Positive scalar curvature
[0] Schoen,
Richard; Zhang,
Dong Prescribed scalar curvature on the $n$-sphere.
Calc. Var. Partial Differential Equations 4
(1996), no. 1, 1--25.
[1] Botvinnik, Boris; Gilkey, Peter B. Metrics of positive scalar curvature on spherical space forms.
Canad. J. Math. 48 (1996), no. 1, 64--80.
[2] Botvinnik, Boris, Gilkey, Peter B. The eta invariant and the equivariant spin bordism of spherical space
form $2$ groups.
New developments in differential geometry (Debrecen, 1994),
213--223, Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, 1996.
[3] Taubes, Clifford H. ${\rm SW}\Rightarrow{\rm Gr}$: from the Seiberg-Witten equations to
pseudo-holomorphic curves.
J. Amer. Math. Soc. 9 (1996), no. 3, 845--918.
[4] Hijazi, Oussama; Milhorat, Jean-Louis Minoration des valeurs propres de l'opérateur de Dirac sur les
variétés spin Kähler-quaternioniennes.
(French) [Lower bounds for the eigenvalues of the Dirac operator on
quaternionic-Kahler spin manifolds] J. Math. Pures Appl. (9) 74 (1995), no. 5, 387--414.
[5] Botvinnik, B.; Gilkey, P. B. The eta invariant, equivariant spin bordism and metrics of positive
scalar curvature.
Partial differential operators and mathematical physics (Holzhau,
1994),
141--152, Oper. Theory Adv. Appl., 78, Birkhäuser, Basel, 1995.
[6] Rosenberg, Jonathan; Stolz, Stephan A "stable" version of the Gromov-Lawson conjecture.
The \v Cech centennial (Boston, MA, 1993),
405--418, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
[7] Stolz, Stephan A conjecture concerning positive Ricci curvature and the Witten
genus.
Math. Ann. 304 (1996), no. 4, 785--800.
[8] Botvinnik, Boris; Gilkey, Peter B. The eta invariant and metrics of positive scalar curvature.
Math. Ann. 302 (1995), no. 3, 507--517.
[9] Bunke, Ulrich A $K$-theoretic relative index theorem and Callias-type Dirac
operators.
Math. Ann. 303 (1995), no. 2, 241--279.
[10] Dai, Xianzhe; Zhang, Wei Ping Circle bundles and the Kreck-Stolz invariant.
Trans. Amer. Math. Soc. 347 (1995), no. 9, 3587--3593.
[11]Mostafazadeh, Ali Supersymmetry and the Atiyah-Singer index theorem. I. Peierls brackets,
Green's functions, and a proof of the index theorem via Gaussian
superdeterminants.
J. Math. Phys. 35 (1994), no. 3, 1095--1124.
[12] Anghel, Nicolae Index theory for short-ranged fields in higher dimensions.
J. Funct. Anal. 119 (1994), no. 1, 19--36.
[13] Salamon, S. M. Index theory and quaternionic Kähler manifolds.
Differential geometry and its applications (Opava, 1992),
387--404, Math. Publ., 1, Silesian Univ. Opava, Opava, 1993.
[14] Kirchberg, Klaus-Dieter Killing spinors on Kähler manifolds.
Ann. Global Anal. Geom. 11 (1993), no. 2, 141--164.
[15] Anghel, N. On the index of Callias-type operators.
Geom. Funct. Anal. 3 (1993), no. 5, 431--438.
[16] Kirchberg, K.-D. Some further properties of Kählerian twistor spinors.
Math. Nachr. 163 (1993), 229--255.
[17] Bär, Christian Real Killing spinors and holonomy.
Comm. Math. Phys. 154 (1993), no. 3, 509--521.
[18] Lichnerowicz, A. Opérateur de Dirac et spineurs-twisteurs en géométrie
riemannienne et kählérienne.
