
Algebraic Topology, 2019/2020, Boris Botvinnik

QUESTIONS FOR THE MIDTERM, SPRING 2020

1. Basic spaces: Rn , Sn , stereographic projection. The space S∞ .

2. Projective spaces RPn , CPn , HPn : definitions, local coordinate system, the Hopf maps Sn → RPn ,
S2n+1 → CPn , S4n+3 → HPn .

3. Prove the homeomorphisms: RP1 ∼= S1 , CP1 ∼= S2 , HP1 ∼= S4 .

4. Prove that RPn , CPn , HPn are connected and compact spaces.

5. Define Grassmannian manifolds Gk(Rn), Gk(Rn): and construct local coordinate systems, in particular,
find their dimensions.

6. Prove that the Grassmannian manifolds Gk(Rn), and Gk(Rn) are compact and connected.

7. Define classic Lie groups GL(Rk), GL(Ck), O(k), SO(k), U(k), SU(k). Prove that the spaces O(n),
SO(n), U(n), SU(n) are compact. How many connected components does each of these spaces have?

8. Prove that SO(2) and U(1) are homeomorphic to S1 , SO(3) is homeomorphic to RP3 , and SU(2) is
homeomorphic to S3 .

9. Prove that SO(4) ∼= SO(3)× S3 .

10. Define Stiefel manifolds Vk(Rn), Vk(Cn), Vk(Hn). Prove the following homeomorphisms:

Vn(Rn) ∼= O(n), Vn−1(Rn) ∼= SO(n),

Vn(Cn) ∼= U(n), Vn−1(Cn) ∼= SU(n),

V1(Rn) ∼= Sn−1, V1(Cn) ∼= S2n−1, V1(Hn) ∼= S4n−1.

11. Define action of the groups O(k), U(k) on the Stiefel manifolds Vk(Rn), Vk(Cn). Prove the following
homeomorphisms: Vk(Rn)/O(k) ∼= Gk(Rn), Vk(Cn)/U(k) ∼= Gk(Cn).

12. Prove the following homeomorphisms:

Sn−1 ∼= O(n)/O(n− 1) ∼= SO(n)/SO(n− 1),

S2n−1 ∼= U(n)/U(n− 1) ∼= SU(n)/SU(n− 1),

Gk(Rn) ∼= O(n)/O(k)×O(n− k), Gk(Cn) ∼= U(n)/U(k)× U(n− k).

13. Prove that the Klein bottle Kl2 is homeomorphic to the union of two Mëbius bands along the circle.

14. Prove that Kl2#RP2 is homeomorphic to RP2#T 2 .

15. Define a cylinder and a cone of a map f : X → Y . Prove that the cones of the maps c : Sn → RPn

and h : S2n+1 → CPn are homeomorphic to RPn+1 and CPn+1 respectively.

16. Define suspension. Prove that Σ(Sn) ∼= Sn+1 .

17. Define a compact-open topology on C(X,Y ). Prove the homeomorphism: C(X, C(Y,Z)) ∼= C(X×Y,Z)
for Hausdorff and locally compact spaces X , Y , Z . Prove that this homeomorphism is natural.
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18. Define the spaces of paths E(X,x0, x1), E(X,x0), and loops Ω(X,x0). Prove that the spaces Ω(Sn, x0)
and Ω(Sn, x1) are homeomorphic for any points x0, x1 ∈ Sn .

19. Let X , Y be pointed spaces. Prove the homeomorphism C(Σ(X), Y ) ∼= C(X,Ω(Y )) for Hausdorff and
locally compact spaces X , Y . Prove that this homeomorphism is natural.

20. Define smash-product X ∧ Y . Prove that Sn ∧ Sk ∼= Sn+k (as pointed spaces).

21. Define homotopy of two maps. Prove that the maps φ∗ : [X ′, Y ] → [X,Y ] , ψ∗ : [X,Y ] → [X,Y ′]
induced by maps φ : X → X ′ , ψ : Y → Y ′ are well-defined.

22. Give three definitions of homotopy equivalence. Prove that they are equivalent.

23. Prove that X ∼ Y implies Σ(X) ∼ Σ(Y ) and Ω(X) ∼ Ω(Y ).

24. Give a definition of a contractible space. Prove that E(X,x0) is a contractible.

25. Prove that a space X is contractible if and only if it is homotopy equivalent to a point.

26. Prove that a space X is contractible if and only if every map f : Y → X is null-homotopic.

27. Give definition of a retract and deformational retract. Examples. Prove that {0} ∪ {1} is not a retact
of I = [0, 1]. Define map of pairs. Examples.

28. Define a CW -complex. Give examples of cell decomposition. Show that the axiom (W ) does not
imply the axiom (C) and wise-versa.

29. Construct a cellular decomposion of the wedge X = S1 ∨ S2 (with a single 2-cell e2 ) such that a
closure of the cell e2 is not a CW -subcomplex of X .

30. Construct a cellular decomposion of the wedge X = Σ(Sn∨Sk). Prove that Σ(Sn∨Sk) ∼ Sn+1∨Sk+1 .

31. Prove that a CW -complex compact if and only if it is finite.

32. Construct a cellular decomposition of Sn , Dn , RPn , CPn , HPn .

33. Construct a cellular decomposition of the oriented 2-manifold of genus g .

34. Define the Schubert cells e(σ) corresponding to the Schubert symbol σ . Give examples.

35. Define the spaces Hj , H
j
. Prove that a k -plane π belongs to e(σ) if and only if there exists its basis

v1, . . . , vk , such that v1 ∈ Hσ1 , . . . , vk ∈ Hσk .

36. Prove the following statement: Let π ∈ e(σ), where σ = (σ1, . . . , σn). Then there exists a unique
orthonormal basis v1, . . . , vk of π , so that v1 ∈ Hσ1 , . . . , vk ∈ Hσk .

