Bernhard Hanke, Augsburg University
Title: Positive scalar curvature on manifolds with odd order abelian fundamental groups
Abstract: We introduce Riemannian metrics of positive scalar
curvature on manifolds with Baas-Sullivan singularities, prove a
corresponding homology invariance principle and discuss admissible
products. Using this theory we construct positive scalar curvature
metrics on closed smooth manifolds of dimension at least five which
have odd order abelian fundamental groups, are non-spin and atoral.
This solves the Gromov-Lawson-Rosenberg conjecture for a new class of
manifolds with finite fundamental groups.