Homework, due to 9 am, May 11, 2016

- (1) Solve the system of congruences:
 - (a) $x^{137} \equiv 428 \mod 541;$
 - (b) $x^{73} \equiv 614 \mod 1159;$
 - (c) $x^{751} \equiv 677 \mod 8023$.
 - (d) $x^{38993} \equiv 328047 \mod 401227$. (Hint: $401227 = 607 \cdot 661$)
- (2) Let p_1 and p_2 be distinct primes and let e and d be integers satisfying $de \equiv 1 \mod (p_1 1)(p_2 1)$. Suppose further that c is an integer with $gcd(c, p_1p_2) > 1$. Prove that $x \equiv c^d \mod p_1p_2$ is a solution to the congruence $x^e \equiv c \mod p_1p_2$.
- (3) Alice publishes her RSA public key: modulus N = 2038667 and exponent e = 103.
 - (a) Bob wants to send Alice the message m = 892383. What ciphertext does Bob send to Alice?
 - (b) Alice knows that her modulus factors into a product of two primes, one of which is $p_1 = 1301$. Find a decryption exponent d for Alice.
 - (c) Alice receives the ciphertext c = 317730 from Bob. Decrypt the message.
- (4) Bob's RSA public key has modulus N = 12191 and exponent e = 37. Alice sends Bob the ciphertext c = 587. Unfortunately, Bob has chosen too small a modulus. Help Eve by factoring N and decrypting Alices message. (Hint. N has a factor smaller than 100.)
- (5) For each of the given values of $N = p_1 p_2$ and $(p_1 1)(p_2 1)$ determine p_1 and p_2 .
 - (a) $N = p_1 p_2 = 352717$ and $(p_1 1)(p_2 1) = 351520$;
 - (b) $N = p_1 p_2 = 109404161$, and $(p_1 1)(p_2 1) = 109380612$;
 - (c) $N = p_1 p_2 = 172205490419$, and $(p_1 1)(p_2 1) = 172204660344$.