(French) [Dirac operator and twistor-spinors in Riemann and Kahler geometry] Séminaire Gaston Darboux de Géométrie et Topologie
Différentielle, 1991--1992 (Montpellier),
43--58, Univ. Montpellier II, Montpellier, 1993.
[19] Friedrich, Thomas The classification of $4$-dimensional Kähler manifolds with small
eigenvalue of the Dirac operator.
Math. Ann. 295 (1993), no. 3, 565--574.
[20] Roe, John Coarse cohomology and index theory on complete Riemannian
manifolds.
Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90 pp.
[21] Lichnerowicz, André Spineurs-twisteurs et spineurs-twisteurs simples.
(French) [Twistor-spinors and simple twistor-spinors] C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 12, 1269--1273.
[22] Mathai, Varghese Nonnegative scalar curvature.
Ann. Global Anal. Geom. 10 (1992), no. 2, 103--123.
[23] Lott, J. Superconnections and higher index theory.
Geom. Funct. Anal. 2 (1992), no. 4, 421--454. (Reviewer: John Roe) 58G12 (19D55 19K56 57R20)
[24] 93i:58158 Kirchberg, K.-D. Properties of Kählerian twistor-spinors and vanishing theorems.
Math. Ann. 293 (1992), no. 2, 349--369.
[25] Stolz, Stephan Simply connected manifolds of positive scalar curvature.
Ann. of Math. (2) 136 (1992), no. 3, 511--540.
[26] Hijazi, Oussama Première valeur propre de l'opérateur de Dirac et nombre de
Yamabe.
(French) [First eigenvalue of the Dirac operator and the Yamabe number] C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 12, 865--868.
[27] Friedrich, Thomas; Pokorná, Olga Twistor spinors and solutions of the equation (E) on Riemannian
manifolds.
Proceedings of the Winter School on Geometry and Physics (Srní,
1990).
Rend. Circ. Mat. Palermo (2) Suppl. No. 26 (1991), 149--154.
[28] Rosenberg, Jonathan The $K{\rm O}$-assembly map and positive scalar curvature.
Algebraic topology Pozna\'n 1989,
170--182, Lecture
Notes in Math., 1474, Springer, Berlin, 1991.
[29] Roy,
Ashim; Bandyopadhyay,
Pratul Gravitational anomaly and the world topology.
Modern Phys. Lett. A 7 (1992), no. 1,
33--42.
[30] Kirchberg,
K.-D. The first eigenvalue of the Dirac operator on Kähler
manifolds.
J. Geom. Phys. 7 (1990), no. 4,
449--468 (1991).
[31]
Bunke,
Ulrich The spectrum of the Dirac operator on the hyperbolic space.
Math. Nachr. 153 (1991),
179--190.
[32]
Baum,
Helga; Friedrich,
Thomas; Grunewald,
Ralf; Kath,
Ines Twistor and Killing spinors on Riemannian manifolds. Seminarberichte
[Seminar Reports], 108. Humboldt Universität, Sektion
Mathematik, Berlin, 1990. 179 pp.
[33] Lichnerowicz,
André Spineurs harmoniques et spineurs-twisteurs en
géométrie kählerienne et conformément
kählerienne. (French) [Harmonic spinors and twistor-spinors in
Kahler and conformally Kahler geometry]
C. R. Acad. Sci. Paris Sér. I Math. 311
(1990), no. 13, 883--887.
[34]
Baum,
Helga An upper bound for the first eigenvalue of the Dirac
operator on compact spin manifolds.
Math. Z. 206 (1991), no. 3,
409--422.
[35]
Lichnerowicz,
André La première valeur propre de
l'opérateur de Dirac pour une variété
kählérienne et son cas limite. (French) [The first
eigenvalue of the Dirac operator for a Kahler manifold and the
limiting case]
C. R. Acad. Sci. Paris Sér. I Math. 311
(1990), no. 11, 717--722.
[36]
Grunewald,
Ralf Six-dimensional Riemannian manifolds with a real Killing
spinor.
Ann. Global Anal. Geom. 8 (1990),
no. 1, 43--59.
