QUESTIONS FOR THE MIDTERM, SPRING 2020

1. Basic spaces: \mathbf{R}^{n}, S^{n}, stereographic projection. The space S^{∞}.
2. Projective spaces $\mathbf{R} \mathbf{P}^{n}, \mathbf{C} \mathbf{P}^{n}$, $\mathbf{H P}^{n}$: definitions, local coordinate system, the Hopf maps $S^{n} \rightarrow \mathbf{R P}^{n}$, $S^{2 n+1} \rightarrow \mathbf{C P}{ }^{n}, S^{4 n+3} \rightarrow \mathbf{H P}^{n}$.
3. Prove the homeomorphisms: $\mathbf{R} \mathbf{P}^{1} \cong S^{1}, \mathbf{C P}^{1} \cong S^{2}, \mathbf{H} \mathbf{P}^{1} \cong S^{4}$.
4. Prove that $\mathbf{R} \mathbf{P}^{n}, \mathbf{C} \mathbf{P}^{n}, \mathbf{H P}^{n}$ are connected and compact spaces.
5. Define Grassmannian manifolds $G_{k}\left(\mathbf{R}^{n}\right), G_{k}\left(\mathbf{R}^{n}\right)$: and construct local coordinate systems, in particular, find their dimensions.
6. Prove that the Grassmannian manifolds $G_{k}\left(\mathbf{R}^{n}\right)$, and $G_{k}\left(\mathbf{R}^{n}\right)$ are compact and connected.
7. Define classic Lie groups $G L\left(\mathbf{R}^{k}\right), G L\left(\mathbf{C}^{k}\right), O(k), S O(k), U(k), S U(k)$. Prove that the spaces $O(n)$, $S O(n), U(n), S U(n)$ are compact. How many connected components does each of these spaces have?
8. Prove that $S O(2)$ and $U(1)$ are homeomorphic to $S^{1}, S O(3)$ is homeomorphic to $\mathbf{R P}^{3}$, and $S U(2)$ is homeomorphic to S^{3}.
9. Prove that $S O(4) \cong S O(3) \times S^{3}$.
10. Define Stiefel manifolds $V_{k}\left(\mathbf{R}^{n}\right), V_{k}\left(\mathbf{C}^{n}\right), V_{k}\left(\mathbf{H}^{n}\right)$. Prove the following homeomorphisms:

$$
\begin{gathered}
V_{n}\left(\mathbf{R}^{n}\right) \cong O(n), \quad V_{n-1}\left(\mathbf{R}^{n}\right) \cong S O(n), \\
V_{n}\left(\mathbf{C}^{n}\right) \cong U(n), \quad V_{n-1}\left(\mathbf{C}^{n}\right) \cong S U(n), \\
V_{1}\left(\mathbf{R}^{n}\right) \cong S^{n-1}, \quad V_{1}\left(\mathbf{C}^{n}\right) \cong S^{2 n-1}, \quad V_{1}\left(\mathbf{H}^{n}\right) \cong S^{4 n-1} .
\end{gathered}
$$

11. Define action of the groups $O(k), U(k)$ on the Stiefel manifolds $V_{k}\left(\mathbf{R}^{n}\right), V_{k}\left(\mathbf{C}^{n}\right)$. Prove the following homeomorphisms: $V_{k}\left(\mathbf{R}^{n}\right) / O(k) \cong G_{k}\left(\mathbf{R}^{n}\right), V_{k}\left(\mathbf{C}^{n}\right) / U(k) \cong G_{k}\left(\mathbf{C}^{n}\right)$.
12. Prove the following homeomorphisms:

$$
\begin{gathered}
S^{n-1} \cong O(n) / O(n-1) \cong S O(n) / S O(n-1) \\
S^{2 n-1} \cong U(n) / U(n-1) \cong S U(n) / S U(n-1) \\
G_{k}\left(\mathbf{R}^{n}\right) \cong O(n) / O(k) \times O(n-k), \quad G_{k}\left(\mathbf{C}^{n}\right) \cong U(n) / U(k) \times U(n-k)
\end{gathered}
$$