37. Define the sets E(σ), E(σ) ⊂ Vk(Rn). Prove that the set E(σ) ⊂ Vk(Rn) is homeomorphic to the
closed cell of dimension d(σ) = (σ1−1)+(σ2−2)+· · ·+(σk−k). Furthermore the map q : e(σ)→ E(σ)
is a homeomorphism.

38. Define the transformations Tu,v , prove its properties. Explain how the transformations Tu,v are used
to prove that E(σ) ⊂ V (n, k) is homeomorphic to a closed cell of dimension d(σ).

39. Prove the statement: a collection of

(
k
n

)
Schubert cells e(σ) gives Gk(Rn) a cell-decomposition.

40. Outline a construction of Schubert cells of the complex Grassmannian Gk(Cn).

41. Define when a pair (X,Y ) is a Borsuk pair. Prove that a CW -pair (X,Y ) is a Borsuk pair (in the
case when X, Y are finite complexes).

42. Let (X,A) be a Borsuk pair. Prove that A is a deformation retract of X if and only if the inclusion
A→ X is a homotopy equivalence.
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43. Prove the statement: let X be a CW -complex and A ⊂ X be its contractible subcomplex. Then X
is homotopy equivalent to the complex X/A .

44. Prove that for a CW -pair (X,A) X/A ∼ X ∪ C(A).

45. State Cellular Approximation Theorem. Prove it using Free Point Lemma.

46. State and prove Free Point Lemma.

47. Define homotopy groups πn(X). Prove that πn(X) is commutative group for n ≥ 2. Prove that
πk(Sn) is a trivial group for k < n .

48. Prove the satement: Let X be a CW -complex with only one zero-cell and without cells of dimension
q < n , and Y be a CW -complex of dimension < q . Then any map Y → X is homotopic to a constant
map.

49. Define n -connected space. Prove the statement: Any n -connected CW -complex homotopy equivalent
to a CW -complex with a single zero cell and without cells of dimensions 1, 2, . . . , n .

50. Prove that if f, g : X → Y are homotopic maps, than the homomorphisms f∗, g∗ : πn(X) → πn(Y )
coincide.

51. Prove that if X is a path-connected space, then π1(X,x0) ∼= π1(X,x1). Describe all isomorphisms
here.

52. Prove that π1S
1 ∼= Z .

53. Prove that π1(
∨
α∈A S

1
α) is a free group.

54. Prove that π1(X,x0) ∼= π1(X(2), x0), where X is a connected CW -complex and X(2) its 2-skeleton.

55. Compute π1(M2) for two-dimensional oriented closed manifold of genus g , the sphere with g handles.

56. Compute π1(M2) for two-dimensional non-oriented closed manifold of genus g , the projective plane
or the Klein bottle with g handles.

57. Let M = RP2# · · ·#RP2 (n times). Compute π1(M).

58. Compute π1(RP2#RP2) and π1(Kl2#RP2).

59. Define G1 ∗G2 . Give examples. Prove that π1(X ∨ Y ) = π1(X) ∗ π1(Y ).

60. Define G1 ∗H G2 . Give examples. State and prove Van Kampen Theorem.

61. Define covering space. Give examples. Construct n -fold covering of S1 ∨ S1 (including n =∞).

62. State and prove Theorem on Covering Homotopy.

63. Prove that covering p : T → X induces a monomorphism p∗ : π1(T, x̃0)→ π1(X,x0).

64. Prove that a loop α1 · · ·αk , where αj is a loop going along the j -th circle in the wedge
∨k
j=1 S

1
j , is

not homotopic to zero.

65. Let p : T → X be a covering, and f, g : Z → T be two maps so that p ◦ f = p ◦ g , where Z is
path-connected. Assume that f(z) = g(z) for some point z ∈ Z . Prove that f = g .

66. Prove that πk(RPn) = 0 if 1 < k < n .

67. Prove that any map f : RP2 → S1 is homotopic to a constant map.

68. Let Kl2 be the Klein bottle. Construct two-folded covering space T 2 → Kl2 . Compute πn(Kl2) for
all n .
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69. Let p : T → X be a covering, p(x̃0) = x0 . Prove that there is one-to-one correspondence

π1(X(X,x0)/p∗(π1(T, x̃0))⇐⇒ p−1(x0).

Prove that p−1(x0) ∼= p−1(x1) for any points x0, x1 ∈ X .

70. Let p : T → X be a covering map, and let Γ = p−1(x0). Prove that Γ is a transitive right G-set for
G = π1(X,x0).

71. Let X by ”good” space and G = π1(X,x0). Prove that athere is a bijection between isomorphism
classes of covering spaces of X and transitive right G -sets given by

{p : Y → X} 7→ p−1(x0).

72. Let p : T → X be a covering, and f : Z → X be a map, f(z0) = x0 , and x̃0 ∈ T so that p(x̃0) = x0

(here Z is path-connected space). Prove that there exists a lifting f̃ : Z → T of the map f so that

f̃(z0) = x̃0 if and only if f∗(π1(Z, z0)) ⊂ p∗(π1(T, x̃0)).

73. Define morphism of two covering spaces T1p1
p1−→ X and T2

p2−→ X . Prove that two morphisms
φ, φ′ : T1 → T2 coincide if there is a point x̃ ∈ T1 so that φ(x̃) = φ′(x̃).

74. Define a group of automorphisms (deck transformations) Aut(T
p−→ X) of a covering p : T → X .

Prove that the group Aut(T
p−→ X) acts on T without fixed points.

75. Let p : T → X be a covering, p(x̃0) = p(x̃′0) = x0 , where x̃0 6= x̃′0 . Prove that there exists an

automorphism φ ∈ Aut(T
p−→ X) such that φ(x̃0) = x̃′0 if and only if p∗(π1(T, x̃0)) = p∗(π1(T, x̃′0)).

