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It follows that =,(E) and =,_,(E) are both trivial. The remainder follows
from the rest of the top sequence. 0O

11.11. Definition. A map f: X —Y is an n-equivalence if fy:n,(X)—>n,(Y) is
an isomorphism for i < nand an epimorphism for i = n. If f is an n-equivalence
"for all n then it is called a weak homotopy equivalence or an co-equivalence.

Note that the condition in Definition 11.11 is equivalent to 7(M, X)
being O for i <n.

11.12. Theorem. For n< oo, a map f: X = Y is an n-equivalence if and only
if, for every relative CW-pair (K, L) with dim(K — L)< n any commutative
diagram

H_gh_._,X
|7

.___.g...‘—)Y

R o™

can be completed to

where the top triangle commutes and the bottom triangle commutes up to a
homotopy rel L. )

Proor. The implication <=is just the definition of 7 (M ;, X) = O using (K, L) =
(D, S 1),

Let i: X <, M, be the inclusionand p: M ; — Y the projection. Since M, > Y,
the map g can be regarded as a map g: K — M and f can be regarded as a
map f: X - M . Theng|,= feh~ichsince f ~i: X — M ;. By the homotopy
extension property applied to (K, L), there is a homotopy F: K x I - M of
gtoamapg: K — M suchthatg’'|, =i°h,and poF:K x [ - Y isa homotopy
rel L. Thus peg ~ pog’ rel L.

Now extend the map h x [ug' x {0}:Lx UK x {0} > M to G:K x I —
M, such that G(K x {1})< X by induction over skeletons of (K, L) using
that 7,(M,, X)=0 for i<n and that dim(K — L) < n. Define ¢:K— X by
d(x) = G{x, 1)eX.

Then for xeL, ¢(x) = G(x, 1) = G(x, 0) = h(x), meaning that the top triangle
commutes. Also,ic¢p = G(-, 1) ~G(-,0)=g'rel L. Thus fo¢ = poicg = pog =~
peg =g rel L. O

11.13. Corollary. If f: X —Y is an n-equivalence (n < ) and K is a CW-
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complex, then . -
fu K X]-[K; Y]

is bijective for dim(K) < n and surjective for dim(K)=n. This also holds in
the pointed category.

Proor. The onto part is by application of Theorem 11.12 to (K, &&). The
one—one part is by application of Theorem 11.12 to (K x I, K x 8I). In the
pointed category use the base point instead of . O

11.14. Corollary. Let f:K — L be a map between connected CW-complexes.
Thenf'is a homotopy equivalence if and only if fy: n,(K)— m;(L) is an isomorphism
for all i.

Proor. Select base points corresponding under f and restrict attention to
pointed maps. Then fy:[L; K]—[L; L] is bijective by Corollary 11.13. Thus
there is a [gle[L; K] with fy[g]=[1]. But fy[g]=[/f°g], so feg~1.

On homotopy groups we have 14=(f°g)y = fgogy. But f4is an isomor-
phism so it follows that gy is also an isomorphism in all dimensions. Then
by the same argument used for f applied to g, there is a map h: K — L such that
goh~1. Thus f ~ fogoh~h, from which we get 1 ~goh>~gof. 0

11.15. Corollary. Suppose that K and L are simply connected CW-complexes.
If f:K — L is such that f,: H{K)— H,(L) is an isomorphism for all i, then f is
a homotopy equivalence. O

11.16. Example. Consider the suspension X(S" x S™) of the product of two
spheres, n,m > 0. We have the composition

T(S" x SM) > E(S" x S™) v I(S" x §™) v T(S" x §™) »S" Ly §mtl grimtt

where the first map is from the coproduct and the second is the one-point
union of the maps Xx,,Xn,, and Xy, where n, and =, are the projections to
the factors of the product and 7:S" x S"—8" A 8"~ S"*™ It is easily seen
that this composition is an isomorphism in homology. Thus it is a homotopy
equivalence by Corollary 11.15.

