Summary on Lecture 10, April 17th, 2015

Integers mod n and simplest ciphers.

Here is the **Ceasar cipher**. We numerate the alphabet

a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	p	q	r	s	t	u	v	w	x	y	z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Now we choose a key $0 \le \kappa \le 25$. Then we define a function $E: \mathbb{Z}/26 \to \mathbb{Z}/26$ as $E: \theta \mapsto (\theta + \kappa) \mod 26$. Say, if $\kappa = 7$, we obtain the following encryption for our cipher:

	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	p	q	r	s	t	u	v	w	x	y	z
ſ	h	i	j	k	l	m	\boldsymbol{n}	0	p	\boldsymbol{q}	r	s	t	\boldsymbol{u}	v	w	\boldsymbol{x}	y	z	a	b	c	d	e	f	\boldsymbol{g}

Thus we can enrypt the famous Ceaser's message: "I came, I saw, I conquered":

i	c	a	m	e	i	s	a	w	i	c	0	n	q	u	e	r	e	d
p	j	h	t	l	p	z	h	d	p	j	v	\boldsymbol{u}	x	b	l	y	l	k

The message now looks like that "pjhtlpzhdpjvuxblylk". To decrypt the message, we should use the function $D: \theta \mapsto (\theta - \kappa) \mod 26$.

There is an obvious modification: let α be an integer $1 \leq \alpha \leq 25$ such that $gcd(\alpha, 26) = 1$. Then new encryption function E is given as $E: \theta \mapsto (\alpha \theta + \kappa) \mod 26$. The corresponding decryption function is given as $D(\theta) = \alpha^{-1}\theta - \alpha^{-1}\kappa$.

Example. Let $\kappa = 7$ and $\alpha = 15$, and $E(\theta) = 15\theta + 7$. Then we can find that $\alpha^{-1} = 7 \mod 26$. Then the decryption function is $D(\theta) = 7\theta - 7^2 = 7\theta - 49 = 7\theta + 3 \mod 26$.

Exercise. Encrypt and decrypt the message "I came, I saw, I conquered".

Exponentiation mod n

We would like to compute $17^{2015} \mod 113$. Clearly a direct computation does not work here. We decompose 2015 into binaries:

$$2015 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0.$$

Then we compute:

1	$17^{2^0} = 17$	$\equiv 17$	$\mod 113$	17	$\mod 113$
1	$17^{2^1} = 17^2 = 289$	$\equiv 63$	$\mod 113$	$17 \cdot 63 \equiv 54$	$\mod 113$
	$17^{2^2} = 63^2 = 3,969$	$\equiv 14$	$\mod 113$	$54 \cdot 14 \equiv 78$	$\mod 113$
	$17^{2^3} = 14^2 = 196$	$\equiv 83$	$\mod 113$	$78 \cdot 83 \equiv 33$	$\mod 113$
	$17^{2^4} = 83^2 = 6,889$	$\equiv 109$	$\mod 113$	$33 \cdot 109 \equiv 94$	$\mod 113$
	$17^{2^5} = 109^2 = 11,881$	$\equiv 16$	$\mod 113$	94	$\mod 113$
1	$17^{2^6} = 16^2 = 256$	$\equiv 30$	$\mod 113$	$94 \cdot 30 \equiv 108$	$\mod 113$
	$17^{2^7} = 30^2 = 900$	$\equiv 109$	$\mod 113$	$108\cdot 109 \equiv 20$	$\mod 113$
	$17^{2^8} = 109^2 = 11,881$	$\equiv 16$	$\mod 113$	$20 \cdot 16 \equiv 94$	$\mod 113$
	$17^{2^9} = 16^2 = 256$	$\equiv 30$	$\mod 113$	$94 \cdot 30 \equiv 108$	$\mod 113$
1	$17^{2^{10}} = 30^2 = 900$	$\equiv 109$	$\mod 113$	$108 \cdot 109 \equiv 20$	$\mod 113$

We obtain: $17^{2015} = 20 \mod 113$.

Comment. Study Example 14.16 in section 14.3 how to compute $5^{143} \mod 222$.

Exercise. Compute last three digits of the power 2015^{2015} .

Powers of numbers mod n

First, we consider a simple example: $\mathbf{Z}/7$. We list the powers of non-zero elements in $\mathbf{Z}/7$:

We notice an intersting pattern: $a^6 = 1 \mod 7$ for all $a \in \mathbb{Z}/7$, $a \neq 0$. The following is a remarkable general result:

Theorem 1. (Fermat's Little Theorem) Let p be a prime number. Then

$$a^{p-1} \equiv \begin{cases} 1 \mod p & \text{if } a \neq 0 \mod p \\ 0 \mod p & \text{if } a = 0 \mod p \end{cases}$$

Proof. If $a = 0 \mod p$, then any power a^k is zero mod p. We consider the case when $a \neq 0 \mod p$. We consider the numbers

$$a, 2a, 3a, \cdots (p-1)a \mod p$$

There are (p-1) numbers here. We notice that they all are different. Indeed, let $i \cdot a = j \cdot a \mod p$, where $1 \leq i, j \leq p-1$. Then $(i-j)a = 0 \mod p$. Thus the product (i-j)a is divisible by p. Since a is not divisible by p, then (i-j) is divisible by p. But $1 \leq i, j \leq p-1$, which means that the only option is that i = j, i.e., i-j = 0. Now the list of p-1 numbers

$$2a, 3a, \ldots, (p-1)a \mod p$$

up to the order coincides with the list $1, \ldots, (p-1)$. Then we have

a.

$$a \cdot 2a \cdot 3a \cdots (p-1)a = 1 \cdot 2 \cdots (p-1) \mod p.$$

The right-hand side is equal to $a^{p-1}(p-1)!$ We obtain:

$$a^{p-1}(p-1)! = (p-1)! \mod p$$

Since $(p-1)! \neq 0 \mod p$, there exists an integer q such that $(p-1)! \cdot q = 1 \mod p$. We multiply both sides of the equation $a^{p-1}(p-1)! = (p-1)!$ by q to get

$$a^{p-1} = 1 \mod p.$$

This proves Theorem 1.

The number p = 15485863 is prime. Thus $2015^{15485862} \equiv 1 \mod 15485863$. Give an estimate on how many digits does the number $2015^{15485862}$ have?