76. Prove the following statement: Two covering spaces T1
p1−→ X , T2

p2−→ X are isomorphic if and
only if for any two points x̃1, x̃2 ∈ T such that p1(x̃1) = p2(x̃2) = x the groups (p1)∗(π1(T1, x̃1)),
(p2)∗(π1(T2, x̃2)) belong to the same conjugacy class in π1(X,x).

77. Let N(H) be a normalizer for a subgroup H of G . Prove the following statement: Let p : T → X be
a covering space. Then the group of automorphisms of this covering space is isomorphic to the group
N(p∗(π1(T, x̃0)))/p∗(π1(T, x̃0)).

78. Define universal covering space over X . Prove the following statement: Let X be a path-connected

CW -complex, x0 ∈ X . Then for any subgroup G ⊂ π1(X,x0) there exists a covering T
p−→ X and a

point x̃0 ∈ T so that p∗(π1(T, x̃0)) = G .

79. Define homotopy groups πn(X,x0), in particular define the group operation and inverse. Prove that
the groups πn(X,x0) are abelian if n ≥ 2.

80. Prove that πn(X × Y, x0 × y0) ∼= πn(X,x0)× πn(Y, y0). Compute πn(T k) for all n .

81. Let X be a path-connected space, and x0, x1 ∈ X be two different points. Let γ : I → X be a path
so that γ(0) = x0 and γ(1) = x1 . Define a homomorphism γ# : πn(X,x0) → πn(X,x1). Prove that
γ# is an isomorphism.

82. Let M2
g be a two-dimensional surface of genus g ≥ 1 (oriented). Compute the homotopy groups

πq(M
2
g ).

83. Define relative homotopy groups πn(X,A;x0). Describe the group operation and the inverse element.
Prove that the group πn(X,A;x0) is commutative for n ≥ 3.

84. Define the homomorphisms in the following sequence:

· · · → πn(A, x0)
i∗−→ πn(X,x0)

j∗−→ πn(X,A;x0)
∂−→ πn−1(A, x0)→ · · · (1)

Prove that the sequence (1) is exact.
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85. Let A ⊂ X be a retract. Prove that

• i∗ : πn(A, x0)→ πn(X,x0) is monomorphism,

• j∗ : πn(X,x0)→ πn(X,A;x0) is epimorphism,

• ∂ : πn(X,A;x0)→ πn−1(A, x0) is zero homomorphism.

86. Let A be contractible in X . Prove that

• i∗ : πn(A, x0)→ πn(X,x0) is zero homomorphism,

• j∗ : πn(X,x0)→ πn(X,A;x0) is monomorphism,

• ∂ : πn(X,A;x0)→ πn−1(A, x0) is epimorphism.

87. State and prove Five-Lemma.

88. Let 0 → A1 → A2 → · · · → An → 0 be an exact sequence of finitely generated abelian groups. Prove
that

∑n
i=1(−1)irank Ai = 0.

89. Define locally trivial fiber bundle. Give several examples of non-trivial fiber bundles.

90. Prove that any locally–trivial fiber bundle over the cube Iq is trivial.

91. Define the covering homotopy property. Outline a proof that the covering homotopy property holds
for a locally-trivial fiber bundle E −→ B .

92. Define a Serre fiber bundle. Let Y be an arbitrary path-connected space, E(Y, y0) be the space of
paths starting at y0 . Prove that the map p : E(Y, y0) −→ Y , where p(s : I −→ Y ) = s(1) ∈ Y is a
Serre fiber bundle.

93. Let A ⊂ X , and (X,A) be a Borsuk pair (for example, a CW -pair). Let E = C(X,Y ), B = C(A, Y ),
and the map p : E −→ B be defined as p(f : X −→ Y ) = (f |A : A −→ Y ). Prove that the map
p : E −→ B is a Serre fiber bundle.

94. Define weak homotopy equivalence. Prove that finite CW -complexes X , Y are weak homotopy
equivalent if and only if they are homotopy equivalent.

95. Let p : E −→ B be Serre fiber bundle, where B be a path-connected space. Prove that the fibers
F0 = p−1(x0) and F1 = p−1(x1) are weak homotopy equivalent for any two points x0, x1 ∈ B .

96. Prove that for any continuous map f : X −→ Y there exists homotopy equivalent map f1 : X1 −→ Y1 ,
such that f1 : X1 −→ Y1 is Serre fiber bundle.

97. Let f : X −→ Y be a continuous map. Prove that there exists a homotopy equivalent map g : X −→
Y ′ , so that g is an inclusion.

98. Let p : E −→ B be Serre fiber bundle, y ∈ E be any point, x = p(y), F = p−1(x). Prove that the
homomorphism

p∗ : πn(E,F ; y) −→ πn(B, x)

is an isomorphism for all n ≥ 1.

99. Apply the homotopy exact sequence of Serre fibration to prove that (a) π2(S2) = π1(S1) = Z ; (b)
πn(S3) = πn(S2).

100. Let S∞ −→ CP∞ be the Hopf fibration. Using the fact S∞ ∼ ∗ , prove that πn(CP∞) = 0 for
n 6= 2, and π2(CP∞) = Z .

101. Prove that πn(Ω(X)) ∼= πn+1(X) for any X and n ≥ 0.

102. Prove that if the groups π∗(B), π∗(F ) are finite (finitely generated), then the groups π∗(E) are finite
(finitely generated) as well.
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103. Assume that a fiber bundle p : E −→ B has a section, i.e. a map s : B −→ E , such that p ◦ s = IdB .
Prove the isomorphism πn(E) ∼= πn(B)⊕ πn(F ).