11.17. Example. We shall prove the converse of Theorem 10.14 of Chapter VI,
thereby giving a complete homotopy classification of the lens spaces L(p, 9)-
We must show that if + gq’ 1s a quadratic residue mod p then L(p, q) ~ L(p, q).
The condition is equivalent to the existence of integers &, n, and m, prime to
p, such that n’kq’' + mp= + 1 and kg =1 (mod p). With the notation from
the proof of Lemma 10.13 of Chapter VI consider the map 6: S* —S? given
by 8(u, v) = (u™,v*™). Then it can be checked immediately that 6T, = T7.0;
Le., 6 carries the Z ,-action generated by T, to that generated by T7.. Now
consider p disjoint disks in S* permuted by T,. By pinching the boundaries



of these disks to points, we get a space W =SJuS}u---uUS?} (one point
unions but at different points) and an equivariant map S* — W where S* and
53 have the T,-action and the other S} are permuted by T,. Map W —S3
by putting § on S}, and a map of degree m on S} propagated to maps of
degree m on the other S} by equivariance. Then the composition @:S* — W —
S has degree deg(f) + mp=n*kq' + mp= + 1 and carries the T, action to
the 77, action. Since @ has degree +1 it induces isomorphisms ®: 7,(S*)—
n;(S?) for all i. The induced map ¥: L(p, 9) » L{(p, q') on the orbit spaces then
gives isomorphisms Wy 7,(L{p, q)) — n(I{p,q’)) for all i; (see the proof of
Lemma 10.13 of Chapter VI). Thus ¥ is a homotopy equivalence by Corollary
11.14 as desired. This discussion generalizes easily to prove the converse of
Problem 3 of Section 10 of Chapter VI; i.e,, the higher-dimensional analog
of the present example.

We finish this section with a brief discussion of the classification problem
in topology. This is the problem of finding a way to tell whether or not two
spaces are homeomorphic. This is too ambitious, so let us modify it so as
to be less demanding. Let us ask for a decision procedure to determine
whether or not two finite polyhedra are homotopy equivalent. Perhaps this
does not sound too ambitious, but, in fact, it is, as we now explain. Suppose
we are given a group G in terms of a finite number of generators and relations.
Then we can construct a finite simplicial complex having G as its fundamental
group by taking a one-point union of circles, one for each generator, and
then attaching 2-cells (which can be done simplicially) to kill the relations.
(Perhaps such a construction should be called “fratricide.”) If we had such
a decision procedure, then that procedure could be used to decide whether
or not G is the trivial group (i.e., whether or not the space is simply connected).
The problem of finding a decision procedure for determining whether or not
a group G, defined by generators and relations, is trivial, is essentially what
is known as the “word problem” in group theory. The word problem is
known to be unsolvable (proved in 1955 by Novikov [1]), i.e., it is known
that there exists no such decision procedure. Thus we have the following
fact.

11.18. Theorem. There does not exist any decision procedure for determining
whet her or not a given two-dimensional finite polyhedron is simply connected.

o

Also, it follows from Section 9 of Chapter I1I, Problem 13 that there is
no decision procedure for deciding whether or not a given 4-manifold is
simply connected.

This should not be taken as discouraging. After all, the simply connected
spaces make up a large segment of interest in topology. Moreover, the result
can be viewed as proof that topologists will never find themselves out of
work.
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PROBLEMS v '
1. Show that=, , _,(8"vS™) -z, (8" xS") is not an isomorphism.

2. Finish Example 11,16 by showing that the indicated map is an isomorphism in
homology. (Hint: Show the second map is onto in homology.)

3. If K is a simply connected CW-complex with H,(K)~ Z and H,(K)=0 for i # n,
then show that K ~S§",

4. Prove this amendment to the Absolute Hurewicz Theorem: Suppose that X is
(n — 1)-connected, n > 2. Then the Hurewicz homomorphism h;: 7(X)— Hy(X) is
an isomorphism for i <n and an epimorphism for i =n + 1. (Hint: Consider the
pair (Y, X) where Y is a space obtained from X by attaching n-cells to kill z,(X).)

5. Consider aen,(S' v §?) and fen,(S' v S?) given by the inclusions of the factors.

- Let f:82—S' v §? represent 2f — a(f)en,(S* v §?) and put X =(S* v $)u, D3,
Show that the inclusion S! —, X induces an isomorphism on 7, and on H, but
is not a homotopy equivalence.

6. A “graph” is a CW-complex of dimension 1. A “tree” is a connected graph with

no cycles in the sense of graph theory; i.e., having no simple closed curves.

