PROBLEMS -

1. < If M" is a connected, orientable, and compact n-manifold with H,(M",Z) =0
and if N*"'<M" is a compact connected (n— 1)-manifold, then show that
M" — N""! has exactly two components with N7 as the topological boundary
of each.

2. Give a counterexample to Problem 1 if the condition H ((M"; Z) = Ois dropped.
3. Show, by example, that Corollary 8.8 would be false if H were repl»aced by H.

4. For alocally compact space X, define H?(X) = lim H"(X, X — K) where K ranges
over the compact subsets of X. (This is called “cohomology with compact
supports.”) For an oriented n-manifold M", define a cap product n §: H/(M")—~
H,_,{M") and show that it is an isomorphism. (Hint: For U < X open with U
compact, lim H*(X, X — U) = lim H*(X,X — U))

5. Using Problem 4, show that, for a connected n-manifold M", H{M")~ Z for M"
orientable and HY(M")~Z, for M" nonorientable.

6. If M?"*!is a compact connected (2n + 1)-manifold, possibly nonori%ntable, show
that the Euler characteristic of M?"*! is zero. (Assume the fact that H, (M) is
finitely generated.)

7. If M3 is a compact, connected, and nonorientable 3-manifold, show that H (M)
is infinite. (Hint: Use Problem 6.)

8. If U = R? is open, show that H,(U) is torsion free. (Hint: This would be false for
UcR,n>3)

9. Show that Corollary 8.9 remains true if the hypothesis that H,(M;Z)=0 is
weakened to H,(M;Z,)=0.

10. Rework Problems 6-9 of Section 19 of Chapter 1V in light of the results of the
present section.

9. Duality on Compact Manifolds with Boundary

We remark that, in general, if M" is compact then the orientation §is simply
an element of H,(M") which is a generator on each component. In this case,
we usually denote it by [M]e H,(M). This class [ M] is called the “orientation
class” or “fundamental class” of M.

Let M" be a compact n-manifold with boundary dM. We shall assume
that there is a neighborhood of M in M" which is a product oM x [0,2),
with 0M corresponding to M x {0}. This is clearly the case for smooth
manifolds and it is also known to always be the case for paracompact
topological manifolds, by a theorem of M. Brown [2]. Also, one can avoid
such an assumption merely by adding an external collar. For simplicity of
notation, we will treat dM x [0,2) as a subspace of M.

Assume that M" is connected and orientable, by which we mean that
its interior M — dM is orientable. Then we have the following isomor-
phisms:
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H,(M,0M)~ H,(M, oM x [0,1)) (homotopy) -
~ H,(int(M),dM x (0, 1)) (excision)
~ HM — oM x [0,1)) (duality)
~ H°(M) (homotopy)
~Z.
The orientation class deH, (int(M), oM x (0,1)) corresponds to a class
[M]eH,(M,0M). At the other end of this sequence of isomorphisms, the
orientation class corresponds to 1e H°(M), the class of the augmentation
cocycle taking all O-simplices to 1.
Consider the following sequence of isomorphisms:
H?(M; G) ~ HA(M — oM x [0, 1); G) (homotopy)
~ H,_ (int(M),0M x (0,1); G) (duality, cap with 8)
~H,_,(M,oM x [0, 1); G) (excision)
~ H,_,(M,dM;G) (homotopy).

By naturality of the cap product, the resulting isomorphism H?(M; G)~
H, _ (M, 0M; G)is the cap product with the orientation class [M]e H"(M, oM).

9.1. Lemma. If M" is compact and orientable then 0M is orientable and
[0M] = 0,[M] is an orientation class, where 0, is the connecting homomor-
phism of the exact sequence of the pair (M, 0M).

PROOF. Let A be a component of M, and put B=JdM — A (possibly empty).
Consider the exact homology sequence of the triple (M, Au B, B). Part of it
is the homomorphism 0, : H,(M,AuB)— H,_,(AUB, B). The first group is
H,(M,0M) and the second is isomorphic, by excision, to H,_(A4). If c is a
chain representing [M]eH,(M,dM) then [M] = [c] goes to [part of dc in
A]in H, _(A). Thus we are to show that the part of dc in A4 is an orientation,
i.e., that it gives a generator of H,_ ,(A).

