Homework # 25. Due to Wednesday, June 3, 11:00 am

- (1) Let (B,A) be a CW-pair and $X^n = B^{(n)} \cup A$, where $B^{(n)}$ is the n-th skeleton of B, and Y be a homotopy sipmle space. Prove that for any map $f: X^n \to Y$ and a cochain $d \in \mathcal{E}^n(B,A;\pi_n(Y))$ there exists a map $g: X^n \to Y$ such that $f|_{X^{n-1}} = g|_{X^{n-1}}$ and d(f,g) = d.
- (2) Consider a k-torus T^k . We identify T^k with the quotient space \mathbf{R}^k/\sim , where two vectors $\vec{x} \sim \vec{y}$ if and only if all coordinates of the vector $\vec{x} \vec{y}$ are integers. It is easy to see that a linear map $\bar{f}: \mathbf{R}^k \to \mathbf{R}^\ell$ given by an $k \times \ell$ -matrix A with integral entries descends to a map $f: T^k \to T^\ell$. In that case a map $f: T^k \to T^\ell$ is called *linear*. Prove that any map $f: T^k \to T^\ell$ is homotopic to a linear map.
- (3) Let X be an n-dimensional CW-complex. Prove that there is a bijection:

$$H^n(X; \mathbf{Z}) \cong [X, S^n].$$

- (4) Assume a CW-complex X contains S^1 such that the inclusion $i: S^1 \hookrightarrow X$ induces an injection $i_*: H_1(S^1; \mathbf{Z}) \to H_1(X; \mathbf{Z})$ with image a direct summand of $H_1(X; \mathbf{Z})$. Prove that S^1 is a retract of X.
- (5) Two questions:
 - (a) Show that there is no map from \mathbb{CP}^2 to itself of degree -1.
 - (b) Show that there is no map from $\mathbb{CP}^2 \times \mathbb{CP}^2$ to itself of degree -1.