{(a) Show that a tree is contractible; i.e., prove the infinite case of Lemma 7.7 of
Chapter IIL

(b) Show that a connected graph has the homotopy type of the one-point union
of circles (possibly infinite in number); i.e., of a graph with a single vertex (the
infinite case of Lemma 7.13 of Chapter III).

(c) Show that the fundamental group of any connected graph is free; ie., prove
the infinite case Theorem 7.14 of Chapter III.

(d) Show that a subgroup of a free group is free; i.e., prove the infinite case of
Corollary 8.2 of Chapter III.

7. For any space X construct a CW-complex K and a map f: K — X which is a weak
homotopy equivalence.-(This is called a “CW-approximation” to X.) Use this to
remove the hypothesis in Theorem 11.7 that X is semilocally 1-connected.

12. Eilenberg-Mac Lane Spaces

An arcwise connected space Y is called an “Eilenberg—Mac Lane space of
type (n,n)” if n,(Y)~ 7 and n,(Y)= 0 for i n. We have already met these
spaces in the last section where Corollary 11.9 proved their existence as
CW-complexes, where, of course, 7 must be abelian for n > 1. In this section
we shall also require © to be abelian for n= 1. Such a space is also called
simply a “space of type (7,n)” or a “K(n,n).”

The purpose of this section is to show that there exists a natural equivalence
of functors

[K; K(n,n) ]~ H'(K; n),

on the category of CW-complexes K and maps. (Compare Hopf’s Theorem
11.6 of Chapter V.)
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Note that if Y is of type (n,n + 1) then the loop space QY is of type (n, nk
as follows from the exact homotopy sequence of the path-loop fibration of Y.
Also [K;QY]~[SK;Y] by Lemma 4.2. It is also clear that any map
K®* D, QY extends to K since ,(2Y) = 0 for i > n, and any partial homotopy
K®*D x TUK x 01 - QY extends to K x I for the same reason. Therefore
[K;QY] ~ [K®*D;QY].
“ The sequence

K® o K@+, Ko+ 1/Km |, GK®) _, gKe+D
is coexact by Corollaries 1.4, 5.3, and 5.5. Thus, for Y of type (r,n + 1), there
is the diagram
[S’K@~D/SZK®= D Y] ——— [S2K® "D ¥] —— 0

‘sn—l

[SK®™/SK®~1; Y]

(*) 3

0O —— [SK(n+1);Y] ——— [SK(");’Y} ey [K(n+[)/K(n); Y]

L 4

0

in which the long rows and column are exact and the diagonal maps marked

6 are defined by commutativity. The 0 at the left end of the third tier is by

[SK®*D/SK®™; Y] =0 since SK”"*1/SK™ is a bouquet of (n+ 2)-spheres

and 7,,,(Y)=0. Similarly, the 0 at the end of the exact column is by

[SK®~1;Y]=0, by Corollary 11.13, since dim(SK® 1)< n and n,(Y)=0

for i < n. The 0 on the right of the first row is for the same type of reason.
An easy diagram chase gives

[K;QY]~[SK; Y]~ [SK"*D; Y] ~ ker(4,)/im(5, _,).

It remains to identify the maps &, and §,_,. They differ only by a change
of the index n, so it suffices to look at 4,,. This is induced by the composition

K@+ l)/K(n) e KBtV G OK®™ L SKM SK(")/SK("_ n

Recall that the first map is the homotopy equivalence given by collapsing
the cone to a point. The second map is the collapse of K®*1), and the last
is the collapse of SK™~ 1),

Now K®*1/K™ is a bouquet of (n + 1)-spheres, one for each (n + 1)-cell &
of K. Similarly, SK™/SK®~1) = §(K®™/K®~ V) is a bouquet of (n + 1)-spheres,
one for each n-cell t of K.

For an (n+ 1)-cell o, consider the characteristic map

f ‘D"+l"‘)K("+l)
a* *
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This extends to -

foUCS5,: D" LUCS" - KOt D G CK™,

Letting f,:8"*!— K®*1/K™ be the (inclusion) map induced by f,, we have
the commutative diagram

Sn+l ‘___1_’_____ Dn+lucsn ____’f_____’ sst Sn+1
|7 |fevcsa |52 [so.

