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a homomorphism of abelian groups, the cokernel of h is the quotient group
B/h(A). A sequence of groups and homomorphisms such as

h h,
An ) An+1 > ot

' ) An—l _
is called exact if the kernel of each homomorphism is precisely the same as
the image of the preceding homomorphism. Such exact sequences play a big
role from Chapter VII on.



CHAPTER 1

Two-Dimensional Manifolds

§1. Introduction

The topological concept of a surface or 2-dimensional manifold is a mathe-
matical abstraction of the familiar concept of a surface made of paper, sheet
metal, plastic, or some other thin material. A surface or 2-dimensional mani-
fold is a topological space with the same local properties as the familiar plane
of Euclidean geometry. An intelligent bug crawling on a surface could not
distinguish it from a plane if he had a limited range of visibility.

The natural, higher-dimensional analog of a surface is an n-dimensional
manifold, which is a topological space with the same local properties as
Euclidean n-space. Because they occur frequently and have application in
many other branches of mathematics, manifolds are certainly one of the most
important classes of topological spaces. Although we define and give some
examples of n-dimensional manifolds for any positive integer n, we devote
most of this chapter to the case n = 2. Because there is a classification theorem
for compact 2-manifolds, our knowledge of 2-dimensional manifolds is in-
comparably more complete than our knowledge of the higher-dimensional
cases. This classification theorem gives a simple procedure for obtaining all
possible compact 2-manifolds. Moreover, there are simple computable in-
variants which enable us to decide whether or not any two compact 2-
manifolds are homeomorphic. This may be considered an ideal theorem.
Much research in topology has been directed toward the development of
analogous classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown that
we cannot even hope for such a complete result for n-manifolds, n = 4.
Nevertheless, the theory of higher-dimensional manifolds is currently a very
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active field of mathematical research and will probably continue to be so for
a long time to come.
We shall use the material developed in this chapter later in the book.

§2. Definition and Examples of n-Manifolds

Assume n is a positive integer. An n-dimensional manifold is a Hausdorff space
(e, a space that satisfies the T, separation axiom) such that each point has
an open neighborhood homeomorphic to the open n-dimensional disc U”
(= {x e R":|x| < 1}). Usually we shall say “n-manifold” for short.

Examples

2.1. Euclidean n-space R" is obviously an n-dimensional manifold. We can
casily prove that the unit n-dimensional sphere

S"={xeR":|x| =1}

is an n-manifold. For the point x =(1,0,...,0), the set {(x,..., X,4,) €
§":x; >0} is a neighborhood with the required properties, as we see by
orthogonal projection on the hyperplane in R"*! defined by x, = 0. For any
other point x € S there is a rotation carrying x into the point (1,0, ..., 0).
Such a rotation is a homeomorphism of S” onto itself; hence, x also has the
required kind of neighborhood.

2.2. If M" is any n-dimensional manifold, then any open subset of M" is
also an n-dimensional manifold. The proof is immediate.

2.3. If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M x N is an (m + n)-dimensional manifold. This
follows from the fact that U™ x U" is homeomorphic to U™*". To prove this,
note that, for any positive integer k, U* is homeomorphic to R%, and R™ x R"
is homeomorphic to R™*",

In addition to the 2-sphere S, the reader can easily give examples of many
other subsets of Euclidean 3-space R3, which are 2-manifolds, e.g., surfaces of
revolution, etc.

As these examples show, an n-manifold may be either connected or dis-
connected, compact or noncompact. In any case, an n-manifold is always
locally compact.

What is not so obvious is that a connected manifold need not satisfy the
second axiom of countability (i.e., it need not have a countable base). The
simplest example is the “long line.”! Such manifolds are usually regarded as
pathological, and we shall restrict our attention to manifolds with a countable
base.

! See General Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955, Exercise L, p. 164.
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Note that in our definition we required that a manifold satisfy the Hausdorfl
separation axiom. We must make this requirement explicit in the definition
because it is not a consequence of the other conditions imposed on a manifold.
We leave it to the reader to construct examples of non-Hausdorff spaces, such
that each point has an open neighborhood homeomorphic to U" for n =1
or2.

§3. Orientable vs. Nonorientable Manifolds

Connected n-manifolds for n > 1 are divided into two kinds: orientable and
nonorientable. We will try to make the distinction clear without striving for
mathematical precision.

Consider the case where n = 2. We can prescribe in various ways an
orientation for the Euclidean plane R? or, more generally, for a small region
in the plane. For example, we could designate which of the two possible kinds
of coordinate systems in the plane is to be considered a right-handed coordi-
nate system and which is to be considered a left-handed coordinate system.
Another way would be to prescribe which direction of rotation in the plane
about a point is to be considered the positive direction and which is to be
considered the negative direction. Let us imagine an intelligent bug or some
2-dimensional being constrained to move in the plane; once he decides on a
choice of orientation at any point in the plane, he can carry this choice with
him as he moves about. If two such bugs agree on an orientation at a given
point in the plane, and one of them travels on a long trip to some distant point
in the plane and eventually returns to his starting point, both bugs will still
agree on their choice of orientation.

Similar considerations apply to any connected 2-dimensional manifold
because each point has a neighborhood homeomorphic to a neighborhood of
a point in the plane. Here our two hypothetical bugs agree on a choice of
orientation at a given point. It is possible, however, that after one of them
returns from a long trip to some distant point on the manifold, they may find
they are no longer in agreement. This phenomenon can occur even though
both were meticulously careful about keeping an accurate check of the positive
orientation.

The simplest example of a 2-dimensional manifold exhibiting this phe-
nomenon is the well-known Mobius strip. As the reader probably knows, we
construct a model of a Mébius strip by taking a long, narrow rectangular strip
of paper and gluing the ends together with a half twist (see Figure 1.1).
Mathematically, a Mobius strip is a topological space that is described as
follows. Let X denote the following rectangle in the plane:

X={xpeR:—-10=x< +10, -1 <y< +1}.

We then form a quotient space of X by identifying the points (10, y) and
(=10, —y) for —1 < y < +1. Note that the two boundaries of the rectangle
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Glue edge ABC to A’B’C’

A

FIGURE 1.1. Constructing a Mébius strip.

correspondingto y = +1 and y = — 1 were omitted. This omission is crucial;
otherwise the result would not be a manifold (it would be a “manifold with
boundary,” a concept we will take up later in Chapter XIV). Alternatively, we
could specify a certain subset of R* which is homeomorphic to the quotient
space just described.