[37]
Friedrich,
Thomas On the conformal relation between twistors and Killing
spinors. Proceedings of the Winter School on Geometry and Physics
(Srní, 1989).
Rend. Circ. Mat. Palermo (2) Suppl. No. 22 (1990),
59--75.
[38]
Lichnerowicz,
André Sur les zéros des spineurs-twisteurs.
(French) [On the zeros of twistor-spinors]
C. R. Acad. Sci. Paris Sér. I Math. 310
(1990), no. 1, 19--22.
[39]
Kirchberg,
K.-D. Some results concerning the Dirac operator on compact
Kähler spin manifolds of positive scalar curvature. Seminar
Analysis of the Karl-Weierstrass-Institute of Mathematics, 1986/87
(Berlin, 1986/87),
247--255, Teubner-Texte
Math., 106, Teubner, Leipzig, 1988.
[40]
Lawson,
H. Blaine, Jr.; Michelsohn,
Marie-Louise Spin geometry. Princeton
Mathematical Series, 38. Princeton University Press,
Princeton, NJ, 1989. xii+427 pp. ISBN: 0-691-08542-0
[41]
Roe,
John Exotic cohomology and index theory.
Bull. Amer. Math. Soc. (N.S.) 23
(1990), no. 2, 447--453.
[42]
Min-Oo,
Maung Scalar curvature rigidity of asymptotically hyperbolic spin
manifolds.
Math. Ann. 285 (1989), no. 4,
527--539.
[43]
Deheuvels,
René Quelques applications des algèbres de Clifford
à la géométrie. (French) [Some applications of
Clifford algebras to geometry] Geometry Conference (Parma, 1988).
Riv. Mat. Univ. Parma (4) 14* (1988),
55--67 (1989).
[44] Deheuvels,
René Décomposition de certains produits tensoriels
de représentations de ${\rm Spin}(n)$. (French) [Decomposition
of some tensor products of representations of ${\rm Spin}(n)$]
Bull. Sci. Math. (2) 113 (1989),
no. 4, 493--503.
[45]
Troitski\u\i,
E. V. An exact $K$-cohomology $C\sp *$-index formula. II. An index
theorem and its applications. (Russian)
Uspekhi Mat. Nauk 44 (1989), no. 1(265),
213--214; translation in
Russian Math. Surveys 44 (1989),
no. 1, 259--261
[46]
Roe,
John Partitioning noncompact manifolds and the dual Toeplitz
problem. Operator algebras and applications, Vol. 1,
187--228, London
Math. Soc. Lecture Note Ser., 135, Cambridge Univ. Press,
Cambridge-New York, 1988.
[47]
Friedrich,
Th.; Kath,
I. Einstein manifolds of dimension five with small first
eigenvalue of the Dirac operator.
J. Differential Geom. 29 (1989),
no. 2, 263--279.
[48]
Kirchberg,
K.-D. Compact six-dimensional Kähler Spin manifolds of
positive scalar curvature with the smallest possible first eigenvalue
of the Dirac operator.
Math. Ann. 282 (1988), no. 1,
157--176.
[49] Bourguignon,
Jean-Pierre L'opérateur de Dirac et la
géométrie riemannienne. (French) [The Dirac operator
and Riemannian geometry]
Rend. Sem. Mat. Univ. Politec. Torino 44
(1986), no. 3, 317--359 (1987).
[50] Moriyoshi,
Hitoshi Positive scalar curvature and higher $\hat A$-genus.
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35
(1988), no. 2, 199--224.
[51] Sugiyama,
Kenichi An asymptotic estimation of dimension of harmonic spinors.
J. Math. Soc. Japan 40 (1988), no. 2,
319--330.
[52]
Parker,
Thomas; Rosenberg,
Steven Invariants of conformal Laplacians.
J. Differential Geom. 25 (1987),
no. 2, 199--222.