K‘"*”/K('" — K(""'I)UCK(H) —p SK(n) — SK‘"’/SK("_”: vV St
where p_ is the projection of K™/K®~1 to the tth sphere in the bouquet. It
follows that §, takes the oth sphere to the tth sphere by the map S(p.f5,);
i, a map of degree deg(p. fs,)-

Now an element of [V,S"*';Y] can be regarded as a function that
assigns to each (n+ 1)-cell o of K, an element of [S"*}; Y] ==, (Y)=1.
That is, it is a cellular cochain in C** }(K; n) = Hom(C, , {(K), 7). Similarly,
an element of [ V,S"*!; Y] is a function assigning to each n-cell ¢ of K, an
element of 7. That is, it is a cochain in C"(K; 7). We have shown that the map
[SK®/SK®~1; Y] [K®*1D/K®: Y] corresponds to the homomorphism

8: C"(K; m)— C"* {(K; )

given by d f(0) =3 .deg(p,fs,)f(z), where ¢ is an (n+ 1)-cell and t ranges
over the n-cells. But the right-hand side is f(3_, deg(p.f5.)t) = f(d0). Therefore,
¢ is precisely the cellular coboundary up to sign, justifying our use of that
symbol.

We have constructed the isomorphism

[K; QY] ~ HY(K; n),

which is natural in K.

We can replace QY by a CW-complex L since the construction of a
CW-complex L of type (n,n) in Corollary 11.9 makes it clear how to also
define a weak homotopy equivalence L— QY (or into any K(=,n)). This is
actually a homotopy equivalence because Milnor [1] has shown that QY
has the homotopy type of a CW-complex when Y has, but we neither need
nor will prove this fact. By Corollary 11.13, [K; L] = [K;QY] for all CW-
complexes K. Replacing [SK; Y] by [K;QY] and then by [K; L], the im-
portant part of diagram (%) becomes

[K®/K®=Y: 1]~ CY(K;n) = Hom(C,(K), )

|

0 — [K;L] — [K™;L]

l

0.



Starting with a map ¢: K — L representing [¢]e[K; L], chasing it to C'(K;n)
is given by first restricting it to K™ then (or prior on K) passing to a
homotopic map that takes K™~ ! to the base point of L, and then passing
to the induced map ¢": K™/K®~ Y — L. Finally, this gives a cochain ¢, on
K by c,(v)=[¢'>fJen, (L) =m, where f,:8"—K®/K"~ D=V S"is the in-
clusion of the tth sphere induced by the characteristic map f,:D"— K™, As
shown, ¢, is a cocycle when it comes from ¢: K — L this way. (One can also
see that directly.) The fact that [¢]+—[c, ] is a bijection means that the
class [c, | depends only on [¢] and this means that the cocycle ¢, depends
on the choice of ¢’, given ¢, only up to a coboundary. (One can also see
this directly, but we do not need that.)

Describing the correspondence the other direction is as easy: Starting with
a class (e H'(K; m), represent it by a cocycle c: C,(K)— m and construct a map

KWKo D= Vg

by putting a representative S"— L of ¢(t)en = z,(L) on the tth sphere. This,
then, induces a map K™ — Land it extends to f: K — L because c is a cocycle
and by the main discussion.

If we take the space L of type (n, n) to be as constructed in Corollary 11.9
then "~V ={x} and so L™ = V_S" where the n-cells t corréspond to given
generators of n. Then it is clear that 1e€[L; L] corresponds to the class
ue H"(L; n) represented by the cocycle ¢ taking each n-cell T to the corre-
sponding generator of 7. Then ¢*: H (L)~ = is an isomorphism. (Also recall
that the Hurewicz map =,(L)— H,(L) is an isomorphism.) A class ve H*(L; )
which corresponds to an isomorphism H,(Lj— = is called a “characteristic
class.” This is defined for any space with = as the first nonzero homotopy
group. :

Let us denote by T:[K;L] —— H"(K;n) our natural equivalence of func-

tors. Then T(1) =u. For a map f:K — L, the commutative diagram
[L;L] — H'(Lim)
I [
[K;L] —— H"(K;m)
shows that f#1)=[f] and T[f]= f*(T(1)) = f*(u). More generally, any
map f:K— K’ of CW-complexes induces
[K';L] —— H"(K';m)

A

T

[K;L] - H(K;n).