104. Give a construction of a space Y that πn(X,A;x0) ∼= πn−1(Y, y0).

104. State the Freudenthal Theorem. Give a detailed proof that Σ is an isomorphism.

106. Let K,L ⊂ Rp be two finite simplicial complexes fo dimensions k , l respectively. Let k + l+ 1 < p .
Prove that the simplicial complexes K and L are not linked.

107. Prove that πn(Sn) ∼= Z for each n ≥ 1.

108. Prove that π3(S2) ∼= Z , and the Hopf map S3 −→ S2 is a representative of the generator of π3(S2).

109. Define Whitehead product. State basic properties. Prove that if α ∈ πn(X), β ∈ πk(X) then
[α, β] = (−1)nk[β, α] .

110. Define the element w ∈ πn+k−1(Sn ∨ Sk). Prove that the element w ∈ πn+k−1(Sn ∨ Sk) has infinite
order.

111. Prove that the element w ∈ πn+k−1(Sn ∨ Sk) is in a kernel of each of the following homomorphisms:

(1) i∗ : πn+k−1(Sn ∨ Sk) −→ πn+k−1(Sn × Sk),

(2) pr
(n)
∗ : πn+k−1(Sn ∨ Sk) −→ πn+k−1(Sn),

(3) pr
(k)
∗ : πn+k−1(Sn ∨ Sk) −→ πn+k−1(Sk).

112. Prove that the element w ∈ πn+k−1(Sn ∨ Sk) is in the kernel of the suspension homomorphism

Σ : πn+k−1(Sn × Sk) −→ πn+k(Σ(Sn × Sk)).

113. Prove the isomorphism

πn+k(Sn+1 ∨ Sk+1) ∼= πn+k(Sn+1)⊕ πn+k(Sk+1)

114. Let α ∈ πn(X), β ∈ πk(X). Prove that [α, β] ∈ Ker Σ, where

Σ : πn+k−1(X) −→ πn+k(ΣX)

is the suspension homomorphism.

115. Let ι2q ∈ π2q(S
2q) be a generator represented by the identity map S2q −→ S2q . Prove that the

Whitehead product [ι2q, ι2q] ∈ π4q−1(S2q) is a nontrivial element of infinite order.

116. Prove that the suspension Σ(Sn × Sk) is homotopy equivalent to the wedge
Sn+1 ∨ Sk+1 ∨ Sn+k+1 .

117. Outline a proof of the following statement:
Let X be a connected space (not necessarily a CW -complex) with a base point x0 ∈ X , f : Sn −→ X
be a map such that f(s0) = x0 , where s0 is a base point of Sn . Let Y = X ∪f Dn+1 , and i : X −→ Y
be the inclusion. Then the induced homomorphism i∗ : πq(X,x0) −→ πq(Y, x0)

(1) is an isomorphism if q < n ,

(2) is an epimorphism if q = n , and

(3) the kernel Ker i∗ : πn(X,x0) −→ πn(Y, x0) is generated by γ−1[f ]γ ∈ πn(X,x0) where γ ∈
π1(X,x0).

118. Let X be an n -connected CW -complex, and Y be a k -connected CW -complex. Prove that

• πq(X ∨ Y ) ∼= πq(X)⊕ πq(Y ) if q ≤ n+ k ;

• the group πq(X ∨ Y ) contains a subgroup πq(X)⊕ πq(Y ) as a direct summand.
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119. Let X be an n -connected CW -complex, and Y be a k -connected CW -complex. Prove that

πn+k+1(X ∨ Y ) ∼= πn+k+1(X)⊕ πn+k+1(Y )⊕ [πn(X), πk(Y )].

120. Let X be an (n− 1)-connected CW -complex. Describe the homotopy group πn(X).

121. Compute the homotopy group π3(S2 ∨ S2).

122. Define when a map f : X −→ Y is a weak homotopy equivalence. Outline the proof that the following
two statements are equivalent

(1) The map f : X −→ Y is weak homotopy equivalence.

(2) The induced homomorphism f∗ : πn(X,x0) −→ πn(Y, f(x0)) is isomorphism for all n and x0 ∈ X .

123. Let X , Y be CW -complexes. Prove that if a map f∗ : X −→ Y induces isomorphism

f∗ : πn(X,x0) −→ πn(Y, f(x0))

for all n ≥ 0 and x0 ∈ X , then f is a homotopy equivalence.

124. Let X be a Hausdorff topological space. Prove that there exists a CW -complex K and a weak
homotopy equivalence f : K −→ X . Show that the CW -complex K is unique up to homotopy
equivalence.

125. Let X , Y be two weak homotopy equivalent spaces. Prove that there exist a CW -complex K and
maps f : K −→ X , g : K −→ Y which weak homotopy equivalences.

126. Define an Eilenberg-McLane space. Prove that it does exists and unique up to weak homotopy
equivalence.

127. Construct the space K(π, 1), where π is a finitely generated abelian group.

128. Let X = K(π, n). Prove that ΩX = K(π, n− 1).

129. Let X be a CW -complex, and n ≥ 1. Construct a CW -complex Xn and a map fn : X −→ Xn

such that

(1) πq(Xn) =

{
πq(X) if q ≤ n

0 else

(2) (fn)∗ : πq(X) −→ πq(Xn) is isomorphism if q ≤ n .

130. Let X be a CW -complex, and n ≥ 1. Construct a CW -complex X|n and a map gn : X|n −→ X
such that

(1) πq(X|n) =

{
πq(X) if q ≥ n

0 else

(2) (gn)∗ : πq(X|n) −→ πq(X) is isomorphism if q ≥ n .

131. Let X = S2 . Prove that X|3 = S3 .

132. Let X = CPn . Prove that X|3 = X|2n+1 = S2n+1 .

133. Define the complex C(X) and the homology groups Hq(X). Calculate the homology groups for
X = {pt} .

134. Define chain maps and chain homotopy. Prove that two chain homotopic maps φ, ψ : C → C′ induce
the same homomorphism in homology groups.

