QUESTIONS FOR THE MIDTERM, SPRING 2020

- 1. Basic spaces: \mathbb{R}^n , S^n , stereographic projection. The space S^{∞} .
- 2. Projective spaces \mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n : definitions, local coordinate system, the Hopf maps $S^n \to \mathbb{RP}^n$, $S^{2n+1} \to \mathbb{CP}^n$, $S^{4n+3} \to \mathbb{HP}^n$.
- **3.** Prove the homeomorphisms: $\mathbf{RP}^1 \cong S^1$, $\mathbf{CP}^1 \cong S^2$, $\mathbf{HP}^1 \cong S^4$.
- **4.** Prove that \mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n are connected and compact spaces.
- **5.** Define Grassmannian manifolds $G_k(\mathbf{R}^n)$, $G_k(\mathbf{R}^n)$: and construct local coordinate systems, in particular, find their dimensions.
- **6.** Prove that the Grassmannian manifolds $G_k(\mathbf{R}^n)$, and $G_k(\mathbf{R}^n)$ are compact and connected.
- 7. Define classic Lie groups $GL(\mathbf{R}^k)$, $GL(\mathbf{C}^k)$, O(k), SO(k), U(k), SU(k). Prove that the spaces O(n), SO(n), U(n), SU(n) are compact. How many connected components does each of these spaces have?
- 8. Prove that SO(2) and U(1) are homeomorphic to S^1 , SO(3) is homeomorphic to \mathbb{RP}^3 , and SU(2) is homeomorphic to S^3 .
- **9.** Prove that $SO(4) \cong SO(3) \times S^3$.
- 10. Define Stiefel manifolds $V_k(\mathbf{R}^n)$, $V_k(\mathbf{C}^n)$, $V_k(\mathbf{H}^n)$. Prove the following homeomorphisms:

$$V_n(\mathbf{R}^n) \cong O(n), \quad V_{n-1}(\mathbf{R}^n) \cong SO(n),$$

$$V_n(\mathbf{C}^n) \cong U(n), \quad V_{n-1}(\mathbf{C}^n) \cong SU(n),$$

$$V_1(\mathbf{R}^n) \cong S^{n-1}, \quad V_1(\mathbf{C}^n) \cong S^{2n-1}, \quad V_1(\mathbf{H}^n) \cong S^{4n-1}.$$

- 11. Define action of the groups O(k), U(k) on the Stiefel manifolds $V_k(\mathbf{R}^n)$, $V_k(\mathbf{C}^n)$. Prove the following homeomorphisms: $V_k(\mathbf{R}^n)/O(k) \cong G_k(\mathbf{R}^n)$, $V_k(\mathbf{C}^n)/U(k) \cong G_k(\mathbf{C}^n)$.
- 12. Prove the following homeomorphisms:

$$S^{n-1} \cong O(n)/O(n-1) \cong SO(n)/SO(n-1),$$

$$S^{2n-1} \cong U(n)/U(n-1) \cong SU(n)/SU(n-1),$$

$$G_k(\mathbf{R}^n) \cong O(n)/O(k) \times O(n-k), \quad G_k(\mathbf{C}^n) \cong U(n)/U(k) \times U(n-k).$$

- 13. Prove that the Klein bottle Kl^2 is homeomorphic to the union of two Mëbius bands along the circle.
- 14. Prove that $Kl^2 \# \mathbf{RP}^2$ is homeomorphic to $\mathbf{RP}^2 \# T^2$.
- **15.** Define a cylinder and a cone of a map $f: X \to Y$. Prove that the cones of the maps $c: S^n \to \mathbf{RP}^n$ and $h: S^{2n+1} \to \mathbf{CP}^n$ are homeomorphic to \mathbf{RP}^{n+1} and \mathbf{CP}^{n+1} respectively.
- **16.** Define suspension. Prove that $\Sigma(S^n) \cong S^{n+1}$.
- 17. Define a compact-open topology on $\mathcal{C}(X,Y)$. Prove the homeomorphism: $\mathcal{C}(X,\mathcal{C}(Y,Z)) \cong \mathcal{C}(X\times Y,Z)$ for Hausdorff and locally compact spaces X, Y, Z. Prove that this homeomorphism is natural.

- **18.** Define the spaces of paths $\mathcal{E}(X, x_0, x_1)$, $\mathcal{E}(X, x_0)$, and loops $\Omega(X, x_0)$. Prove that the spaces $\Omega(S^n, x_0)$ and $\Omega(S^n, x_1)$ are homeomorphic for any points $x_0, x_1 \in S^n$.
- **19.** Let X, Y be pointed spaces. Prove the homeomorphism $\mathcal{C}(\Sigma(X), Y) \cong \mathcal{C}(X, \Omega(Y))$ for Hausdorff and locally compact spaces X, Y. Prove that this homeomorphism is natural.
- **20.** Define smash-product $X \wedge Y$. Prove that $S^n \wedge S^k \cong S^{n+k}$ (as pointed spaces).
- **21.** Define homotopy of two maps. Prove that the maps $\phi^*: [X',Y] \to [X,Y], \ \psi_*: [X,Y] \to [X,Y']$ induced by maps $\phi: X \to X', \ \psi: Y \to Y'$ are well-defined.
- 22. Give three definitions of homotopy equivalence. Prove that they are equivalent.
- **23.** Prove that $X \sim Y$ implies $\Sigma(X) \sim \Sigma(Y)$ and $\Omega(X) \sim \Omega(Y)$.
- **24.** Give a definition of a contractible space. Prove that $\mathcal{E}(X,x_0)$ is a contractible.
- **25.** Prove that a space X is contractible if and only if it is homotopy equivalent to a point.
- **26.** Prove that a space X is contractible if and only if every map $f: Y \to X$ is null-homotopic.
- **27.** Give definition of a retract and deformational retract. Examples. Prove that $\{0\} \cup \{1\}$ is not a retact of I = [0, 1]. Define map of pairs. Examples.
- **28.** Define a CW-complex. Give examples of cell decomposition. Show that the axiom (W) does not imply the axiom (C) and wise-versa.
- **29.** Construct a cellular decomposion of the wedge $X = S^1 \vee S^2$ (with a single 2-cell e^2) such that a closure of the cell e^2 is not a CW-subcomplex of X.
- **30.** Construct a cellular decomposion of the wedge $X = \Sigma(S^n \vee S^k)$. Prove that $\Sigma(S^n \vee S^k) \sim S^{n+1} \vee S^{k+1}$.
- **31.** Prove that a CW-complex compact if and only if it is finite.
- **32.** Construct a cellular decomposition of S^n , D^n , \mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n .
- **33.** Construct a cellular decomposition of the oriented 2-manifold of genus g.
- **34.** Define the Schubert cells $e(\sigma)$ corresponding to the Schubert symbol σ . Give examples.
- **35.** Define the spaces H^j , \overline{H}^j . Prove that a k-plane π belongs to $e(\sigma)$ if and only if there exists its basis v_1, \ldots, v_k , such that $v_1 \in H^{\sigma_1}, \ldots, v_k \in H^{\sigma_k}$.
- **36.** Prove the following statement: Let $\pi \in e(\sigma)$, where $\sigma = (\sigma_1, \ldots, \sigma_n)$. Then there exists a unique orthonormal basis v_1, \ldots, v_k of π , so that $v_1 \in H^{\sigma_1}, \ldots, v_k \in H^{\sigma_k}$.
- **37.** Define the sets $E(\sigma)$, $\overline{E}(\sigma) \subset V_k(\mathbf{R}^n)$. Prove that the set $\overline{E}(\sigma) \subset V_k(\mathbf{R}^n)$ is homeomorphic to the closed cell of dimension $d(\sigma) = (\sigma_1 1) + (\sigma_2 2) + \cdots + (\sigma_k k)$. Furthermore the map $q : e(\sigma) \to E(\sigma)$ is a homeomorphism.
- **38.** Define the transformations $T_{u,v}$, prove its properties. Explain how the transformations $T_{u,v}$ are used to prove that $\overline{E}(\sigma) \subset V(n,k)$ is homeomorphic to a closed cell of dimension $d(\sigma)$.
- **39.** Prove the statement: a collection of $\binom{k}{n}$ Schubert cells $e(\sigma)$ gives $G_k(\mathbf{R}^n)$ a cell-decomposition.
- **40.** Outline a construction of Schubert cells of the complex Grassmannian $G_k(\mathbf{C}^n)$.
- **41.** Define when a pair (X, Y) is a Borsuk pair. Prove that a CW-pair (X, Y) is a Borsuk pair (in the case when X, Y are finite complexes).
- **42.** Let (X, A) be a Borsuk pair. Prove that A is a deformation retract of X if and only if the inclusion $A \to X$ is a homotopy equivalence.

