Homework # 17. Due to Wednesday, March 11, 11:00 am

- (1) Prove that the group Tor(G, H) is well-defined, i.e. it does not depend on the choice of resolution.
- (2) Let G, H be abelian groups. Prove that there is an isomorphism $Tor(G, H) \cong Tor(H, G)$.
- (3) Let G be an abelian group. Denote T(G) a maximal torsion subgroup of G. Show that $Tor(G,H) \cong T(G) \otimes T(H)$ for finite generated abelian groups G,H. Give an example of abelian groups G,H, so that $Tor(G,H) \neq T(G) \otimes T(H)$.
- (4) Prove that the following sequence is exact:

$$0 \leftarrow \operatorname{Coker} \beta^{\#} \leftarrow \operatorname{Hom}(R, H) \stackrel{\beta^{\#}}{\leftarrow} \operatorname{Hom}(F, H) \stackrel{\alpha^{\#}}{\leftarrow} \operatorname{Hom}(G, H) \leftarrow 0.$$

- (5) Prove that $\text{Ext}(\mathbf{Z}, H) = 0$ for any group H.
- (6) Prove the isomorphisms: $\operatorname{Ext}(\mathbf{Z}/m,\mathbf{Z}/n) \cong \mathbf{Z}/m \otimes \mathbf{Z}/n$, $\operatorname{Ext}(\mathbf{Z}/m,\mathbf{Z}) \cong \mathbf{Z}/m$.
- (7) Let X be a space so that the groups $H_q(X)$ are finitely generated for all $q \geq 0$. Prove that $H^q(X; \mathbf{Z})$ are also finitely generated and $H^q(X; \mathbf{Z}) \cong F(H_q(X; \mathbf{Z})) \oplus T(H_{q-1}(X; \mathbf{Z}))$.
- (8) Let F be a field. Prove that

$$H^q(X; F) = \operatorname{Hom}_F(H_q(X; F), F).$$

- (9) Let F be a free abelian group. Show that Ext(G, F) = 0 for any abelian group G.
- (10) Give a detailed proof of the following

Theorem. Let X be a space, and G an abelian group. Then there is a split exact sequence

$$0 \longrightarrow H^q(X; \mathbf{Z}) \otimes G \longrightarrow H^q(X; G) \longrightarrow \operatorname{Tor}(H^{q+1}(X; \mathbf{Z}), G) \longrightarrow 0$$

for any $q \geq 0$. Again the splitting is not natural.