135. Let g, h : X → Y be homotopic maps. Prove that g∗ = h∗ : Hq(X)→ Hq(Y ).

136. Let X and Y be homotopy equivalent spaces. Prove that then Hq(X) ∼= Hq(Y ) for all q .
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137. Prove that H0(X) ∼= Z if X is a path-connected space.

138. Prove that if f : X → Y is a map of path-connected spaces, then f∗ : H0(X) → H0(Y ) is an
isomorphism.

139. Define relative homology groups. State and prove the LES-Lemma.

140. Let B ⊂ A ⊂ X be a triple of spaces. Prove that there is a long exact sequence in homology:

· · · → Hq(A,B)
i∗−→ Hq(X,B)

j∗−→ Hq(X,A)
∂−→ Hq−1(A,B)

i∗−→ · · · .

141. Let (X,A) be a pair of spaces. Prove that the inclusion i : (X,A)→ (X ∪ C(A), C(A)) induces the
isomorphism Hq(X,A) ∼= Hq(X ∪ C(A), C(A)) = Hq(X ∪ C(A), v).

142. Define the operation β : C(X) → C(X) (induced by the barycentric subdivision). Prove that the
chain map β : C(X)→ C(X) induces the identity homomorphism in homology:

Id = β∗ : Hq(C(X))→ Hq(C(X)) for each q ≥ 0.

143. Define the chain complex CU(X) for a covering U . Prove that the inclusion CU(X) ⊂ C(X) induces
an isomorphism in homology groups.

144. State and prove the Excision Theorem.

145. Let X = X1 ∪X2 . Prove that the following sequence of complexes is exact

0→ C(X1 ∩X2)
α−→ C(X1)⊕ C(X2)

β−→ C(X1) + C(X2)→ 0.

146. Let X1, X2 ⊂ X , and X1 ∪X2 = X ,
o

X1 ∪
o

X2 = X . Prove that the chain map

C(X1) + C(X2)→ C(X1 ∪X2)

induces isomorphism in the homology groups.

147. State and prove the Mayer-Vietoris Theorem.

148. Compute homology groups Hq(S
n).

149. Let X be a space. Prove that H̃q+1(ΣX) ∼= H̃q(X) for each q .

150. Let A be a set of indices, and Snα be a copy of the n -th sphere, α ∈ A . Compute the homology

groups H̃q

(∨
α∈A

Snα

)
.

151. Let (Xα, xα) be based spaces, α ∈ A . Assume that the pair (Xα, xα) is Borsuk pair for each α ∈ A .
Prove that

H̃q

(∨
α∈A

Xα

)
=
⊕
α∈A

H̃q(Xα).

152. Let f : Sn → Sn be a map of degree d = deg f . Prove that f∗ : Hn(Sn)→ Hn(Sn) is a multiplication
by d .

153. Let g :
∨
α∈A

Snα
g−→
∨
β∈B

Snβ be a map. Prove that the homomorphism

⊕
α∈A

Z(α) = Hn

(∨
α∈A

Snα

)
g∗−→ Hn

∨
β∈B

Snβ

 =
⊕
β∈B

Z(β)

is given by multiplication with matrix {dαβ}α∈A,β∈B , where dαβ = deg gαβ . (Define the maps gαβ .)

8



154. Define the cellular chain complex E(X). Prove that the following composition is trivial

Eq+1(X)
∂
o
q+1−−−→ Eq(X)

∂
o
q−→ Eq−1(X).

155. Prove that there is an isomorphism Hq(E(X)) ∼= Hq(X) for each q and any CW -complex X .

156. Let X be a CW -complex, and eq be a q -cell and σq−1 be a (q − 1)-cell of X . Define the incidence

coefficient [eq : σq−1] . Prove that the boundary operator ∂
o

q : Eq(X) → Eq−1(X) is given by the
formula:

∂
o

q(e
q) =

∑
j∈Eq−1

[eq : σq−1
j ]σq−1

j .

157. Let A : Sn → Sn be the antipodal map, A : x 7→ −x , and ιn ∈ πn(Sn) be the generator represented
by the identity map Sn → Sn . Prove that the homotopy class [A] ∈ πn(Sn) is equal to

[A] =

{
ιn, if n is odd,
−ιn, if n is even.

158. Let e0, . . . , en be the cells in the standard cell decomposition of RPn . Prove that

[eq : eq−1] =

{
2 if q is odd,
0, if q is even.

159. Compute the homology groups Hq(RPn), Hq(CPn).

160. Compute the homology groups Hq((RPn)#k) and Hq((CPn)#k)

161. Compute the homology groups Hq(RP2n#CPn).

162. Prove that there is no map f : Dn → Sn−1 so that the restriction f |Sn−1 : Sn−1 → Sn−1 has nonzero
degree.

163. Let X be a topological space, α ∈ Hq(X). Prove that there exist a CW -complex K , a map
f : K → X , an element β ∈ Hq(K) such that f∗(β) = α .

164. Let f : X → Y be a weak homotopy equivalence. Prove that the induced homomorphism f∗ :
Hq(X)→ Hq(Y ) is an isomorphism for all q ≥ 0.

165. Show that the spaces CP∞ × S3 and S2 have isomorphic homotopy groups and that they are not
homotopy equivalent.

166. Show that the spaces RPn × Sm and Sn ×RPm (n 6= m) have isomorphic homotopy groups and
they are not homotopy equivalent.

167. Show that the spaces S1∨S1∨S2 and S1×S1 have the same homology groups and different homotopy
groups.

168. Show that the projection

S1 × S1 projection−−−−−−−→ (S1 × S1)/(S1 ∨ S1) = S2

induces trivial homomorphism in homotopy groups.

