Algebraic Topology, 2012/2013,

Homework # 2. Due to Monday October 15, 9:00 am

(1) Define the Stiefel manifolds V(n,k). Prove the homeomorphisms:

$$V(n,n) \cong O(n), \quad V(n,n-1) \cong SO(n), \quad V(n,1) \cong S^{n-1}.$$

(2) Prove the homeomorphisms:

$$\mathbf{C}V(n,n) \cong U(n), \quad \mathbf{C}V(n,n-1) \cong SU(n).$$

- (3) Construct a homeomorphism $SO(4) \cong SO(3) \times S^3$.
- (4) Prove the following homeomorphisms: $S^{n-1} \cong O(n)/O(n-1) \cong SO(n)/SO(n-1),$ $S^{2n-1} \cong U(n)/U(n-1) \cong SU(n)/SU(n-1),$ $G(n,k) \cong O(n)/O(k) \times O(n-k),$ $\mathbf{C}G(n,k) \cong U(n)/U(k) \times U(n-k).$
- (5) Define the compact-open topology on $\mathcal{C}(X,Y)$. Prove the homeomorphism:

$$\mathcal{C}(X, \mathcal{C}(Y, Z)) \cong \mathcal{C}(X \times Y, Z)$$

provided X, Y and Z are Hausdorff and locally compact topological spaces. Prove that this homeomorphism is natural.

- (6) Define smash-product $X \wedge Y$. Prove that $S^n \wedge S^k \cong S^{n+k}$ (as pointed spaces).
- (7) Prove that the maps $\phi^* : [X', Y] \to [X, Y], \ \psi_* : [X, Y] \to [X, Y']$ induced by maps $\phi : X \to X', \ \psi : Y \to Y'$ are well-defined.
- (8) Define a cylinder and a cone of a map $f: X \to Y$. Prove that the cone of the Hopf map $H: S^{4n+3} \to \mathbf{HP}^n$ is homeomorphic to \mathbf{HP}^{n+1} .
- (9) Let X be a projective plane \mathbb{RP}^2 with k small (open) disjoint disks D_i^2 (i = 1, ..., k) deleted. Let Y be the space obtained by gluing X with k Mëbious bands along the boundary circles. Which surface is that?
- $(10^*)^1$ Consider a subspace X of S^5 , given by the equation

$$x_1x_6 - x_2x_5 + x_3x_4 = 0,$$

where $S^5 \subset \mathbf{R}^6$ is given by $x_1^2 + \cdots + x_6^2 = 1$. Prove that $X \cong S^2 \times S^2$.

¹Usually "*" means that the excercise is optional.