Vanishing and Estimation Results for Betti numbers

Matthias Wink
University of California, Los Angeles

September 30, 2020
Geometry and Topology Seminar, University of Oregon

This talk is based on joint work with Peter Petersen

The Bochner Technique

Let $\left(M^{n}, g\right)$ be a compact, connected, oriented Riemannian manifold.
A 1-form $\omega \in \Omega^{1}(M)$ satisfies the Bochner formula

$$
\Delta \omega=\left(d d^{*}+d^{*} d\right) \omega=\nabla^{*} \nabla \omega+\operatorname{Ric}\left(\omega^{\#}, \cdot\right)
$$

If ω harmonic, $\Delta \omega=0$, then

$$
\Delta \frac{1}{2}|\omega|^{2}=|\nabla \omega|^{2}+\operatorname{Ric}\left(\omega^{\#}, \omega^{\#}\right)
$$

Bochner, 1948: Suppose ω harmonic.
If Ric ≥ 0, then $\nabla \omega=0$.
If Ric >0, then $\omega=0$. Hence, by Hodge theory, $b_{1}(M)=0$.

The Bochner Technique: p-forms

Bochner Formula for p-forms

$$
\Delta \omega=\nabla^{*} \nabla \omega+\operatorname{Ric}(\omega)
$$

where

$$
\operatorname{Ric}(\omega)\left(X_{1}, \ldots, X_{p}\right)=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(R\left(X_{i}, e_{j}\right) \omega\right)\left(X_{1}, \ldots, e_{j}, \ldots, X_{p}\right)
$$

If ω harmonic, then

$$
\Delta \frac{1}{2}|\omega|^{2}=|\nabla \omega|^{2}+g(\operatorname{Ric}(\omega), \omega)
$$

The Bochner Technique: p-forms

Bochner Formula for p-forms

$$
\Delta \omega=\nabla^{*} \nabla \omega+\operatorname{Ric}(\omega)
$$

where

$$
\operatorname{Ric}(\omega)\left(X_{1}, \ldots, X_{p}\right)=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(R\left(X_{i}, e_{j}\right) \omega\right)\left(X_{1}, \ldots, e_{j}, \ldots, X_{k}\right)
$$

Basic observation: $R(X, Y) \in \mathfrak{s o}(T M) \cong \Lambda^{2} T M$
Curvature operator:

$$
\begin{gathered}
\mathfrak{R}: \Lambda^{2} T M \rightarrow \Lambda^{2} T M \\
g(\Re(X \wedge Y), Z \wedge W)=\operatorname{Rm}(X, Y, Z, W)
\end{gathered}
$$

The Bochner Technique: p-forms

Let $\lambda_{1} \leq \ldots \leq \lambda_{\binom{n}{2}}$ denote the eigenvalues of the curvature operator \mathfrak{R} and let $\left\{\bar{\Xi}_{\alpha}\right\}$ be an orthonormal eigenbasis

$$
\operatorname{Ric}(\omega)\left(X_{1}, \ldots, X_{p}\right)=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(R\left(X_{i}, e_{j}\right) \omega\right)\left(X_{1}, \ldots, e_{j}, \ldots, X_{k}\right)
$$

Proposition (Poor, 1980)

$$
g(\operatorname{Ric}(\omega), \omega)=\sum_{\alpha} \lambda_{\alpha}\left|\Xi_{\alpha} \omega\right|^{2}
$$

where

$$
(\equiv \omega)\left(X_{1}, \ldots, X_{p}\right)=-\sum_{k=1}^{p} \omega\left(X_{1}, \ldots, \equiv X_{k}, \ldots, X_{p}\right)
$$

The Bochner Technique: p-forms

Curvature term in Bochner formula $\Delta \frac{1}{2}|\omega|^{2}=|\nabla \omega|^{2}+g(\operatorname{Ric}(\omega), \omega)$

$$
g(\operatorname{Ric}(\omega), \omega)=\sum_{\alpha} \lambda_{\alpha}\left|\Xi_{\alpha} \omega\right|^{2}
$$