- **43.** Prove the statement: let X be a CW-complex and $A \subset X$ be its contractible subcomplex. Then X is homotopy equivalent to the complex X/A.
- **44.** Prove that for a CW-pair (X,A) $X/A \sim X \cup C(A)$.
- 45. State Cellular Approximation Theorem. Prove it using Free Point Lemma.
- 46. State and prove Free Point Lemma.
- **47.** Define homotopy groups $\pi_n(X)$. Prove that $\pi_n(X)$ is commutative group for $n \geq 2$. Prove that $\pi_k(S^n)$ is a trivial group for k < n.
- **48.** Prove the satement: Let X be a CW-complex with only one zero-cell and without cells of dimension q < n, and Y be a CW-complex of dimension < q. Then any map $Y \to X$ is homotopic to a constant map.
- **49.** Define n-connected space. Prove the statement: Any n-connected CW-complex homotopy equivalent to a CW-complex with a single zero cell and without cells of dimensions $1, 2, \ldots, n$.
- **50.** Prove that if $f, g: X \to Y$ are homotopic maps, than the homomorphisms $f_*, g_*: \pi_n(X) \to \pi_n(Y)$ coincide.
- **51.** Prove that if X is a path-connected space, then $\pi_1(X, x_0) \cong \pi_1(X, x_1)$. Describe all isomorphisms here.
- **52.** Prove that $\pi_1 S^1 \cong \mathbf{Z}$.
- **53.** Prove that $\pi_1(\bigvee_{\alpha\in A} S^1_\alpha)$ is a free group.
- **54.** Prove that $\pi_1(X, x_0) \cong \pi_1(X^{(2)}, x_0)$, where X is a connected CW-complex and $X^{(2)}$ its 2-skeleton.
- **55.** Compute $\pi_1(M^2)$ for two-dimensional oriented closed manifold of genus g, the sphere with g handles.
- **56.** Compute $\pi_1(M^2)$ for two-dimensional non-oriented closed manifold of genus g, the projective plane or the Klein bottle with g handles.
- **57.** Let $M = \mathbf{RP}^2 \# \cdots \# \mathbf{RP}^2$ (*n* times). Compute $\pi_1(M)$.
- **58.** Compute $\pi_1(\mathbf{RP}^2 \# \mathbf{RP}^2)$ and $\pi_1(Kl^2 \# \mathbf{RP}^2)$.
- **59.** Define $G_1 * G_2$. Give examples. Prove that $\pi_1(X \vee Y) = \pi_1(X) * \pi_1(Y)$.
- **60.** Define $G_1 *_H G_2$. Give examples. State and prove Van Kampen Theorem.
- **61.** Define covering space. Give examples. Construct n-fold covering of $S^1 \vee S^1$ (including $n = \infty$).
- **62.** State and prove Theorem on Covering Homotopy.
- **63.** Prove that covering $p: T \to X$ induces a monomorphism $p_*: \pi_1(T, \tilde{x}_0) \to \pi_1(X, x_0)$.
- **64.** Prove that a loop $\alpha_1 \cdots \alpha_k$, where α_j is a loop going along the j-th circle in the wedge $\bigvee_{j=1}^k S_j^1$, is not homotopic to zero.
- **65.** Let $p: T \to X$ be a covering, and $f, g: Z \to T$ be two maps so that $p \circ f = p \circ g$, where Z is path-connected. Assume that f(z) = g(z) for some point $z \in Z$. Prove that f = g.
- **66.** Prove that $\pi_k(\mathbf{RP}^n) = 0$ if 1 < k < n.
- **67.** Prove that any map $f: \mathbf{RP}^2 \to S^1$ is homotopic to a constant map.
- **68.** Let Kl^2 be the Klein bottle. Construct two-folded covering space $T^2 \to Kl^2$. Compute $\pi_n(Kl^2)$ for all n.

69. Let $p:T\to X$ be a covering, $p(\tilde{x}_0)=x_0$. Prove that there is one-to-one correspondence

$$\pi_1(X(X,x_0)/p_*(\pi_1(T,\tilde{x}_0)) \iff p^{-1}(x_0).$$

Prove that $p^{-1}(x_0) \cong p^{-1}(x_1)$ for any points $x_0, x_1 \in X$.

- **70.** Let p: $T \to X$ be a covering map, and let $\Gamma = p^{-1}(x_0)$. Prove that Γ is a transitive right G-set for $G = \pi_1(X, x_0)$.
- 71. Let X by "good" space and $G = \pi_1(X, x_0)$. Prove that athere is a bijection between isomorphism classes of covering spaces of X and transitive right G-sets given by