However, we define the Mébius strip, the center line of the rectangular strip
becomes a circle after the gluing or identification of the two ends. We leave it
to the reader to verify that if our imaginary bug started out at any point on
this circle with a definite choice of orientation and carried this orientation
with him around the circle once, he would come back to his initial point with
his original orientation reversed. We will call such a path in a manifold an
orientation-reversing path. A closed path that does not have this property will
be called an orientation-preserving path. For example, any closed path in the
plane is orientation preserving.

A connected 2-manifold is defined to be orientable if every closed path is
orientation preserving; a connected 2-manifold is nonorientable if there is at
least one orientation-reversing path.

We now consider the orientability of 3-manifolds. We can specify an
orientation of Euclidean 3-space or a small region thereof by designating
which type of coordinate system is to be considered right handed and which
type is to be considered left handed. An alternative method would be to specify
which type of helix or screw thread is to be designated as right handed and
which kind is to be left handed. We can now describe a closed path in a
3-manifold as orientation preserving or orientation reversing, depending on
whether or not a traveler who traverses the path comes back to his initial
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point with his initial choice of right and left unchanged. If our universe were
nonorientable, then an astronaut who made a journey along some orientation-
reversing path would return to earth with the right and left sides of his body
interchanged: His heart would not be on the right side of his chest, etc.

There is a 3-dimensional generalization of the Mobius strip which furnishes
a particularly simple example of a nonorientable 3-manifold. Let

X={(x,2eR*: -10<x<+10, -l <y< +1, -l <z< +1}.

Form a quotient space of X by identifying the points (10, y, z) and (— 10, —y, z)
for —1 <y < +1and —1 < z < + 1. This space may also be considered the
product of an ordinary 2-dimensional Mébius strip with the open interval
{zeR: —1 <z < +1}. In any case, the segment —10 < x < +10 of the x
axis becomes a circle under the identification, and we leave it to the reader to
convince himself that this circle is an orientation-reversing path in the resulting
3-manifold.

We will consider the analogous definitions for higher-dimensional mani-
folds in later chapters.

§4. Examples of Compact, Connected 2-Manifolds

To save words, from now on we shall refer to a connected 2-manifold as a
surface. The simplest example of a compact surface is the 2-sphere §?; another
important example is the torus. A torus may be roughly described as any
surface homeomorphic to the surface of a doughnut or of a solid ring. It may
be defined more precisely as

(a) Any topological space homeomorphic to the product of two circles,
St x St
(b) Any topological space homeomorphic to the following subset of R3:
{(x,y,2) eR*: [(x* + y?)2 = 21* + 22 = 1}.

[This is the set obtained by rotating the circle (x — 2)> + z2 = 1 in the xz
plane about the z axis.]
(¢) Let X denote the unit square in the plane RZ:

{(x,y)eR*:0=x<1,0=y < 1}.

Then, a torus is any space homeomorphic to the quotient space of X
obtained by identifying opposite sides of the square X according to the
following rules. The points (0, y) and (1, y) are to be identified for0 < y < 1,
and the points (x, 0) and (x, 1) are to be identified for 0 < x < 1.

We will find it convenient to indicate symbolically how such identifications
are to be made by a diagram such as Figure 1.2. Sides that are to be identified
are labeled with the same letter of the alphabet, and the identifications should
be made so that the directions indicated by the arrows agree.
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a

FIGURE 1.2. Construction of a torus.

We leave it to the reader to prove that the topological spaces described in
(a), (b), and (c) are actually homeomorphic. The reader should also convince
himself that a torus is orientable.

Our next example of a compact surface is the real projective plane (referred
to as the projective plane for short). It is a compact, nonorientable surface.
Because it is not homeomorphic to any subset of Euclidean 3-space, the
projective plane is much more difficult to visualize than the 2-sphere or the
torus.

Definition. The quotient space of the 2-sphere S2 obtained by identifying
every pair of diametrically opposite points is called a projective plane. We shall
also refer to any space homeomorphic to this quotient space as a projective
plane.

For readers who have studied projective geometry, we shall explain why
this surface is called the real projective plane. Such a reader will recall that,
in the study of projective plane geometry, a point has “homogeneous” coordi-
nates (xo, X,, X,), where x,, x,, and x, are real numbers, at least one of which
is # 0. The term “homogeneous” means (X, x;, X,) and (xj, X, X}) represent
the same point if and only if there exists a real number A (of necessity # 0)
such that

X, =Ax], i=012

If we interpret (xo, X,, X,) as the ordinary Euclidean coordinates of a point
in R3, then we see that (x,, x,, x,) and (xp, X}, x5) represent the same point
in the projective plane if and only if they are on the same line through the
origin. Thus, we may reinterpret a point of the projective plane as a line
through the origin in R3. The next question is, how shall we topologize the
set of all lines through the origin in R3? Perhaps th easiest way is to note that
each line through the origin in R? intersects the unit sphere $2 in a pair of
diametrically opposite points. This leads to the above definition.

Let H = {(x, y, z) € §? : z 2 0} denote the closed upper hemisphere of S2.
It is clear that, of each diametrically opposite pair of points in S2, at least one
point lies in H. If both points lie in H, then they are on the equator, which is
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FIGURE 1.3. Construction of a projective plane from a square.

the boundary of H. Thus, we could also define the projective plane as the
quotient space of H obtained by identifying diametrically opposite points on
the boundary of H. As H is obviously homeomorphic to the closed unit disc
E? in the plane,

E*={(x,y)eR*:x* +y? < 1},

the quotient space of E2 obtained by identifying diametrically opposite points
on the boundary is a projective plane. For E? we could substitute any homeo-
morphic space, e.g, a square. Thus, a projective plane is obtained by identi-
fying the opposite sides of a square as indicated in Figure 1.3. The reader
should compare this with the construction of a torus in Figure 1.2.

The projective plane is easily seen to be nonorientable; in fact, it contains
a subset homeomorphic to a Mdbius strip.

We shall now describe how to give many additional examples of compact
surfaces by forming what are called connected sums. Let §; and S, be disjoint
surfaces. Their connected sum, denoted by S, # S, is formed by cutting a small
circular hole in each surface, and then gluing the two surfaces together along
the boundaries of the holes. To be precise, we choose subsets D, = §; and
D, = S, such that D, and D, are closed discs (i.c., homeomorphic to E2). Let
S; denote the complement of the interior of D; in §; for i = 1 and 2. Choose a
homeomorphism h of the boundary circle of D, onto the boundary of D,.
Then S, # S, is the quotient space of S U S, obtained by identifying the
points x and h(x) for all points x in the boundary of D,. It is clear that S, #8§,
is a surface. It seems plausible, and can be proved rigorously, that the topologi-
cal type of S, # S, does not depend on the choice of the discs D, and D, or
the choice of the homeomorphism h.