[53]
Lichnerowicz,
André Les spineurs-twisteurs sur une variété
spinorielle compacte. (French) [Twistor-spinors on a compact spin
manifold]
C. R. Acad. Sci. Paris Sér. I Math. 306
(1988), no. 8, 381--385.
[54]
Kirchberg,
K.-D. An estimation for the first eigenvalue of the Dirac operator
on closed Kähler manifolds of positive scalar curvature.
Ann. Global Anal. Geom. 4 (1986),
no. 3, 291--325.
[55] Kazdan,
Jerry L. Partial differential equations in differential geometry.
Differential geometry (Lyngby, 1985),
134--170, Lecture
Notes in Math., 1263, Springer, Berlin-New York, 1987.
[56] Lichnerowicz,
André Spin manifolds, Killing spinors and universality of
the Hijazi inequality.
Lett. Math. Phys. 13 (1987), no. 4,
331--344.
[57]
Lichnerowicz,
André Variétés spinorielles et
universalité de l'inégalité de Hijazi. (French)
[Spin manifolds and universality of the Hijazi inequality]
C. R. Acad. Sci. Paris Sér. I Math. 304
(1987), no. 9, 227--231.
[58]
Rosenberg,
J. $C\sp *$-algebras, positive scalar curvature and the Novikov
conjecture. II. Geometric methods in operator algebras (Kyoto,
1983),
341--374, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986.
[59] Hijazi,
Oussama Caractérisation de la sphère par les
premières valeurs propres de l'opérateur de Dirac en
dimensions $3,$ $4,$ $7$ et $8$. (French) [Characterization of the
round sphere by the first eigenvalues of the Dirac operator in
dimensions $3,$ $4,$ $7$ and $8$]
C. R. Acad. Sci. Paris Sér. I Math. 303
(1986), no. 9, 417--419.
[60]
Dong,
Rui Tao Another approach to Yamabe's problem.
Sci. Sinica Ser. A 29 (1986), no. 2,
125--137.
[61]
Hijazi,
Oussama A conformal lower bound for the smallest eigenvalue of the
Dirac operator and Killing spinors.
Comm. Math. Phys. 104 (1986), no. 1,
151--162.
[62]
Rubinstein,
J. H. Embedded minimal surfaces in $3$-manifolds with positive
scalar curvature.
Proc. Amer. Math. Soc. 95 (1985),
no. 3, 458--462.
[63]
Lawson,
H. Blaine Complete manifolds of positive scalar curvature.
Proceedings of the 1981 Shanghai symposium on differential geometry
and differential equations (Shanghai/Hefei, 1981),
147--181, Science Press, Beijing, 1984.
[64]
Nagayama,
Haruya On Einstein\mhy Dirac equations. TRU
Math. 21 (1985), no. 1,
127--145.
[65] Friedrich,
Thomas; Grunewald,
Ralf On the first eigenvalue of the Dirac operator on
$6$-dimensional manifolds.
Ann. Global Anal. Geom. 3 (1985),
no. 3, 265--273.
[67]
Gromov,
Mikhael; Lawson,
H. Blaine, Jr. Positive scalar curvature and the Dirac operator on
complete Riemannian manifolds.
Inst. Hautes Études Sci. Publ. Math. No. 58
(1983), 83--196 (1984).
[68]
Friedrich,
Thomas A remark on the first eigenvalue of the Dirac operator on
$4$-dimensional manifolds.
Math. Nachr. 102 (1981),
53--56.
[69]
Gregorash,
D.; Papini,
G. Weyl-Dirac theory with torsion. II. Foundations and
conservation equations.
Nuovo Cimento B (11) 56 (1980), no. 1,
21--38.
[70]
Dlubek,
Helga; Friedrich,
Thomas Spectral properties of the Dirac operator.
Bull. Acad. Polon. Sci. Sér. Sci. Math.
27 (1979), no. 7-8, 621--624 (1980).
[71]
Gibbons,
G. W. Spectral asymmetry and quantum field theory in curved
spacetime.
Ann. Physics 125 (1980), no. 1,
98--116.