$$\{p: Y \to X\} \mapsto p^{-1}(x_0).$$

- **72.** Let $p: T \to X$ be a covering, and $f: Z \to X$ be a map, $f(z_0) = x_0$, and $\tilde{x}_0 \in T$ so that $p(\tilde{x}_0) = x_0$ (here Z is path-connected space). Prove that there exists a lifting $\tilde{f}: Z \to T$ of the map f so that $\tilde{f}(z_0) = \tilde{x}_0$ if and only if $f_*(\pi_1(Z, z_0)) \subset p_*(\pi_1(T, \tilde{x}_0))$.
- **73.** Define morphism of two covering spaces $T_1p_1 \xrightarrow{p_1} X$ and $T_2 \xrightarrow{p_2} X$. Prove that two morphisms $\phi, \phi': T_1 \to T_2$ coincide if there is a point $\tilde{x} \in T_1$ so that $\phi(\tilde{x}) = \phi'(\tilde{x})$.
- **74.** Define a group of automorphisms (deck transformations) $\operatorname{Aut}(T \xrightarrow{p} X)$ of a covering $p: T \to X$. Prove that the group $\operatorname{Aut}(T \xrightarrow{p} X)$ acts on T without fixed points.
- **75.** Let $p: T \to X$ be a covering, $p(\tilde{x}_0) = p(\tilde{x}'_0) = x_0$, where $\tilde{x}_0 \neq \tilde{x}'_0$. Prove that there exists an automorphism $\phi \in \operatorname{Aut}(T \xrightarrow{p} X)$ such that $\phi(\tilde{x}_0) = \tilde{x}'_0$ if and only if $p_*(\pi_1(T, \tilde{x}_0)) = p_*(\pi_1(T, \tilde{x}'_0))$.
- **76.** Prove the following statement: Two covering spaces $T_1 \xrightarrow{p_1} X$, $T_2 \xrightarrow{p_2} X$ are isomorphic if and only if for any two points $\widetilde{x}_1, \widetilde{x}_2 \in T$ such that $p_1(\widetilde{x}_1) = p_2(\widetilde{x}_2) = x$ the groups $(p_1)_*(\pi_1(T_1, \widetilde{x}_1))$, $(p_2)_*(\pi_1(T_2, \widetilde{x}_2))$ belong to the same conjugacy class in $\pi_1(X, x)$.
- 77. Let N(H) be a normalizer for a subgroup H of G. Prove the following statement: Let $p: T \to X$ be a covering space. Then the group of automorphisms of this covering space is isomorphic to the group $N(p_*(\pi_1(T, \widetilde{x}_0)))/p_*(\pi_1(T, \widetilde{x}_0))$.
- **78.** Define universal covering space over X. Prove the following statement: Let X be a path-connected CW-complex, $x_0 \in X$. Then for any subgroup $G \subset \pi_1(X, x_0)$ there exists a covering $T \stackrel{p}{\longrightarrow} X$ and a point $\widetilde{x}_0 \in T$ so that $p_*(\pi_1(T, \widetilde{x}_0)) = G$.
- **79.** Define homotopy groups $\pi_n(X, x_0)$, in particular define the group operation and inverse. Prove that the groups $\pi_n(X, x_0)$ are abelian if $n \geq 2$.
- **80.** Prove that $\pi_n(X \times Y, x_0 \times y_0) \cong \pi_n(X, x_0) \times \pi_n(Y, y_0)$. Compute $\pi_n(T^k)$ for all n.
- 81. Let X be a path-connected space, and $x_0, x_1 \in X$ be two different points. Let $\gamma : I \to X$ be a path so that $\gamma(0) = x_0$ and $\gamma(1) = x_1$. Define a homomorphism $\gamma_\# : \pi_n(X, x_0) \to \pi_n(X, x_1)$. Prove that $\gamma_\#$ is an isomorphism.
- 82. Let M_g^2 be a two-dimensional surface of genus $g \geq 1$ (oriented). Compute the homotopy groups $\pi_q(M_q^2)$.
- 83. Define relative homotopy groups $\pi_n(X, A; x_0)$. Describe the group operation and the inverse element. Prove that the group $\pi_n(X, A; x_0)$ is commutative for $n \geq 3$.
- 84. Define the homomorphisms in the following sequence:

$$\cdots \to \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A; x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \to \cdots$$
 (1)

Prove that the sequence (1) is exact.

- **85.** Let $A \subset X$ be a retract. Prove that
 - $i_*: \pi_n(A, x_0) \to \pi_n(X, x_0)$ is monomorphism,
 - $j_*: \pi_n(X, x_0) \to \pi_n(X, A; x_0)$ is epimorphism,
 - $\partial: \pi_n(X, A; x_0) \to \pi_{n-1}(A, x_0)$ is zero homomorphism.
- **86.** Let A be contractible in X. Prove that
 - $i_*: \pi_n(A, x_0) \to \pi_n(X, x_0)$ is zero homomorphism,
 - $j_*: \pi_n(X, x_0) \to \pi_n(X, A; x_0)$ is monomorphism,
 - $\partial: \pi_n(X, A; x_0) \to \pi_{n-1}(A, x_0)$ is epimorphism.
- 87. State and prove Five-Lemma.
- **88.** Let $0 \to A_1 \to A_2 \to \cdots \to A_n \to 0$ be an exact sequence of finitely generated abelian groups. Prove that $\sum_{i=1}^{n} (-1)^i$ rank $A_i = 0$.
- 89. Define locally trivial fiber bundle. Give several examples of non-trivial fiber bundles.
- **90.** Prove that any locally-trivial fiber bundle over the cube I^q is trivial.
- **91.** Define the covering homotopy property. Outline a proof that the covering homotopy property holds for a locally-trivial fiber bundle $E \to B$.
- **92.** Define a Serre fiber bundle. Let Y be an arbitrary path-connected space, $\mathcal{E}(Y, y_0)$ be the space of paths starting at y_0 . Prove that the map $p: \mathcal{E}(Y, y_0) \to Y$, where $p(s: I \to Y) = s(1) \in Y$ is a Serre fiber bundle.
- **93.** Let $A \subset X$, and (X, A) be a Borsuk pair (for example, a CW-pair). Let $E = \mathcal{C}(X, Y)$, $B = \mathcal{C}(A, Y)$, and the map $p : E \longrightarrow B$ be defined as $p(f : X \longrightarrow Y) = (f|_A : A \longrightarrow Y)$. Prove that the map $p : E \longrightarrow B$ is a Serre fiber bundle.
- **94.** Define weak homotopy equivalence. Prove that finite CW-complexes X, Y are weak homotopy equivalent if and only if they are homotopy equivalent.
- **95.** Let $p: E \to B$ be Serre fiber bundle, where B be a path-connected space. Prove that the fibers $F_0 = p^{-1}(x_0)$ and $F_1 = p^{-1}(x_1)$ are weak homotopy equivalent for any two points $x_0, x_1 \in B$.
- **96.** Prove that for any continuous map $f: X \longrightarrow Y$ there exists homotopy equivalent map $f_1: X_1 \longrightarrow Y_1$, such that $f_1: X_1 \longrightarrow Y_1$ is Serre fiber bundle.
- **97.** Let $f: X \longrightarrow Y$ be a continuous map. Prove that there exists a homotopy equivalent map $g: X \longrightarrow Y'$, so that g is an inclusion.
- **98.** Let $p: E \longrightarrow B$ be Serre fiber bundle, $y \in E$ be any point, x = p(y), $F = p^{-1}(x)$. Prove that the homomorphism

$$p_*: \pi_n(E, F; y) \longrightarrow \pi_n(B, x)$$

is an isomorphism for all $n \geq 1$.

- **99.** Apply the homotopy exact sequence of Serre fibration to prove that (a) $\pi_2(S^2) = \pi_1(S^1) = \mathbf{Z}$; (b) $\pi_n(S^3) = \pi_n(S^2)$.
- **100.** Let $S^{\infty} \to \mathbb{C}\mathbf{P}^{\infty}$ be the Hopf fibration. Using the fact $S^{\infty} \sim *$, prove that $\pi_n(\mathbb{C}\mathbf{P}^{\infty}) = 0$ for $n \neq 2$, and $\pi_2(\mathbb{C}\mathbf{P}^{\infty}) = \mathbf{Z}$.
- **101.** Prove that $\pi_n(\Omega(X)) \cong \pi_{n+1}(X)$ for any X and $n \geq 0$.
- **102.** Prove that if the groups $\pi_*(B)$, $\pi_*(F)$ are finite (finitely generated), then the groups $\pi_*(E)$ are finite (finitely generated) as well.