If f: L— Lis a homotopy equivalence, then f* is an isomorphism. It follows
that T[f]= f*(u) is characteristic. Conversely, if f is such that f*(u) is
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characteristic, then f# [L; L]—[L;L] is a bijection, and so there is a map
g:L— L such that f#[g] = 1. This implies that go f ~1 and hence f*g* =1,
so that g* is also an isomorphism and fog ~ 1. This essentially means that
any characteristic class ue H"(L; ) is as good as any other.

For any space Y of type (=, n) there is a weak homotopy equivalence L— Y
and this induces [K; L] —=— [K; Y]. This allows the results for [K; L] to

be transferred to [K; Y]. Summarizing, we get:

12.1. Theorem. Let Y be a space of type (n,n),n abelian, and let ue H'(Y; )
be characteristic. Then there is a natural equivalence of functors

T,:[K; Y] - H(K; )
of CW-complexes K, given by T,[ f]= f*(u). O

Note that if (K, A4) is a relative CW-complex then K/A4 is a CW-complex
and so it follows that, in the situation of Theorem 12.1,

[K/A; Y]~ HY(K/A;m) ~ HY(K, A; 7).

There are three cases of well-known spaces of type (r, n). The most obvious
one is S* which is a K(Z,1). Also CP® = {_JCP", with the weak topology, is
a K(Z,?2). This follows from the fibrations S* - 8?"*! — CP" and the fact that
n,(CP°°)==1i_r)n 7, (CP"). Similarly, P* is a K(Z,, 1), and, more generally, an
infinite lens space is a K(Z,, 1).

Let us now discuss an application to “cohomology operations.”

12.2. Definition. A cohomology operation 0 of type (n,m;k, ) is a natural
transformation

0: H"(-; m)—> H*(-; )
of functors of CW-complexes. It need not consist of homomorphisms.
For example, arsa?, for ae H'(-;Z) is a cohomology operation of type
(n,Z;2n, Z), and similarly with the higher powers and other coefficient groups.
Another example is the Bockstein By: H"(-; Z,)— H"*'(-; Z), which is of type

(n,Z,;n+ 1,Z). Similarly, the Bockstein g: H"(;Z,)— H"*'(-;Z,) is of type
(n,Zn+ ,Z,).

12.3. Theorem (Serre). There is a one—one correspondence between the co-
homology operations of type (n, m; k, w) and the elements of H*(K(r, n), w), which

is given by 0+ 0(u) where ue H"(K(m, n); @) is characteristic.

Proor. Thisisequivalent, via Theorem 12.1, to the statement that operations

Y[ X5 K(m,n)] - [X; K(w, k)]
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correspond to elements of [K(w,n); K{w, k)] via Y—y(1). To simplify no-
tation, let K = K(n,n) and L= K(w,k).
Given f:X — K we have the diagram

KKl —Y— [K;L)

b

[X;K] —Y— [X;L],
which, on elements, is

(1] - y()
L, !
[f] — ¥[f]

Thus, Y[ /1= f*y(1) =[g° f] where g: K — L represents y(1)e[K; L]. Con-
versely, [¢g]e[K; L] induces the operation i, by defining /[ f]1=[g°f]. O

For example, the fact that H*"(CP*;Z) ~ Z implies that all cohomology
operations 6: H*(-; Z) - H*"(-; Z) have the form 6(«) = ka" for some keZ.

On the other hand, the fact that ar—sa? of H4(X; Z)— H%(X;Z) is nontrivial
on some space X (e.g., CP®) implies that H¥(K(Z,4); Z) # 0.

Similarly, the fact that H3(P®;Z)~ Z, implies that there is exactly one
nontrivial operation H'(-;Z,)— H?(-;Z). Since the Bockstein in that case is
nontrivial (e.g., on P?), it is that unique operation.

12.4. Corollary. No nontrivial cohomology operation lowers dimension.

ProoF. This follows from the fact that H¥(K(r, n),w) =0 for 0 < k <n by the
Hurewicz and Universal Coefficient Theorems, or simply by the construction
of K(n,n) in Corollary 11.9, which has trivial (n — 1)-skeleton. O

In the next section we will need some technical items about connections
between characteristic elements, and another matter. This will fill out the
remainder of this section. It is suggested that a first time reader skip this
material and refer back to the statements, which are quite believable, when
they are used in the following section.