Examples

4.1. If S, is a 2-sphere, then S, # S, is homeomorphic to ;.

4.2. If S, and S, are both tori, then §; # S, is homeomorphic to the surface
of a block that has two holes drilled through it. (It is assumed, of course, that
the holes are not so close together that their boundaries touch or intersect.)

4.3. If S, and S, are projective planes, then S* # 52 is a “Klein bottle,” i.e.,
homeomorphic to the surface obtained by identifying the opposite sides of a
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a

FIGURE 1.4. Construction of a Klein bottle from a square.

(b)

(a)

FiGURE 1.5. The Klein bottle is the union of two Mobius strips.

square as shown in Figure 1.4. We may prove this by the “cut and paste”
technique, as follows. If S, is a projective plane and D; is a closed disc such
that D, = §;, then S, the complement of the interior of D;, is homeomorphic
to a Mobius strip (including the boundary). In fact, if we think of S; as the
space obtained by identification of the diametrically opposite points on the
boundary of the unit disc E? in R?, then we can choose D; to be the image of
the set {(x,y) € E*:|y| =2 4} under the identification, and the truth of the
assertion is clear. From this it follows that S, # S, is obtained by gluing
together two Mobius strips along their boundaries. On the other hand, Figure
1.5 shows how to cut a Klein bottle so as to obtain two Mobius strips. We
cut along the lines AB’ and BA’; under the identification, this cut becomes a
circle.

We will now consider some properties of this operation of forming connected
sums.

It is clear from our definitions that there is no distinction between S, # S,
and S, # §,; i.e,, the operation is commutative. It is not difficult to see that
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the manifolds (S, # S,) # S5 and S, # (S, # S3) are homeomorphic. Thus,
we see that the connected sum is a commutative, associative operation on the
set of homeomorphism types of compact surfaces. Moreover, Example 4.1
shows the sphere is a unit or neutral element for this operation. We must not
jump to the conclusion that the set of homeomorphism classes of compact
surfaces forms a group under this operation: There are no inverses. It only
forms what is called a semigroup.

The connected sum of two orientable manifolds is again orientable. On the
other hand, if either S, or §, is nonorientable, then so is §; # §,.

§5. Statement of the Classification Theorem
for Compact Surfaces

In the preceding section we have seen how examples of compact surfaces can
be constructed by forming connected sums of various numbers of tori and/or
projective planes. Our main theorem asserts that these examples exhaust all
the possibilities. In fact, it is even a slightly stronger statement, in that we do
not need to consider surfaces that are connected sums of both tori and
projective planes.

Theorem 5.1. Any compact surface is either homeomorphic to a sphere, or to a
connected sum of tori, or to a connected sum of projective planes.

As preparation for the proof, we shall describe what might be called a
“canonical form” for a connected sum of tori or projective planes.

Recall our description of a torus as a square with the opposite sides
identified (see Figure 1.2). We can obtain an analogous description of the
connected sum of two tori as follows. Represent each of the tori T; and T, as
a square with opposite sides identified as shown in Figure 1.6(a). Note that
all four vertices of each square are identified to a single point of the corre-
sponding torus. To form their connected sum, we must first cut out a circular
hole in each torus, and we can do this in any way that we wish. It is convenient
to cut out the regions shaded in the diagrams. The boundaries of the holes
are labeled ¢, and c,, and they are to be identified as indicated by the arrows.
We can also represent the complement of the holes in the two tori by the
pentagons shown in Figure 1.6(b), because the indicated edge identifications
imply that the two end points of the segment ¢; are to be identified, i = 1, 2.
We now identify the segments ¢, and c,; the result is the octagon in Figure
1.6(c), in which the sides are to be identified in pairs, as indicated. Note that
all eight vertices of this octagon are to be identified to a single pointin T; # T,.

This octagon with the edges identified in pairs is our desired “canonical
form” for the connected sum of two tori. By repeating this process, we can
show that the connected sum of three tori is the quotient space of the 12-gon
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FIGURE 1.6. (a) Two disjoint tori, T, and T,. (b} Disjoint tori with holes cut out.
(c) After gluing together.

shown in Figure 1.7, where the edges are to be identified in pairs as indicated.
It should now be clear how to prove by induction that the connected sum of
n tori is homeomorphic to the quotient space of a 4n-gon whose edges are to
be identified in pairs according to a scheme, the precise description of which
is left to the reader.

Next, we must consider the analogous procedure for the connected sum of
projective planes. We have considered the projective plane as the quotient
space of a circular disc; diametrically opposite points on the boundary are to
be identified. By choosing a pair of diametrically opposite points on the
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FIGURE 1.7. The connected sum of three tori is obtained by identifying the edges of a
12-gon in pairs as shown.

a

FiGURE 1.8. The projective plane is obtained by identifying opposite edges of a 2-gon.

boundary as vertices, the circumference of the disc is divided into two seg-
ments. Thus, we can regard the projective plane as obtained from a 2-gon by
identification of the two edges; see Figure 1.8.

Figure 1.9 shows how to obtain a representation of the connected sum of
two projective planes as a square with the edges identified in pairs. The method
is basically the same as that used to obtain a representation of the connected
sum of two tori as a quotient space of an octagon (Figure 1.6). By repeating
this process, we see that the connected sum of three projective planes is the
quotient space of a hexagon with the sides identified in pairs as indicated in
Figure 1.10. By a rather obvious induction, we can prove that, for any positive
integer n, the connected sum of n projective planes is the quotient space of a
2n-gon with the sides identified in pairs according to a certain scheme. Note
that all the vertices of this polygon are identified to one point.

It remains to represent the sphere as the quotient space of a polygon with
the sides identified in pairs. We can do this as shown in Figure 1.11. We can
think of a sphere with a zipper on it, like a purse; when the zipper is opened,
the purse can be flattened out.
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FIGURE 1.9. (a) Two disjoint projective planes, P, and P,. (b) Disjoint projective planes
with holes cut out. (c) After gluing together.

FiGure 1.10. Construction of the connected sum of three projective planes by identi-
fying the sides of a hexagon in pairs.
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a

FIGURE 1.11. The sphere is a quotient space of a 2-gon with edges identified as shown.