- **103.** Assume that a fiber bundle $p: E \longrightarrow B$ has a section, i.e. a map $s: B \longrightarrow E$, such that $p \circ s = Id_B$. Prove the isomorphism $\pi_n(E) \cong \pi_n(B) \oplus \pi_n(F)$.
- **104.** Give a construction of a space Y that $\pi_n(X, A; x_0) \cong \pi_{n-1}(Y, y_0)$.
- 104. State the Freudenthal Theorem. Give a detailed proof that Σ is an isomorphism.
- **106.** Let $K, L \subset \mathbf{R}^p$ be two finite simplicial complexes fo dimensions k, l respectively. Let k + l + 1 < p. Prove that the simplicial complexes K and L are not linked.
- **107.** Prove that $\pi_n(S^n) \cong \mathbf{Z}$ for each $n \geq 1$.
- **108.** Prove that $\pi_3(S^2) \cong \mathbb{Z}$, and the Hopf map $S^3 \longrightarrow S^2$ is a representative of the generator of $\pi_3(S^2)$.
- **109.** Define Whitehead product. State basic properties. Prove that if $\alpha \in \pi_n(X)$, $\beta \in \pi_k(X)$ then $[\alpha, \beta] = (-1)^{nk} [\beta, \alpha]$.
- **110.** Define the element $w \in \pi_{n+k-1}(S^n \vee S^k)$. Prove that the element $w \in \pi_{n+k-1}(S^n \vee S^k)$ has infinite order.
- 111. Prove that the element $w \in \pi_{n+k-1}(S^n \vee S^k)$ is in a kernel of each of the following homomorphisms:
 - (1) $i_*: \pi_{n+k-1}(S^n \vee S^k) \longrightarrow \pi_{n+k-1}(S^n \times S^k),$
 - (2) $pr_*^{(n)}: \pi_{n+k-1}(S^n \vee S^k) \longrightarrow \pi_{n+k-1}(S^n)$
 - (3) $pr_*^{(k)}: \pi_{n+k-1}(S^n \vee S^k) \longrightarrow \pi_{n+k-1}(S^k).$
- 112. Prove that the element $w \in \pi_{n+k-1}(S^n \vee S^k)$ is in the kernel of the suspension homomorphism

$$\Sigma: \pi_{n+k-1}(S^n \times S^k) \longrightarrow \pi_{n+k}(\Sigma(S^n \times S^k)).$$

113. Prove the isomorphism

$$\pi_{n+k}(S^{n+1} \vee S^{k+1}) \cong \pi_{n+k}(S^{n+1}) \oplus \pi_{n+k}(S^{k+1})$$

114. Let $\alpha \in \pi_n(X)$, $\beta \in \pi_k(X)$. Prove that $[\alpha, \beta] \in \text{Ker } \Sigma$, where

$$\Sigma: \pi_{n+k-1}(X) \longrightarrow \pi_{n+k}(\Sigma X)$$

is the suspension homomorphism.

- 115. Let $\iota_{2q} \in \pi_{2q}(S^{2q})$ be a generator represented by the identity map $S^{2q} \longrightarrow S^{2q}$. Prove that the Whitehead product $[\iota_{2q}, \iota_{2q}] \in \pi_{4q-1}(S^{2q})$ is a nontrivial element of infinite order.
- **116.** Prove that the suspension $\Sigma(S^n \times S^k)$ is homotopy equivalent to the wedge $S^{n+1} \vee S^{k+1} \vee S^{n+k+1}$.
- **117.** Outline a proof of the following statement:

Let X be a connected space (not necessarily a CW-complex) with a base point $x_0 \in X$, $f: S^n \to X$ be a map such that $f(s_0) = x_0$, where s_0 is a base point of S^n . Let $Y = X \cup_f D^{n+1}$, and $i: X \to Y$ be the inclusion. Then the induced homomorphism $i_*: \pi_q(X, x_0) \to \pi_q(Y, x_0)$

- (1) is an isomorphism if q < n,
- (2) is an epimorphism if q = n, and
- (3) the kernel Ker $i_*: \pi_n(X, x_0) \longrightarrow \pi_n(Y, x_0)$ is generated by $\gamma^{-1}[f]\gamma \in \pi_n(X, x_0)$ where $\gamma \in \pi_1(X, x_0)$.
- 118. Let X be an n-connected CW-complex, and Y be a k-connected CW-complex. Prove that
 - $\pi_q(X \vee Y) \cong \pi_q(X) \oplus \pi_q(Y)$ if $q \leq n + k$;
 - the group $\pi_q(X \vee Y)$ contains a subgroup $\pi_q(X) \oplus \pi_q(Y)$ as a direct summand.

119. Let X be an n-connected CW-complex, and Y be a k-connected CW-complex. Prove that

$$\pi_{n+k+1}(X \vee Y) \cong \pi_{n+k+1}(X) \oplus \pi_{n+k+1}(Y) \oplus [\pi_n(X), \pi_k(Y)].$$

- **120.** Let X be an (n-1)-connected CW-complex. Describe the homotopy group $\pi_n(X)$.
- **121.** Compute the homotopy group $\pi_3(S^2 \vee S^2)$.
- **122.** Define when a map $f: X \longrightarrow Y$ is a weak homotopy equivalence. Outline the proof that the following two statements are equivalent
 - (1) The map $f: X \longrightarrow Y$ is weak homotopy equivalence.
 - (2) The induced homomorphism $f_*: \pi_n(X, x_0) \longrightarrow \pi_n(Y, f(x_0))$ is isomorphism for all n and $x_0 \in X$.
- **123.** Let X, Y be CW-complexes. Prove that if a map $f_*: X \longrightarrow Y$ induces isomorphism

$$f_*: \pi_n(X, x_0) \longrightarrow \pi_n(Y, f(x_0))$$

for all $n \geq 0$ and $x_0 \in X$, then f is a homotopy equivalence.

- **124.** Let X be a Hausdorff topological space. Prove that there exists a CW-complex K and a weak homotopy equivalence $f:K\longrightarrow X$. Show that the CW-complex K is unique up to homotopy equivalence.
- **125.** Let X, Y be two weak homotopy equivalent spaces. Prove that there exist a CW-complex K and maps $f: K \longrightarrow X, g: K \longrightarrow Y$ which weak homotopy equivalences.
- **126.** Define an Eilenberg-McLane space. Prove that it does exists and unique up to weak homotopy equivalence.
- 127. Construct the space $K(\pi,1)$, where π is a finitely generated abelian group.
- **128.** Let $X = K(\pi, n)$. Prove that $\Omega X = K(\pi, n 1)$.
- **129.** Let X be a CW-complex, and $n \geq 1$. Construct a CW-complex X_n and a map $f_n: X \longrightarrow X_n$ such that
 - (1) $\pi_q(X_n) = \begin{cases} \pi_q(X) & \text{if } q \leq n \\ 0 & \text{else} \end{cases}$
 - (2) $(f_n)_*: \pi_q(X) \longrightarrow \pi_q(X_n)$ is isomorphism if $q \le n$.
- **130.** Let X be a CW-complex, and $n \ge 1$. Construct a CW-complex $X|_n$ and a map $g_n : X|_n \longrightarrow X$ such that
 - (1) $\pi_q(X|_n) = \begin{cases} \pi_q(X) & \text{if } q \ge n \\ 0 & \text{else} \end{cases}$
 - (2) $(g_n)_*: \pi_q(X|_n) \longrightarrow \pi_q(X)$ is isomorphism if $q \ge n$.
- **131.** Let $X = S^2$. Prove that $X|_3 = S^3$.
- **132.** Let $X = \mathbb{CP}^n$. Prove that $X|_3 = X|_{2n+1} = S^{2n+1}$.
- **133.** Define the complex C(X) and the homology groups $H_q(X)$. Calculate the homology groups for $X = \{pt\}$.
- 134. Define chain maps and chain homotopy. Prove that two chain homotopic maps $\phi, \psi : \mathcal{C} \to \mathcal{C}'$ induce the same homomorphism in homology groups.
- **135.** Let $g, h: X \to Y$ be homotopic maps. Prove that $g_* = h_*: H_q(X) \to H_q(Y)$.
- **136.** Let X and Y be homotopy equivalent spaces. Prove that then $H_q(X) \cong H_q(Y)$ for all q.