[72]
Gromov,
Mikhael Carnot-Carathéodory spaces seen from within.
Sub-Riemannian geometry,
79--323, Progr. Math., 144, Birkhäuser, Basel, 1996.
[73]
Gromov,
M. Positive curvature, macroscopic dimension, spectral gaps and
higher signatures. Functional analysis on the eve of the 21st
century, Vol. II (New Brunswick, NJ, 1993),
1--213, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996.
[74] Gromov,
Mikhael Geometric reflections on the Novikov conjecture.
Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach,
1993),
164--173, London
Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press,
Cambridge, 1995.
[75] Gromov,
M. Metric invariants of Kähler manifolds. Differential
geometry and topology (Alghero, 1992),
90--116, World Sci. Publishing, River Edge, NJ, 1993.
[76]
Gromov,
M. Sign and geometric meaning of curvature.
Rend. Sem. Mat. Fis. Milano 61 (1991),
9--123 (1994).
[77]
Gromov,
Michael; Shubin,
Mikhail A. The Riemann-Roch theorem for elliptic operators and
solvability of elliptic equations with additional conditions on
compact subsets.
Invent. Math. 117 (1994), no. 1,
165--180.
[78]
Gromov,
Mikhael; Shubin,
Mikhail A. The Riemann-Roch theorem for elliptic operators and
solvability of elliptic equations with additional conditions on
compact subsets. Journées "Équations aux
Dérivées Partielles" (Saint-Jean-de-Monts, 1993),
Exp. No. XVIII, 13 pp., École Polytech., Palaiseau, 1993.
[79]
Gromov,
Mikhael; Shubin,
Mikhail A. The Riemann-Roch theorem for elliptic operators.
I. M. Gel\cprime fand Seminar,
211--241, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993.
[80]
Gromov,
M.; Shubin,
M. A. Near-cohomology of Hilbert complexes and topology of
non-simply connected manifolds. Méthodes semi-classiques,
Vol. 2 (Nantes, 1991).
Astérisque No. 210 (1992), 9--10,
283--294.
[81]
Gromov,
Mikhael Stability and pinching. Geometry Seminars. Sessions
on Topology and Geometry of Manifolds (Italian) (Bologna, 1990),
55--97, Univ. Stud. Bologna, Bologna, 1992.
[82]
Burago,
Yu.; Gromov,
M.; Perel\cprime
man, G. A. D. Aleksandrov spaces with curvatures bounded below.
(Russian)
Uspekhi Mat. Nauk 47 (1992), no. 2(284),
3--51, 222; translation in
Russian Math. Surveys 47 (1992),
no. 2, 1--58
[83]
Connes,
A.; Gromov,
M.; Moscovici,
H. Group cohomology with Lipschitz control and higher signatures.
Geom. Funct. Anal. 3 (1993), no. 1,
1--78.
[84]
Cheeger,
Jeff; Gromov,
Mikhael Chopping Riemannian manifolds. Differential
geometry,
85--94, Pitman Monographs Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991.
[85]
Gromov,
Mikhael Spectral geometry of semi-algebraic sets.
Ann. Inst. Fourier (Grenoble) 42
(1992), no. 1-2, 249--274.
[86]
Eliashberg,
Yakov; Gromov,
Mikhael Embeddings of Stein manifolds of dimension $n$ into the
affine space of dimension $3n/2+1$.
Ann. of Math. (2) 136 (1992), no. 1,
123--135.
[87]
Eliashberg,
Yakov; Gromov,
Mikhael Convex symplectic manifolds. Several complex
variables and complex geometry, Part 2 (Santa Cruz, CA, 1989),
135--162, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.
[21] Hara, Tamio Equivariant bordism of $(G,{\scr E})$-manifolds.
Kyushu J. Math. 48 (1994), no. 2, 427--439.
[176] Hara, Tamio, On oriented $G$-manifolds of Baas-Sullivan type.
Hiroshima Math. J. 9 (1979), no. 3, 601--622.
© Copyright American Mathematical Society 1997