13. Prove that the Klein bottle $K l^{2}$ is homeomorphic to the union of two Mëbius bands along the circle.
14. Prove that $K l^{2} \# \mathbf{R} \mathbf{P}^{2}$ is homeomorphic to $\mathbf{R} \mathbf{P}^{2} \# T^{2}$.
15. Define a cylinder and a cone of a map $f: X \rightarrow Y$. Prove that the cones of the maps $c: S^{n} \rightarrow \mathbf{R P}^{n}$ and $h: S^{2 n+1} \rightarrow \mathbf{C P}^{n}$ are homeomorphic to $\mathbf{R} \mathbf{P}^{n+1}$ and $\mathbf{C P}{ }^{n+1}$ respectively.
16. Define suspension. Prove that $\Sigma\left(S^{n}\right) \cong S^{n+1}$.
17. Define a compact-open topology on $\mathcal{C}(X, Y)$. Prove the homeomorphism: $\mathcal{C}(X, \mathcal{C}(Y, Z)) \cong \mathcal{C}(X \times Y, Z)$ for Hausdorff and locally compact spaces X, Y, Z. Prove that this homeomorphism is natural.
18. Define the spaces of paths $\mathcal{E}\left(X, x_{0}, x_{1}\right), \mathcal{E}\left(X, x_{0}\right)$, and loops $\Omega\left(X, x_{0}\right)$. Prove that the spaces $\Omega\left(S^{n}, x_{0}\right)$ and $\Omega\left(S^{n}, x_{1}\right)$ are homeomorphic for any points $x_{0}, x_{1} \in S^{n}$.
19. Let X, Y be pointed spaces. Prove the homeomorphism $\mathcal{C}(\Sigma(X), Y) \cong \mathcal{C}(X, \Omega(Y))$ for Hausdorff and locally compact spaces X, Y. Prove that this homeomorphism is natural.
20. Define smash-product $X \wedge Y$. Prove that $S^{n} \wedge S^{k} \cong S^{n+k}$ (as pointed spaces).
21. Define homotopy of two maps. Prove that the maps $\phi^{*}:\left[X^{\prime}, Y\right] \rightarrow[X, Y], \psi_{*}:[X, Y] \rightarrow\left[X, Y^{\prime}\right]$ induced by maps $\phi: X \rightarrow X^{\prime}, \psi: Y \rightarrow Y^{\prime}$ are well-defined.
22. Give three definitions of homotopy equivalence. Prove that they are equivalent.
23. Prove that $X \sim Y$ implies $\Sigma(X) \sim \Sigma(Y)$ and $\Omega(X) \sim \Omega(Y)$.
24. Give a definition of a contractible space. Prove that $\mathcal{E}\left(X, x_{0}\right)$ is a contractible.
25. Prove that a space X is contractible if and only if it is homotopy equivalent to a point.
26. Prove that a space X is contractible if and only if every map $f: Y \rightarrow X$ is null-homotopic.
27. Give definition of a retract and deformational retract. Examples. Prove that $\{0\} \cup\{1\}$ is not a retact of $I=[0,1]$. Define map of pairs. Examples.
28. Define a $C W$-complex. Give examples of cell decomposition. Show that the axiom (W) does not imply the axiom (C) and wise-versa.
29. Construct a cellular decomposion of the wedge $X=S^{1} \vee S^{2}$ (with a single 2-cell e^{2}) such that a closure of the cell e^{2} is not a $C W$-subcomplex of X.
30. Construct a cellular decomposion of the wedge $X=\Sigma\left(S^{n} \vee S^{k}\right)$. Prove that $\Sigma\left(S^{n} \vee S^{k}\right) \sim S^{n+1} \vee S^{k+1}$.
31. Prove that a $C W$-complex compact if and only if it is finite.
32. Construct a cellular decomposition of $S^{n}, D^{n}, \mathbf{R} \mathbf{P}^{n}, \mathbf{C P}{ }^{n}, \mathbf{H P}^{n}$.
33. Construct a cellular decomposition of the oriented 2-manifold of genus g.
34. Define the Schubert cells $e(\sigma)$ corresponding to the Schubert symbol σ. Give examples.
35. Define the spaces H^{j}, \bar{H}^{j}. Prove that a k-plane π belongs to $e(\sigma)$ if and only if there exists its basis v_{1}, \ldots, v_{k}, such that $v_{1} \in H^{\sigma_{1}}, \ldots, v_{k} \in H^{\sigma_{k}}$.
36. Prove the following statement: Let $\pi \in e(\sigma)$, where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Then there exists a unique orthonormal basis v_{1}, \ldots, v_{k} of π, so that $v_{1} \in H^{\sigma_{1}}, \ldots, v_{k} \in H^{\sigma_{k}}$.
37. Define the sets $E(\sigma), \bar{E}(\sigma) \subset V_{k}\left(\mathbf{R}^{n}\right)$. Prove that the set $\bar{E}(\sigma) \subset V_{k}\left(\mathbf{R}^{n}\right)$ is homeomorphic to the closed cell of dimension $d(\sigma)=\left(\sigma_{1}-1\right)+\left(\sigma_{2}-2\right)+\cdots+\left(\sigma_{k}-k\right)$. Furthermore the map $q: e(\sigma) \rightarrow E(\sigma)$ is a homeomorphism.
38. Define the transformations $T_{u, v}$, prove its properties. Explain how the transformations $T_{u, v}$ are used to prove that $\bar{E}(\sigma) \subset V(n, k)$ is homeomorphic to a closed cell of dimension $d(\sigma)$.
39. Prove the statement: a collection of $\binom{k}{n}$ Schubert cells $e(\sigma)$ gives $G_{k}\left(\mathbf{R}^{n}\right)$ a cell-decomposition.
40. Outline a construction of Schubert cells of the complex Grassmannian $G_{k}\left(\mathbf{C}^{n}\right)$.
41. Define when a pair (X, Y) is a Borsuk pair. Prove that a $C W$-pair (X, Y) is a Borsuk pair (in the case when X, Y are finite complexes).
42. Let (X, A) be a Borsuk pair. Prove that A is a deformation retract of X if and only if the inclusion $A \rightarrow X$ is a homotopy equivalence.
43. Prove the statement: let X be a $C W$-complex and $A \subset X$ be its contractible subcomplex. Then X is homotopy equivalent to the complex X / A.
44. Prove that for a $C W$-pair $(X, A) X / A \sim X \cup C(A)$.
45. State Cellular Approximation Theorem. Prove it using Free Point Lemma.
46. State and prove Free Point Lemma.
47. Define homotopy groups $\pi_{n}(X)$. Prove that $\pi_{n}(X)$ is commutative group for $n \geq 2$. Prove that $\pi_{k}\left(S^{n}\right)$ is a trivial group for $k<n$.
48. Prove the satement: Let X be a $C W$-complex with only one zero-cell and without cells of dimension $q<n$, and Y be a $C W$-complex of dimension $<q$. Then any map $Y \rightarrow X$ is homotopic to a constant map.
49. Define n-connected space. Prove the statement: Any n-connected $C W$-complex homotopy equivalent to a $C W$-complex with a single zero cell and without cells of dimensions $1,2, \ldots, n$.
50. Prove that if $f, g: X \rightarrow Y$ are homotopic maps, than the homomorphisms $f_{*}, g_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ coincide.
51. Prove that if X is a path-connected space, then $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, x_{1}\right)$. Describe all isomorphisms here.
52. Prove that $\pi_{1} S^{1} \cong \mathbf{Z}$.
53. Prove that $\pi_{1}\left(\bigvee_{\alpha \in A} S_{\alpha}^{1}\right)$ is a free group.
54. Prove that $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X^{(2)}, x_{0}\right)$, where X is a connected $C W$-complex and $X^{(2)}$ its 2 -skeleton.
55. Compute $\pi_{1}\left(M^{2}\right)$ for two-dimensional oriented closed manifold of genus g, the sphere with g handles.
56. Compute $\pi_{1}\left(M^{2}\right)$ for two-dimensional non-oriented closed manifold of genus g, the projective plane or the Klein bottle with g handles.
57. Let $M=\mathbf{R P}^{2} \# \cdots \# \mathbf{R P}^{2}$ (n times). Compute $\pi_{1}(M)$.
58. Compute $\pi_{1}\left(\mathbf{R P}^{2} \# \mathbf{R P}^{2}\right)$ and $\pi_{1}\left(K l^{2} \# \mathbf{R P}^{2}\right)$.
59. Define $G_{1} * G_{2}$. Give examples. Prove that $\pi_{1}(X \vee Y)=\pi_{1}(X) * \pi_{1}(Y)$.
60. Define $G_{1} *_{H} G_{2}$. Give examples. State and prove Van Kampen Theorem.
61. Define covering space. Give examples. Construct n-fold covering of $S^{1} \vee S^{1}$ (including $n=\infty$).
62. State and prove Theorem on Covering Homotopy.
63. Prove that covering $p: T \rightarrow X$ induces a monomorphism $p_{*}: \pi_{1}\left(T, \tilde{x}_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.
64. Prove that a loop $\alpha_{1} \cdots \alpha_{k}$, where α_{j} is a loop going along the j-th circle in the wedge $\bigvee_{j=1}^{k} S_{j}^{1}$, is not homotopic to zero.
65. Let $p: T \rightarrow X$ be a covering, and $f, g: Z \rightarrow T$ be two maps so that $p \circ f=p \circ g$, where Z is path-connected. Assume that $f(z)=g(z)$ for some point $z \in Z$. Prove that $f=g$.
66. Prove that $\pi_{k}\left(\mathbf{R P}^{n}\right)=0$ if $1<k<n$.
67. Prove that any map $f: \mathbf{R} \mathbf{P}^{2} \rightarrow S^{1}$ is homotopic to a constant map.
68. Let $K l^{2}$ be the Klein bottle. Construct two-folded covering space $T^{2} \rightarrow K l^{2}$. Compute $\pi_{n}\left(K l^{2}\right)$ for all n.
69. Let $p: T \rightarrow X$ be a covering, $p\left(\tilde{x}_{0}\right)=x_{0}$. Prove that there is one-to-one correspondence

$$
\pi_{1}\left(X\left(X, x_{0}\right) / p_{*}\left(\pi_{1}\left(T, \tilde{x}_{0}\right)\right) \Longleftrightarrow p^{-1}\left(x_{0}\right)\right.
$$

Prove that $p^{-1}\left(x_{0}\right) \cong p^{-1}\left(x_{1}\right)$ for any points $x_{0}, x_{1} \in X$.
70. Let $\mathrm{p}: T \rightarrow X$ be a covering map, and let $\Gamma=p^{-1}\left(x_{0}\right)$. Prove that Γ is a transitive right G-set for $G=\pi_{1}\left(X, x_{0}\right)$.
71. Let X by "good" space and $G=\pi_{1}\left(X, x_{0}\right)$. Prove that athere is a bijection between isomorphism classes of covering spaces of X and transitive right G-sets given by