169. Define the Hurewicz homomorphism h : πn(X,x0)→ Hn(X). Prove that h is a homomorphism.
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170. Let x0, x1 ∈ X , and γ : I → X be a path connecting the points x0, x1 : γ(0) = x0 , and γ(1) = x1 .
The path γ determines the isomorphism γ# : πn(X,x0) → πn(X,x1). Prove that the following
diagram commutes:

πn(X,x0)

@
@
@
@R

h

πn(X,x1)

�
�

�
�	

h

-γ#

Hn(X)

171. (Hurewicz Theorem) Let (X,x0) be a based space, such that

π0(X,x0) = 0, π1(X,x0) = 0, · · · , πn−1(X,x0) = 0,

where n ≥ 2. Prove that

H1(X) = 0, H2(X) = 0, · · · , Hn−1(X) = 0,

and the Hurewicz homomorphism h : πn−1(X,x0)→ Hn(X) is an isomorphism.

172. Let X be a simply-connected CW -complex with H̃n(X) = 0 for all n . Prove that X is contractible.

173. Let X be a simply connected space, and H1(X) = 0, H2(X) = 0 · · · Hn−1(X) = 0. Prove that
π1(X) = 0, π2(X) = 0 · · · πn−1(X) = 0 and the Hurewicz homomorphism h : πn(X,x0)→ Hn(X) is
an isomorphism.

174. Consider the map

g : S2n−2 × S3 proj−−−→ (S2n−2 × S3)/(S2n−2 ∨ S3) = S2n+1 Hopf−−−−→ CPn.

Prove that g induces trivial homomorphism in homology and homotopy groups, however g is not
homotopic to a constant map.

175. Let X be a connected space. Prove that the Hurewicz homomorphism h : π1(X,x0) → H1(X) is
epimorphism, and the kernel of h is the commutator [π1(X,x0), π1(X,x0)] ⊂ π1(X,x0).

176. State the relative version of the Hurewicz Theorem. State and prove the Whitehead Theorem-
II. Let X , Y be simply connected spaces and f : X → Y be a map which induces isomorphism
f∗ : Hq(X)→ Hq(Y ) for all q ≥ 0. Prove that f is weak homotopy equivalence.

177. Define homology and cohomology groups with coefficients in an abelian group G . Compute the
groups Hq(RPn;Z/p), Hq(RPn;Z/p) for any prime p .

178. Consider the short exact sequence 0 → Z
·m−−→ Z → Z/2 → 0. Compute the connecting homomor-

phisms
∂ = βm : Hq(RPn;Z/2)→ Hq+1(RPn;Z)

179.∗ Let G be an abelian group, 0 → R
β−→ F

α−→ G → 0, be a free resolution of G , and H be an
arbitrary abelian group. Prove that the sequence

0→ Ker(β ⊗ 1)→ R⊗H β⊗1−−−→ F ⊗H α⊗1−−−→ G⊗H → 0

is exact.

180.∗ Prove that the group Tor(G,H) is well-defined, i.e. it does not depend on the choice of resolution.

181.∗ Let G,H be abelian groups. Prove that there is a canonical isomorphism Tor(G,H) ∼= Tor(H,G).
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182. Let F be a free abelian group. Show that Tor(F,G) = 0 for any abelian group G .

183. Let G be an abelian group. Denote T (G) a maximal torsion subgroup of G . Show that Tor(G,H) ∼=
T (G) ⊗ T (H) for finite generated abelian groups G,H . Give an example of abelian groups G,H , so
that Tor(G,H) 6= T (G)⊗ T (H).

184. Let X be a space, G be an abelian group. Prove that there is a split short exact sequence

0→ Hq(X)⊗G→ Hq(X;G)→ Tor(Hq−1(X), G)→ 0

185∗ . Let G be an abelian group, 0→ R
β−→ F

α−→ G→ 0 be a free resolution, and let H be an abelian
group. Prove that the following sequence is exact:

0 ←− Coker β# ←− Hom(R,H)
β#

←−− Hom(F,H)
α#

←−− Hom(G,H) ←− 0.

186∗ . Prove that the group Ext(G,H) is well defined, i.e. it does not depend on the choice of free
resolution of G .

187∗ . Let 0→ G′ → G→ G′′ → 0 be a short exact sequence of abelian groups. Prove that it induces the
following exact sequence:

0→ Hom(G′′, H)→ Hom(G,H)→ Hom(G′, H)→

Ext(G′′, H)→ Ext(G,H)→ Ext(G′, H)→ 0

188. Prove that Ext(Z, H) = 0 for any group H .

189. Prove the isomorphisms: Ext(Z/m,Z/n) ∼= Z/m⊗ Z/n , Ext(Z/m,Z) ∼= Z/m .

190. Let X be a space, G an abelian group. Prove that there is a split exact sequence

0→ Ext(Hq−1(X), G)→ Hq(X;G)→ Hom(Hq(X), G)→ 0

for any q ≥ 0.

191. Let X be a space, and G an abelian group. Prove that there is a split exact sequence

0→ Hq(X;Z)⊗G→ Hq(X;G)→ Tor(Hq+1(X;Z), G)→ 0

for any q ≥ 0.

192. Let G be a finitely generated abelian group. Let F (G) be the maximum free abelian subgroup of
G , and T (G) be the maximum torsion subgroup. Let X be a space such that the groups Hq(X)
are finitely generated for all q . Prove that Hq(X;Z) are also finitely generated and Hq(X;Z) ∼=
F (Hq(X;Z))⊕ T (Hq−1(X;Z)).

193. Let F be Q , R or C . Prove that

Hq(X;F ) = Hq(X)⊗ F, Hq(X;F ) = Hom(Hq(X), F ).

