Algebraic Topology, 2012/2013,

Homework # 1. Due to Friday, October 5, 9:00 a.m.

- (1) Do Exercises # 5.1 (p. 15), # 7.6 (p. 28) and # 8.1, 8.2 (p. 34) from Massey.
- (2) Give a detailed proof of Lemma 7.1 (p. 26) from Massey.
- (3) Define the quaternionic projective space HP^n . Prove that HP^1 is homeomorphic to S^4 .
- (4) Prove that the projective spaces \mathbf{RP}^n , \mathbf{CP}^n , \mathbf{HP}^n are connected and compact.
- (5) Define the Hopf maps $h: S^{2n+1} \to \mathbb{C}\mathbb{P}^n$ and $H: S^{4n+3} \to \mathbb{H}\mathbb{P}^n$. Prove that $h^{-1}(x) \cong S^1$ for each $x \in \mathbb{C}\mathbb{P}^n$ and $H^{-1}(x) \cong S^3$ for each $x \in \mathbb{H}\mathbb{P}^n$.
- (6) Prove that the Grassmannian manifolds G(n,k) and CG(n,k) are compact and connected.
- (7) Prove that the spaces O(n), SO(n), U(n), SU(n), Sp(n) are compact. How many connected components does each of these spaces have?
- (8) Find dimensions of the manifolds G(n,k) CG(n,k), O(n), SO(n), U(n), SU(n), Sp(n).
- (9) Give a detailed proof that SO(3) is homeomorphic to \mathbb{RP}^3 .
- (10) Prove that each matrix $A \in SU(2)$ may be presented as:

$$A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \text{ where } \alpha, \beta \in \mathbf{C}, \ |\alpha|^2 + |\beta|^2 = 1$$

Use this presentation to prove that SU(2) is homeomorphic to S^3 .

Solutions.

(9) We identify \mathbf{RP}^3 with the disk D^3/\sim , where D^3 is given by the inequality

$$x_1^2 + x_2^2 + x_3^2 \le \sqrt{\pi},$$

and the equivalence relation \sim is given as

$$(x_1, x_2, x_3) \sim (y_1, y_2, y_3)$$
 if and only if
 $\begin{cases} x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2 = \sqrt{\pi} \\ (x_1, x_2, x_3) = (-y_1, -y_2, -y_3). \end{cases}$

Now we choose a standard orthonormal basis (e_1, e_2, e_3) of \mathbf{R}^3 . Let $\alpha \in SO(3)$. Then there exists a unique orthonormal basis (v_1, v_2, v_3) of \mathbf{R}^3 such that a matrix A of α (with respect to the basis (v_1, v_2, v_3)) is given as

$$A = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix} \,.$$

Here v_1 spans a line $L = \langle v_1 \rangle$ which is fixed by α , and ϕ is the angle of rotation in the plane $\langle v_2, v_3 \rangle = L^{\perp}$.