Consequences: Suppose ω is harmonic.
(1) D. Meyer, 1971: If $\lambda_{\alpha}>0$, then $\omega=0$, hence $b_{p}(M)=0$ for $p \neq 0, n$
(2) Gallot-Meyer, 1975: If $\lambda_{\alpha} \geq 0$, then ω is parallel
(3) Gallot, 1981: If $\lambda_{\alpha} \geq \kappa,(\kappa \leq 0), \operatorname{diam}(M) \leq D$, then

$$
b_{p}(M) \leq\binom{ n}{p} \exp \left(C\left(n, \kappa D^{2}\right) \cdot \sqrt{-\kappa D^{2} p(n-p)}\right)
$$

(4) Micallef-Wang, 1993:

If $M^{2 n}$ has with positive isotropic curvature, then $b_{2}(M)=0$

Ricci flow results

(1) Hamilton (1982, 1986), Chen (1991), Böhm-Wilking (2008)

If (M, g) has 2-positive curvature operator, $\lambda_{1}+\lambda_{2}>0$, then M is diffeomorphic to a space form.
(2) Brendle-Schoen (2009)

If $M \times \mathbb{R}^{2}$ has positive isotropic curvature, then M is diffeomorphic to a space form.
(3) Brendle (2008)

If $M \times \mathbb{R}$ has positive isotropic curvature, then M is diffeomorphic to a space form.
(9) Bamler-Cabezas-Rivas-Wilking (2019)

For $n \in \mathbb{N}, D, v_{0}>0$ there is $\varepsilon\left(n, D, v_{0}\right)>0$ such that if $\lambda_{\alpha} \geq-\varepsilon$, $\operatorname{Vol}_{g}(M) \geq v_{0}, \operatorname{diam}(M) \leq D$, then M has a metric with nonnegative curvature operator

Vanishing and Estimation Results for Betti numbers

Theorem (Petersen-W, 2019)

Let $n \geq 3$ and let $\left(M^{n}, g\right)$ be a compact, connected Riemannian manifold. Let $1 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor, \kappa \leq 0$ and $D>0$. There is $C\left(n, \kappa D^{2}\right)>0$ such that if

$$
\operatorname{diam} M \leq D \text { and } \frac{\lambda_{1}+\ldots+\lambda_{n-p}}{n-p} \geq \kappa
$$

then

$$
b_{p}(M) \leq\binom{ n}{p} \exp \left(C\left(n, \kappa D^{2}\right) \cdot \sqrt{-\kappa D^{2} p(n-p)}\right)
$$

There is $\varepsilon(n)>0$ such that $\kappa D^{2} \geq-\varepsilon(n)$ implies $b_{p}(M) \leq\binom{ n}{p}$. Moreover, suppose $\omega \in \Omega^{p}$ is harmonic.
(1) If $\lambda_{1}+\ldots+\lambda_{n-p} \geq 0$, then ω is parallel
(2) If $\lambda_{1}+\ldots+\lambda_{n-p}>0$, then $\omega=0$ and hence $b_{p}(M)=b_{n-p}(M)=0$

Vanishing and Estimation Results for Betti numbers

Corollary (Petersen-W, 2019)

If $\lambda_{1}+\ldots+\lambda_{\left\lceil\frac{n}{2}\right\rceil}>0$, then M is a homology sphere
(1) The curvature conditions $\lambda_{1}+\ldots+\lambda_{n-p} \geq 0$ are (typically) not preserved by the Ricci flow, e.g. $\lambda_{1}+\lambda_{2}+\lambda_{3} \geq 0$ is not preserved (Böhm-Wilking, 2008)
(2) Micallef-Moore, 1988:

If M is simply connected and has positive isotropic curvature, then M is a homotopy sphere
(3) $\left\{(M, g) \mid \lambda_{1}+\ldots+\lambda_{n-p}>0\right\}$ (typically) overlaps with $\{(M, g) \mid$ positive isotropic curvature $\}$ but neither class is contained in the other
(9) Gromov's bound on the Betti numbers (1981)

Idea of the proof

Recall:

$$
g(\operatorname{Ric}(\omega), \omega)=\sum_{\alpha} \lambda_{\alpha}\left|\Xi_{\alpha} \omega\right|^{2}
$$

Key estimates:

$$
\begin{aligned}
\left|\Xi_{\alpha} \omega\right|^{2} & \leq \min \{p, n-p\}|\omega|^{2}, \quad\left|\Xi_{\alpha}\right|^{2}=1 \\
\sum_{\alpha}\left|\Xi_{\alpha} \omega\right|^{2} & =p(n-p)|\omega|^{2}
\end{aligned}
$$

Idea: Pick normal form for $\overline{ }$
Consequence: Let $\kappa \leq 0$.

$$
\text { If } \frac{\lambda_{1}+\ldots+\lambda_{n-p}}{n-p} \geq \kappa \text {, then } g(\operatorname{Ric}(\omega), \omega) \geq \kappa p(n-p)|\omega|^{2} \text {. }
$$

The work of P. Li and Gallot implies the estimation theorem.

Kähler manifolds

Let (M, g) be a compact Kähler manifold of complex dimension m, i.e. $\mathrm{Hol}(g) \subset U(m)$.

Riemannian curvature operator

$$
\begin{aligned}
& \Re_{\mid \mathfrak{u}(m)}: \mathfrak{u}(m) \rightarrow \mathfrak{u}(m) \\
& \Re_{\mid \mathfrak{u}(m)^{\perp}}=0
\end{aligned}
$$

In particular, dim $\operatorname{ker} \mathfrak{R} \geq m(m-1)$.
If $\lambda_{1}+\ldots+\lambda_{2 m-p} \geq 0$, then in fact $\lambda_{1} \geq 0$, i.e. M has nonnegative curvature operator, and all harmonic forms are parallel due to Gallot-Meyer's work.

Let $\mu_{1} \leq \ldots \leq \mu_{m^{2}}$ denote the eigenvalues of the Kähler curvature operator $\mathfrak{R}_{\mathfrak{u}(m)}: \mathfrak{u}(m) \rightarrow \mathfrak{u}(m)$.

Kähler manifolds

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension $m \geq 3$.
If $\mu_{1}+\mu_{2}+\left(1-\frac{2}{m}\right) \mu_{3}>0$, then M has the rational cohomology ring of $\mathbb{C P}^{m}$.
(1) Classification of manifolds with nonnegative/positive
... bisectional curvature: Mori, Siu-Yau, Mok
... orthogonal bisectional curvature: Chen, Gu-Zhang
(2) Proof relies on estimates for individual Hodge numbers, e.g. if

$$
\mu_{1}+\ldots+\mu_{m+1-p}>0
$$

then $h^{p, p}(M)=1$.
(3) Vanishing results for holomorphic p-forms, $h^{0, p}=0$:

Bochner, Yang, Ni-Zheng

Kähler manifolds

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension m.
If $\mu_{1}+\mu_{2}+\left(1-\frac{2}{m}\right) \mu_{3}>0$, then M has the rational cohomology ring of $\mathbb{C P}^{m}$.
(9) Reduced holonomy simplifies curvature of Lichnerowicz Laplacian

$$
g(\operatorname{Ric}(\varphi), \bar{\varphi})=\sum_{\Xi_{\alpha} \in \mathfrak{u}(m)} \mu_{\alpha}\left|\bar{\Xi}_{\alpha} \varphi\right|^{2}
$$

