Quaternionic Clifford modules, spinh
manifolds and symplectic K-theory
Abstract: I will discuss how some of the fundamental algebraic
and topological results related to spin and spinc manifolds
can be extended to their quaternionic counterpart--spinh manifolds.
On the algebraic side, we obtain an Atiyah-Bott-Shapiro type
isomorphism relating quaternionic modules over the Clifford algebras
to symplectic K-theory of a point. On the topological side, we define
a natural transformation from spin^h cobordism theory to symplectic
K-theory, which in particular assigns to each spin^h manifold an
integer or mod 2 valued cobordism invariant. These invariants can be
expressed in terms of differential geometrical data using a
quaternionic version of the index theorem.