Thus, we have shown how each of the compact surfaces mentioned in
Theorem 5.1 can be considered as the quotient space of a polygon with the
edges identified in pairs. We now introduce a rather obvious and convenient
method of indicating precisely which paired edges are to be identified in such
a polygon. Consider the diagram which indicates how the edges are identified;
starting at a definite vertex, proceed around the boundary of the polygon,
recording the letters assigned to the different sides in succession. If the arrow
on a side points in the same direction that we are going around the boundary,
then we write the letter for that side with no exponent (or the exponent + 1).
On the other hand, if the arrow points in the opposite direction, then we write
the letter for that side with the exponent — 1. For example, in Figures 1.7 and
1.10 the identifications are precisely indicated by the symbols

a,b,a;*bila,bya;tby asbyaz byt and  a,a,a,a,a;a;.

In each case we started at the bottom vertex of the diagram and read clockwise
around the boundary. It is clear that such a symbol unambiguously describes
the identifications; on the other hand, in writing the symbol corresponding to
a given diagram, we can start at any verteX, and proceed either clockwise or
counterclockwise around the boundary.

We summarize our results by writing the symbols corresponding to each
of the surfaces mentioned in Theorem 5.1.

(a) The sphere: aa™!.
(b) The connected sum of n torti:

a,b,a;*bytayb,az;'b3t .. a,b,a, bt
() The connected sum of n projective planes:

a,a,a,a,...a,a,.
EXERCISES
5.1. Let P be a polygon with an even number of sides. Suppose that the sides are

identified in pairs in accordance with any symbol whatsoever. Prove that the
quotient space is a compact surface.
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FiGURE 1.12. Some types of intersection forbidden in a triangulation.

§6. Triangulations of Compact Surfaces

To prove Theorem 5.1, we must assume that the given surface is triangulated,
i.e.,, divided up into triangles which fit together nicely. We can easily visualize
the surface of the earth divided into triangular regions, and such a subdivision
is very useful in the study of compact surfaces in general.

Definition. A triangulation of a compact surface S consists of a finite family
of closed subsets {T}, Ty, ..., T,} that cover S, and a family of homeomor-
phisms ¢;: T, > T;, i = 1, ..., n, where each T} is a triangle in the planc R?
(i.e., a compact subset of R? bounded by three distinct straight lines). The
subsets T; are called “triangles.” The subsets of T; that are the images of the
vertices and edges of the triangle T; under ¢, are also called “vertices” and
“edges,” respectively. Finally, it is required that any two distinct triangles, T;
and T}, either be disjoint, have a single vertex in common, or have one entire
edge in common.

Perhaps the conditions in the definition are clarified by Figure 1.12, which
shows three unallowable types of intersection of triangles.

Given any compact surface S, it seems plausible that there should exist a
triangulation of S. A rigorous proof of this fact (first given by T. Radé6 in 1925)
requires the use of a strong form of the Jordan curve theorem. Although it is
not difficult, the proof is tedious, and we will not repeat it here.

We can regard a triangulated surface as having been constructed by gluing
together the various triangles in a certain way, much as we put together a
jigsaw puzzle or build a wall of bricks. Because two different triangles cannot
have the same vertices we can specify completely a triangulation of a surface
by numbering the vertices, and then listing which triples of vertices are vertices
of a triangle. Such a list of triangles completely determines the surface together
with the given triangulation up to homeomorphism.

Examples

6.1. The surface of an ordinary tetrahedron in Euclidean 3-space is homeo-
morphic to the sphere S2; moreover, the four triangles satisfy all the conditions
for a triangulation of S2. In this case there are four vertices, and every triple
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FIGURE 1.13. A triangulation of the projective plane.

of vertices is the set of vertices of a triangle. No other triangulation of any
surface can have this property.

6.2. In Figure 1.13 we show a triangulation of the projective plane, con-
sidered as the space obtained by identifying diametrically opposite points on
the boundary of a disc. The vertices are numbered from 1 to 6, and there are
the following 10 triangles:

124 245
235 135
156 126
236 346
134 456

6.3. In Figure 1.14 we show a triangulation of a torus, regarded as a square
with the opposite sides identified. There are 9 vertices, and the following 18
triangles:

124 245 235
356 361 146
457 578 658
689 649 479
187 128 289

239 379 137
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1 2 3 1

FIGURE 1.14. A triangulation of a torus.

We conclude our discussion of triangulations by noting that any triangula-
tion of a compact surface satisfies the following two conditions:

(1) Each edge is an edge of exactly two triangles.

(2) Let v be a vertex of a triangulation. Then we may arrange the set of all
triangles with v as a vertex in cyclic order, Ty, T3, T, ..., T,_;, T, = Ty,
such that T; and T;,, have an edge in common for0 <i<n— 1.

The truth of (1) follows from the fact that each point on the edge in question
must have an open neighborhood homeomorphic to the open disc U2 If an
edge were an edge of only one triangle or more than two triangles, this would
not be possible. The rigorous proof of this last assertion can be given by using
the concept of “The local homology groups at a point.” We will take up this
concept in Chapter VIIL

Condition (2) can be demonstrated as follows. The fact that the set of all
the triangles with v as a vertex can be divided into several disjoint subsets,
such that the triangles in each subset can be arranged in cyclic order as
described, is an easy consequence of condition (1). However, if there were more
than one such subset, then the requirement that » have a neighborhood
homeomorphic to U? would be violated. This statement can also be proved
by using local homology groups at a point.

§7. Proof of Theorem 5.1

Let S be a compact surface. We shall demonstrate Theorem 5.1 by proving
that S is homeomorphic to a polygon with the edges identified in pairs as
indicated by one of the symbols listed at the end of §5.
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First step. From the discussion in the preceding section, we may assume
that § is triangulated. Denote the number of triangles by n. We assert that we
can number the triangles T;, T5, ..., T, so that the triangle T; has an edge e;
in common with at least one of the triangles T;, ..., T,_;,2 £ i < n. To prove
this assertion, label any of the triangles T;; for T, choose any triangle that has
an edge in common with T, for T; choose any triangle that has an edge in
common with T} or T,, etc. If at any stage we could not continue this process,
then we would have two sets of triangles {T}, ..., T;},and {T, 4, ..., T,} such
that no triangle in the first set would have an edge or vertex in common with
any triangle of the second set. But this would give a partition of § into two dis-
joint nonempty closed sets, contrary to the assumption that S was connected.

We now use this ordering of the triangles, T, T, ..., T,, together with the
choice of edges e,, es, ..., e,, to construct a “model” of the surface S in the
Euclidean plane; this model will be a polygon whose sides are to be identified
in pairs. Recall that for each triangle T; there exists an ordinary Euclidean
triangle 7; in R? and a homeomorphism ¢, of T onto T;. We can assume that
the triangles Ty, T, . . ., T, are pairwise disjoint; if they are not, we can translate
some of them to various other parts of the plane R2. Let

= T;
i=1

then T is a compact subset of R2 Define amap ¢ : T’ - S by ¢|T; = ¢,; the
map ¢ is obviously continuous and onto. Because T’ is compact and S is a
Hausdorff space, ¢ is a closed map, and hence S has the quotient topology
determined by ¢. This is a rigorous mathematical statement of our intuitive
idea that S is obtained by gluing the triangles T;, T, ... together along the
appropriate edges.

