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The Bochner Technique

Let (Mn, g) be a compact, connected, oriented Riemannian manifold.

A 1-form ω ∈ Ω1(M) satisfies the Bochner formula

∆ω = (dd∗ + d∗d)ω = ∇∗∇ω + Ric(ω#, ·)

If ω harmonic, ∆ω = 0, then

∆
1

2
|ω|2 = |∇ω|2 + Ric(ω#, ω#)

Bochner, 1948: Suppose ω harmonic.
If Ric ≥ 0, then ∇ω = 0.
If Ric > 0, then ω = 0. Hence, by Hodge theory, b1(M) = 0.
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The Bochner Technique: p-forms

Bochner Formula for p-forms

∆ω = ∇∗∇ω + Ric(ω)

where

Ric(ω)(X1, . . . ,Xp) =
k∑

i=1

n∑
j=1

(R(Xi , ej)ω)(X1, . . . , ej , . . . ,Xp)

If ω harmonic, then

∆
1

2
|ω|2 = |∇ω|2 + g(Ric(ω), ω)
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The Bochner Technique: p-forms

Bochner Formula for p-forms

∆ω = ∇∗∇ω + Ric(ω)

where

Ric(ω)(X1, . . . ,Xp) =
k∑

i=1

n∑
j=1

(R(Xi , ej)ω)(X1, . . . , ej , . . . ,Xk)

Basic observation: R(X ,Y ) ∈ so(TM) ∼= Λ2TM
Curvature operator:

R : Λ2TM →Λ2TM

g(R(X ∧ Y ),Z ∧W ) = Rm(X ,Y ,Z ,W )
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The Bochner Technique: p-forms

Let λ1 ≤ . . . ≤ λ(n2)
denote the eigenvalues of the curvature operator R

and let {Ξα} be an orthonormal eigenbasis

Ric(ω)(X1, . . . ,Xp) =
k∑

i=1

n∑
j=1

(R(Xi , ej)ω)(X1, . . . , ej , . . . ,Xk)

Proposition (Poor, 1980)

g(Ric(ω), ω) =
∑
α

λα|Ξαω|2

where

(Ξω)(X1, . . . ,Xp) = −
p∑

k=1

ω(X1, . . . ,ΞXk , . . . ,Xp).
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The Bochner Technique: p-forms

Curvature term in Bochner formula ∆ 1
2 |ω|

2 = |∇ω|2 + g(Ric(ω), ω)

g(Ric(ω), ω) =
∑
α

λα|Ξαω|2

Consequences: Suppose ω is harmonic.

1 D. Meyer, 1971: If λα > 0, then ω = 0, hence bp(M) = 0 for p 6= 0, n

2 Gallot-Meyer, 1975: If λα ≥ 0, then ω is parallel

3 Gallot, 1981: If λα ≥ κ, (κ ≤ 0), diam(M) ≤ D, then

bp(M) ≤
(
n

p

)
exp

(
C
(
n, κD2

)
·
√
−κD2p(n − p)

)
4 Micallef-Wang, 1993:

If M2n has with positive isotropic curvature, then b2(M) = 0
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Ricci flow results

1 Hamilton (1982, 1986), Chen (1991), Böhm-Wilking (2008)
If (M, g) has 2-positive curvature operator, λ1 + λ2 > 0, then M is

diffeomorphic to a space form.

2 Brendle-Schoen (2009)
If M × R2 has positive isotropic curvature, then M is diffeomorphic

to a space form.

3 Brendle (2008)
If M × R has positive isotropic curvature, then M is diffeomorphic

to a space form.

4 Bamler-Cabezas-Rivas-Wilking (2019)
For n ∈ N, D, v0 > 0 there is ε(n,D, v0) > 0 such that if λα ≥ −ε,

Volg (M) ≥ v0, diam(M) ≤ D, then M has a metric with nonnegative
curvature operator
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Vanishing and Estimation Results for Betti numbers

Theorem (Petersen-W, 2019)

Let n ≥ 3 and let (Mn, g) be a compact, connected Riemannian manifold.
Let 1 ≤ p ≤ bn2c, κ ≤ 0 and D > 0. There is C

(
n, κD2

)
> 0 such that if

diamM ≤ D and
λ1 + . . .+ λn−p

n − p
≥ κ,

then

bp(M) ≤
(
n

p

)
exp

(
C
(
n, κD2

)
·
√
−κD2p(n − p)

)
There is ε(n) > 0 such that κD2 ≥ −ε(n) implies bp(M) ≤

(n
p

)
.

Moreover, suppose ω ∈ Ωp is harmonic.

1 If λ1 + . . .+ λn−p ≥ 0, then ω is parallel

2 If λ1 + . . .+ λn−p > 0, then ω = 0 and hence bp(M) = bn−p(M) = 0
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Vanishing and Estimation Results for Betti numbers

Corollary (Petersen-W, 2019)

If λ1 + . . .+ λd n
2
e > 0, then M is a homology sphere

1 The curvature conditions λ1 + . . .+ λn−p ≥ 0 are (typically) not
preserved by the Ricci flow, e.g. λ1 + λ2 + λ3 ≥ 0 is not preserved
(Böhm-Wilking, 2008)

2 Micallef-Moore, 1988:
If M is simply connected and has positive isotropic curvature, then M
is a homotopy sphere

3 {(M, g) | λ1 + . . .+ λn−p > 0} (typically) overlaps with
{(M, g) | positive isotropic curvature} but neither class is contained
in the other

4 Gromov’s bound on the Betti numbers (1981)
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Idea of the proof

Recall:
g(Ric(ω), ω) =

∑
α

λα|Ξαω|2

Key estimates:
|Ξαω|2 ≤ min{p, n − p}|ω|2, |Ξα|2 = 1∑

α

|Ξαω|2 = p(n − p)|ω|2

Idea: Pick normal form for Ξ

Consequence: Let κ ≤ 0.