194. Let X be a finite CW -complex, and F be a field. Prove that the number

χ(X)F =
∑
q≥0

(−1)q dim Hq(X;F)

does not depend on the field F and is equal to the Euler characteristic

χ(X) =
∑
q≥0

(−1)q {# of q -cells of X } .
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195. Let a finite CW -complex X be a union of two CW -subcomplexes: X = X1∪X2 , where X1∩X2 ⊂ X
is a CW -subcomplex as well. Prove that

χ(X) = χ(X1) + χ(X2)− χ(X1 ∩X2).

196. Let C∗ and C′∗ be two chain complexes. Define the tensor product C̄∗ = C∗ ⊗ C′∗ . Prove that
∂̄q+1∂̄q = 0.

197. Let E∗ = E∗(X), E ′∗ = E∗(X ′). Define the complexes E∗(r), E ′∗(s) and compute the homology groups
of the tensor product of these chain complexes: E∗(r)⊗ E ′∗(s).

198. Use the result of # 197 to prove the Künneth formula for homology groups:

0→
⊕
r+s=q

Hr(X)⊗Hs(X
′)→ Hq(X ×X ′)→

⊕
r+s=q−1

Tor(Hr(X), Hs(X
′))→ 0

199. Outline the proof of the Künneth formula for cohomology groups:

0→
⊕
r+s=q

Hr(X)⊗Hs(X ′)→ Hq(X ×X ′)→
⊕

r+s=q+1

Tor(Hr(X), Hs(X ′))→ 0.

200. Let F be a field. Prove that

Hq(X ×X ′;F ) ∼=
⊕
r+s=q

Hr(X;F )⊗Hs(X
′;F ),

Hq(X ×X ′;F ) ∼=
⊕
r+s=q

Hr(X;F )⊗Hs(X ′;F ).

201. Let βq(X) = RankHq(X) be the Betti number of X . Prove that

βq(X ×X ′) =
∑
r+s=q

βr(X)βs(X
′).

202. Let X , X ′ be such spaces that their Euler characteristics χ(X), χ(X ′) are finite. Prove that
χ(X ×X ′) = χ(X) · χ(X ′).

203. Prove the Lefschetz Theorem: Let X be a finite CW -complex, f : X → X be a map such that
Lef(f) = 0. Then f has a fixed point, i.e. such point x0 ∈ X that f(x0) = x0 .

204. Let X be a finite contractible CW -complex. Prove that any map f : X → X has a fixed point.

205. Define a flow of homeomorphisms φt : X → X . Let X be a finite CW -complex with χ(X) 6= 0, and
φt : X → X be a flow. Prove that there exists a point x0 ∈ X so that φt(x0) = x0 for all t ∈ R .

206. Let f : RP2n → RP2n be a map. Prove that f always has a fixed point. Give an example that the
above statement fails for a map f : RP2n+1 → RP2n+1 .

207. Let n 6= k . Prove that Rn is not homeomorphic to Rk .

208. Let f : Sn → Sn be a map, and deg(f) be the degree of f . Prove that Lef(f) = 1 + (−1)n deg(f).

209. Prove that there is no tangent vector field v(x) on the sphere S2n such that v(x) 6= 0 for all x ∈ S2n .
Construct everywhere non-zero vector field v on S2n+1 .

210. Let K ⊂ Sn be homeomorphic to the cube Ik , 0 ≤ k ≤ n . Prove that H̃q(S
n \K) = 0 for all q ≥ 0.
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211. Let Sk ⊂ Sn , 0 ≤ k ≤ n− 1. Prove that

H̃q(S
n \ Sk) ∼=

{
Z, if q = n− k − 1,
0 if q 6= n− k − 1.

212. State and prove the Jordan-Brouwer Theorem.

213. State and prove the Brouwer Invariance Domain Theorem.

214. Let (X,A) be a CW -pair. Prove that the group H1(X,A;Z) is a free abelian group.

215. Define the cup-product in cohomology. Prove that δ(φ ∪ ψ) = (δφ) ∪ ψ + (−1)kφ ∪ (δψ) where
φ ∈ Ck(X), ψ ∈ Cl(X).

216. Compute the cup product of H∗(RP2;Z/2), H∗(M2
g ;Z).

217. Prove that αβ = (−1)klβα if α ∈ Hk(X), β ∈ H l(X).

218. Define the external product

µ : H∗(X;R)⊗H∗(Y ;R)→ H∗(X × Y ;R).

Define the ring structure on H∗(X;R)⊗H∗(Y ;R). Prove that the external product µ : H∗(X;R)⊗
H∗(Y ;R) → H∗(X × Y ;R) induces a ring isomorphism provided that Hq(Y ;R) are free R -modules
for all q .

219. Let ∆ : X → X ×X be a diagonal map. Prove that the homomorphism

Hk(X;R)⊗H l(X;R)
µ−→ Hk+l(X ×X;R)

∆∗−−→ Hk+l(X;R)

coincides with the cup-product, i.e. that ∆∗(µ(α⊗ β)) = α ∪ β .

220. Prove that H∗(RPn;Z/2) ∼= Z/2[x]/xn+1 .

221. Prove that H∗(CPn;Z) ∼= Z[y]/yn+1 .

222. Prove that any map f : CP2k → CP2k has a fixed point.

223. Prove that if Rn is a real division algebra, then n is a power of two.

224. State the Poincarè Duality Theorem. Compute the Poincarè Duality for M2
g .

225. Prove that the odd-dimensional manifold has zero Euler characteristic.

226. Prove that 〈α ∪ β, µ〉 = 〈β, µ ∩ α〉 .

227. Let M4k be a compact oriented manifold, and V = H2k(M4k;Z)/Tor. Use the Poincarè duality to
prove that the pairing

µ(α, β) = 〈α ∪ β, [M4k]〉

defines a nondegenerated quadratic form on V . Compute the index of this quadratic form for CP2n .