The polygon we desire will be constructed as a quotient space of T".
Consider any of the edges e;, 2 < i £ n. By assumption, ¢; is an edge of the
triangle T; and one other triangle T}, for which 1 < j < i. Therefore, ¢ ™'(e;)
consists of an edge of the triangle T; and an edge of the triangle T;. We identify
these two edges of the triangles T and T} by identifying points which map
onto the same point of e; (speaking intuitively, we glue together the triangles
T; and T;). We make these identifications for each of the edges e, e3, ..., e,.
Let D denote the resulting quotient space of T". It is clear that the map
¢: T’ — Sinduces a map y of D onto S, and that S has the quotient topology
induced by ¢ (because D is compact and S is Hausdorff, ¢ is a closed map).

We now assert that topologically D is a closed disc. The proof depends on
two facts:

(a) Let E, and E, be disjoint spaces, which topologically are closed discs (i.e.,
they are homeomorphic to E2). Let 4, and A, be subsets of the boundary
of E, and E,, respectively, which are homeomorphic to the closed interval
[0,1],and let h: A, — A, be a definite homeomorphism. Form a quotient
space of E; U E, by identifying points that correspond under h. Then,
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topologically, the quotient space is also a closed disc. The reader may
either take this very plausible fact for granted, or construct a proof using
the type of argument given in I1.8. Intuitively, it means that if we glue two
discs together along a common segment of their boundaries, the result is
again a disc.

(b) In forming the quotient space D of T, we may either make all the
identifications at once, or make the identifications corresponding to e,,
then those corresponding to e, etc., in succession. This is a consequence
of standard theorems about quotient spaces.

We now use these facts to prove that D is a disc as follows. T} and T, are
topologically equivalent to discs. Therefore, the quotient space of Ty U T,
obtained by identifying points of ¢ ~*(e,) is again a disc by (a). Form a quotient
space of this disc and T; by making the identifications corresponding to the
edge e, etc.

It is clear that S is obtained from D by identifying certain paired edges on
the boundary of D.

Examples

7.1. Figure 1.15 shows an easily visualized example. The surface of a cube
has been triangulated by dividing each face by a diagonal into two triangles.
The resulting disc D might look like the diagram, depending, of course, on
how the triangles were enumerated, and how the edges e,, ..., e;, were chosen.
The edges to D that are to be identified are labeled in the usual way. At this
stage, we can forget about the edges e,, es, ..., €;,. Thus, instead of the
polygon in Figure 1.15, we could work equally well with the one in Figure 1.16.

J
T{
e2
ay Yb
T4
s VT e
Ts, eg Té €4 Té €10 Tl ! €12
e e
/\ €5 €9 €1l )
T4 T Tfo {2
d € c ?
T7
d % Ac
T4
(]

F1GURE 1.15. Example illustrating the first step of the proof of Theorem 5.1.
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FIGURE 1.16. Simplified version of polygon shown in Figure 1.15.

EXERCISES

Carry out the above process for each of the surfaces whose triangulations are given
below. (NOTE: these examples will be used later.)

7.1. 124 236 134 246
367 347 469 459
698 678 457 259
289 578 358 125
238 135
7.2. 123 234 341 412
7.3. 123 234 345 451 512
136 246 356 416 526
74. 124 235 346 457 561 672
713 134 245 356 467 571
126 237
7.5. 123 256 341 451
156 268 357 468
167 275 374 476
172 283 385 485

Second step. Elimination of adjacent edges of the first kind. We have now
obtained a polygon D whose edges have to be identified in pairs to obtain the
given surface S. These identifications may be indicated by the appropriate
symbol; e.g., in Figure 1.16, the identifications are described by

aa ' fbb™f e lgcc g dd e.
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(b)

() (d)

FiGure 1.17. Elimination of an adjacent pair of edges of the first kind.

If the letter designating a certain pair of edges occurs with both exponents,
+1 and —1, in the symbol, then we will call that pair of edges a pair of the
first kind; otherwise, the pair is of the second kind. For example, in Figure
1.16, all seven pairs are of the first kind.

We wish to show that an adjacent pair of edges of the first kind can be
eliminated, provided there are at least four edges in all. This is easily seen from
the sequence of diagrams in Figure 1.17. We can continue this process until
all such pairs are eliminated, or until we obtain a polygon with only two sides.
In the latter case, this polygon, whose symbol will be aa or aa™, must be a
projective plane or a sphere, and we have completed the proof. Otherwise, we
proceed as follows.

Third step. Transformation to a polygon such that all vertices must be
identified to a single vertex. Although the edges of our polygon must be
identified in pairs, the vertices may be identified in sets of one, two, three, four,
.... Let us call two vertices of the polygon equivalent if and only if they are to
be identified. For example, the reader can easily verify that in Figure 1.16 there
are eight different equivalence classes of vertices. Some equivalence classes
contain only one vertex, whereas other classes contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to prove
we can transform our polygon into another polygon with all its vertices
belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices. Then,
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(a) (b)

FiGURE 1.18. Third step in the proof of Theorem 5.1.

the polygon must have an adjacent pair of vertices which are nonequivalent.
Label these vertices P and Q. Figure 1.18 shows how to proceed. As P and Q
are nonequivalent, and we have carried out step two, it follows that sides a
and b are not to be identified. Make a cut along the line labeled ¢, from the
vertex labeled Q to the other vertex of the edge a (i.e., to the vertex of edge a,
which is distinct from P). Then, glue the two edges labeled a together. A new
polygon with one less vertex in the equivalence class of P and one more vertex
in the equivalence class of Q results. If possible, perform step two again. Then
carry out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing step three
and step two until the equivalence class of P is eliminated entirely. If more
than one equivalence class of vertices remains, we can repeat this procedure
to reduce the number by 1. If we continue in this manner, we ultimately obtain
a polygon such that all the vertices are to be identified to a single vertex.
Fourth step. How to make any pair of edges of the second kind adjacent. We
wish to show that our surface can be transformed so that any pair of edges of
the second kind are adjacent to each other. Suppose we have a pair of edges
of the second kind which are nonadjacent, as in Figure 1.19(a). Cut along the

(a) (b)

FIGURE 1.19. Fourth step in the proof of Theorem 5.1.
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B

FiGURE 1.20. A pair of edges of the first kind.

dotted line labeled a and paste together along b. As shown in Figure 1.19(b),
the two edges are now adjacent.

