Math 261: Homework 7 solutions

Chapter 7

3(ii). Look at \(f(x) = \sin x - x + 1 \). It is continuous. And \(f(0) = 1 \), \(f(1000) = \sin 1000 - 1000 + 1 < 0 \). So by the IVT there’s some \(x \) (between 0 and 1000) with \(f(x) = 0 \).

4(a). Take for example \((x + 1)(x + 2) \cdots (x + k)(x^{n-k} + 1)\).

5. If \(f \) is continuous on \([a, b]\) and \(f(x) \) is always rational, then \(f \) is constant.
 Proof. Suppose for a contradiction that \(f \) is not constant. Then, we can find \(x < y \in [a, b] \) such that \(f(x) \neq f(y) \). Choose an irrational number \(m \) lying between \(f(x) \) and \(f(y) \). Then, by the intermediate value theorem, there exists \(z \in [x, y] \) with \(f(z) = m \). Hence, \(f \) takes an irrational value, contradicting the hypotheses.

6. We know \(f(0) \) is either 1 or \(-1\). Suppose that \(f(0) = 1 \) (the other case \(f(0) = -1 \) goes in a similar way). I’ll show that \(f(x) = \sqrt{1 - x^2} \) for all \(x \in [-1, 1] \). Well suppose not. Then for some \(x \in [-1, 1] \), we have that \(f(x) = \sqrt{1 - x^2} \neq \sqrt{1 - x^2} \), hence \(x \in (-1, 1) \) and \(f(x) < 0 \). Since \(f(0) = 1 \), the IVT implies there’s some \(y \) in between \(x \) and 0, i.e. in \((-1, 1)\) too, such that \(f(y) = 0 \). But \(f(y) = \pm \sqrt{1 - y^2} \neq 0 \), so this is a contradiction.

8. Suppose that \(f(0) > 0 \) (the other case \(f(0) < 0 \) is similar). I’ll show first that \(f(x) > 0 \) for all \(x \). Well, if not then there’s some \(x \) with \(f(x) < 0 \), so by IVT since \(f \) is continuous, there’s some \(x \) with \(f(x) = 0 \), a contradiction.

Since \(g(0) = \pm f(0) \), we then either have that \(g(0) > 0 \) or \(g(0) < 0 \). In the former case, the argument in the previous paragraph shows that \(g(x) > 0 \) for all \(x \). Hence since \(g(x) = \pm f(x) \) for all \(x \) we actually have that \(g(x) = f(x) \) for all \(x \) (else some \(g(x) \) would be negative).

The case that \(g(0) < 0 \) is similar: you get that \(g(x) < 0 \) for all \(x \) hence that \(g(x) = -f(x) \) for all \(x \).

12. (a) We need to show that \(f(x) = 1 - x \) for some \(x \in [0, 1] \) (since \(y = 1 - x \) is the equation of the dashed line). Certainly, \(f(0) \leq 1 \) and \(f(1) \geq 0 \) by the assumptions. Now set \(g(x) = f(x) - 1 + x \). Then, \(g(0) \leq 1 - 1 + 0 = 0 \) and \(g(1) \geq 0 - 1 + 1 = 0 \). So, \(g(0) \leq 0 \leq g(1) \). So by the intermediate value theorem, there exists \(x \in [0, 1] \) with \(g(x) = 0 \). But then \(f(x) - 1 + x = 0 \) so \(f(x) = 1 - x \) and we’re done.

(b) Let \(h(x) = f(x) - g(x) \).
 Case one. \(g(0) = 0, g(1) = 1 \). Then, \(h(0) = f(0) \geq 0 \) and \(h(1) = f(1) - 1 \leq 0 \). So \(h(0) \geq 0 \geq h(1) \), so by the intermediate value theorem, there exists \(x \in [0, 1] \) such that \(h(x) = 0 \). But then, \(f(x) - g(x) = 0 \) so \(f(x) = g(x) \) and we’re done.

Case two. \(g(0) = 1, g(1) = 0 \). Then, \(h(0) = f(0) - 1 \leq 0 \) and \(h(1) = f(1) \geq 0 \). So \(h(0) \leq 0 \leq h(1) \), so by the intermediate value theorem, there exists \(x \in [0, 1] \) such that \(h(x) = 0 \). But then, \(f(x) - g(x) = 0 \) so \(f(x) = g(x) \) and we’re done.

Chapter 8
1. (ii) 1 is the greatest, \(-1\) is the least.
(iv) 0 is the least element, and the least upper bound is \(\sqrt{2} \) which is not in the set.

(vi) Since \(\{ x \mid x^2 + x + 1 < 0 \} = ((-1 - \sqrt{5})/2, (-1 + \sqrt{5})/2) \), the greatest lower bound is \((-1 - \sqrt{5})/2\) and the least upper bound is \((-1 + \sqrt{5})/2\); neither is in the set.

(viii) \(1 - 1/2 \) is the greatest element, and the greatest lower bound is \(-1\) which is not in the set.

6. (a) Suppose not, say \(f(a) \neq 0 \) for some \(a \). Let \(\epsilon = |f(a)| \). By the definition of continuity, there exists \(\delta > 0 \) such that \(|x - a| < \delta \) implies \(|f(x) - f(a)| < |f(a)| \). By the definition of density there exists such an \(x \) belonging to the set \(A \), i.e. with \(f(x) = 0 \). But then, \(|f(a)| = |f(x) - f(a)| < |f(a)| \) which is a contradiction.

(b) Apply (a) to the continuous function \(h(x) = f(x) - g(x) \).

(c) Like in (b) you can reduce to the case that \(g(x) = 0 \), i.e. you know \(f(x) \geq 0 \) for all \(x \in A \) and want to prove that \(f(x) \geq 0 \) for all \(x \in \mathbb{R} \). Suppose not, say \(f(a) < 0 \) for some \(a \). Arguing as in (a) with \(\epsilon = -f(a) \), you then get an \(x \in A \) such that \(|f(x) - f(a)| < \epsilon \). But then \(0 \leq f(x) < f(a) + \epsilon = 0 \) which is the contradiction.

The answer to the final statement is “NO”, e.g. take \(A = \mathbb{R} \setminus \{0\} \) and \(f(x) = x^2 \).

7. Let \(c = f(1) \). We’ll show \(f(x) = cx \) in steps.

(1) \(f(x) = cx \) for all \(x \in \mathbb{N} \). Well, \(f(n) = f(1 + \cdots + 1) = f(1) + \cdots + f(1) = nc \).

(2) \(f(0) = 0 \). Well, \(f(0) + f(0) = f(0 + 0) = f(0) \), so subtracting \(f(0) \) from both sides gives \(f(0) = 0 \).

(3) \(f(x) = cx \) for all \(x \in \mathbb{N} \). Well, for \(n \in \mathbb{N} \), \(f(n) - n = f(n + f(-n)) = f(0) = 0 \). Hence by (1), \(cn + f(-n) = 0 \), so \(f(-n) = -cn \) which is all that was left to prove after (1) and (2).

(4) \(f(x) = cx \) for all \(x \in \mathbb{Q} \). Well, say \(x = m/n \) for \(m \in \mathbb{Z}, n \in \mathbb{N} \). Then, \(f(nx) = nf(x) = f(m) = cm \). So \(f(x) = cm/n \).

(5) \(f(x) = cx \) for all \(x \in \mathbb{R} \). Since \(\mathbb{Q} \) is dense and the functions \(f(x) \) and \(cx \) are continuous, this follows from (4) and 6(b).