- **137.** Prove that $H_0(X) \cong \mathbf{Z}$ if X is a path-connected space.
- **138.** Prove that if $f: X \to Y$ is a map of path-connected spaces, then $f_*: H_0(X) \to H_0(Y)$ is an isomorphism.
- 139. Define relative homology groups. State and prove the LES-Lemma.
- **140.** Let $B \subset A \subset X$ be a triple of spaces. Prove that there is a long exact sequence in homology:

$$\cdots \to H_q(A,B) \xrightarrow{i_*} H_q(X,B) \xrightarrow{j_*} H_q(X,A) \xrightarrow{\partial} H_{q-1}(A,B) \xrightarrow{i_*} \cdots$$

- **141.** Let (X,A) be a pair of spaces. Prove that the inclusion $i:(X,A)\to (X\cup C(A),C(A))$ induces the isomorphism $H_q(X,A)\cong H_q(X\cup C(A),C(A))=H_q(X\cup C(A),v)$.
- **142.** Define the operation $\beta: \mathcal{C}(X) \to \mathcal{C}(X)$ (induced by the barycentric subdivision). Prove that the chain map $\beta: \mathcal{C}(X) \to \mathcal{C}(X)$ induces the identity homomorphism in homology:

$$Id = \beta_* : H_q(\mathcal{C}(X)) \to H_q(\mathcal{C}(X))$$
 for each $q \ge 0$.

- **143.** Define the chain complex $C^{\mathbf{U}}(X)$ for a covering \mathbf{U} . Prove that the inclusion $C^{\mathbf{U}}(X) \subset C(X)$ induces an isomorphism in homology groups.
- 144. State and prove the Excision Theorem.
- **145.** Let $X = X_1 \cup X_2$. Prove that the following sequence of complexes is exact

$$0 \to \mathcal{C}(X_1 \cap X_2) \xrightarrow{\alpha} \mathcal{C}(X_1) \oplus \mathcal{C}(X_2) \xrightarrow{\beta} \mathcal{C}(X_1) + \mathcal{C}(X_2) \to 0.$$

146. Let $X_1, X_2 \subset X$, and $X_1 \cup X_2 = X$, $\overset{o}{X}_1 \cup \overset{o}{X}_2 = X$. Prove that the chain map

$$\mathcal{C}(X_1) + \mathcal{C}(X_2) \to \mathcal{C}(X_1 \cup X_2)$$

induces isomorphism in the homology groups.

- 147. State and prove the Mayer-Vietoris Theorem.
- **148.** Compute homology groups $H_q(S^n)$.
- **149.** Let X be a space. Prove that $\widetilde{H}_{q+1}(\Sigma X) \cong \widetilde{H}_q(X)$ for each q.
- **150.** Let A be a set of indices, and S_{α}^{n} be a copy of the n-th sphere, $\alpha \in A$. Compute the homology groups $\widetilde{H}_{q}\left(\bigvee_{\alpha \in A} S_{\alpha}^{n}\right)$.
- **151.** Let (X_{α}, x_{α}) be based spaces, $\alpha \in A$. Assume that the pair (X_{α}, x_{α}) is Borsuk pair for each $\alpha \in A$. Prove that

$$\widetilde{H}_q\left(\bigvee_{\alpha\in A}X_{\alpha}\right) = \bigoplus_{\alpha\in A}\widetilde{H}_q(X_{\alpha}).$$

- **152.** Let $f: S^n \to S^n$ be a map of degree $d = \deg f$. Prove that $f_*: H_n(S^n) \to H_n(S^n)$ is a multiplication by d.
- **153.** Let $g:\bigvee_{\alpha\in A}S^n_\alpha\stackrel{g}{\longrightarrow}\bigvee_{\beta\in B}S^n_\beta$ be a map. Prove that the homomorphism

$$\bigoplus_{\alpha \in A} \mathbf{Z}(\alpha) = H_n \left(\bigvee_{\alpha \in A} S_{\alpha}^n \right) \xrightarrow{g_*} H_n \left(\bigvee_{\beta \in B} S_{\beta}^n \right) = \bigoplus_{\beta \in B} \mathbf{Z}(\beta)$$

is given by multiplication with matrix $\{d_{\alpha\beta}\}_{\alpha\in A,\beta\in B}$, where $d_{\alpha\beta}=\deg g_{\alpha\beta}$. (Define the maps $g_{\alpha\beta}$.)

154. Define the cellular chain complex $\mathcal{E}(X)$. Prove that the following composition is trivial

$$\mathcal{E}_{q+1}(X) \xrightarrow{\dot{\partial}_{q+1}} \mathcal{E}_{q}(X) \xrightarrow{\dot{\partial}_{q}} \mathcal{E}_{q-1}(X).$$

- **155.** Prove that there is an isomorphism $H_q(\mathcal{E}(X)) \cong H_q(X)$ for each q and any CW-complex X.
- **156.** Let X be a CW-complex, and e^q be a q-cell and σ^{q-1} be a (q-1)-cell of X. Define the incidence coefficient $[e^q:\sigma^{q-1}]$. Prove that the boundary operator $\partial_q:\mathcal{E}_q(X)\to\mathcal{E}_{q-1}(X)$ is given by the formula:

$$\overset{\triangleright}{\partial}_q(e^q) = \sum_{j \in E_{q-1}} [e^q : \sigma_j^{q-1}] \sigma_j^{q-1}.$$

157. Let $A: S^n \to S^n$ be the antipodal map, $A: x \mapsto -x$, and $\iota_n \in \pi_n(S^n)$ be the generator represented by the identity map $S^n \to S^n$. Prove that the homotopy class $[A] \in \pi_n(S^n)$ is equal to

$$[A] = \begin{cases} \iota_n, & \text{if } n \text{ is odd,} \\ -\iota_n, & \text{if } n \text{ is even.} \end{cases}$$

158. Let e^0, \ldots, e^n be the cells in the standard cell decomposition of \mathbb{RP}^n . Prove that

$$[e^q:e^{q-1}] = \begin{cases} 2 & \text{if } q \text{ is odd,} \\ 0, & \text{if } q \text{ is even.} \end{cases}$$

- **159.** Compute the homology groups $H_q(\mathbf{RP}^n)$, $H_q(\mathbf{CP}^n)$.
- **160.** Compute the homology groups $H_q((\mathbf{RP}^n)^{\#k})$ and $H_q((\mathbf{CP}^n)^{\#k})$
- **161.** Compute the homology groups $H_q(\mathbf{RP}^{2n} \# \mathbf{CP}^n)$.
- **162.** Prove that there is no map $f: D^n \to S^{n-1}$ so that the restriction $f|_{S^{n-1}}: S^{n-1} \to S^{n-1}$ has nonzero degree.
- **163.** Let X be a topological space, $\alpha \in H_q(X)$. Prove that there exist a CW-complex K, a map $f: K \to X$, an element $\beta \in H_q(K)$ such that $f_*(\beta) = \alpha$.
- **164.** Let $f: X \to Y$ be a weak homotopy equivalence. Prove that the induced homomorphism $f_*: H_q(X) \to H_q(Y)$ is an isomorphism for all $q \ge 0$.
- **165.** Show that the spaces $\mathbb{CP}^{\infty} \times S^3$ and S^2 have isomorphic homotopy groups and that they are not homotopy equivalent.
- **166.** Show that the spaces $\mathbb{RP}^n \times S^m$ and $S^n \times \mathbb{RP}^m$ $(n \neq m)$ have isomorphic homotopy groups and they are not homotopy equivalent.
- 167. Show that the spaces $S^1 \vee S^1 \vee S^2$ and $S^1 \times S^1$ have the same homology groups and different homotopy groups.
- **168.** Show that the projection

$$S^1 \times S^1 \xrightarrow{\text{projection}} (S^1 \times S^1)/(S^1 \vee S^1) = S^2$$

induces trivial homomorphism in homotopy groups.