$$
\{p: Y \rightarrow X\} \mapsto p^{-1}\left(x_{0}\right) .
$$

72. Let $p: T \rightarrow X$ be a covering, and $f: Z \rightarrow X$ be a map, $f\left(z_{0}\right)=x_{0}$, and $\tilde{x}_{0} \in T$ so that $p\left(\tilde{x}_{0}\right)=x_{0}$ (here Z is path-connected space). Prove that there exists a lifting $\tilde{f}: Z \rightarrow T$ of the map f so that $\widetilde{f}\left(z_{0}\right)=\tilde{x}_{0}$ if and only if $f_{*}\left(\pi_{1}\left(Z, z_{0}\right)\right) \subset p_{*}\left(\pi_{1}\left(T, \tilde{x}_{0}\right)\right)$.
73. Define morphism of two covering spaces $T_{1} p_{1} \xrightarrow{p_{1}} X$ and $T_{2} \xrightarrow{p_{2}} X$. Prove that two morphisms $\phi, \phi^{\prime}: T_{1} \rightarrow T_{2}$ coincide if there is a point $\tilde{x} \in T_{1}$ so that $\phi(\tilde{x})=\phi^{\prime}(\tilde{x})$.
74. Define a group of automorphisms (deck transformations) Aut $(T \xrightarrow{p} X)$ of a covering $p: T \rightarrow X$. Prove that the group $\operatorname{Aut}(T \xrightarrow{p} X)$ acts on T without fixed points.
75. Let $p: T \rightarrow X$ be a covering, $p\left(\tilde{x}_{0}\right)=p\left(\tilde{x}_{0}^{\prime}\right)=x_{0}$, where $\tilde{x}_{0} \neq \tilde{x}_{0}^{\prime}$. Prove that there exists an automorphism $\phi \in \operatorname{Aut}(T \xrightarrow{p} X)$ such that $\phi\left(\tilde{x}_{0}\right)=\tilde{x}_{0}^{\prime}$ if and only if $p_{*}\left(\pi_{1}\left(T, \tilde{x}_{0}\right)\right)=p_{*}\left(\pi_{1}\left(T, \tilde{x}_{0}^{\prime}\right)\right)$.
76. Prove the following statement: Two covering spaces $T_{1} \xrightarrow{p_{1}} X, T_{2} \xrightarrow{p_{2}} X$ are isomorphic if and only if for any two points $\widetilde{x}_{1}, \widetilde{x}_{2} \in T$ such that $p_{1}\left(\widetilde{x}_{1}\right)=p_{2}\left(\widetilde{x}_{2}\right)=x$ the groups $\left(p_{1}\right)_{*}\left(\pi_{1}\left(T_{1}, \widetilde{x}_{1}\right)\right)$, $\left(p_{2}\right)_{*}\left(\pi_{1}\left(T_{2}, \widetilde{x}_{2}\right)\right)$ belong to the same conjugacy class in $\pi_{1}(X, x)$.
77. Let $N(H)$ be a normalizer for a subgroup H of G. Prove the following statement: Let $p: T \rightarrow X$ be a covering space. Then the group of automorphisms of this covering space is isomorphic to the group $N\left(p_{*}\left(\pi_{1}\left(T, \widetilde{x}_{0}\right)\right)\right) / p_{*}\left(\pi_{1}\left(T, \widetilde{x}_{0}\right)\right)$.
78. Define universal covering space over X. Prove the following statement: Let X be a path-connected $C W$-complex, $x_{0} \in X$. Then for any subgroup $G \subset \pi_{1}\left(X, x_{0}\right)$ there exists a covering $T \xrightarrow{p} X$ and a point $\widetilde{x}_{0} \in T$ so that $p_{*}\left(\pi_{1}\left(T, \widetilde{x}_{0}\right)\right)=G$.
79. Define homotopy groups $\pi_{n}\left(X, x_{0}\right)$, in particular define the group operation and inverse. Prove that the groups $\pi_{n}\left(X, x_{0}\right)$ are abelian if $n \geq 2$.
80. Prove that $\pi_{n}\left(X \times Y, x_{0} \times y_{0}\right) \cong \pi_{n}\left(X, x_{0}\right) \times \pi_{n}\left(Y, y_{0}\right)$. Compute $\pi_{n}\left(T^{k}\right)$ for all n.
81. Let X be a path-connected space, and $x_{0}, x_{1} \in X$ be two different points. Let $\gamma: I \rightarrow X$ be a path so that $\gamma(0)=x_{0}$ and $\gamma(1)=x_{1}$. Define a homomorphism $\gamma_{\#}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, x_{1}\right)$. Prove that $\gamma_{\#}$ is an isomorphism.
82. Let M_{g}^{2} be a two-dimensional surface of genus $g \geq 1$ (oriented). Compute the homotopy groups $\pi_{q}\left(M_{g}^{2}\right)$.
83. Define relative homotopy groups $\pi_{n}\left(X, A ; x_{0}\right)$. Describe the group operation and the inverse element. Prove that the group $\pi_{n}\left(X, A ; x_{0}\right)$ is commutative for $n \geq 3$.
84. Define the homomorphisms in the following sequence:

$$
\begin{equation*}
\cdots \rightarrow \pi_{n}\left(A, x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X, A ; x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A, x_{0}\right) \rightarrow \cdots \tag{1}
\end{equation*}
$$

Prove that the sequence (1) is exact.
85. Let $A \subset X$ be a retract. Prove that

- $i_{*}: \pi_{n}\left(A, x_{0}\right) \rightarrow \pi_{n}\left(X, x_{0}\right)$ is monomorphism,
- $j_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, A ; x_{0}\right)$ is epimorphism,
- $\partial: \pi_{n}\left(X, A ; x_{0}\right) \rightarrow \pi_{n-1}\left(A, x_{0}\right)$ is zero homomorphism.

86. Let A be contractible in X. Prove that

- $i_{*}: \pi_{n}\left(A, x_{0}\right) \rightarrow \pi_{n}\left(X, x_{0}\right)$ is zero homomorphism,
- $j_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, A ; x_{0}\right)$ is monomorphism,
- $\partial: \pi_{n}\left(X, A ; x_{0}\right) \rightarrow \pi_{n-1}\left(A, x_{0}\right)$ is epimorphism.

87. State and prove Five-Lemma.
88. Let $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{n} \rightarrow 0$ be an exact sequence of finitely generated abelian groups. Prove that $\sum_{i=1}^{n}(-1)^{i}$ rank $A_{i}=0$.
89. Define locally trivial fiber bundle. Give several examples of non-trivial fiber bundles.
90. Prove that any locally-trivial fiber bundle over the cube I^{q} is trivial.
91. Define the covering homotopy property. Outline a proof that the covering homotopy property holds for a locally-trivial fiber bundle $E \longrightarrow B$.
92. Define a Serre fiber bundle. Let Y be an arbitrary path-connected space, $\mathcal{E}\left(Y, y_{0}\right)$ be the space of paths starting at y_{0}. Prove that the map $p: \mathcal{E}\left(Y, y_{0}\right) \longrightarrow Y$, where $p(s: I \longrightarrow Y)=s(1) \in Y$ is a Serre fiber bundle.
93. Let $A \subset X$, and (X, A) be a Borsuk pair (for example, a $C W$-pair). Let $E=\mathcal{C}(X, Y), B=\mathcal{C}(A, Y)$, and the map $p: E \longrightarrow B$ be defined as $p(f: X \longrightarrow Y)=\left(\left.f\right|_{A}: A \longrightarrow Y\right)$. Prove that the map $p: E \longrightarrow B$ is a Serre fiber bundle.
94. Define weak homotopy equivalence. Prove that finite $C W$-complexes X, Y are weak homotopy equivalent if and only if they are homotopy equivalent.
95. Let $p: E \longrightarrow B$ be Serre fiber bundle, where B be a path-connected space. Prove that the fibers $F_{0}=p^{-1}\left(x_{0}\right)$ and $F_{1}=p^{-1}\left(x_{1}\right)$ are weak homotopy equivalent for any two points $x_{0}, x_{1} \in B$.
96. Prove that for any continuous map $f: X \longrightarrow Y$ there exists homotopy equivalent map $f_{1}: X_{1} \longrightarrow Y_{1}$, such that $f_{1}: X_{1} \longrightarrow Y_{1}$ is Serre fiber bundle.
97. Let $f: X \longrightarrow Y$ be a continuous map. Prove that there exists a homotopy equivalent map $g: X \longrightarrow$ Y^{\prime}, so that g is an inclusion.
98. Let $p: E \longrightarrow B$ be Serre fiber bundle, $y \in E$ be any point, $x=p(y), F=p^{-1}(x)$. Prove that the homomorphism

$$
p_{*}: \pi_{n}(E, F ; y) \longrightarrow \pi_{n}(B, x)
$$

is an isomorphism for all $n \geq 1$.
99. Apply the homotopy exact sequence of Serre fibration to prove that (a) $\pi_{2}\left(S^{2}\right)=\pi_{1}\left(S^{1}\right)=\mathbf{Z}$; (b) $\pi_{n}\left(S^{3}\right)=\pi_{n}\left(S^{2}\right)$.
100. Let $S^{\infty} \longrightarrow \mathbf{C P}^{\infty}$ be the Hopf fibration. Using the fact $S^{\infty} \sim *$, prove that $\pi_{n}\left(\mathbf{C P}^{\infty}\right)=0$ for $n \neq 2$, and $\pi_{2}\left(\mathbf{C P}^{\infty}\right)=\mathbf{Z}$.
101. Prove that $\pi_{n}(\Omega(X)) \cong \pi_{n+1}(X)$ for any X and $n \geq 0$.
102. Prove that if the groups $\pi_{*}(B), \pi_{*}(F)$ are finite (finitely generated), then the groups $\pi_{*}(E)$ are finite (finitely generated) as well.
103. Assume that a fiber bundle $p: E \longrightarrow B$ has a section, i.e. a map $s: B \longrightarrow E$, such that $p \circ s=I d_{B}$. Prove the isomorphism $\pi_{n}(E) \cong \pi_{n}(B) \oplus \pi_{n}(F)$.
104. Give a construction of a space Y that $\pi_{n}\left(X, A ; x_{0}\right) \cong \pi_{n-1}\left(Y, y_{0}\right)$.
104. State the Freudenthal Theorem. Give a detailed proof that Σ is an isomorphism.
106. Let $K, L \subset \mathbf{R}^{p}$ be two finite simplicial complexes fo dimensions k, l respectively. Let $k+l+1<p$. Prove that the simplicial complexes K and L are not linked.
107. Prove that $\pi_{n}\left(S^{n}\right) \cong \mathbf{Z}$ for each $n \geq 1$.
108. Prove that $\pi_{3}\left(S^{2}\right) \cong \mathbf{Z}$, and the Hopf map $S^{3} \longrightarrow S^{2}$ is a representative of the generator of $\pi_{3}\left(S^{2}\right)$.
109. Define Whitehead product. State basic properties. Prove that if $\alpha \in \pi_{n}(X), \beta \in \pi_{k}(X)$ then $[\alpha, \beta]=(-1)^{n k}[\beta, \alpha]$.
110. Define the element $w \in \pi_{n+k-1}\left(S^{n} \vee S^{k}\right)$. Prove that the element $w \in \pi_{n+k-1}\left(S^{n} \vee S^{k}\right)$ has infinite order.
111. Prove that the element $w \in \pi_{n+k-1}\left(S^{n} \vee S^{k}\right)$ is in a kernel of each of the following homomorphisms:
(1) $i_{*}: \pi_{n+k-1}\left(S^{n} \vee S^{k}\right) \longrightarrow \pi_{n+k-1}\left(S^{n} \times S^{k}\right)$,
(2) $p r_{*}^{(n)}: \pi_{n+k-1}\left(S^{n} \vee S^{k}\right) \longrightarrow \pi_{n+k-1}\left(S^{n}\right)$,
(3) $p r_{*}^{(k)}: \pi_{n+k-1}\left(S^{n} \vee S^{k}\right) \longrightarrow \pi_{n+k-1}\left(S^{k}\right)$.
112. Prove that the element $w \in \pi_{n+k-1}\left(S^{n} \vee S^{k}\right)$ is in the kernel of the suspension homomorphism