Continue this process until all pairs of edges of the second kind are adjacent.
If there are no pairs of the first kind, we are finished, because the symbol of
the polygon must then be of the form a,a,4a,aq,...a,a,, and hence § is the
connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of edges
of the first kind, each of which is labeled with the letter c. Then we assert that
there is at least one other pair of edges of the first kind such that these two
pairs separate one another; i.e., edges from the two pairs occur alternately as
we proceed around the boundary of the polygon (hence, the symbol must be
of the formec...d...c™*...d ..., where the dots denote the possible occur-
rence of other letters).

To prove this assertion, assume that the edges labeled ¢ are not separated
by any other pair of the first kind. Then our polygon has the appearance
indicated in Figure 1.20. Here A and B each designate a whole sequence of
edges. The important point is that any edge in A must be identified with
another edge in A, and similarly for B. No edge in A4 is to be identified with
an edge in B. But this contradicts the fact that the initial and final vertices of
either edge labeled ¢ are to be identified, in view of step three.

Fifth step. Pairs of the first kind. Suppose, then, that we have two pairs of
the first kind which separate each other as described (see Figure 1.21). We
shall show that we can transform the polygon so that the four sides in question
are consecutive around the perimeter of the polygon.

First, cut along c and paste together along b to obtain Figure 1.21(b). Then,
cut along d and paste together along a to obtain Figure 1.21(c), as desired.

Continue this process until all pairs of the first kind are in adjacent groups
of four, as cdc™'d ! in Figure 1.21(c). If there are no pairs of the second kind,
this leads to the desired result because, in that case, the symbol must be of the

form
a,b,a;*bita,b,a3'byt .. a,ba; bt

and the surface is the connected sum of n tori.
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c

(b) (@

FiGURrE 1.21. Fifth step in the proof of Theorem 5.1.

It remains to treat the case in which there are pairs of both the first and
second kind at this stage. The key to the situation is the following rather
surprising lemma:

Lemma 7.1. The connected sum of a torus and a projective plane is homeomor-
phic to the connected sum of three projective planes.

PROOF. We have remarked that the connected sum of two projective planes
is homeomorphic to a Klein bottle (see Example 4.3). Thus, we must prove
that the connected sum of a projective plane and a torus is homeomorphic to
the connected sum of a projective plane and a Klein bottle. To do this, it will
be convenient to give an alternative construction for a connected sum of any
surface S with a torus or a Klein bottle. We can represent the torus and Klein
bottle as rectangles with opposite sides identified as shown in Figure 1.22. To
form the connected sum, we first cut out the disc that is shaded in the diagrams,
cut a similar hole in S, and glue the boundary of the hole in the torus or Klein
bottle to the boundary of the hole in S. However, instead of gluing on the
entire torus or Klein bottle in one step, we may do it in two stages: First, glue
on the part of the torus or Klein bottle that is the image of the rectangle
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b A B J: A B
3 A’ B’ b A’ B’

(a) (b)

FIGURE 1.22. (a) Torus with hole. (b) Klein bottle with hole.

ABB' A’ under the identification, and then glue on the rest of the torus or Klein
bottle. In the first stage we form the connected sum of S with an open tube or
cylinder. Such an open tube or cylinder is homeomorphic to a sphere with
two holes cut in it, and forming the connected sum of § with a sphere does
not change anything. Thus, the space resulting from the first stage is homeo-
morphic to the original surface § with two holes cut in it. In the second stage
we then connect the boundaries of these two holes with a tube that is the
remainder of the torus or Klein bottle. The difference between the two cases
depends on whether we connect the boundaries so they will have the same or
opposite orientations. This is illustrated in Figure 1.23, where S is a Mobius
strip.

We now assert that the two spaces shown in Figures 1.23(a) and 1.23(b)
(i.e., the connected sum of a Mobius strip with a torus and a Klein bottle,
respectively) are homeomorphic. To see this, imagine that we cut each of these
topological spaces along the lines AB. In each case, the result is the connected
sum of a rectangle and a torus, with the two ends of the rectangle to be
identified with a twist, as shown in Figure 1.24. Hence, the two spaces are
homeomorphic.

As stated previously, we obtain the projective plane by gluing the boundary
of a disc to the boundary of a Mobius strip. As the spaces shown in Figure
1.23 are homeomorphic, so are the spaces obtained by gluing a disc on the
boundary of each. Thus, the connected sum of a projective plane and a torus
is homeomorphic to the connected sum of a projective plane and a Klein
bottle, as was to be proved. QED.

It should be clear that this lemma takes care of the remaining case. Assume
that after the fifth step has been completed, the polygon has m pairs (m > 0)
of the second kind such that the two edges of each pair are adjacent, and n
quadruples (n > 0) of sides, each quadruple consisting of two pairs of the first
kind which separate each other. Then, the surface is the connected sum of m
projective planes and n tori, which by the lemma is homeomorphic to the
connected sum of m + 2n projective planes. This completes the proof of
Theorem 5.1.
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(b)

FIGURE 1.23. (a) Connected sum of a M&bius strip and a torus. (b) Connected sum of
a Mobius strip and a Klein bottle.

A B

FIGURE 1.24. The result of cutting the spaces shown in Figure 1.23 along the line AB.



26 I. Two-Dimensional Manifolds

EXERCISES

7.6. Carry out each of the above steps for the examples given in Exercises 7.1-7.5.

It is clear that we can also work the process described above backwards;
whenever there are three pairs of the second kind, we can replace them by one
pair of the second kind and two pairs of the first kind. Alternatively, we can
apply Lemma 7.1 to any connected sum of which three or more of the
summands are projective planes. The following alternative form of Theorem
5.1, which may be preferable in some cases, results.

Theorem 7.2. Any compact, orientable surface is homeomorphic to a sphere or
a connected sum of tori. Any compact, nonorientable surface is homeomorphic
to the connected sum of either a projective plane or Klein bottle and a compact,
orientable surface.

§8. The Euler Characteristic of a Surface

Although we have shown that any compact surface is homeomorphic to a
sphere, a sum of tori, or a sum of projective planes, we do not know that all
these are topologically different. It is conceivable that there exist positive
integers m and n, m # n, such that the sum of m tori is homeomorphic to the
sum of n tori. To show that this cannot happen, we introduce a numerical
invariant called the Euler characteristic.

