Homework \# 4. Due to Wednesday, November 6, 11:00 am
(1) (5*) Construct an orthogonal transformation $T_{u, v}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that
(a) $T_{u, v}(u)=v$;
(b) $T_{u, v}(w)=w$ if $w \in\langle u, v\rangle^{\perp}$.
(2) (5*) Prove that the transformation $T_{u, v}$ from (1) has the following properties:
(i) $T_{u, u}=I d$;
(ii) $T_{v, u}=T_{u, v}^{-1}$;
(iii) a vector $T_{u, v}(x)$ depends continuously on u, v, x;
(iv) $T_{u, v}(x)=x\left(\bmod \mathbf{R}^{j}\right)$ if $u, v \in \mathbf{R}^{j}$.
(3) $\left(5^{*}\right)$ Construct a cellular decomposion of the product $Z=S^{n} \times S^{k}$.
(4) $\left(5^{*}\right)$ Construct a cellular decomposion of the wedge $X=\Sigma\left(S^{n} \vee S^{k}\right)$. Prove the homotopy equivalence

$$
\Sigma\left(S^{n} \vee S^{k}\right) \sim S^{n+1} \vee S^{k+1}
$$

(5) $\left(80^{*}\right)$ Give a detailed construction of a $C W$-structure of the complex Grassmanian $G_{k}\left(\mathbf{C}^{n}\right)$.
Hint: You may follow and refer to the constructions given for the real Grassmannian and provide the details if the constructions/arguments are actually differ from the real case.