In the remainder of this section, and in the following sections, we shall
make the blanket assumption that all pointed spaces under consideration
are well-pointed.

Let the “suspension isomorphism” in cohomology be defined as the com-
position

S: A (X) —Z 5 H" (CX, X) —— H"*1(SX) ~ H"* }(SX)

(for n > 0). Sometimes this is defined with a difference in sign. This would
have no effect on our main formulas, just on some details of the derivations.



We also use the analogous definition for the suspension isomorphism in
homology and the suspension homomorphism for homotopy groups.

125. Lemma. If f: X > Y is a map between (n — 1)-connected spaces which
induces an isomorphismon n,(X)— n,(Y) ~ n and ifue H'(Y; ) is characteristic,
then f*(u)e H'(X; m) is characteristic.

Proor. There is the commutative diagram

H'(Y;m) —2— Hom(H,(Y),n)
zl f‘ ~ Hom(.fnl)
H(X;m) —%— Hom(H,(X),m)

where the f’s are the maps in the Universal Coefficient Theorem (Theorem 7.2
of Chapter V). By definition, ue H(Y; n) is characteristic <> fy(u): H,(Y)—> n is
an isomorphism. We have that gx(f*(u))(a) = py(u)(f,(a)) by commutativity.
Thus Bx(f*(u)) = By(u)° f, is an isomorphism, implying that f*(u) is charac-
teristic. 0

12.6. Lemma. The class ue H(Y;n) is characteristic, where Y is (n— 1)-
connected, <> Sue H***(SY; n) is characteristic. .

Proor. The Hurewicz Theorem implies that SY is n-connected. It is an
immediate consequence of the definition that the following diagram com-
mutes up to sign (which can be seen to be (—1)"*!):

HY(Y: n)—*/ilf’ Hom(H,(Y), 7)

~|S8 ~ ]Hom(S, 1)

H*4(SY;7) £ Hom(H,, ,(SY), 7).

Then Bsy(S(u))(Sa)= £ py@)(@) and so Psy(S))= £ Py)°S™" is an
isomorphism. 1

12.7. Lemma. The diagram

1(X) = 7,,.(SX)

l |

H(X) = H,,,(5X)

commutes, where the verticals are the Hurewicz maps.

Proor. The suspension for homotopy is defined as the composition along



the top of the commutative diagram

T(X) < 7,,,(CX,X)—— 7, (SX)

| l |

H,(X) <~ H,,,(CX,X) = H,, (SX,+)
and the lemma follows. ]

For any space K consider the map A: SQK — K which is the adjoint to
1:QK - QK. That is, A is induced by the evaluation map K’ x I— K. The
class [A] corresponds to [1] under the bijection [SQK K][QK;QK]. The
diagram (of sets)

(K"

{
KIXI)XXI —_— KXXI

commutes where the horizontal map is induced by the evaluation, the
diagonal one is the exponential correspondence f'(x,t)= f(x)(t), and the
vertical map is f+>f x I where (f x 1)(x, ) =(f(x),t). This induces the
diagram

[X;QK]

- ~

S

[SX;SQK] —*— [SX;K],

where the diagonal is the adjoint (exponential) correspondence. Thus this
diagram commutes.
Now if K = K(n, n+ 1) then we conclude that the diagram

HQK) ~ [830K]
3|~ | \

H,, ,(SQK) ~ [S"*1SQK] —2[S"* ;K]
commutes and it follows that

A’#: T+ I(SQK) —i)nn+ I(K)

is an isomorphism.

Now choose any characteristic class ue H"*'(K;n). By Lemma 12.5,
A*ue H"* Y(SQK; ) is characteristic. By Lemma 12.6, v = S~ 'A*ue H(QK; )
is characteristic. These remarks imply the following result:

12.8. Proposition. Let K = K(n,n + 1) and let ue H"* Y(K;; n) be characteristic.
Then 2*pe H** Y(SQK; ) and v= S~ 'A*uc HYQK;n) are characteristic and
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the following diagram commutes:
[4;QK] —> [SA;SQK] - [SA;K]
~ lTv ~ ‘l T, ~ T,
H'(A;7) —>> H™Y(SA;7). | O

12.9. Proposition. For a cofibration A, X let . XUCA—>SA be the
collapsing map. Then the composition (for arbitrary coefficients)

HY(A) —— H"* (SA) -5 A" (X U CA) = H™H (X, A)

is — 0%, where 0* is the connecting homomorphism for the exact sequence of
(X, A).

