FINAL TEST REVIEW II

- 1. Let p be a prime number. Show that $a^{p-1} \equiv 1 \mod p$ for any positive integer a with $\gcd(a,p) = 1$.
- **2.** Compute the last two digits of 2015^{2016} . 2016^{2015} .
- **3.** Find a pair of integers m, n > 2016 such that $37^m + 23^n$ has the last digit 8.
- **4.** Let p be a prime number. Prove that $[p]^{-1} \equiv p \mod p + 1$. Find $[a]^{-1}$ in \mathbb{Z}_{2018} for a = 2017.
- 5. Define the Euler function $\phi(n)$. How many non-zero divisors are there in \mathbf{Z}_{33} ? in \mathbf{Z}_{3333} ? \mathbf{Z}_{33333} ?
- **6.** Show that $(n-1)^3 + n^3 + (n+1)^3 \equiv 0 \pmod{9}$ for all integers $n \ge 2$.
- 7. Show that $3^n + 2n 1 \equiv 0 \pmod{4}$ for all positive integers n.
- **8.** Find a general solution of the system

$$\begin{cases} x \equiv 11 \mod 13 \\ x \equiv 13 \mod 17 \\ x \equiv 17 \mod 19 \end{cases}$$

- **9.** Find how many zero divisors are there in $\mathbf{Z}_{2016\cdot2017}$.
- **10.** Solve the equations
 - (a) $19x \equiv 17 \mod 2017$
 - **(b)** $31x \equiv 40 \mod 2016$
- 11. Let a, n be positive integers and gcd(a, n) = 1. Show that $a^{\phi(n)} \equiv 1 \mod n$, where $\phi(n)$ is the Euler function.
- 12. Let p = 61, q = 13, n = pq, and you are an RSA-code manager. You have assigned a public key e = 47 to the user A. Find a secret key d.
- 13. Let n = pq, where p and q are prime numbers. Assume you know the value $\phi(n)$, where ϕ is the Euler function. Determine p and q from n and $\phi(n)$.
- 14. The encoding function $\alpha: \mathbb{Z}_2^4 \to \mathbb{Z}_2^7$ is given by the parity check matrix

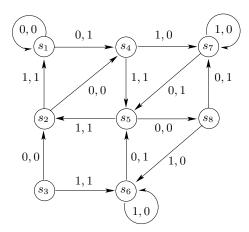
$$H = \left[\begin{array}{ccccccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

- (a) Find a generating matrix G of this code.
- (b) Find the minimal distance $\delta(x,y)$ for $x,y \in \mathcal{C} = \alpha(\mathbf{Z}_2^4)$ if $x \neq y$.
- (c) Decode the messages 1011111, 0101100.
- **15.** The encoding function $\alpha: \mathbf{Z}_2^3 \to \mathbf{Z}_2^5$ is given by the generating matrix

$$G = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right]$$

- (a) Find a parity-check matrix H of this code.
- (b) Find the minimal distance $\delta(x,y)$ for $x,y \in \mathcal{C} = \alpha(\mathbf{Z}_2^3)$ if $x \neq y$.
- (c) Decode the messages 10110, 00110.

- **16.** Design a finite state machine $M=(S,O,\nu,\omega)$, where $S=O=\{0,1\}$, which recognized a patern "1001" in a binary string.
- 17. Design a finite state machine $M=(S,O,\nu,\omega)$, where $S=O=\{0,1\}$, which recognized a patern "1001" in a binary string only when the zero occurs at the position which is multiple of 2.
- **18.** Consider the finite state machine $M = (S, O, \nu, \omega)$, where $S = O = \{0, 1\}$, given by the diagram:



- (i) Write the output of the string 001100110011.
- (ii) Write the transitional table for the machine.
- (iii) Apply the minimization process to this machine.
- 19. Carefuly explain what is the Busy Beaver Problem. Prove that there is no Turing Machine which solves the Busy Beaver Problem.