For any coefficient group G, we have

H,(M, B;G)~ H,(M, B x [0, 1); G)
~ H,(int(M), B x (0,1); G)
~ I (int(M)— B x (0,1),®®0)
=0,

since int(M)— B x (0,1) is connected and non-compact. By the Universal
Coefficient Theorem,

0=H,(M,B,Q/Z)~H,M,B)®Q/Z & TH,_ (M, B),
see Example 7.6 of Chapter V. Hence, H,_,(M, B) is torsion free and the
exact sequence of the triple (M, A U B, B) has the segment

0 H,(M, M) -2 H__,(A)~ (torsion free).
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But H,(M,0M)~ Z, and H, .,(A) is either Z (if orientable) or 0 (if not). Thus
H,_1(A)must be Z and d, must be onto to make the cokernel torsion free.

]
/

9.2. Theorem. If M" is an oriented, compact, connected n-manifold with
boundary, then the diagram (arbitrary coefficients)

*
vt s HA(M) H?@M) -—6—.—) H?*Y(M, dM)

Fs LAYV § e

zln[M] (—-1y zln[aM] (—1yt+! zln[M] 1 zln[M]
"'—_'Hn-p(M’aM)THn—p—l(aM)THn'P'l(M) j H x(M’aM)_..“

n-p~-
*x

with exact rows, commutes up to the indicated signs. This also holds, without
the orientability restriction, over the base ring Z,.

PrOOE. All the vertical isomorphisms, except the third, result from previous
theorems or remarks. The third one will follow from the 5-lemma as soon
as we have proved the commutativity.

Let ceA, (M) represent the orientation class [M]e H,(M,dM). Then dcis a
chain in oM. )

For the first square, let f€AP(M) be a cocycle. Then going right and then
down gives a class represented by f|;,N0c = fndc=(—1)?0(f nc). Going
down then right gives (f nc).

For the second square, let f € AP(M) with § f = 0 on M. Then going right
then down gives (6 f)nc=0d(f n¢c) + (— 1! f ndc which is homologous to
(=1)P*1f ndc=(—1P"" f|a,ndc. Going down then right gives f |4, N dc.

Commutativity of the third square is obvious. O

9.3. Corollary. n[M]: H*(M,dM; G)— H, _ ,(M; G) is an isomorphism. ]

It is often desirable to have a version of duality entirely in terms of
cohomology and the cup product. To this end, let A be a principal ideal
domain and, with the notation of Example 7.6 of Chapter V, put

HP()= H?(:)/TH"("),

the “torsion free part” of the pth cohomology group. Note that if A is a field
then H = H. We shall assume the fact, proved in Appendix E, that H (M;A)
is finitely generated. Then it follows that Ext(H (M), A) is all torsion so that

the Universal Coefficient Theorem gives the isomorphism H?(M;A) ——
Hom(H ,(M), A).

9.4. Theorem. Let M" be a compact, connected, oriented (over A) n-manifold
with boundary. Then the cup product pairing

HP(M; A)® ,H" (M, 0M; A) > H"(M,dM; A) =~ Ho(M; A) = A
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taking (o.® P)—>aupr>{au B, [M]>€eA, is a duality pairing. That is, the map
H?(M; A) » Hom ,(H" ™ ?(M, 0M; A), A),

taking ar>a where &(ff) = (a v f,[M]1), is an isomorphism.

Proor. We have the isomorphism H?(M;A)—— Hom(H (M), A) —
Hom(H"™?(M, dM), A) (given by the Universal Coefficient Theorem and cap
with [M], respectively), taking, say, « to a* and then to «°, where a*(y) =
(a,y>. We claim that a° = &, which would prove the desired isomorphism,

We compute a°(f) = «*(B N [M]) = (o, B0 [M]) =B, [M]) =a(f). O

PROBLEMS

1. If M" and N" are compact connected oriented n-manifolds, one defines their
“connected sum” M#N as follows: Take a nicely embedded n-disk in each, remove
its interior, and paste the remainders together via an orientation reversing homeo-
morphism on the boundary spheres of these disks. Show that the cohomology
ring of M#N is isomorphic to the ring resulting from the direct product of the
rings for M and N with the unity elements (in dimension 0) identified and the
orientation classes identified. Similarly, the multiples of these identifications must
also be made. (The orientation cohomology class of M is that class $e H"(M) which
is Kronecker dual to [M], ie., such that J[M]=1. It can also be described as
the class that is Poincaré dual to the standard generator in Hy(M), the class
represented by any 0-simplex.) In particular, cup products of positive dimensional
classes, one from each of the two original manifolds, are zero.