If
λ1 + . . .+ λn−p

n − p
≥ κ, then g(Ric(ω), ω) ≥ κp(n − p)|ω|2.

The work of P. Li and Gallot implies the estimation theorem.
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Kähler manifolds

Let (M, g) be a compact Kähler manifold of complex dimension m, i.e.
Hol(g) ⊂ U(m).

Riemannian curvature operator

R|u(m) : u(m)→ u(m)

R|u(m)⊥ = 0

In particular, dim kerR ≥ m(m − 1).

If λ1 + . . .+ λ2m−p ≥ 0, then in fact λ1 ≥ 0, i.e. M has nonnegative
curvature operator, and all harmonic forms are parallel due to
Gallot-Meyer’s work.

Let µ1 ≤ . . . ≤ µm2 denote the eigenvalues of the Kähler curvature
operator R|u(m) : u(m)→ u(m).
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Kähler manifolds

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension m ≥ 3.
If µ1 + µ2 +

(
1− 2

m

)
µ3 > 0, then M has the rational cohomology ring

of CPm.

1 Classification of manifolds with nonnegative/positive
... bisectional curvature: Mori, Siu-Yau, Mok
... orthogonal bisectional curvature: Chen, Gu-Zhang

2 Proof relies on estimates for individual Hodge numbers, e.g. if

µ1 + . . .+ µm+1−p > 0,

then hp,p(M) = 1.

3 Vanishing results for holomorphic p-forms, h0,p = 0:
Bochner, Yang, Ni-Zheng
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Kähler manifolds

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension m.
If µ1 + µ2 +

(
1− 2

m

)
µ3 > 0, then M has the rational cohomology ring

of CPm.

4 Reduced holonomy simplifies curvature of Lichnerowicz Laplacian

g(Ric(ϕ), ϕ) =
∑

Ξα∈u(m)

µα|Ξαϕ|2

5 Prove estimates

|Ξαϕ|2 ≤ c(E ) · |ϕ̊|2∑
Ξα∈u(m)

|Ξαϕ|2 = C (E ) · |ϕ̊|2

for ϕ in each U(m)-irreducible module E of Λp,qT ∗M
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Kähler manifolds

Vanishing, Rigidity and Estimation results:

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension m ≥ 3.

1 If µ1 + µ2 +
(
1− 2

m

)
µ3 > 0,

then M has the rational cohomology ring of CPm.

2 If µ1 + µ2 +
(
1− 2

m

)
µ3 ≥ 0,

then all harmonic forms are parallel.

3 Let κ ≤ 0 and D > 0.
If µ1 + µ2 +

(
1− 2

m

)
µ3 ≥ κ and diam(M) < D, then

bp ≤
(

2m

p

)
exp

(
C
(
m, κD2

)
·
√
−κD2

)
.
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Tachibana-type Theorems

Let (Mn, g) be a compact Riemannian manifold. Suppose (M, g) is
Einstein. Then

∆
1

2
|Rm |2 = |∇Rm |2 +

1

2
g(Ric(Rm),Rm)

where
g(Ric(Rm),Rm) =

∑
Ξα∈so(n)

λα|Ξα Rm |2

1 Tachibana, 1974:
If λ1 ≥ 0, then ∇Rm = 0.
If λ1 > 0 then (M, g) has constant sectional curvature.

2 Brendle, 2010:
If (M, g) has nonnegative isotropic curvature, then ∇Rm = 0.
If (M, g) has positive isotropic curvature, then (M, g) has

constant sectional curvature.
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Tachibana-type Theorems

Theorem (Petersen-W, 2019)

Let (Mn, g) be a closed, connected Einstein manifold. If

λ1 + . . .+ λb n−1
2
c ≥ 0 for n ≥ 5,

then the curvature tensor is parallel. Moreover, if the inequality is strict,
then (M, g) has constant sectional curvature.

In dimension n = 4 : If λ1 + λ2 ≥ 0, then the theorem follows from
work of Ni-Wu, Böhm-Wilking
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Tachibana-type Theorems

Theorem (Petersen-W, 2020)

Suppose that (M, g) is a compact connected Kähler-Einstein manifold of
complex dimension m ≥ 4. If

µ1 + . . .+ µbm+1
2
c +

1 + (−1)m

4
· µbm+1

2
c+1 ≥ 0,

then the curvature tensor is parallel.
If the inequality is strict, then (M, g) has constant holomorphic

sectional curvature.

Tachibana-type theorems for Kähler manifolds with ...
... nonnegative bisectional curvature: Mori, Siu-Yau, Mok
... nonnegative orthogonal bisectional curvature: Chen, Gu-Zhang
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