 \). Take \(X \in \mathfrak{g} = \text{Der}_k(k[G], k_e) \). Recall \(\mathfrak{g} \) is isomorphic to \(L(G) \), the left invariant derivations of \(k[G] \), via the map \(X \mapsto \tilde{X} \). Show that \((\tilde{X})^p\) is a left invariant derivation of \(k[G] \). Hence, there is a unique element \(X^{[p]} \in \mathfrak{g} \) with

\[
\tilde{X}^{[p]} = (\tilde{X})^p.
\]

This gives an extra operation on \(\mathfrak{g} \) in characteristic \(p \), the map \(X \mapsto X^{[p]} \), which makes \(\mathfrak{g} \) into what is known as a *restricted Lie algebra*. Describe this map explicitly in the one dimensional cases \(G = \mathbb{G}_a \) and \(G = \mathbb{G}_m \).