169. Define the Hurewicz homomorphism $h: \pi_n(X, x_0) \to H_n(X)$. Prove that h is a homomorphism.

170. Let $x_0, x_1 \in X$, and $\gamma: I \to X$ be a path connecting the points $x_0, x_1 \colon \gamma(0) = x_0$, and $\gamma(1) = x_1$. The path γ determines the isomorphism $\gamma_\# \colon \pi_n(X, x_0) \to \pi_n(X, x_1)$. Prove that the following diagram commutes:

171. (Hurewicz Theorem) Let (X, x_0) be a based space, such that

$$\pi_0(X, x_0) = 0, \ \pi_1(X, x_0) = 0, \dots, \pi_{n-1}(X, x_0) = 0,$$

where $n \geq 2$. Prove that

$$H_1(X) = 0$$
, $H_2(X) = 0$, \dots , $H_{n-1}(X) = 0$,

and the Hurewicz homomorphism $h: \pi_{n-1}(X, x_0) \to H_n(X)$ is an isomorphism.

- 172. Let X be a simply-connected CW-complex with $\widetilde{H}_n(X) = 0$ for all n. Prove that X is contractible.
- **173.** Let X be a simply connected space, and $H_1(X) = 0$, $H_2(X) = 0$ \cdots $H_{n-1}(X) = 0$. Prove that $\pi_1(X) = 0$, $\pi_2(X) = 0$ \cdots $\pi_{n-1}(X) = 0$ and the Hurewicz homomorphism $h: \pi_n(X, x_0) \to H_n(X)$ is an isomorphism.
- 174. Consider the map

$$g: S^{2n-2} \times S^3 \xrightarrow{\operatorname{proj}} (S^{2n-2} \times S^3)/(S^{2n-2} \vee S^3) = S^{2n+1} \xrightarrow{\operatorname{Hopf}} \mathbf{CP}^n.$$

Prove that g induces trivial homomorphism in homology and homotopy groups, however g is not homotopic to a constant map.

- **175.** Let X be a connected space. Prove that the Hurewicz homomorphism $h: \pi_1(X, x_0) \to H_1(X)$ is epimorphism, and the kernel of h is the commutator $[\pi_1(X, x_0), \pi_1(X, x_0)] \subset \pi_1(X, x_0)$.
- 176. State the relative version of the Hurewicz Theorem. State and prove the Whitehead Theorem-II. Let X, Y be simply connected spaces and $f: X \to Y$ be a map which induces isomorphism $f_*: H_q(X) \to H_q(Y)$ for all $q \ge 0$. Prove that f is weak homotopy equivalence.
- 177. Define homology and cohomology groups with coefficients in an abelian group G. Compute the groups $H_q(\mathbf{RP}^n; \mathbf{Z}/p)$, $H^q(\mathbf{RP}^n; \mathbf{Z}/p)$ for any prime p.
- 178. Consider the short exact sequence $0 \to \mathbf{Z} \xrightarrow{\cdot m} \mathbf{Z} \to \mathbf{Z}/2 \to 0$. Compute the connecting homomorphisms

$$\partial=\beta^m:H^q(\mathbf{R}\mathbf{P}^n;\mathbf{Z}/2)\to H^{q+1}(\mathbf{R}\mathbf{P}^n;\mathbf{Z})$$

179.* Let G be an abelian group, $0 \to R \xrightarrow{\beta} F \xrightarrow{\alpha} G \to 0$, be a free resolution of G, and H be an arbitrary abelian group. Prove that the sequence

$$0 \to \operatorname{Ker}(\beta \otimes 1) \to R \otimes H \xrightarrow{\beta \otimes 1} F \otimes H \xrightarrow{\alpha \otimes 1} G \otimes H \to 0$$

is exact.

- **180.** Prove that the group Tor(G, H) is well-defined, i.e. it does not depend on the choice of resolution.
- **181.*** Let G, H be abelian groups. Prove that there is a canonical isomorphism $Tor(G, H) \cong Tor(H, G)$.

- **182.** Let F be a free abelian group. Show that Tor(F,G)=0 for any abelian group G.
- **183.** Let G be an abelian group. Denote T(G) a maximal torsion subgroup of G. Show that $Tor(G, H) \cong T(G) \otimes T(H)$ for finite generated abelian groups G, H. Give an example of abelian groups G, H, so that $Tor(G, H) \neq T(G) \otimes T(H)$.
- 184. Let X be a space, G be an abelian group. Prove that there is a split short exact sequence

$$0 \to H_q(X) \otimes G \to H_q(X;G) \to \operatorname{Tor}(H_{q-1}(X),G) \to 0$$

185*. Let G be an abelian group, $0 \to R \xrightarrow{\beta} F \xrightarrow{\alpha} G \to 0$ be a free resolution, and let H be an abelian group. Prove that the following sequence is exact:

$$0 \leftarrow \operatorname{Coker} \beta^{\#} \leftarrow \operatorname{Hom}(R, H) \stackrel{\beta^{\#}}{\longleftarrow} \operatorname{Hom}(F, H) \stackrel{\alpha^{\#}}{\longleftarrow} \operatorname{Hom}(G, H) \leftarrow 0.$$

- 186*. Prove that the group $\operatorname{Ext}(G,H)$ is well defined, i.e. it does not depend on the choice of free resolution of G.
- 187*. Let $0 \to G' \to G \to G'' \to 0$ be a short exact sequence of abelian groups. Prove that it induces the following exact sequence:

$$0 \to \operatorname{Hom}(G'',H) \to \operatorname{Hom}(G,H) \to \operatorname{Hom}(G',H) \to$$

$$\operatorname{Ext}(G^{\prime\prime},H) \to \operatorname{Ext}(G,H) \to \operatorname{Ext}(G^\prime,H) \to 0$$

- **188.** Prove that $\text{Ext}(\mathbf{Z}, H) = 0$ for any group H.
- **189.** Prove the isomorphisms: $\operatorname{Ext}(\mathbf{Z}/m,\mathbf{Z}/n) \cong \mathbf{Z}/m \otimes \mathbf{Z}/n$, $\operatorname{Ext}(\mathbf{Z}/m,\mathbf{Z}) \cong \mathbf{Z}/m$.
- 190. Let X be a space, G an abelian group. Prove that there is a split exact sequence

$$0 \to \operatorname{Ext}(H_{q-1}(X), G) \to H^q(X; G) \to \operatorname{Hom}(H_q(X), G) \to 0$$

for any $q \geq 0$.

191. Let X be a space, and G an abelian group. Prove that there is a split exact sequence

$$0 \to H^q(X; \mathbf{Z}) \otimes G \to H^q(X; G) \to \operatorname{Tor}(H^{q+1}(X; \mathbf{Z}), G) \to 0$$

for any $q \geq 0$.

- **192.** Let G be a finitely generated abelian group. Let F(G) be the maximum free abelian subgroup of G, and T(G) be the maximum torsion subgroup. Let X be a space such that the groups $H_q(X)$ are finitely generated for all q. Prove that $H^q(X; \mathbf{Z})$ are also finitely generated and $H^q(X; \mathbf{Z}) \cong F(H_q(X; \mathbf{Z})) \oplus T(H_{q-1}(X; \mathbf{Z}))$.
- **193.** Let F be \mathbf{Q} , \mathbf{R} or \mathbf{C} . Prove that

$$H_q(X;F) = H_q(X) \otimes F, \quad H^q(X;F) = \text{Hom}(H_q(X),F).$$

194. Let X be a finite CW-complex, and \mathbf{F} be a field. Prove that the number

$$\chi(X)_{\mathbf{F}} = \sum_{q>0} (-1)^q \dim H_q(X; \mathbf{F})$$

does not depend on the field F and is equal to the Euler characteristic

$$\chi(X) = \sum_{q \ge 0} (-1)^q \{ \# \text{ of } q\text{-cells of } X \}.$$

195. Let a finite CW-complex X be a union of two CW-subcomplexes: $X = X_1 \cup X_2$, where $X_1 \cap X_2 \subset X$ is a CW-subcomplex as well. Prove that

$$\chi(X) = \chi(X_1) + \chi(X_2) - \chi(X_1 \cap X_2).$$

- **196.** Let C_* and C'_* be two chain complexes. Define the tensor product $\bar{C}_* = C_* \otimes C'_*$. Prove that $\bar{\partial}_{q+1}\bar{\partial}_q = 0$.
- **197.** Let $\mathcal{E}_* = \mathcal{E}_*(X)$, $\mathcal{E}'_* = \mathcal{E}_*(X')$. Define the complexes $\mathcal{E}_*(r)$, $\mathcal{E}'_*(s)$ and compute the homology groups of the tensor product of these chain complexes: $\mathcal{E}_*(r) \otimes \mathcal{E}'_*(s)$.
- 198. Use the result of # 197 to prove the Künneth formula for homology groups:

$$0 \to \bigoplus_{r+s=q} H_r(X) \otimes H_s(X') \to H_q(X \times X') \to \bigoplus_{r+s=q-1} \operatorname{Tor}(H_r(X), H_s(X')) \to 0$$