(6) Prove estimates

$$
\begin{aligned}
\left|\Xi_{\alpha} \varphi\right|^{2} & \leq c(E) \cdot \mid \stackrel{\circ}{\left.\right|^{2}} \\
\sum_{\Xi_{\alpha} \in \mathfrak{u}(m)}\left|\Xi_{\alpha} \varphi\right|^{2} & =C(E) \cdot|\stackrel{\varphi}{\varphi}|^{2}
\end{aligned}
$$

for φ in each $U(m)$-irreducible module E of $\Lambda^{p, q} T^{*} M$

Kähler manifolds

Vanishing, Rigidity and Estimation results:

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension $m \geq 3$.
(1) If $\mu_{1}+\mu_{2}+\left(1-\frac{2}{m}\right) \mu_{3}>0$,
then M has the rational cohomology ring of $\mathbb{C P}^{m}$.
(2) If $\mu_{1}+\mu_{2}+\left(1-\frac{2}{m}\right) \mu_{3} \geq 0$,
then all harmonic forms are parallel.
(3) Let $\kappa \leq 0$ and $D>0$.

If $\mu_{1}+\mu_{2}+\left(1-\frac{2}{m}\right) \mu_{3} \geq \kappa$ and $\operatorname{diam}(M)<D$, then

$$
b_{p} \leq\binom{ 2 m}{p} \exp \left(C\left(m, \kappa D^{2}\right) \cdot \sqrt{-\kappa D^{2}}\right) .
$$

Tachibana-type Theorems

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Suppose (M, g) is Einstein. Then

$$
\Delta \frac{1}{2}|\operatorname{Rm}|^{2}=|\nabla \mathrm{Rm}|^{2}+\frac{1}{2} g(\operatorname{Ric}(\mathrm{Rm}), \mathrm{Rm})
$$

where

$$
g(\operatorname{Ric}(\mathrm{Rm}), \mathrm{Rm})=\sum_{\Xi_{\alpha} \in \mathfrak{s o}(n)} \lambda_{\alpha}\left|\bar{\Xi}_{\alpha} \mathrm{Rm}\right|^{2}
$$

(1) Tachibana, 1974:

If $\lambda_{1} \geq 0$, then $\nabla \mathrm{Rm}=0$.
If $\lambda_{1}>0$ then (M, g) has constant sectional curvature.
(2) Brendle, 2010:

If (M, g) has nonnegative isotropic curvature, then $\nabla \mathrm{Rm}=0$.
If (M, g) has positive isotropic curvature, then (M, g) has constant sectional curvature.

Tachibana-type Theorems

Theorem (Petersen-W, 2019)

Let $\left(M^{n}, g\right)$ be a closed, connected Einstein manifold. If

$$
\lambda_{1}+\ldots+\lambda_{\left\lfloor\frac{n-1}{2}\right\rfloor} \geq 0 \text { for } n \geq 5,
$$

then the curvature tensor is parallel. Moreover, if the inequality is strict, then (M, g) has constant sectional curvature.

In dimension $n=4$: If $\lambda_{1}+\lambda_{2} \geq 0$, then the theorem follows from work of Ni-Wu, Böhm-Wilking

Tachibana-type Theorems

Theorem (Petersen-W, 2020)

Suppose that (M, g) is a compact connected Kähler-Einstein manifold of complex dimension $m \geq 4$. If

$$
\mu_{1}+\ldots+\mu_{\left\lfloor\frac{m+1}{2}\right\rfloor}+\frac{1+(-1)^{m}}{4} \cdot \mu_{\left\lfloor\frac{m+1}{2}\right\rfloor+1} \geq 0
$$

then the curvature tensor is parallel.
If the inequality is strict, then (M, g) has constant holomorphic sectional curvature.

Tachibana-type theorems for Kähler manifolds with ...
... nonnegative bisectional curvature: Mori, Siu-Yau, Mok
... nonnegative orthogonal bisectional curvature: Chen, Gu-Zhang