Proor. Consider the diagram

o ~

H(A) — H""YCA,A) «——— " H"YS4,%
1= 1= i I
HYA U, %) -6 3y H"™"YCA,AU%) ¢ H**1(S4,%)
L= R 3 I
H(A x 31, 4 x {1}) 5' y H* YA x 1, A x 3) e H"1(SA4,%)
lz l—l N l—l
H(A x 31,4 x {0}) s y H"* YA x I, A X 3I) € H**1(S A, %)
HY(A x {1}UX x {0}, X x {0}) —2"5 H"* A x [UX x {0}, 4 x {1}UX x {0}) e~ H"*SUCA,X)
l= b . !
HAx{1)) % H™*YAxIUX x {0}, 4% {1}) e——— H"™}(XUCA, ¥
1x 1= 1~
HAxD) — % HAXTUX x {0), 4 x ) ————H"*} (X UCA,CA)
lz 5 l';.-: N ’ iz
H"(A) >y H"YX,4) —o " H"YX,A).

Some of the 6* maps in the diagram are from exact sequences of triples. The
horizontal isomorphisms on the right are induced by obvious maps as are the
vertical homomorphisms. The composition along the left is the identity and
so, from the upper left, all the way down and then right to H"* (X, A) is
just 6*. The composition along the top is S, by definition. The composition
from the upper right, all the way down and then left to H"* (X, A) is —c*,
the sign caused by the inversion of the parameter SA— SA midway down.
Hence ¢*oS§ = —§* as claimed. O

12.10. Lemma. Let ig,i,: X = X x 0I be ig(x) =(x,0) and i,(x)=(x,1). Then
for &*: H'(X x 0I)—» H"* (X x I, X x 0I) ~ H"* {(§X), with any coefficients,
we have S™15* = i¥ — it

ProOOF. We know that (i¥,i*): H'(X x dI)—— HY(X)@® H"(X). Let jo,ji:
H"(X)— H"(X x 0I) induce the inverse isomorphism, so that i¥j, =1 =i¥j,
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and i¥j, =0=ifj,. Then j,i¥ +j, if = 1. Clearly, j, is the composition

jor H'(X) «— H"(X x 0, X x {1}) =5 H"(X x aI)

induced by x+(x,0) and the inclusion h:(X x 0I, &) < (X x 0I, X x {1}).
Also j, = w*j, where w is the reversal of the I parameter. Consider the
following commutative diagram, similar to that in the proof of Proposition
12.9:

H'(X) S H™YCX,X) H"*(SX)

[~ [~ n

H' (X U%,%) ——5 H"Y(CX, X U%) ——— H"*}(SX)

l

HYX x 0L X x {1}) L5 H™YX xI,X x ) «—— H"*Y(§X)

h* I
HY(X x.0I) —2 H"*Y(X x I, X x 3I).

This shows that $™25*j, = 1, since S is the composition from top left to bottom
right, going right then down. Then S™!6%j, =S~ 16*w*j, = S~ w*é*j, =
— 8715%j, = —1, since w induces —1 on H*(SX). Consequently, ST16* =
S~ 15* 1=8 15*(]0 +Jll )-—l*-—l* |

PROBLEMS
1. Show that any K(Z,n) is infinite dimensional for each even n>0.
2. Show that any K(Z,,n) is infinite dimensional for each n > 0.

3. Show that there are no nontrivial cohomology operations of type (1,Z; k, ) for
any k> 1 and any o.

4, ® Show that there are no nontrivial cohomology operations of type (n, Z;n + 1, @)
for any n >0 and any .

5. Rederive Hopf’s Classification Theorem (Theorem 11.6 of Chapter V)asa corollary
of the results of this section. (Hint: Use Corollary 11.13 and Theorem 11.8.)

13. Obstruction Theory

In this section and the next we impose the blanket assumption that all pointed
spaces under consideration are well-pointed. This is not an important restric-
tion and is made merely to avoid having to distinguish between reduced and

unreduced suspensions.