2. Suppose that N"is a compact, orientable, smooth n-manifold embedded smoothly
in the compact, orientable m-manifold M™. Let W be a closed tubular neighborhood
of N in M. Show that there exists an isomorphism H (N)~x H,,_ ., ,(W,3W).

3. < Let M" be a compact manifold with boundary M = AU B where 4 and B are
(n — 1)-manifolds with common boundary 4~ B. Since AN B is a neighborhood
retract in both 4 and B (see Appendix E) the inclusion A, (4) + A, (B) = A, (AU B)
induces an isomorphism in homology, and so there is a cap product

A HAM, A)® H,(M, AU B) - H,_ (M, B).

Take the orientation class [4] to come from [0M]=0,[M] via H,_,(0M)=
H, (AuB)-H,_ (AUB,B)~ H,_,(A, A~ B)(by excision and homotopy). Show
that the diagram

o3 HYM, A) > HYM) > HPA) ————— HPYYM, A) ——> -
' x|l Al4]
n{M] = | n[M] H,_,.{4,24) n[M]

|=

H {AUB,B)——H

n~p=~1 n—p-1

{M,B)—— ...

== H, (M,B)——H, _(M,dM)

n p

commutes up to sign. Deduce that there is the duality isomorphism

| AIML:H? (M, 4) 2o H,_ (M, B). |
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4. Verify, by direct .computation, the isomorphism H?(M,A)~H,_,(M,B) for
M?3=S! x D? and where 4 is a nice 2-disk in M and B is the closure of the
complement of 4 in dM. -

5. If M™ and N" are compact orientable manifolds with boundary, show that
H,,—,((M,0M) x Ny~ H"*?(M x (N, éN)).

10. Applications of Duality

In this section we will give several applications of duality to problems about
manifolds. It is standard terminology to refer to compact manifolds without
boundary as “closed” manifolds. We shall occasionally use the fact, from
Appendix E, that such manifolds have finitely generated homology.

10.1. Proposition. Let M" be a closed, connected, orientable manifold and let
f:S"—>M be a map of nonzero degree. Then H, (M";Q)~H,(S"Q). If,
moreover, deg(f)= 1, then H (M", Z)~ H (S"; Z).

Proor. For the last part, suppose H,(M;Z) # 0 for some g # 0, n. Then it
can easily be seen from the Universal Coefficient Theorem that there is a
field A such that HY(M;A) # 0. For the first part, take A =Q.

If 0#acHYM;A) then there is a feH" 4M;A) with auB#0. Thus
af =k, where y is a generator of H"(M;A) and 03 keA. Therefore
0=0-0= f*@)f*(B) = f*@B)= f*(ky) = k-deg(f) generator 3 0. O

10.2. Proposition. The cohomology rings of the real, complex, and quaternionic
projective spaces are:

H*RP™% Z,)~ Z,[a] /o] where deg(a)=1,
H*(CP™Z)~ Z[o] fo"+! where deg(o) =2,
H*(QP% Z)~ Z[o] /" *? where deg(x) =4.

ProOOF. We already know the additive (co)homology groups of these spaces.
The arguments for all of these are essentially the same so we will give it only
for the case of complex projective space. The proof is by induction on n.
Suppose it holds for n— 1, i.e., that there is an element acH*(CP"~!) such
that 1,a,a%,...,a" " ! generate the homology groups in those dimensions. Now
CP" is obtained from CP"~! by attaching a 2n-cell. It follows from the exact
sequence of the pair (CP",CP""!) that HYCP")— HYCP""') is an
isomorphism for i < 2n — 2. Thus it makes sense to identify « and its powers
up to a" "' with their preimages in H(CP") in this range. (This is just a
notational convenience.) Also, of course, the case n=1 is trivial, so we can
assume n > 2. Thus we have the classes ae H*(CP") and «"~'eH?"~2(CP").
By Theorem 9.4, the product a” = a U~ ' must be a generator of H>"(CP").

O
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10.3. Corollary. Any homotopy equivalence CP?*" = CP*" preserves orientation
for n>1,

PROOF. Such a map f must be an isomorphism on H*(CP2") ~ Z and so, for
a generator o we must have f*(«) = +a. Therefore f*(?")=(f*(@))*"=
(+0)*" = a?". The contention follows since thisis a top dimensional generator.

O

We will now study to a small extent the cohomology of manifolds that
are boundaries of other manifolds.

10.4. Theorem. Let A be a field (coefficients for all homology and cohomology).
Let V*"*1 be an oriented (unless A = Z,) compact manifold with 0V = M?"
connected. Then dim H*(M?") is even and

dim[ker(iy: Hu(M) - H,(V))] = dim[im(i*: H'(V) - H"(M))] = 4 dim H"(M). .

