Vanishing and Estimation Results for Betti numbers

Matthias Wink

University of California, Los Angeles

September 30, 2020

Geometry and Topology Seminar, University of Oregon

This talk is based on joint work with Peter Petersen

The Bochner Technique

Let (M^n, g) be a compact, connected, oriented Riemannian manifold.

A 1-form $\omega \in \Omega^1(M)$ satisfies the Bochner formula

$$\Delta \omega = (dd^* + d^*d)\omega = \nabla^* \nabla \omega + \operatorname{Ric}(\omega^{\#}, \cdot)$$

If ω harmonic, $\Delta \omega = 0$, then

$$\Delta \frac{1}{2} |\omega|^2 = |\nabla \omega|^2 + \operatorname{Ric}(\omega^{\#}, \omega^{\#})$$

Bochner, 1948: Suppose ω harmonic. If Ric ≥ 0 , then $\nabla \omega = 0$. If Ric > 0, then $\omega = 0$. Hence, by Hodge theory, $b_1(M) = 0$.

Bochner Formula for *p*-forms

$$\Delta \omega =
abla^*
abla \omega + \mathsf{Ric}(\omega)$$

where

$$\operatorname{Ric}(\omega)(X_1,\ldots,X_p) = \sum_{i=1}^k \sum_{j=1}^n (R(X_i,e_j)\omega)(X_1,\ldots,e_j,\ldots,X_p)$$

If ω harmonic, then

$$\Delta \frac{1}{2} |\omega|^2 = |\nabla \omega|^2 + g(\operatorname{Ric}(\omega), \omega)$$

Bochner Formula for *p*-forms

$$\Delta \omega = \nabla^* \nabla \omega + \mathsf{Ric}(\omega)$$

where

$$\operatorname{Ric}(\omega)(X_1,\ldots,X_p) = \sum_{i=1}^k \sum_{j=1}^n (R(X_i,e_j)\omega)(X_1,\ldots,e_j,\ldots,X_k)$$

Basic observation: $R(X, Y) \in \mathfrak{so}(TM) \cong \Lambda^2 TM$ Curvature operator:

$$\mathfrak{R} \colon \Lambda^2 TM \to \Lambda^2 TM$$
$$g(\mathfrak{R}(X \land Y), Z \land W) = \operatorname{Rm}(X, Y, Z, W)$$

Let $\lambda_1 \leq \ldots \leq \lambda_{\binom{n}{2}}$ denote the eigenvalues of the curvature operator \Re and let $\{\Xi_{\alpha}\}$ be an orthonormal eigenbasis

$$\operatorname{Ric}(\omega)(X_1,\ldots,X_p) = \sum_{i=1}^k \sum_{j=1}^n (R(X_i,e_j)\omega)(X_1,\ldots,e_j,\ldots,X_k)$$

Proposition (Poor, 1980)

$$g(\mathsf{Ric}(\omega),\omega) = \sum_{lpha} \lambda_{lpha} |\Xi_{lpha} \omega|^2$$

where

$$(\Xi\omega)(X_1,\ldots,X_p)=-\sum_{k=1}^p\omega(X_1,\ldots,\Xi X_k,\ldots,X_p).$$

Curvature term in Bochner formula $\Delta \frac{1}{2} |\omega|^2 = |\nabla \omega|^2 + g(\operatorname{Ric}(\omega), \omega)$

$$g(\mathsf{Ric}(\omega),\omega) = \sum_{lpha} \lambda_{lpha} |\Xi_{lpha} \omega|^2$$

Consequences: Suppose ω is harmonic.

- **(**) D. Meyer, 1971: If $\lambda_{\alpha} > 0$, then $\omega = 0$, hence $b_{p}(M) = 0$ for $p \neq 0, n$
- **2** Gallot-Meyer, 1975: If $\lambda_{\alpha} \geq 0$, then ω is parallel
- **3** Gallot, 1981: If $\lambda_{\alpha} \geq \kappa$, $(\kappa \leq 0)$, diam $(M) \leq D$, then

$$b_{p}(M) \leq \binom{n}{p} \exp\left(C\left(n, \kappa D^{2}\right) \cdot \sqrt{-\kappa D^{2}p(n-p)}\right)$$

Micallef-Wang, 1993: If M²ⁿ has with positive isotropic curvature, then b₂(M) = 0

Ricci flow results

- Hamilton (1982, 1986), Chen (1991), Böhm-Wilking (2008)
 If (M, g) has 2-positive curvature operator, λ₁ + λ₂ > 0, then M is diffeomorphic to a space form.
- Brendle-Schoen (2009)

If $M \times \mathbb{R}^2$ has positive isotropic curvature, then M is diffeomorphic to a space form.