$$
\Sigma: \pi_{n+k-1}\left(S^{n} \times S^{k}\right) \longrightarrow \pi_{n+k}\left(\Sigma\left(S^{n} \times S^{k}\right)\right)
$$

113. Prove the isomorphism

$$
\pi_{n+k}\left(S^{n+1} \vee S^{k+1}\right) \cong \pi_{n+k}\left(S^{n+1}\right) \oplus \pi_{n+k}\left(S^{k+1}\right)
$$

114. Let $\alpha \in \pi_{n}(X), \beta \in \pi_{k}(X)$. Prove that $[\alpha, \beta] \in \operatorname{Ker} \Sigma$, where

$$
\Sigma: \pi_{n+k-1}(X) \longrightarrow \pi_{n+k}(\Sigma X)
$$

is the suspension homomorphism.
115. Let $\iota_{2 q} \in \pi_{2 q}\left(S^{2 q}\right)$ be a generator represented by the identity map $S^{2 q} \longrightarrow S^{2 q}$. Prove that the Whitehead product $\left[\iota_{2 q}, \iota_{2 q}\right] \in \pi_{4 q-1}\left(S^{2 q}\right)$ is a nontrivial element of infinite order.
116. Prove that the suspension $\Sigma\left(S^{n} \times S^{k}\right)$ is homotopy equivalent to the wedge $S^{n+1} \vee S^{k+1} \vee S^{n+k+1}$.
117. Outline a proof of the following statement:

Let X be a connected space (not necessarily a $C W$-complex) with a base point $x_{0} \in X, f: S^{n} \longrightarrow X$ be a map such that $f\left(s_{0}\right)=x_{0}$, where s_{0} is a base point of S^{n}. Let $Y=X \cup_{f} D^{n+1}$, and $i: X \longrightarrow Y$ be the inclusion. Then the induced homomorphism $i_{*}: \pi_{q}\left(X, x_{0}\right) \longrightarrow \pi_{q}\left(Y, x_{0}\right)$
(1) is an isomorphism if $q<n$,
(2) is an epimorphism if $q=n$, and
(3) the kernel Ker $i_{*}: \pi_{n}\left(X, x_{0}\right) \longrightarrow \pi_{n}\left(Y, x_{0}\right)$ is generated by $\gamma^{-1}[f] \gamma \in \pi_{n}\left(X, x_{0}\right)$ where $\gamma \in$ $\pi_{1}\left(X, x_{0}\right)$.
118. Let X be an n-connected $C W$-complex, and Y be a k-connected $C W$-complex. Prove that

- $\pi_{q}(X \vee Y) \cong \pi_{q}(X) \oplus \pi_{q}(Y)$ if $q \leq n+k$;
- the group $\pi_{q}(X \vee Y)$ contains a subgroup $\pi_{q}(X) \oplus \pi_{q}(Y)$ as a direct summand.

119. Let X be an n-connected $C W$-complex, and Y be a k-connected $C W$-complex. Prove that

$$
\pi_{n+k+1}(X \vee Y) \cong \pi_{n+k+1}(X) \oplus \pi_{n+k+1}(Y) \oplus\left[\pi_{n}(X), \pi_{k}(Y)\right]
$$

120. Let X be an $(n-1)$-connected $C W$-complex. Describe the homotopy group $\pi_{n}(X)$.
121. Compute the homotopy group $\pi_{3}\left(S^{2} \vee S^{2}\right)$.
122. Define when a map $f: X \longrightarrow Y$ is a weak homotopy equivalence. Outline the proof that the following two statements are equivalent
(1) The map $f: X \longrightarrow Y$ is weak homotopy equivalence.
(2) The induced homomorphism $f_{*}: \pi_{n}\left(X, x_{0}\right) \longrightarrow \pi_{n}\left(Y, f\left(x_{0}\right)\right)$ is isomorphism for all n and $x_{0} \in X$.
123. Let X, Y be $C W$-complexes. Prove that if a map $f_{*}: X \longrightarrow Y$ induces isomorphism

$$
f_{*}: \pi_{n}\left(X, x_{0}\right) \longrightarrow \pi_{n}\left(Y, f\left(x_{0}\right)\right)
$$

for all $n \geq 0$ and $x_{0} \in X$, then f is a homotopy equivalence.
124. Let X be a Hausdorff topological space. Prove that there exists a $C W$-complex K and a weak homotopy equivalence $f: K \longrightarrow X$. Show that the $C W$-complex K is unique up to homotopy equivalence.
125. Let X, Y be two weak homotopy equivalent spaces. Prove that there exist a $C W$-complex K and maps $f: K \longrightarrow X, g: K \longrightarrow Y$ which weak homotopy equivalences.
126. Define an Eilenberg-McLane space. Prove that it does exists and unique up to weak homotopy equivalence.
127. Construct the space $K(\pi, 1)$, where π is a finitely generated abelian group.
128. Let $X=K(\pi, n)$. Prove that $\Omega X=K(\pi, n-1)$.
129. Let X be a $C W$-complex, and $n \geq 1$. Construct a $C W$-complex X_{n} and a map $f_{n}: X \longrightarrow X_{n}$ such that
(1) $\pi_{q}\left(X_{n}\right)=\left\{\begin{array}{cl}\pi_{q}(X) & \text { if } q \leq n \\ 0 & \text { else }\end{array}\right.$
(2) $\left(f_{n}\right)_{*}: \pi_{q}(X) \longrightarrow \pi_{q}\left(X_{n}\right)$ is isomorphism if $q \leq n$.
130. Let X be a $C W$-complex, and $n \geq 1$. Construct a $C W$-complex $\left.X\right|_{n}$ and a map $g_{n}:\left.X\right|_{n} \longrightarrow X$ such that
(1) $\pi_{q}\left(\left.X\right|_{n}\right)=\left\{\begin{array}{cl}\pi_{q}(X) & \text { if } q \geq n \\ 0 & \text { else }\end{array}\right.$
(2) $\left(g_{n}\right)_{*}: \pi_{q}\left(\left.X\right|_{n}\right) \longrightarrow \pi_{q}(X)$ is isomorphism if $q \geq n$.
131. Let $X=S^{2}$. Prove that $\left.X\right|_{3}=S^{3}$.
132. Let $X=\mathbf{C P}^{n}$. Prove that $\left.X\right|_{3}=\left.X\right|_{2 n+1}=S^{2 n+1}$.
133. Define the complex $\mathcal{C}(X)$ and the homology groups $H_{q}(X)$. Calculate the homology groups for $X=\{p t\}$.
134. Define chain maps and chain homotopy. Prove that two chain homotopic maps $\phi, \psi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ induce the same homomorphism in homology groups.
135. Let $g, h: X \rightarrow Y$ be homotopic maps. Prove that $g_{*}=h_{*}: H_{q}(X) \rightarrow H_{q}(Y)$.
136. Let X and Y be homotopy equivalent spaces. Prove that then $H_{q}(X) \cong H_{q}(Y)$ for all q.
137. Prove that $H_{0}(X) \cong \mathbf{Z}$ if X is a path-connected space.
138. Prove that if $f: X \rightarrow Y$ is a map of path-connected spaces, then $f_{*}: H_{0}(X) \rightarrow H_{0}(Y)$ is an isomorphism.
139. Define relative homology groups. State and prove the LES-Lemma.
140. Let $B \subset A \subset X$ be a triple of spaces. Prove that there is a long exact sequence in homology:

$$
\cdots \rightarrow H_{q}(A, B) \xrightarrow{i_{*}} H_{q}(X, B) \xrightarrow{j_{*}} H_{q}(X, A) \xrightarrow{\partial} H_{q-1}(A, B) \xrightarrow{i_{*}} \cdots
$$