Moreover, im(i*) = H(M) is self-annihilating, i.e., the cup product of any two
classes in it is zero. ‘

Proor. Consider this portion of the Poincarée-Lefschetz diagram:

H"(V) ______Ii___’ H"(M) '—'—'-5—*'—)H"+ 1(V, M)

n[M]j ~ . & ln[V]
H,(M) ———— H,(V).

From the diagram we see that {im(i*)} n[M]= {ker(6*)} n[M] = ker(i,).
Thus rank(i*) = dim im(i*) = dim ker(i, ) = dim H,(M) — rank(i,) = dim H"(M)—
rank(i*), since i* and i, are Kronecker duals of one another (this is the fact
that the rank of a transposed matrix equals the rank of the original). Therefore,
dim H*(M) = 2-rank(i*) = 2-dim(ker(i,)).

Now if a, feH"(V) then §*(i*(xx) u i*(B)) = (0*i*)(aw f) = 0 since 6*i* =0
by exactness. But &* H2"(M)— H?"*1(V, M) is a monomorphism since it is
dual to i : Ho(M)— Hy(V). Thus i*(a) wi*() = 0 as claimed. L]

10.5. Corollary. If M™ =0V is connected with V compact, then the Euler
characteristic y(M) is even; also see Problem 1.

Proor. If dim(M) is odd then Poincaré duality on M pairs odd and even
dimensions and so y(M) =0 for all closed M. For M of dimension 2n, we
have that y(M) = dim H"(M; Z,) modulo 2. For M = dV, the latter is 0 (mod
2) by Theorem 10.4. l

10.6. Corollary. RP2",CP?", and QP?" are not boundaries of compact
manifolds. 1
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We remark that all orientable two- and three-dimensionalclosed manifolds
are boundaries. The Klein bottle is a nonorientable 2<manifold which is a
boundary.

10.7. Definition (H. Weyl). Let M be a closed oriented manifold. The signature

‘of M is defined to be 0 if dim(M) is not divisible by 4. If dim(M) = 4n, then
signature(M) is defined to be the signature of the quadratic form (o, )=
(xupf)[M] on H?>"(M;R).

Recall that a quadratic form over the reals is the sum and difference of
squares. Its “signature” is the sum of the signs on those squares. Another
term used for this is “index.”

10.8. Corollary (Thom). If M* = gv*"*! s connected with V compact and
orientable then signature(M) = 0.

PrOOF. Let W = H?"(M;R) and let dim(W) = 2k. The quadratic form (over
R) of Definition 10.7 is equivalent to the sum of, say, r positive squares and,
thus, 2k — r negative ones. That is, there is a subspace W™ on which the
form is positive definite and another subspace W~ on which it is negative
definite with dim W* = r and dim W~ = 2k — r. By Theorem 104, there is a
subspace U « W of dimension ksuch that (a, > =0on U.Clearly UuW™* =
{0} and so the sum r + k of their dimensions cannot be greater than the
dimension 2k of W. That is, r + k< 2k, so that r <k.

Similarly UnW ™~ = {0}, so that 2k —r) + k <2k, ie, k<r.

Thus r = k and the signature is zero. O

10.9. Example. The connected sum (see Problem 1 in Section9) M* =
CP2#CP? is not the boundary of an orientable 5-manifold. To see this, note
that the ring of M* is generated by classes «, fe H*(M), with aff =0 and
o? = B2, so that its quadratic form is the identity 2 x 2 matrix whose signature
is 2 (or —2 for the other orientation).

Of course, a more general argument shows that the signature is additive
with respect to the connected sum operation on oriented manifolds.

However, CP2# —CP? is the boundary of the orientable S5-manifold
V3 = (CP? — U) x 1, where U is an open 4-disk in CP2. (—CP? stands for
CP? with the opposite orientation.) The only difference in the cohomology

ring is that B2 = —a?, but that is enough, of course, to make the signature
zero. Naturally, this is a general fact having nothing to do with CP?
specifically.

Also we claim that CP?#CP? is the boundary of a nonorientable
5-manifold. To see this consider (CP? x I)#(RP? x S?), where the sum is done
away from the two boundary components. Now run an arc from one of the
boundary components through an orientation reversing loop in RP? x §°
and then to the other boundary component. Done nicely this arc has a
product neighborhood, and we can remove that. This leaves CP?#CP? as the