Is Brendle (2008)

If $M \times \mathbb{R}$ has positive isotropic curvature, then M is diffeomorphic to a space form.

 Bamler-Cabezas-Rivas-Wilking (2019) For n ∈ N, D, v₀ > 0 there is ε(n, D, v₀) > 0 such that if λ_α ≥ -ε, Vol_g(M) ≥ v₀, diam(M) ≤ D, then M has a metric with nonnegative curvature operator

э

Theorem (Petersen-W, 2019)

Let $n \ge 3$ and let (M^n, g) be a compact, connected Riemannian manifold. Let $1 \le p \le \lfloor \frac{n}{2} \rfloor$, $\kappa \le 0$ and D > 0. There is $C(n, \kappa D^2) > 0$ such that if

diam
$$M \leq D$$
 and $rac{\lambda_1 + \ldots + \lambda_{n-p}}{n-p} \geq \kappa,$

then

$$b_p(M) \leq \binom{n}{p} \exp\left(C\left(n, \kappa D^2\right) \cdot \sqrt{-\kappa D^2 p(n-p)}\right)$$

There is $\varepsilon(n) > 0$ such that $\kappa D^2 \ge -\varepsilon(n)$ implies $b_p(M) \le {n \choose p}$. Moreover, suppose $\omega \in \Omega^p$ is harmonic.

Vanishing and Estimation Results for Betti numbers

Corollary (Petersen-W, 2019)

If $\lambda_1 + \ldots + \lambda_{\lceil \frac{n}{2} \rceil} > 0$, then M is a homology sphere

- The curvature conditions \(\lambda_1 + ... + \lambda_{n-p} \ge 0\) are (typically) not preserved by the Ricci flow, e.g. \(\lambda_1 + \lambda_2 + \lambda_3 \ge 0\) is not preserved (B\"ohm-Wilking, 2008)
- Micallef-Moore, 1988:
 If *M* is simply connected and has positive isotropic curvature, then *M* is a homotopy sphere
- {(M,g) | λ₁ + ... + λ_{n-p} > 0} (typically) overlaps with
 {(M,g) | positive isotropic curvature} but neither class is contained in the other
- Gromov's bound on the Betti numbers (1981)

*日本 *日本 *日本

Idea of the proof

Recall:

$$g(\mathsf{Ric}(\omega),\omega) = \sum_{lpha} \lambda_{lpha} |\Xi_{lpha} \omega|^2$$

Key estimates:

$$egin{aligned} |\Xi_lpha \omega|^2 &\leq \min\{p,n-p\}|\omega|^2, \ \ |\Xi_lpha|^2 = 1 \ &\sum_lpha |\Xi_lpha \omega|^2 = p(n-p)|\omega|^2 \end{aligned}$$

Idea: Pick normal form for Ξ

Consequence: Let $\kappa \leq 0$.

$$\text{If} \quad \frac{\lambda_1+\ldots+\lambda_{n-p}}{n-p} \geq \kappa, \ \, \text{then} \ \, g(\operatorname{Ric}(\omega),\omega) \geq \kappa p(n-p)|\omega|^2.$$

The work of P. Li and Gallot implies the estimation theorem.

Matthias Wink (UCLA)

Let (M, g) be a compact Kähler manifold of complex dimension m, i.e. $Hol(g) \subset U(m)$.

Riemannian curvature operator

$$\mathfrak{R}_{|\mathfrak{u}(m)} \colon \mathfrak{u}(m)
ightarrow \mathfrak{u}(m)$$

 $\mathfrak{R}_{|\mathfrak{u}(m)^{\perp}} = 0$

In particular, dim ker $\mathfrak{R} \geq m(m-1)$.

If $\lambda_1 + \ldots + \lambda_{2m-p} \ge 0$, then in fact $\lambda_1 \ge 0$, i.e. *M* has nonnegative curvature operator, and all harmonic forms are parallel due to Gallot-Meyer's work.

Let $\mu_1 \leq \ldots \leq \mu_{m^2}$ denote the eigenvalues of the Kähler curvature operator $\mathfrak{R}_{|\mathfrak{u}(m)} \colon \mathfrak{u}(m) \to \mathfrak{u}(m)$.

э

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension $m \ge 3$. If $\mu_1 + \mu_2 + (1 - \frac{2}{m}) \mu_3 > 0$, then M has the rational cohomology ring of \mathbb{CP}^m .