141. Let (X, A) be a pair of spaces. Prove that the inclusion $i:(X, A) \rightarrow(X \cup C(A), C(A))$ induces the isomorphism $H_{q}(X, A) \cong H_{q}(X \cup C(A), C(A))=H_{q}(X \cup C(A), v)$.
142. Define the operation $\beta: \mathcal{C}(X) \rightarrow \mathcal{C}(X)$ (induced by the barycentric subdivision). Prove that the chain map $\beta: \mathcal{C}(X) \rightarrow \mathcal{C}(X)$ induces the identity homomorphism in homology:

$$
I d=\beta_{*}: H_{q}(\mathcal{C}(X)) \rightarrow H_{q}(\mathcal{C}(X)) \quad \text { for each } q \geq 0
$$

143. Define the chain complex $\mathcal{C}^{\mathbf{U}}(X)$ for a covering \mathbf{U}. Prove that the inclusion $\mathcal{C}^{\mathbf{U}}(X) \subset \mathcal{C}(X)$ induces an isomorphism in homology groups.
144. State and prove the Excision Theorem.
145. Let $X=X_{1} \cup X_{2}$. Prove that the following sequence of complexes is exact

$$
0 \rightarrow \mathcal{C}\left(X_{1} \cap X_{2}\right) \xrightarrow{\alpha} \mathcal{C}\left(X_{1}\right) \oplus \mathcal{C}\left(X_{2}\right) \xrightarrow{\beta} \mathcal{C}\left(X_{1}\right)+\mathcal{C}\left(X_{2}\right) \rightarrow 0
$$

146. Let $X_{1}, X_{2} \subset X$, and $X_{1} \cup X_{2}=X, \stackrel{o}{X} \cup_{1} \cup \stackrel{o}{X}_{2}=X$. Prove that the chain map

$$
\mathcal{C}\left(X_{1}\right)+\mathcal{C}\left(X_{2}\right) \rightarrow \mathcal{C}\left(X_{1} \cup X_{2}\right)
$$

induces isomorphism in the homology groups.
147. State and prove the Mayer-Vietoris Theorem.
148. Compute homology groups $H_{q}\left(S^{n}\right)$.
149. Let X be a space. Prove that $\widetilde{H}_{q+1}(\Sigma X) \cong \widetilde{H}_{q}(X)$ for each q.
150. Let A be a set of indices, and S_{α}^{n} be a copy of the n-th sphere, $\alpha \in A$. Compute the homology groups $\widetilde{H}_{q}\left(\bigvee_{\alpha \in A} S_{\alpha}^{n}\right)$.
151. Let $\left(X_{\alpha}, x_{\alpha}\right)$ be based spaces, $\alpha \in A$. Assume that the pair $\left(X_{\alpha}, x_{\alpha}\right)$ is Borsuk pair for each $\alpha \in A$. Prove that

$$
\widetilde{H}_{q}\left(\bigvee_{\alpha \in A} X_{\alpha}\right)=\bigoplus_{\alpha \in A} \widetilde{H}_{q}\left(X_{\alpha}\right)
$$

152. Let $f: S^{n} \rightarrow S^{n}$ be a map of degree $d=\operatorname{deg} f$. Prove that $f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is a multiplication by d.
153. Let $g: \bigvee_{\alpha \in A} S_{\alpha}^{n} \xrightarrow{g} \bigvee_{\beta \in B} S_{\beta}^{n}$ be a map. Prove that the homomorphism

$$
\bigoplus_{\alpha \in A} \mathbf{Z}(\alpha)=H_{n}\left(\bigvee_{\alpha \in A} S_{\alpha}^{n}\right) \xrightarrow{g_{*}} H_{n}\left(\bigvee_{\beta \in B} S_{\beta}^{n}\right)=\bigoplus_{\beta \in B} \mathbf{Z}(\beta)
$$

is given by multiplication with matrix $\left\{d_{\alpha \beta}\right\}_{\alpha \in A, \beta \in B}$, where $d_{\alpha \beta}=\operatorname{deg} g_{\alpha \beta}$. (Define the maps $g_{\alpha \beta}$.)
154. Define the cellular chain complex $\mathcal{E}(X)$. Prove that the following composition is trivial

$$
\mathcal{E}_{q+1}(X) \xrightarrow{\partial_{q+1}} \mathcal{E}_{q}(X) \xrightarrow{\partial_{q}} \mathcal{E}_{q-1}(X)
$$

155. Prove that there is an isomorphism $H_{q}(\mathcal{E}(X)) \cong H_{q}(X)$ for each q and any $C W$-complex X.
156. Let X be a $C W$-complex, and e^{q} be a q-cell and σ^{q-1} be a $(q-1)$-cell of X. Define the incidence coefficient $\left[e^{q}: \sigma^{q-1}\right]$. Prove that the boundary operator $\dot{\partial}_{q}: \mathcal{E}_{q}(X) \rightarrow \mathcal{E}_{q-1}(X)$ is given by the formula:

$$
\partial_{q}\left(e^{q}\right)=\sum_{j \in E_{q-1}}\left[e^{q}: \sigma_{j}^{q-1}\right] \sigma_{j}^{q-1}
$$

157. Let $A: S^{n} \rightarrow S^{n}$ be the antipodal map, $A: x \mapsto-x$, and $\iota_{n} \in \pi_{n}\left(S^{n}\right)$ be the generator represented by the identity map $S^{n} \rightarrow S^{n}$. Prove that the homotopy class $[A] \in \pi_{n}\left(S^{n}\right)$ is equal to

$$
[A]= \begin{cases}\iota_{n}, & \text { if } n \text { is odd } \\ -\iota_{n}, & \text { if } n \text { is even }\end{cases}
$$

158. Let e^{0}, \ldots, e^{n} be the cells in the standard cell decomposition of $\mathbf{R} \mathbf{P}^{n}$. Prove that

$$
\left[e^{q}: e^{q-1}\right]= \begin{cases}2 & \text { if } q \text { is odd } \\ 0, & \text { if } q \text { is even }\end{cases}
$$

159. Compute the homology groups $H_{q}\left(\mathbf{R P}^{n}\right), H_{q}\left(\mathbf{C P}^{n}\right)$.
160. Compute the homology groups $H_{q}\left(\left(\mathbf{R P}^{n}\right)^{\# k}\right)$ and $H_{q}\left(\left(\mathbf{C P}^{n}\right)^{\# k}\right)$
161. Compute the homology groups $H_{q}\left(\mathbf{R P}^{2 n} \# \mathbf{C P}^{n}\right)$.
162. Prove that there is no map $f: D^{n} \rightarrow S^{n-1}$ so that the restriction $\left.f\right|_{S^{n-1}}: S^{n-1} \rightarrow S^{n-1}$ has nonzero degree.
163. Let X be a topological space, $\alpha \in H_{q}(X)$. Prove that there exist a $C W$-complex K, a map $f: K \rightarrow X$, an element $\beta \in H_{q}(K)$ such that $f_{*}(\beta)=\alpha$.
164. Let $f: X \rightarrow Y$ be a weak homotopy equivalence. Prove that the induced homomorphism f_{*} : $H_{q}(X) \rightarrow H_{q}(Y)$ is an isomorphism for all $q \geq 0$.
165. Show that the spaces $\mathbf{C P} \mathbf{P}^{\infty} \times S^{3}$ and S^{2} have isomorphic homotopy groups and that they are not homotopy equivalent.
166. Show that the spaces $\mathbf{R} \mathbf{P}^{n} \times S^{m}$ and $S^{n} \times \mathbf{R P}^{m}(n \neq m)$ have isomorphic homotopy groups and they are not homotopy equivalent.
167. Show that the spaces $S^{1} \vee S^{1} \vee S^{2}$ and $S^{1} \times S^{1}$ have the same homology groups and different homotopy groups.
168. Show that the projection

$$
S^{1} \times S^{1} \xrightarrow{\text { projection }}\left(S^{1} \times S^{1}\right) /\left(S^{1} \vee S^{1}\right)=S^{2}
$$

induces trivial homomorphism in homotopy groups.
169. Define the Hurewicz homomorphism $h: \pi_{n}\left(X, x_{0}\right) \rightarrow H_{n}(X)$. Prove that h is a homomorphism.
170. Let $x_{0}, x_{1} \in X$, and $\gamma: I \rightarrow X$ be a path connecting the points $x_{0}, x_{1}: \gamma(0)=x_{0}$, and $\gamma(1)=x_{1}$. The path γ determines the isomorphism $\gamma_{\#}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, x_{1}\right)$. Prove that the following diagram commutes:

171. (Hurewicz Theorem) Let $\left(X, x_{0}\right)$ be a based space, such that

$$
\pi_{0}\left(X, x_{0}\right)=0, \pi_{1}\left(X, x_{0}\right)=0, \cdots, \pi_{n-1}\left(X, x_{0}\right)=0
$$

where $n \geq 2$. Prove that

$$
H_{1}(X)=0, \quad H_{2}(X)=0, \cdots, H_{n-1}(X)=0
$$

and the Hurewicz homomorphism $h: \pi_{n-1}\left(X, x_{0}\right) \rightarrow H_{n}(X)$ is an isomorphism.
172. Let X be a simply-connected $C W$-complex with $\widetilde{H}_{n}(X)=0$ for all n. Prove that X is contractible.
173. Let X be a simply connected space, and $H_{1}(X)=0, H_{2}(X)=0 \cdots H_{n-1}(X)=0$. Prove that $\pi_{1}(X)=0, \pi_{2}(X)=0 \cdots \pi_{n-1}(X)=0$ and the Hurewicz homomorphism $h: \pi_{n}\left(X, x_{0}\right) \rightarrow H_{n}(X)$ is an isomorphism.
174. Consider the map

$$
g: S^{2 n-2} \times S^{3} \xrightarrow{\text { proj }}\left(S^{2 n-2} \times S^{3}\right) /\left(S^{2 n-2} \vee S^{3}\right)=S^{2 n+1} \xrightarrow{\text { Hopf }} \mathbf{C P}^{n}
$$

Prove that g induces trivial homomorphism in homology and homotopy groups, however g is not homotopic to a constant map.
175. Let X be a connected space. Prove that the Hurewicz homomorphism $h: \pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)$ is epimorphism, and the kernel of h is the commutator $\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right] \subset \pi_{1}\left(X, x_{0}\right)$.
176. State the relative version of the Hurewicz Theorem. State and prove the Whitehead TheoremII. Let X, Y be simply connected spaces and $f: X \rightarrow Y$ be a map which induces isomorphism $f_{*}: H_{q}(X) \rightarrow H_{q}(Y)$ for all $q \geq 0$. Prove that f is weak homotopy equivalence.
177. Define homology and cohomology groups with coefficients in an abelian group G. Compute the groups $H_{q}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{Z} / p\right), H^{q}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{Z} / p\right)$ for any prime p.
178. Consider the short exact sequence $0 \rightarrow \mathbf{Z} \xrightarrow{\cdot m} \mathbf{Z} \rightarrow \mathbf{Z} / 2 \rightarrow 0$. Compute the connecting homomorphisms

$$
\partial=\beta^{m}: H^{q}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{Z} / 2\right) \rightarrow H^{q+1}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{Z}\right)
$$

179.* Let G be an abelian group, $0 \rightarrow R \xrightarrow{\beta} F \xrightarrow{\alpha} G \rightarrow 0$, be a free resolution of G, and H be an arbitrary abelian group. Prove that the sequence

$$
0 \rightarrow \operatorname{Ker}(\beta \otimes 1) \rightarrow R \otimes H \xrightarrow{\beta \otimes 1} F \otimes H \xrightarrow{\alpha \otimes 1} G \otimes H \rightarrow 0
$$

is exact.
180.* Prove that the group $\operatorname{Tor}(G, H)$ is well-defined, i.e. it does not depend on the choice of resolution.
181.* Let G, H be abelian groups. Prove that there is a canonical isomorphism $\operatorname{Tor}(G, H) \cong \operatorname{Tor}(H, G)$.
182. Let F be a free abelian group. Show that $\operatorname{Tor}(F, G)=0$ for any abelian group G.
183. Let G be an abelian group. Denote $T(G)$ a maximal torsion subgroup of G. Show that $\operatorname{Tor}(G, H) \cong$ $T(G) \otimes T(H)$ for finite generated abelian groups G, H. Give an example of abelian groups G, H, so that $\operatorname{Tor}(G, H) \neq T(G) \otimes T(H)$.
184. Let X be a space, G be an abelian group. Prove that there is a split short exact sequence

$$
0 \rightarrow H_{q}(X) \otimes G \rightarrow H_{q}(X ; G) \rightarrow \operatorname{Tor}\left(H_{q-1}(X), G\right) \rightarrow 0
$$

185* . Let G be an abelian group, $0 \rightarrow R \xrightarrow{\beta} F \xrightarrow{\alpha} G \rightarrow 0$ be a free resolution, and let H be an abelian group. Prove that the following sequence is exact:

$$
0 \leftarrow \operatorname{Coker} \beta^{\#} \leftarrow \operatorname{Hom}(R, H) \stackrel{\beta^{\#}}{\leftarrow} \operatorname{Hom}(F, H) \stackrel{\alpha^{\#}}{\longleftarrow} \operatorname{Hom}(G, H) \leftarrow 0 .
$$

186*. Prove that the group $\operatorname{Ext}(G, H)$ is well defined, i.e. it does not depend on the choice of free resolution of G.
$\mathbf{1 8 7}^{*}$. Let $0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0$ be a short exact sequence of abelian groups. Prove that it induces the following exact sequence:

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}\left(G^{\prime \prime}, H\right) & \rightarrow \operatorname{Hom}(G, H) \rightarrow \operatorname{Hom}\left(G^{\prime}, H\right) \rightarrow \\
& \operatorname{Ext}\left(G^{\prime \prime}, H\right) \rightarrow \operatorname{Ext}(G, H) \rightarrow \operatorname{Ext}\left(G^{\prime}, H\right) \rightarrow 0
\end{aligned}
$$

188. Prove that $\operatorname{Ext}(\mathbf{Z}, H)=0$ for any group H.
189. Prove the isomorphisms: $\operatorname{Ext}(\mathbf{Z} / m, \mathbf{Z} / n) \cong \mathbf{Z} / m \otimes \mathbf{Z} / n, \operatorname{Ext}(\mathbf{Z} / m, \mathbf{Z}) \cong \mathbf{Z} / m$.
190. Let X be a space, G an abelian group. Prove that there is a split exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(H_{q-1}(X), G\right) \rightarrow H^{q}(X ; G) \rightarrow \operatorname{Hom}\left(H_{q}(X), G\right) \rightarrow 0
$$

for any $q \geq 0$.
191. Let X be a space, and G an abelian group. Prove that there is a split exact sequence

$$
0 \rightarrow H^{q}(X ; \mathbf{Z}) \otimes G \rightarrow H^{q}(X ; G) \rightarrow \operatorname{Tor}\left(H^{q+1}(X ; \mathbf{Z}), G\right) \rightarrow 0
$$

for any $q \geq 0$.
192. Let G be a finitely generated abelian group. Let $F(G)$ be the maximum free abelian subgroup of G, and $T(G)$ be the maximum torsion subgroup. Let X be a space such that the groups $H_{q}(X)$ are finitely generated for all q. Prove that $H^{q}(X ; \mathbf{Z})$ are also finitely generated and $H^{q}(X ; \mathbf{Z}) \cong$ $F\left(H_{q}(X ; \mathbf{Z})\right) \oplus T\left(H_{q-1}(X ; \mathbf{Z})\right)$.
193. Let F be \mathbf{Q}, \mathbf{R} or \mathbf{C}. Prove that

$$
H_{q}(X ; F)=H_{q}(X) \otimes F, \quad H^{q}(X ; F)=\operatorname{Hom}\left(H_{q}(X), F\right) .
$$

194. Let X be a finite $C W$-complex, and \mathbf{F} be a field. Prove that the number

$$
\chi(X)_{\mathbf{F}}=\sum_{q \geq 0}(-1)^{q} \operatorname{dim} H_{q}(X ; \mathbf{F})
$$

does not depend on the field \mathbf{F} and is equal to the Euler characteristic

$$
\chi(X)=\sum_{q \geq 0}(-1)^{q}\{\# \text { of } q \text {-cells of } X\} .
$$

195. Let a finite $C W$-complex X be a union of two $C W$-subcomplexes: $X=X_{1} \cup X_{2}$, where $X_{1} \cap X_{2} \subset X$ is a $C W$-subcomplex as well. Prove that

$$
\chi(X)=\chi\left(X_{1}\right)+\chi\left(X_{2}\right)-\chi\left(X_{1} \cap X_{2}\right)
$$