First, we define the Euler characteristic of a triangulated surface. Let M be
a compact surface with triangulation {T, ..., T,}. Let

v = total number of vertices of M,
e = total number of edges of M,
t = total number of triangles (in this case, t = n).
Then,
M)y=v—e+1t

is called the Euler characteristic of M.

Example

8.1. Figure 1.25 suggests uniform methods of triangulating the sphere,
torus, and projective plane so that we may make the number of triangles as
large as we please. Using such triangulations, the reader should verify that the
Euler characteristics of the sphere, torus, and projective plane are 2, 0, and 1,
respectively. He should also verify that the Euler characteristics are inde-
pendent of the number of vertical and horizontal dividing lines in the diagrams
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FIGURE 1.25. Computing the Euler characteristic from a triangulation. (a) Sphere.
(b) Torus. () Projective plane.
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(a) (b)

(o)
FIGURE 1.26. (a) 1-gon. (b) A 2-gon. (c) A 3-gon.

FIGURE 1.27. An allowable kind of edge.

for the sphere and torus, and of the number of radial lines or concentric circles
in the case of the diagram for the projective plane.

Consideration of these and other examples suggests that y(M) depends only
on M, not on the triangulation chosen. We wish to suggest a method of
proving this. To do this, we shall allow subdivisions of M into arbitrary
polygons, not just triangles. These polygons may have any number n of sides
and vertices, n = 1 (see Figure 1.26). We shall also allow for the possibility of
edges that do not subdivide a region, as in Figure 1.27. In any case, the interior
of each polygonal region is required to be homeomorphic to an open disc,
and each edge is required to be homeomorphic to an open interval of the real
line, once the vertices are removed (the closure of each edge shall be homeo-
morphic to a closed interval or a circle). Finally, the number of vertices, edges,
and polygonal regions will be finite. As before, we define the Euler characteristic
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of such a subdivision of a compact surface M to be
x(M) = (No. of vertices) — (No. of edges) + (No. of regions).

It is now easily shown that the Euler characteristic is invariant under the
following processes:

(a) Subdividing an edge by adding a new vertex at an interior point (or,
inversely, if only two edges meet at a given vertex, we can amalgamate the
two edges into one and eliminate the vertex).

(b) Subdividing an n-gon, n > 1, by connecting two of the vertices by a new
edge (or, inversely, amalgamating two regions into one by removing an
edge).

(¢) Introducing a new edge and vertex running into a region, as shown in
Figure 1.27 (or, inversely, eliminating such an edge and vertex).

The invariance of the Euler characteristic would now follow if it could be
shown that we could get from any one triangulation (or subdivision) to any
other by a finite sequence of “moves” of types (a), (b), and (c). Suppose we have
two triangulations

T ={T,,T,..., T},
T ={T},T,.... T}}

of a given surface. If the intersection of any edge of the triangulation 7 with
any edge of the triangulation ' consists of a finite number of points and a
finite number of closed intervals, then it is easily seen that we can get from the
triangulation 7 to the triangulation ' in a finite number of such moves; the
details are left to the reader. However, it may happen that an edge of I
intersects an edge of 7 in an infinite number of points, like the following two
curves in the xy plane:

{(x,):y=0 and —1=<xg +1},
{(x, y):y=xsin§ and 0<|x|§1}u{(0,0)}.

If this is the case, it is clearly impossible to get from the triangulation J to
the triangulation 7~ by any finite number of moves. It appears plausible that
we could always avoid such a situation by “moving” one of the edges slightly.
This is true and can be proved rigorously. However, we do not attempt such
a proof here for several reasons: (a) The details are tedious and involved.
(b) In Chapter IX we will define the Euler characteristic for a more general
class of topological spaces and prove its invariance by means of homology
theory. In these more general circumstances, the type of proof we have
suggested here is not possible. (c) We will use the Euler characteristic to
distinguish between compact surfaces. We will achieve this purpose with
complete rigor in later chapters by the use of the fundamental group and by
use of homology groups.
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Proposition 8.1. Let S, and S, be compact surfaces. The Euler characteristics
of S, and S, and their connected sum, S, # S,, are related by the formula

x(Sy # 82) = x(S;) + x(S,) — 2.

Proor. The proof is very simple; assume S; and S, are triangulated. Form
their connected sum by removing from each the interior of a triangle, and then
identifying edges and vertices of the boundaries of the removed triangles. The
formula then follows by counting vertices, edges, and triangles before and after
the formation of the connected sum. Q.E.D.

Using this proposition, and an obvious induction, starting from the known
results for the sphere, torus, and projective plane, we obtain the following
values for the Euler characteristics of the various possible compact surfaces:

Surface Euler characteristic
Sphere 2
Connected sum of n tori 2—2n
Connected sum of n projective planes 2—n
Connected sum of projective plane and n tori 1—2n
Connected sum of Klein bottle and n tori —2n

Note that the Euler characteristic of an orientable surface is always even,
whereas for a nonorientable surface it may be either odd or even.

Assuming the topological invariance of the Euler characteristic and Theorem
5.1, we have the following important result:

Theorem 8.2. Let S, and S, be compact surfaces. Then, S, and S, are homeo-
morphic if and only if their Euler characteristics are equal and both are
orientable or both are nonorientable.

This is a topological theorem par excellence; it reduces the classification
problem for compact surfaces to the determination of the orientability and
Euler characteristic, both problems usually readily soluble. Moreover, Theorem
5.1 makes clear what are all possible compact surfaces.

Such a complete classification of any class of topological spaces is very rare.
No corresponding theorem is known for compact 3-manifolds, and for 4-
manifolds it has been proven (roughly speaking) that no such result is possible.

We close this section by giving some standard terminology. A surface that
is the connected sum of n tori or n projective planes is said to be of genus n,
whereas a sphere is of genus 0. The following relation holds between the genus
g and the Euler characteristic y of a compact surface:

_ {32 —y) in the orientable case
T l2—y in the nonorientable case.
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EXERCISES

8.1.

8.2.

8.3.

84.

8.5.

8.6.

8.7.

88.

8.9.

For over 2000 years it has been known that there are only five regular polyhedra,
namely, the regular tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron. Prove this by considering subdivisions of the sphere into n-gons (n fixed)
such that exactly m edges meet at each vertex (m fixed, m, n 2 3). Use the fact that
x(§%) =2

For any triangulation of a compact surface, show that
3t = 2e,

e=30— 1)

=37 + /49 — 24y).

In the case of the sphere, projective plane, and torus, what are the minimum values
of the numbsers v, e, and t? (Here, t, e, and v denote the number of triangles, edges,
and vertices, respectively.)

