Homework # 16. Due to Wednesday, March 4, 11:00 am

(1) Let $A: S^n \to S^n$ be the antipodal map, $A: x \mapsto -x$, and $\iota_n \in \pi_n(S^n)$ be the generator represented by the identity map $S^n \to S^n$. Prove that the homotopy class $[A] \in \pi_n(S^n)$ is equal to

$$[A] = \begin{cases} \iota_n, & \text{if } n \text{ is odd,} \\ -\iota_n, & \text{if } n \text{ is even.} \end{cases}$$

(2) Let e^0, \ldots, e^n be the cells in the standard cell decomposition of \mathbf{RP}^n . Prove that

$$[e^q:e^{q-1}] = \begin{cases} 2 & \text{if } q \text{ is odd,} \\ 0, & \text{if } q \text{ is even.} \end{cases}$$

- (3) Compute the homology groups $H_q(\mathbf{RP}^{2n} \# \mathbf{CP}^n)$.
- (4) Let M_q^2 be an oriented surface of genus g. Compute $H_q(M_q^2)$.
- (5) Let N_q^2 be an non-oriented surface of genus g. Compute $H_q(N_q^2)$.
- (6) Construct a map $f: S^{2n-1} \to S^{2n-1}$ without fixed points.
- (7) Let $f, g: S^n \to S^n$ be two maps. Assume that $f(x) \neq -g(x)$ for all $x \in S^n$. Prove that $f \sim g$.
- (8) Let $f: S^n \to S^n$ be a map with $\deg f \neq (-1)^{n+1}$. Then there exists $x \in S^n$ with f(x) = x.
- (9) Let $f: S^{2n} \to S^{2n}$ be a map. Prove that there exists a point $x \in S^{2n}$ such that either f(x) = x or f(x) = -x.
- (10) Let $f: S^n \to S^n$ be a map of degree zero. Prove that there exist two points $x, y \in S^n$ with f(x) = x and f(y) = -y.
- (11) Construct a surjective map $f: S^n \to S^n$ of degree zero.
- (12) Let $n \neq k$. Prove that the spaces $S^n \times \mathbf{RP}^k$ and $\mathbf{RP}^n \times S^k$ are not homotopy equivalent.