Classification of manifolds with nonnegative/positive
 ... bisectional curvature: Mori, Siu-Yau, Mok
 ... orthogonal bisectional curvature: Chen, Gu-Zhang

Proof relies on estimates for individual Hodge numbers, e.g. if

$$\mu_1+\ldots+\mu_{m+1-p}>0,$$

then $h^{p,p}(M) = 1$.

 Vanishing results for holomorphic *p*-forms, h^{0,p} = 0: Bochner, Yang, Ni-Zheng

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension m. If $\mu_1 + \mu_2 + (1 - \frac{2}{m}) \mu_3 > 0$, then M has the rational cohomology ring of \mathbb{CP}^m .

Reduced holonomy simplifies curvature of Lichnerowicz Laplacian

$$g(\operatorname{Ric}(\varphi), \overline{\varphi}) = \sum_{\Xi_{\alpha} \in \mathfrak{u}(m)} \mu_{\alpha} |\Xi_{\alpha} \varphi|^2$$

Prove estimates

$$ert \Xi_lpha arphi ert^2 \leq c(E) \cdot ert \dot{arphi} ert^2$$
 $\sum_{\Xi_lpha \in \mathfrak{u}(m)} ert \Xi_lpha arphi ert^2 = C(E) \cdot ert \dot{arphi} ert^2$

for φ in each U(m)-irreducible module E of $\Lambda^{p,q}T^*M$

Kähler manifolds

Vanishing, Rigidity and Estimation results:

Theorem (Petersen-W, 2020)

Let (M, g) be a compact Kähler manifold of complex dimension $m \ge 3$.

• If
$$\mu_1 + \mu_2 + (1 - \frac{2}{m}) \mu_3 > 0$$
,
then *M* has the rational cohomology ring of \mathbb{CP}^m .

2 If
$$\mu_1 + \mu_2 + (1 - \frac{2}{m}) \mu_3 \ge 0$$
,
then all harmonic forms are parallel.

• Let
$$\kappa \leq 0$$
 and $D > 0$.
If $\mu_1 + \mu_2 + \left(1 - \frac{2}{m}\right)\mu_3 \geq \kappa$ and diam $(M) < D$, then
 $b_p \leq \binom{2m}{p} \exp\left(C\left(m, \kappa D^2\right) \cdot \sqrt{-\kappa D^2}\right)$

э

Tachibana-type Theorems

Let (M^n, g) be a compact Riemannian manifold. Suppose (M, g) is Einstein. Then

$$\Delta \frac{1}{2} |\operatorname{\mathsf{Rm}}|^2 = |\nabla \operatorname{\mathsf{Rm}}|^2 + \frac{1}{2}g(\operatorname{\mathsf{Ric}}(\operatorname{\mathsf{Rm}}),\operatorname{\mathsf{Rm}})$$

where

$$g(\mathsf{Ric}(\mathsf{Rm}),\mathsf{Rm}) = \sum_{\Xi_lpha \in \mathfrak{so}(n)} \lambda_lpha |\Xi_lpha \operatorname{Rm}|^2$$

Tachibana, 1974: If λ₁ ≥ 0, then ∇ Rm = 0. If λ₁ > 0 then (M, g) has constant sectional curvature.
Brendle, 2010: If (M, g) has nonnegative isotropic curvature, then ∇ Rm = 0. If (M, g) has positive isotropic curvature, then (M, g) has constant sectional curvature.

Theorem (Petersen-W, 2019)

Let (M^n, g) be a closed, connected Einstein manifold. If

$$\lambda_1 + \ldots + \lambda_{\lfloor \frac{n-1}{2} \rfloor} \ge 0$$
 for $n \ge 5$,

then the curvature tensor is parallel. Moreover, if the inequality is strict, then (M, g) has constant sectional curvature.

In dimension n = 4: If $\lambda_1 + \lambda_2 \ge 0$, then the theorem follows from work of Ni-Wu, Böhm-Wilking

Theorem (Petersen-W, 2020)

Suppose that (M, g) is a compact connected Kähler-Einstein manifold of complex dimension $m \ge 4$. If

$$\mu_1+\ldots+\mu_{\lfloor rac{m+1}{2}
floor}+rac{1+(-1)^m}{4}\cdot\mu_{\lfloor rac{m+1}{2}
floor+1}\geq 0,$$

then the curvature tensor is parallel.

If the inequality is strict, then (M,g) has constant holomorphic sectional curvature.

Tachibana-type theorems for Kähler manifolds with ...

- ... nonnegative bisectional curvature: Mori, Siu-Yau, Mok
- ... nonnegative orthogonal bisectional curvature: Chen, Gu-Zhang