In how many pieces do n great circles, no three of which pass through a common
point, dissect a sphere?

(a) The sides of a regular octagon are identified in pairs in such a way as to obtain
a compact surface. Prove that the Euler characteristic of this surface is = —2.

(b) Prove that any surface (orientable or nonorientable) of Euler characteristic
> —2 can be obtained by suitably identifying in pairs the sides of a regular
octagon.

Prove that it is not possible to subdivide the surface of a sphere into regions, each
of which has six sides (i.¢., it is a hexagon) and such that distinct regions have no
more than one side in common.

Let S, be a surface that is the sum of mtori, m = 1, and let S, be a surface that is
the sum of n projective planes, n 2 1. Suppose two holes are cut in each of these
surfaces, and the two surfaces are then glued together along the boundaries of the
holes. What surface is obtained by this process?

What surface is represented by a regular 10-gon with edges identified in pairs, as
indicated by the symbol abcdec 'da™b'e™"? (uNT: How are the vertices identified
around the boundary?)

What surface is represented by a 2n-gon with the edges identified in pairs according
to the symbol

a.ay... 007" a4t a,?
What surface is represented by a 2n-gon with the edges identified in pairs according

to the symbol
-1 ,-1 -1 ,—1
a,a,...a,a;7'a5" .. a2 a,"?

(HINT: The cases where n is odd and where n is even are different.)

Remark: The results of Exercises 8.8 and 8.9 together give an alternative
“normal form” for the representation of a compact surface as a quotient space
of polygon.
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NOTES

Definition of the connected sum of two manifolds

The definition of the connected sum given in §4 is adequate for 2-dimensional
manifolds, but more care is necessary when we define the connected sum of
two orientable n-manifolds for n > 2. We must worry about whether the
homeomorphism & in our definition preserves or reverses orientations. The
essential reason for this difference is that any orientable surface admits
an orientation-reversing self-homeomorphism, whereas there exist orien-
table manifolds in higher dimensions which do not admit such a self-
homeomorphism. Seifert and Threlfall ([6], pp. 290-291) give an example of
a 3-dimensional manifold with this property. The complex projective plane is
a 4-dimensional manifold having the property in question.

Triangulation of manifolds

In the early days of topology, it was apparently taken for granted that all
surfaces and all higher-dimensional manifolds could be triangulated. The first
rigorous proof that surfaces can be triangulated was published by Tibor Rado
in a paper on Riemann surfaces [7]. Rado pointed out the necessity of
assuming the surface has a countable basis for its topology and gave an
example (due to Priifer) of a surface that does not have such a countable basis.
Rado’s proof, given in Chapter I of the text by Ahlfors and Sario [1], makes
essential use of a strong form of the Jordan Curve Theorem. The triangulability
of 3-manifolds was proved by E. Moise (Affine Structures in 3-manifolds, V:
The triangulation theorem and Hauptvermutung. Ann. Math. 56 (1952), 96—
114).

Recent results of A. Casson and M. Freedman show that some 4-
dimensional manifolds cannot be triangulated.

Models of nonorientable surfaces in Euclidean 3-space

No closed subset of Euclidean n-space is homeomorphic to a nonorientable
(n — 1)-manifold. This result, first proved by the Dutch mathematician L.E.J.
Brouwer in 1912, can now be proved as an easy corollary of some general
theorems of homology theory. This fact seriously hampers the development
of our geometric intuition regarding compact, nonorientable surfaces, since
they cannot be imbedded homeomorphically in Euclidean 3-space. However,
it is possible to construct models of such surfaces in Euclidean 3-space pro-
vided we allow “singularities” or “self-intersections.” We can even construct
a mathematical theory of such models by considering the concept of immersion
of manifolds. We say that a continuous map f of a compact n-manifold M"
into m-dimensional Euclidean space R™ is a topological immersion if each point
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of M" has a neighborhood mapped homeomorphically onto its image by f.
(The definition of a differentiable immersion is analogous; f is required to be
differentiable and have a Jacobian everywhere of maximal rank.) The usual
model of a Klein bottle in R3 is an immersion of the Klein bottle in 3-space.
Werner Boy, in his thesis at the University of Géttingen in 1901 [Uber die
Abbildung der projektiven Ebene auf eine im Endlichen geschlossene singu-
larititenfreie Fliche. Nach. Kénigl. Gesell. Wiss. Gottingen (Math. Phys. Kl),
1901, pp. 20-33. See also Math. Annal. 57 (1903), 173-184], constructed
immersions of the projective plane in R®. One of the immersions given by Boy
is reproduced in Hilbert and Cohn-Vossen [3]. Since any compact, non-
orientable surface is homeomorphic to the connected sum of an orientable
surface and a projective plane or a Klein bottle, it is now easy to construct
immersions of the remaining compact, nonorientable surfaces in R3.

The usual immersion of the Klein bottle in R? is much nicer than any of
the immersions of the projective plane given by Boy. The set of singular points
for the immersion of the Klein bottle consists of a circle of double points,
whereas the set of singular points for Boy’s immersions of the projective plane
is much more complicated. This raises the question, does there exist an
immersion of the projective plane in R? such that the set of singular points
consists of disjoint circles of double points? The answer to this question is
negative, at least in the case of differentiable immersions; for the proof, see the
two papers by T. Banchoff in Proceedings of the American Mathematical
Society published in 1974 (46, 402-413).

For further information on the immersion of compact surfaces in R?, see
the interesting article entitled “Turning a Surface Inside Out” by Anthony
Phillips in Scientific American published in 1966 (214, 112-120).

Bibliographical notes

The first proof of the classification theorem for compact surfaces is ascribed
by some to H. R. Brahana (4nn. Math. 23 (1922), 144-68). However, Seifert
and Threlfall ([6], p. 322), attribute it to Dehn and Heegard and do not even
list Brahana’s paper in their bibliography. During the 19th century several
mathematicians worked on the classification of surfaces, especially at the time
of Riemann and afterword. The nonexistence of any algorithm for the classifi-
cation of compact triangulable 4-manifolds is a result of the Russian mathe-
matician A. A. Markov (Proc. Int. Cong. Mathematicians, 1958, pp. 300-306).
For the use of the Euler characteristic to prove the 5-color theorem for maps,
see R. Courant and H. Robbins, What Is Mathematics? (Oxford University
Press, New York, 1941, pp. 264--267). We also refer the student to excellent
drawings in the books by Cairns ([2], p. 28), and Hilbert and Cohn-Vossen
([3], p. 265), illustrating how the connected sum of two or three tori can be
cut open to obtain a polygon whose opposite edges are to be identified in pairs.
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