196. Let \mathcal{C}_{*} and \mathcal{C}_{*}^{\prime} be two chain complexes. Define the tensor product $\overline{\mathcal{C}}_{*}=\mathcal{C}_{*} \otimes \mathcal{C}_{*}^{\prime}$. Prove that $\bar{\partial}_{q+1} \bar{\partial}_{q}=0$.
197. Let $\mathcal{E}_{*}=\mathcal{E}_{*}(X), \mathcal{E}_{*}^{\prime}=\mathcal{E}_{*}\left(X^{\prime}\right)$. Define the complexes $\mathcal{E}_{*}(r), \mathcal{E}_{*}^{\prime}(s)$ and compute the homology groups of the tensor product of these chain complexes: $\mathcal{E}_{*}(r) \otimes \mathcal{E}_{*}^{\prime}(s)$.
198. Use the result of $\# 197$ to prove the Künneth formula for homology groups:

$$
0 \rightarrow \bigoplus_{r+s=q} H_{r}(X) \otimes H_{s}\left(X^{\prime}\right) \rightarrow H_{q}\left(X \times X^{\prime}\right) \rightarrow \bigoplus_{r+s=q-1} \operatorname{Tor}\left(H_{r}(X), H_{s}\left(X^{\prime}\right)\right) \rightarrow 0
$$

199. Outline the proof of the Künneth formula for cohomology groups:

$$
0 \rightarrow \bigoplus_{r+s=q} H^{r}(X) \otimes H^{s}\left(X^{\prime}\right) \rightarrow H^{q}\left(X \times X^{\prime}\right) \rightarrow \bigoplus_{r+s=q+1} \operatorname{Tor}\left(H^{r}(X), H^{s}\left(X^{\prime}\right)\right) \rightarrow 0
$$

200. Let F be a field. Prove that

$$
\begin{aligned}
& H_{q}\left(X \times X^{\prime} ; F\right) \cong \bigoplus_{r+s=q} H_{r}(X ; F) \otimes H_{s}\left(X^{\prime} ; F\right) \\
& H^{q}\left(X \times X^{\prime} ; F\right) \cong \bigoplus_{r+s=q} H^{r}(X ; F) \otimes H^{s}\left(X^{\prime} ; F\right)
\end{aligned}
$$

201. Let $\beta_{q}(X)=\operatorname{Rank} H_{q}(X)$ be the Betti number of X. Prove that

$$
\beta_{q}\left(X \times X^{\prime}\right)=\sum_{r+s=q} \beta_{r}(X) \beta_{s}\left(X^{\prime}\right)
$$

202. Let X, X^{\prime} be such spaces that their Euler characteristics $\chi(X), \chi\left(X^{\prime}\right)$ are finite. Prove that $\chi\left(X \times X^{\prime}\right)=\chi(X) \cdot \chi\left(X^{\prime}\right)$.
203. Prove the Lefschetz Theorem: Let X be a finite $C W$-complex, $f: X \rightarrow X$ be a map such that $\operatorname{Lef}(f)=0$. Then f has a fixed point, i.e. such point $x_{0} \in X$ that $f\left(x_{0}\right)=x_{0}$.
204. Let X be a finite contractible $C W$-complex. Prove that any map $f: X \rightarrow X$ has a fixed point.
205. Define a flow of homeomorphisms $\phi_{t}: X \rightarrow X$. Let X be a finite $C W$-complex with $\chi(X) \neq 0$, and $\phi_{t}: X \rightarrow X$ be a flow. Prove that there exists a point $x_{0} \in X$ so that $\phi_{t}\left(x_{0}\right)=x_{0}$ for all $t \in \mathbf{R}$.
206. Let $f: \mathbf{R} \mathbf{P}^{2 n} \rightarrow \mathbf{R P}^{2 n}$ be a map. Prove that f always has a fixed point. Give an example that the above statement fails for a map $f: \mathbf{R} \mathbf{P}^{2 n+1} \rightarrow \mathbf{R} \mathbf{P}^{2 n+1}$.
207. Let $n \neq k$. Prove that \mathbf{R}^{n} is not homeomorphic to \mathbf{R}^{k}.
208. Let $f: S^{n} \rightarrow S^{n}$ be a map, and $\operatorname{deg}(f)$ be the degree of f. Prove that $\operatorname{Lef}(f)=1+(-1)^{n} \operatorname{deg}(f)$.
209. Prove that there is no tangent vector field $v(x)$ on the sphere $S^{2 n}$ such that $v(x) \neq 0$ for all $x \in S^{2 n}$. Construct everywhere non-zero vector field v on $S^{2 n+1}$.
210. Let $K \subset S^{n}$ be homeomorphic to the cube $I^{k}, 0 \leq k \leq n$. Prove that $\widetilde{H}_{q}\left(S^{n} \backslash K\right)=0$ for all $q \geq 0$.
211. Let $S^{k} \subset S^{n}, 0 \leq k \leq n-1$. Prove that

$$
\tilde{H}_{q}\left(S^{n} \backslash S^{k}\right) \cong \begin{cases}\mathbf{Z}, & \text { if } q=n-k-1 \\ 0 & \text { if } q \neq n-k-1\end{cases}
$$

212. State and prove the Jordan-Brouwer Theorem.
213. State and prove the Brouwer Invariance Domain Theorem.
214. Let (X, A) be a $C W$-pair. Prove that the group $H^{1}(X, A ; \mathbf{Z})$ is a free abelian group.
215. Define the cup-product in cohomology. Prove that $\delta(\phi \cup \psi)=(\delta \phi) \cup \psi+(-1)^{k} \phi \cup(\delta \psi)$ where $\phi \in C^{k}(X), \psi \in C^{l}(X)$.
216. Compute the cup product of $H^{*}\left(\mathbf{R} \mathbf{P}^{2} ; \mathbf{Z} / 2\right), H^{*}\left(M_{g}^{2} ; \mathbf{Z}\right)$.
217. Prove that $\alpha \beta=(-1)^{k l} \beta \alpha$ if $\alpha \in H^{k}(X), \beta \in H^{l}(X)$.
218. Define the external product

$$
\mu: H^{*}(X ; R) \otimes H^{*}(Y ; R) \rightarrow H^{*}(X \times Y ; R)
$$

Define the ring structure on $H^{*}(X ; R) \otimes H^{*}(Y ; R)$. Prove that the external product $\mu: H^{*}(X ; R) \otimes$ $H^{*}(Y ; R) \rightarrow H^{*}(X \times Y ; R)$ induces a ring isomorphism provided that $H^{q}(Y ; R)$ are free R-modules for all q.
219. Let $\Delta: X \rightarrow X \times X$ be a diagonal map. Prove that the homomorphism

$$
H^{k}(X ; R) \otimes H^{l}(X ; R) \xrightarrow{\mu} H^{k+l}(X \times X ; R) \xrightarrow{\Delta^{*}} H^{k+l}(X ; R)
$$

coincides with the cup-product, i.e. that $\Delta^{*}(\mu(\alpha \otimes \beta))=\alpha \cup \beta$.
220. Prove that $H^{*}\left(\mathbf{R P}^{n} ; \mathbf{Z} / 2\right) \cong \mathbf{Z} / 2[x] / x^{n+1}$.
221. Prove that $H^{*}\left(\mathbf{C P}^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}[y] / y^{n+1}$.
222. Prove that any map $f: \mathbf{C} \mathbf{P}^{2 k} \rightarrow \mathbf{C} \mathbf{P}^{2 k}$ has a fixed point.
223. Prove that if \mathbf{R}^{n} is a real division algebra, then n is a power of two.
224. State the Poincarè Duality Theorem. Compute the Poincarè Duality for M_{g}^{2}.
225. Prove that the odd-dimensional manifold has zero Euler characteristic.
226. Prove that $\langle\alpha \cup \beta, \mu\rangle=\langle\beta, \mu \cap \alpha\rangle$.
227. Let $M^{4 k}$ be a compact oriented manifold, and $V=H^{2 k}\left(M^{4 k} ; \mathbf{Z}\right) /$ Tor. Use the Poincarè duality to prove that the pairing

$$
\mu(\alpha, \beta)=\left\langle\alpha \cup \beta,\left[M^{4 k}\right]\right\rangle
$$

defines a nondegenerated quadratic form on V. Compute the index of this quadratic form for $\mathbf{C} \mathbf{P}^{2 n}$.
228. Use Poincaré duality to prove that $H^{*}\left(\mathbf{C P}^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}[x] / x^{n+1}$.
229. Use Poincaré duality to prove that $H^{*}\left(\mathbf{R P}^{n} ; \mathbf{Z} / 2\right) \cong \mathbf{Z} / 2[x] / x^{n+1}$.
230. Let $f: \mathbf{C} \mathbf{P}^{2 n} \rightarrow \mathbf{C} \mathbf{P}^{2 n}$ be a map. Show that f has a fixed point.
231. Compute the ring structure $H^{*}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{Z} / 2^{k}\right)$.
232. Let $n>k$. Prove that there is no map $f: \mathbf{R P}^{n} \rightarrow \mathbf{R P}^{k}$ which induces a nontrivial ring homomorphism $f^{*}: H^{*}\left(\mathbf{R P}^{k} ; \mathbf{Z} / 2\right) \rightarrow H^{*}\left(\mathbf{R P}^{n} ; \mathbf{Z} / 2\right)$.
233. Let a map $h: \mathbf{R P}^{n-1} \times \mathbf{R} \mathbf{P}^{n-1} \rightarrow \mathbf{R} \mathbf{P}^{n-1}$, be such that the induced homomorphism