199. Outline the proof of the Künneth formula for cohomology groups:

$$0 \to \bigoplus_{r+s=q} H^r(X) \otimes H^s(X') \to H^q(X \times X') \to \bigoplus_{r+s=q+1} \operatorname{Tor}(H^r(X), H^s(X')) \to 0.$$

200. Let F be a field. Prove that

$$H_q(X \times X'; F) \cong \bigoplus_{r+s=q} H_r(X; F) \otimes H_s(X'; F),$$

$$H^q(X \times X'; F) \cong \bigoplus_{r+s=q} H^r(X; F) \otimes H^s(X'; F).$$

201. Let $\beta_q(X) = \text{Rank}H_q(X)$ be the Betti number of X. Prove that

$$\beta_q(X \times X') = \sum_{r+s=q} \beta_r(X)\beta_s(X').$$

- **202.** Let X, X' be such spaces that their Euler characteristics $\chi(X)$, $\chi(X')$ are finite. Prove that $\chi(X \times X') = \chi(X) \cdot \chi(X')$.
- **203.** Prove the Lefschetz Theorem: Let X be a finite CW-complex, $f: X \to X$ be a map such that Lef(f) = 0. Then f has a fixed point, i.e. such point $x_0 \in X$ that $f(x_0) = x_0$.
- **204.** Let X be a finite contractible CW-complex. Prove that any map $f: X \to X$ has a fixed point.
- **205.** Define a flow of homeomorphisms $\phi_t: X \to X$. Let X be a finite CW-complex with $\chi(X) \neq 0$, and $\phi_t: X \to X$ be a flow. Prove that there exists a point $x_0 \in X$ so that $\phi_t(x_0) = x_0$ for all $t \in \mathbf{R}$.
- **206.** Let $f: \mathbf{RP}^{2n} \to \mathbf{RP}^{2n}$ be a map. Prove that f always has a fixed point. Give an example that the above statement fails for a map $f: \mathbf{RP}^{2n+1} \to \mathbf{RP}^{2n+1}$.
- **207.** Let $n \neq k$. Prove that \mathbf{R}^n is not homeomorphic to \mathbf{R}^k .
- **208.** Let $f: S^n \to S^n$ be a map, and $\deg(f)$ be the degree of f. Prove that $\operatorname{Lef}(f) = 1 + (-1)^n \deg(f)$.
- **209.** Prove that there is no tangent vector field v(x) on the sphere S^{2n} such that $v(x) \neq 0$ for all $x \in S^{2n}$. Construct everywhere non-zero vector field v on S^{2n+1} .
- **210.** Let $K \subset S^n$ be homeomorphic to the cube I^k , $0 \le k \le n$. Prove that $\widetilde{H}_q(S^n \setminus K) = 0$ for all $q \ge 0$.

211. Let $S^k \subset S^n$, $0 \le k \le n-1$. Prove that

$$\widetilde{H}_q(S^n \setminus S^k) \cong \left\{ \begin{array}{l} \mathbf{Z}, & \text{if } q = n - k - 1, \\ 0 & \text{if } q \neq n - k - 1. \end{array} \right.$$

- **212.** State and prove the Jordan-Brouwer Theorem.
- 213. State and prove the Brouwer Invariance Domain Theorem.
- **214.** Let (X, A) be a CW-pair. Prove that the group $H^1(X, A; \mathbf{Z})$ is a free abelian group.
- **215.** Define the cup-product in cohomology. Prove that $\delta(\phi \cup \psi) = (\delta\phi) \cup \psi + (-1)^k \phi \cup (\delta\psi)$ where $\phi \in C^k(X), \ \psi \in C^l(X)$.
- **216.** Compute the cup product of $H^*(\mathbf{RP}^2; \mathbf{Z}/2)$, $H^*(M_a^2; \mathbf{Z})$.
- **217.** Prove that $\alpha\beta = (-1)^{kl}\beta\alpha$ if $\alpha \in H^k(X)$, $\beta \in H^l(X)$.
- 218. Define the external product

$$\mu: H^*(X;R) \otimes H^*(Y;R) \to H^*(X \times Y;R).$$

Define the ring structure on $H^*(X;R) \otimes H^*(Y;R)$. Prove that the external product $\mu: H^*(X;R) \otimes H^*(Y;R) \to H^*(X\times Y;R)$ induces a ring isomorphism provided that $H^q(Y;R)$ are free R-modules for all q.

219. Let $\Delta: X \to X \times X$ be a diagonal map. Prove that the homomorphism

$$H^k(X;R) \otimes H^l(X;R) \xrightarrow{\mu} H^{k+l}(X \times X;R) \xrightarrow{\Delta^*} H^{k+l}(X;R)$$

coincides with the cup-product, i.e. that $\Delta^*(\mu(\alpha \otimes \beta)) = \alpha \cup \beta$.

- **220.** Prove that $H^*(\mathbf{RP}^n; \mathbf{Z}/2) \cong \mathbf{Z}/2[x]/x^{n+1}$.
- **221.** Prove that $H^*(\mathbf{CP}^n; \mathbf{Z}) \cong \mathbf{Z}[y]/y^{n+1}$.
- **222.** Prove that any map $f: \mathbb{CP}^{2k} \to \mathbb{CP}^{2k}$ has a fixed point.
- **223.** Prove that if \mathbb{R}^n is a real division algebra, then n is a power of two.
- **224.** State the Poincarè Duality Theorem. Compute the Poincarè Duality for M_a^2 .
- 225. Prove that the odd-dimensional manifold has zero Euler characteristic.
- **226.** Prove that $\langle \alpha \cup \beta, \mu \rangle = \langle \beta, \mu \cap \alpha \rangle$.
- **227.** Let M^{4k} be a compact oriented manifold, and $V = H^{2k}(M^{4k}; \mathbf{Z})/\text{Tor}$. Use the Poincarè duality to prove that the pairing

$$\mu(\alpha, \beta) = \langle \alpha \cup \beta, [M^{4k}] \rangle$$

defines a nondegenerated quadratic form on V. Compute the index of this quadratic form for \mathbb{CP}^{2n} .

- **228.** Use Poincaré duality to prove that $H^*(\mathbf{CP}^n; \mathbf{Z}) \cong \mathbf{Z}[x]/x^{n+1}$.
- **229.** Use Poincaré duality to prove that $H^*(\mathbf{RP}^n; \mathbf{Z}/2) \cong \mathbf{Z}/2[x]/x^{n+1}$.
- **230.** Let $f: \mathbb{CP}^{2n} \to \mathbb{CP}^{2n}$ be a map. Show that f has a fixed point.
- **231.** Compute the ring structure $H^*(\mathbf{RP}^n; \mathbf{Z}/2^k)$.
- **232.** Let n > k. Prove that there is no map $f : \mathbf{RP}^n \to \mathbf{RP}^k$ which induces a nontrivial ring homomorphism $f^* : H^*(\mathbf{RP}^k; \mathbf{Z}/2) \to H^*(\mathbf{RP}^n; \mathbf{Z}/2)$.

