
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 10, April 17th, 2015

Integers mod n and simplest ciphers.

Here is the Ceasar cipher. We numerate the alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Now we choose a key 0 ≤ κ ≤ 25. Then we define a function E : Z/26 → Z/26 as E : θ 7→ (θ + κ) mod 26.
Say, if κ = 7, we obtain the following encryption for our cipher:

a b c d e f g h i j k l m n o p q r s t u v w x y z
h i j k l m n o p q r s t u v w x y z a b c d e f g

Thus we can enrypt the famous Ceaser’s message: “I came, I saw, I conquered”:

i c a m e i s a w i c o n q u e r e d
p j h t l p z h d p j v u x b l y l k

The message now looks like that “pjhtlpzhdpjvuxblylk”. To decrypt the message, we should use the function
D : θ 7→ (θ − κ) mod 26.

There is an obvious modification: let α be an integer 1 ≤ α ≤ 25 such that gcd(α, 26) = 1. Then new
encryption function E is given as E : θ 7→ (αθ + κ) mod 26. The corresponding decryption function is given as
D(θ) = α−1θ − α−1κ .

Example. Let κ = 7 and α = 15, and E(θ) = 15θ + 7. Then we can find that α−1 = 7 mod 26. Then the
decryption function is D(θ) = 7θ − 72 = 7θ − 49 = 7θ + 3 mod 26.

Exercise. Encrypt and decrypt the message “I came, I saw, I conquered”.

Exponentiation mod n

We would like to compute 172015 mod 113. Clearly a direct computation does not work here. We decompose
2015 into binaries:

2015 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22 + 21 + 20.

Then we compute:

1 172
0

= 17 ≡ 17 mod 113 17 mod 113

1 172
1

= 172 = 289 ≡ 63 mod 113 17 · 63 ≡ 54 mod 113

1 172
2

= 632 = 3, 969 ≡ 14 mod 113 54 · 14 ≡ 78 mod 113

1 172
3

= 142 = 196 ≡ 83 mod 113 78 · 83 ≡ 33 mod 113

1 172
4

= 832 = 6, 889 ≡ 109 mod 113 33 · 109 ≡ 94 mod 113

0 172
5

= 1092 = 11, 881 ≡ 16 mod 113 94 mod 113

1 172
6

= 162 = 256 ≡ 30 mod 113 94 · 30 ≡ 108 mod 113

1 172
7

= 302 = 900 ≡ 109 mod 113 108 · 109 ≡ 20 mod 113

1 172
8

= 1092 = 11, 881 ≡ 16 mod 113 20 · 16 ≡ 94 mod 113

1 172
9

= 162 = 256 ≡ 30 mod 113 94 · 30 ≡ 108 mod 113

1 172
10

= 302 = 900 ≡ 109 mod 113 108 · 109 ≡ 20 mod 113

We obtain: 172015 = 20 mod 113.

Comment. Study Example 14.16 in section 14.3 how to compute 5143 mod 222.

Exercise. Compute last three digits of the power 20152015 .
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Powers of numbers mod n

First, we consider a simple example: Z/7. We list the powers of non-zero elements in Z/7:

12 = 1 12 = 1 13 = 1 14 = 1 15 = 1 16 = 1
21 = 2 22 = 4 23 = 1 24 = 2 25 = 4 26 = 1
31 = 3 32 = 2 33 = 6 34 = 4 35 = 5 36 = 1
41 = 4 42 = 2 43 = 1 44 = 4 45 = 2 46 = 1
51 = 5 52 = 4 53 = 6 54 = 2 55 = 3 56 = 1
61 = 6 62 = 1 63 = 6 64 = 1 65 = 6 66 = 1

We notice an intersting pattern: a6 = 1 mod 7 for all a ∈ Z/7, a 6= 0. The following is a remarkable general
result:

Theorem 1. (Fermat’s Little Theorem) Let p be a prime number. Then

ap−1 ≡
{

1 mod p if a 6= 0 mod p
0 mod p if a = 0 mod p

Proof. If a = 0 mod p , then any power ak is zero mod p . We consider the case when a 6= 0 mod p . We
consider the numbers

a, 2a, 3a, · · · (p− 1)a mod p.

There are (p − 1) numbers here. We notice that they all are different. Indeed, let i · a = j · a mod p , where
1 ≤ i, j ≤ p− 1. Then (i− j)a = 0 mod p . Thus the product (i− j)a is divisible by p . Since a is not divisible
by p , then (i − j) is divisible by p . But 1 ≤ i, j ≤ p − 1, which means that the only option is that i = j , i.e.,
i− j = 0. Now the list of p− 1 numbers

a, 2a, 3a, . . . , (p− 1)a mod p

up to the order coincides with the list 1, . . . , (p− 1). Then we have

a · 2a · 3a · · · (p− 1)a = 1 · 2 · · · (p− 1) mod p.

The right-hand side is equal to ap−1(p− 1)! We obtain:

ap−1(p− 1)! = (p− 1)! mod p

Since (p− 1)! 6= 0 mod p , there exists an integer q such that (p− 1)! · q = 1 mod p . We multiply both sides of
the equation ap−1(p− 1)! = (p− 1)! by q to get

ap−1 = 1 mod p.

This proves Theorem 1. �

The number p = 15485863 is prime. Thus 201515485862 ≡ 1 mod 15485863. Give an estimate on how many digits
does the number 201515485862 have?