$$
h^{*}: H^{*}\left(\mathbf{R} \mathbf{P}^{n-1} ; \mathbf{Z} / 2\right) \rightarrow H^{*}\left(\mathbf{R P}^{n-1} \times \mathbf{R} \mathbf{P}^{n-1}: \mathbf{Z} / 2\right)
$$

takes generator $y \in H^{1}\left(\mathbf{R P}^{n-1} ; \mathbf{Z} / 2\right)$ to the sum of generators: $h^{*}(y)=x_{1} \otimes 1+1 \otimes x_{2}$. Prove that n must be a power of 2 .
234. Prove that $\mathbf{R P}^{3}$ and is not homotopy equivalent to $S^{3} \vee \mathbf{R P}^{2}$.
235. Define the Hopf invariant $h(\lambda)$ of an element $\lambda \in \pi_{4 q-1}\left(S^{2 q}\right)$.
236. Prove that $h\left(\lambda_{1}+\lambda_{2}\right)=h\left(\lambda_{1}\right)+h\left(\lambda_{2}\right)$.
237. Prove that there is an element in $\pi_{4 n-1}\left(S^{2 n}\right)$ with the Hopf invariant 2. State and prove the theorem that the group $\pi_{4 n-1}\left(S^{2 n}\right)$ is infinite.
238. Prove that $h\left(\left[\iota_{2 q}, \iota_{2 q}\right]\right)=2$, where $\iota_{2 q} \in \pi_{2 q}\left(S^{2 q}\right)$ is the standard generator.
239. Define a cohomology operation. Give examples.
240. Define a canonical fundamental class

$$
\iota_{n} \in \operatorname{Hom}\left(H_{n}(K(\pi, n) ; \mathbf{Z}), \pi\right)
$$

241. Let π, π^{\prime} be abelian groups. Prove that there is a bijection

$$
\left[K(\pi, n), K\left(\pi^{\prime}, n\right)\right] \leftrightarrow \operatorname{Hom}\left(\pi, \pi^{\prime}\right)
$$

242. Let π be an abelian group and n be a positive integer. Prove that the homotopy type of the Eilenberg-McLane space $K(\pi, n)$ is completely determined by the group π and the integer n.
243. Prove that there is a bijection

$$
\mathcal{O}\left(\pi, n ; \pi^{\prime}, n^{\prime}\right) \leftrightarrow H^{n^{\prime}}\left(K(\pi, n), \pi^{\prime}\right)
$$

given by the formula $\theta \leftrightarrow \theta\left(\iota_{n}\right)$.
244. Let Y be a homotopy simple space, (B, A) a $C W$-pair and $X^{n}=B^{(n)} \cup A$ for $n=0,1, \ldots$ Define the obstruction cochain

$$
c(f) \in \mathcal{E}^{n+1}\left(B, A ; \pi_{n}(Y)\right)=\operatorname{Hom}\left(\mathcal{E}_{n+1}(B, A), \pi_{n}(Y)\right)
$$

Prove that $c(f)$ is a cocycle.
245. Let Y be a homotopy simple space, (B, A) a $C W$-pair and $X^{n}=B^{(n)} \cup A$ for $n=0,1, \ldots$. Prove that a map $f: X^{n} \rightarrow Y$ can be extended to a map $\tilde{f}: X^{n+1} \rightarrow Y$ if and only if $c(f)=0$.
246. Define $d(f, g) \in \mathcal{E}^{n}\left(B, A ; \pi_{n}(Y)\right)$. Prove the formula: $\delta d(f, g)=c(g)-c(f)$.
247. Let Y be a homotopy simple space, (B, A) a $C W$-pair and $X^{n}=B^{(n)} \cup A$ for $n=0,1, \ldots$. Let $f: X^{n} \rightarrow Y$ be a map, and $d \in \mathcal{E}^{n}\left(B, A ; \pi_{n}(Y)\right)$ is a cochain. Prove that there exists a map $g: X^{n} \rightarrow Y$ such that $\left.f\right|_{X^{n-1}}=\left.g\right|_{X^{n-1}}$ and $d(f, g)=d$.
248. Let Y be a homotopy simple space, (B, A) a $C W$-pair and $X^{n}=B^{(n)} \cup A$ for $n=0,1, \ldots$ Assume $f: X^{n} \rightarrow Y$ is a map. Prove that there exists a map $g: X^{n+1} \rightarrow Y$ such that $\left.g\right|_{X^{n-1}}=\left.f\right|_{X^{n-1}}$ if and only if $[c(f)]=0$ in $H^{n+1}\left(B, A ; \pi_{n} Y\right)$.
249. Prove the following result

Theorem. Let $f, g: K \rightarrow Y$ be two maps, where K is a $C W$-complex and Y is homotopy-simple space. Assume that $\left.f\right|_{K^{(n-1)}}=\left.g\right|_{K^{(n-1)}}$. Then the cohomology class $[d(f, g)] \in H^{n}\left(K, \pi_{n} Y\right)$ vanishes if and only if there exists a homotopy between the maps $\left.f\right|_{K^{(n)}}$ and $\left.g\right|_{K^{(n)}}$ relative to the skeleton $K^{(n-2)}$ 。
250. Prove the following result:

Theorem. There is a bijection

$$
[X, K(\pi, n)] \leftrightarrow H^{n}(X ; \pi)
$$

given by the formula $[f] \mapsto f^{*} \iota_{n}$.
251. Consider a k-torus T^{k}. We identify T^{k} with the quotient space \mathbf{R}^{k} / \sim, where two vectors $\vec{x} \sim \vec{y}$ if and only if all coordinates of the vector $\vec{x}-\vec{y}$ are integers. It is easy to see that a linear map $\bar{f}: \mathbf{R}^{k} \rightarrow \mathbf{R}^{\ell}$ given by an $k \times \ell$-matrix A with integral entries descends to a map $f: T^{k} \rightarrow T^{\ell}$. Prove that any map $g: T^{k} \rightarrow T^{\ell}$ is homotopic to a linear map as above.
252. Prove the following result:

Theorem. Let X be an n-dimensional $C W$-complex. Then there is a bijection:

$$
H^{n}(X ; \mathbf{Z}) \cong\left[X, S^{n}\right]
$$

253. Prove that any $K\left(\mathbf{Z}_{2}, n\right)$ is infinite dimensional space for each $n \geq 1$.
254. Let M be a simply-connected compact closed manifold with $\operatorname{dim} M=3$. Prove that M is homotopy equivalent to S^{3}.
255. Let $h: S^{3} \rightarrow S^{2}$ be the Hopf map. Let $\lambda \geq 1$ be an integer. Define a map

$$
f_{\lambda}: S^{3} \xrightarrow{\lambda} \underbrace{S^{3} \vee \cdots \vee S^{3}}_{\lambda} \stackrel{h \vee \cdots \vee h}{\longrightarrow} S^{2} .
$$

Prove that the space $X_{\lambda}=S^{2} \cup_{f_{\lambda}} D^{4}$ is homotopy equivalent to a closed compact manifold of dimension four if and only if $\lambda=1$.
256. Let $D^{3} \subset T^{3}$ and $c: T^{3} \rightarrow S^{3}$ be a map which collapses a complement of $D^{3} \subset T^{3}$ to a point. Prove that the map $g: T^{3} \xrightarrow{c} S^{3} \xrightarrow{h} S^{2}$ (where $h: S^{3} \rightarrow S^{2}$ is the Hopf map) induces trivial homomorphism on homology and homotopy, but is not homotopic to a constant map.
257. Assume a $C W$-complex X contains S^{1} such that the inclusion $i: S^{1} \subset X$ induces an injection $i_{*}: H_{1}\left(S^{1} ; \mathbf{Z}\right) \rightarrow H_{1}(X ; \mathbf{Z})$ with image a direct summand of $H_{1}(X ; \mathbf{Z})$. Prove that S^{1} is a retract of X.
258. Two questions:
(a) Show that there is no map from $\mathbf{C P}^{2}$ to itself of degree -1 .
(b) Show that there is no map from $\mathbf{C P}^{2} \times \mathbf{C P}^{2}$ to itself of degree -1 .