228. Use Poincaré duality to prove that H∗(CPn;Z) ∼= Z[x]/xn+1 .

229. Use Poincaré duality to prove that H∗(RPn;Z/2) ∼= Z/2[x]/xn+1 .

230. Let f : CP2n → CP2n be a map. Show that f has a fixed point.

231. Compute the ring structure H∗(RPn;Z/2k).

232. Let n > k . Prove that there is no map f : RPn → RPk which induces a nontrivial ring homomor-
phism f∗ : H∗(RPk;Z/2)→ H∗(RPn;Z/2).
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233. Let a map h : RPn−1 ×RPn−1 → RPn−1 , be such that the induced homomorphism

h∗ : H∗(RPn−1;Z/2)→ H∗(RPn−1 ×RPn−1 : Z/2)

takes generator y ∈ H1(RPn−1;Z/2) to the sum of generators: h∗(y) = x1 ⊗ 1 + 1⊗ x2 . Prove that
n must be a power of 2.

234. Prove that RP3 and is not homotopy equivalent to S3 ∨RP2 .

235. Define the Hopf invariant h(λ) of an element λ ∈ π4q−1(S2q).

236. Prove that h(λ1 + λ2) = h(λ1) + h(λ2).

237. Prove that there is an element in π4n−1(S2n) with the Hopf invariant 2. State and prove the theorem
that the group π4n−1(S2n) is infinite.

238. Prove that h([ι2q, ι2q]) = 2, where ι2q ∈ π2q(S
2q) is the standard generator.

239. Define a cohomology operation. Give examples.

240. Define a canonical fundamental class

ιn ∈ Hom(Hn(K(π, n);Z), π).

241. Let π , π′ be abelian groups. Prove that there is a bijection

[K(π, n),K(π′, n)]↔ Hom(π, π′).

242. Let π be an abelian group and n be a positive integer. Prove that the homotopy type of the
Eilenberg-McLane space K(π, n) is completely determined by the group π and the integer n .

243. Prove that there is a bijection

O(π, n;π′, n′)↔ Hn′(K(π, n), π′)

given by the formula θ ↔ θ(ιn).

244. Let Y be a homotopy simple space, (B,A) a CW -pair and Xn = B(n) ∪A for n = 0, 1, . . . . Define
the obstruction cochain

c(f) ∈ En+1(B,A;πn(Y )) = Hom(En+1(B,A), πn(Y )).

Prove that c(f) is a cocycle.

245. Let Y be a homotopy simple space, (B,A) a CW -pair and Xn = B(n) ∪ A for n = 0, 1, . . . . Prove
that a map f : Xn → Y can be extended to a map f̃ : Xn+1 → Y if and only if c(f) = 0.

246. Define d(f, g) ∈ En(B,A;πn(Y )). Prove the formula: δd(f, g) = c(g)− c(f).

247. Let Y be a homotopy simple space, (B,A) a CW -pair and Xn = B(n) ∪ A for n = 0, 1, . . . .
Let f : Xn → Y be a map, and d ∈ En(B,A;πn(Y )) is a cochain. Prove that there exists a map
g : Xn → Y such that f |Xn−1 = g|Xn−1 and d(f, g) = d .

248. Let Y be a homotopy simple space, (B,A) a CW -pair and Xn = B(n) ∪A for n = 0, 1, . . . . Assume
f : Xn → Y is a map. Prove that there exists a map g : Xn+1 → Y such that g|Xn−1 = f |Xn−1 if and
only if [c(f)] = 0 in Hn+1(B,A;πnY ).

249. Prove the following result
Theorem. Let f, g : K → Y be two maps, where K is a CW -complex and Y is homotopy-simple
space. Assume that f |K(n−1) = g|K(n−1) . Then the cohomology class [d(f, g)] ∈ Hn(K,πnY ) vanishes
if and only if there exists a homotopy between the maps f |K(n) and g|K(n) relative to the skeleton
K(n−2) .
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250. Prove the following result:
Theorem. There is a bijection

[X,K(π, n)]↔ Hn(X;π).

given by the formula [f ] 7→ f∗ιn .

251. Consider a k -torus T k . We identify T k with the quotient space Rk/ ∼ , where two vectors ~x ∼ ~y
if and only if all coordinates of the vector ~x − ~y are integers. It is easy to see that a linear map
f̄ : Rk → R` given by an k× `-matrix A with integral entries descends to a map f : T k → T ` . Prove
that any map g : T k → T ` is homotopic to a linear map as above.

252. Prove the following result:
Theorem. Let X be an n -dimensional CW -complex. Then there is a bijection:

Hn(X;Z) ∼= [X,Sn].

253. Prove that any K(Z2, n) is infinite dimensional space for each n ≥ 1.

254. Let M be a simply-connected compact closed manifold with dimM = 3. Prove that M is homotopy
equivalent to S3 .

255. Let h : S3 → S2 be the Hopf map. Let λ ≥ 1 be an integer. Define a map

fλ : S3 λ−→S3 ∨ · · · ∨ S3︸ ︷︷ ︸
λ

h∨···∨h−→ S2.

Prove that the space Xλ = S2∪fλD4 is homotopy equivalent to a closed compact manifold of dimension
four if and only if λ = 1.

256. Let D3 ⊂ T 3 and c : T 3 → S3 be a map which collapses a complement of D3 ⊂ T 3 to a point. Prove

that the map g : T 3 c→S3 h→S2 (where h : S3 → S2 is the Hopf map) induces trivial homomorphism on
homology and homotopy, but is not homotopic to a constant map.

257. Assume a CW -complex X contains S1 such that the inclusion i : S1 ⊂ X induces an injection
i∗ : H1(S1;Z)→ H1(X;Z) with image a direct summand of H1(X;Z). Prove that S1 is a retract of
X .

258. Two questions:

(a) Show that there is no map from CP2 to itself of degree −1.

(b) Show that there is no map from CP2 ×CP2 to itself of degree −1.
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