Homework # 3. Due to Wednesday, October 31, 9:00 am

- (1) Prove that Definitions H-I and H-III are equivalent.
- (2) Give definition of a contractible space. Prove that $\mathcal{E}(X, x_0)$ is contractible.
- (3) Prove that a space X is contractible if and only if every map $f: Y \longrightarrow X$ is null-homotopic.
- (4) Prove that a space X is contractible if and only if it is homotopy equivalent to a point.
- (5) Prove that a subspace A is a deformation retract of X if and only if the inclusion $A \longrightarrow X$ is a homotopy equivalence.
- (6) Let X, Y be pointed spaces. Let $X \sim Y$. Prove that $\Sigma X \sim \Sigma Y$ and $\Omega X \sim \Omega Y$.
- (7) Prove that a *CW*-complex compact if and only if it is finite.
- (8) Construct a cellular decomposition of S^n , D^n , \mathbf{RP}^n , \mathbf{CP}^n , \mathbf{HP}^n .
- (9) Construct a cellular decomposition of the oriented 2-manifold of genus g.
- (10) Prove that a finite CW-complex can be embedded into Euclidian space of finite dimension.
- (11) Construct an orthogonal transformation $T_{u,v}: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ such that
 - (a) $T_{u,v}(u) = v;$
 - (b) $T_{u,v}(w) = w$ if $w \in \langle u, v \rangle^{\perp}$.

(12) Prove that the transformation $T_{u,v}$ from (11) has the following properties:

- (i) $T_{u,u} = Id;$
- (ii) $T_{v,u} = T_{u,v}^{-1};$
- (iii) a vector $T_{u,v}(x)$ depends continuously on u, v, x;
- (iv) $T_{u,v}(x) = x \pmod{\mathbf{R}^j}$ if $u, v \in \mathbf{R}^j$.
- (13) Do Exercise 4.12 from the notes.
- (14) Do Exercise 4.13 from the notes.
- (15^*) Do Exercise 4.14 from the notes.