233. Let a map $h: \mathbf{RP}^{n-1} \times \mathbf{RP}^{n-1} \to \mathbf{RP}^{n-1}$, be such that the induced homomorphism

$$h^*: H^*(\mathbf{RP}^{n-1}; \mathbf{Z}/2) \to H^*(\mathbf{RP}^{n-1} \times \mathbf{RP}^{n-1}: \mathbf{Z}/2)$$

takes generator $y \in H^1(\mathbf{RP}^{n-1}; \mathbf{Z}/2)$ to the sum of generators: $h^*(y) = x_1 \otimes 1 + 1 \otimes x_2$. Prove that n must be a power of 2.

- **234.** Prove that \mathbb{RP}^3 and is not homotopy equivalent to $S^3 \vee \mathbb{RP}^2$.
- **235.** Define the Hopf invariant $h(\lambda)$ of an element $\lambda \in \pi_{4q-1}(S^{2q})$.
- **236.** Prove that $h(\lambda_1 + \lambda_2) = h(\lambda_1) + h(\lambda_2)$.
- **237.** Prove that there is an element in $\pi_{4n-1}(S^{2n})$ with the Hopf invariant 2. State and prove the theorem that the group $\pi_{4n-1}(S^{2n})$ is infinite.
- **238.** Prove that $h([\iota_{2q}, \iota_{2q}]) = 2$, where $\iota_{2q} \in \pi_{2q}(S^{2q})$ is the standard generator.
- **239.** Define a cohomology operation. Give examples.
- 240. Define a canonical fundamental class

$$\iota_n \in \operatorname{Hom}(H_n(K(\pi, n); \mathbf{Z}), \pi).$$

241. Let π , π' be abelian groups. Prove that there is a bijection

$$[K(\pi, n), K(\pi', n)] \leftrightarrow \operatorname{Hom}(\pi, \pi').$$

- **242.** Let π be an abelian group and n be a positive integer. Prove that the homotopy type of the Eilenberg-McLane space $K(\pi, n)$ is completely determined by the group π and the integer n.
- **243.** Prove that there is a bijection

$$\mathcal{O}(\pi, n; \pi', n') \leftrightarrow H^{n'}(K(\pi, n), \pi')$$

given by the formula $\theta \leftrightarrow \theta(\iota_n)$.

244. Let Y be a homotopy simple space, (B, A) a CW-pair and $X^n = B^{(n)} \cup A$ for $n = 0, 1, \ldots$ Define the obstruction cochain

$$c(f) \in \mathcal{E}^{n+1}(B, A; \pi_n(Y)) = \operatorname{Hom}(\mathcal{E}_{n+1}(B, A), \pi_n(Y)).$$

Prove that c(f) is a cocycle.

- **245.** Let Y be a homotopy simple space, (B,A) a CW-pair and $X^n = B^{(n)} \cup A$ for $n = 0, 1, \ldots$ Prove that a map $f: X^n \to Y$ can be extended to a map $\tilde{f}: X^{n+1} \to Y$ if and only if c(f) = 0.
- **246.** Define $d(f,g) \in \mathcal{E}^n(B,A;\pi_n(Y))$. Prove the formula: $\delta d(f,g) = c(g) c(f)$.
- **247.** Let Y be a homotopy simple space, (B,A) a CW-pair and $X^n = B^{(n)} \cup A$ for $n = 0,1,\ldots$ Let $f: X^n \to Y$ be a map, and $d \in \mathcal{E}^n(B,A;\pi_n(Y))$ is a cochain. Prove that there exists a map $g: X^n \to Y$ such that $f|_{X^{n-1}} = g|_{X^{n-1}}$ and d(f,g) = d.
- **248.** Let Y be a homotopy simple space, (B,A) a CW-pair and $X^n = B^{(n)} \cup A$ for $n = 0, 1, \ldots$ Assume $f: X^n \to Y$ is a map. Prove that there exists a map $g: X^{n+1} \to Y$ such that $g|_{X^{n-1}} = f|_{X^{n-1}}$ if and only if [c(f)] = 0 in $H^{n+1}(B,A;\pi_nY)$.
- **249.** Prove the following result

Theorem. Let $f,g:K\to Y$ be two maps, where K is a CW-complex and Y is homotopy-simple space. Assume that $f|_{K^{(n-1)}}=g|_{K^{(n-1)}}$. Then the cohomology class $[d(f,g)]\in H^n(K,\pi_nY)$ vanishes if and only if there exists a homotopy between the maps $f|_{K^{(n)}}$ and $g|_{K^{(n)}}$ relative to the skeleton $K^{(n-2)}$.

250. Prove the following result:

Theorem. There is a bijection

$$[X, K(\pi, n)] \leftrightarrow H^n(X; \pi).$$

given by the formula $[f] \mapsto f^* \iota_n$.

- **251.** Consider a k-torus T^k . We identify T^k with the quotient space \mathbf{R}^k/\sim , where two vectors $\vec{x}\sim\vec{y}$ if and only if all coordinates of the vector $\vec{x}-\vec{y}$ are integers. It is easy to see that a linear map $f: \mathbf{R}^k \to \mathbf{R}^\ell$ given by an $k \times \ell$ -matrix A with integral entries descends to a map $f: T^k \to T^\ell$. Prove that any map $g: T^k \to T^\ell$ is homotopic to a linear map as above.
- **252.** Prove the following result:

Theorem. Let X be an n-dimensional CW-complex. Then there is a bijection:

$$H^n(X; \mathbf{Z}) \cong [X, S^n].$$

- **253.** Prove that any $K(\mathbf{Z}_2, n)$ is infinite dimensional space for each $n \geq 1$.
- **254.** Let M be a simply-connected compact closed manifold with dim M=3. Prove that M is homotopy equivalent to S^3 .
- **255.** Let $h: S^3 \to S^2$ be the Hopf map. Let $\lambda \geq 1$ be an integer. Define a map

$$f_{\lambda}: S^3 \xrightarrow{\lambda} \underbrace{S^3 \vee \cdots \vee S^3}_{\lambda} \xrightarrow{h \vee \cdots \vee h} S^2.$$

Prove that the space $X_{\lambda} = S^2 \cup_{f_{\lambda}} D^4$ is homotopy equivalent to a closed compact manifold of dimension four if and only if $\lambda = 1$.

- **256.** Let $D^3 \subset T^3$ and $c: T^3 \to S^3$ be a map which collapses a complement of $D^3 \subset T^3$ to a point. Prove that the map $g: T^3 \overset{c}{\to} S^3 \overset{h}{\to} S^2$ (where $h: S^3 \to S^2$ is the Hopf map) induces trivial homomorphism on homology and homotopy, but is not homotopic to a constant map.
- **257.** Assume a CW-complex X contains S^1 such that the inclusion $i: S^1 \subset X$ induces an injection $i_*: H_1(S^1; \mathbf{Z}) \to H_1(X; \mathbf{Z})$ with image a direct summand of $H_1(X; \mathbf{Z})$. Prove that S^1 is a retract of X.
- **258.** Two questions:
 - (a) Show that there is no map from \mathbb{CP}^2 to itself of degree -1.
 - (b) Show that there is no map from $\mathbb{CP}^2 \times \mathbb{CP}^2$ to itself of degree -1.