Summary on Lecture 8, April 11th, 2016

Equivalence relations and partitions.

Let A be a set. A family of subsets $\left\{A_{i}\right\}_{i \in I}, A_{i} \subseteq A$, is called a partition if

$$
A=\bigcup_{i \in I} A_{i}, \quad A_{i} \cap A_{i^{\prime}}=\emptyset \quad \text { if } i \neq i^{\prime}
$$

Important example. Let $n \in \mathbf{Z}_{+}$be a positive integer. We define an equivalence relation on \mathbf{Z} as follows: $m \sim m^{\prime}$ iff $m-m^{\prime}$ is divisible by n. Then we have n different classes of equivalent integers:

$$
\begin{array}{cl}
\mathbf{0} & :=\{0, \pm n, \pm 2 \cdot n, \ldots\} \\
\mathbf{1} & :=\{1,1 \pm n, 1 \pm 2 \cdot n, \ldots\} \\
\mathbf{2} & :=\{2,2 \pm n, 2 \pm 2 \cdot n, \ldots\} \\
\ldots & \cdots \cdots \cdots \\
\mathbf{n}-1 & :=\{n-1, n-1 \pm n, n-1 \pm 2 \cdot n, \ldots\}
\end{array}
$$

We obtain that $\mathbf{Z}=\bigcup_{i=0}^{n-1} \mathbf{i}$, and clearly the sets \mathbf{i} and \mathbf{i}^{\prime} do not intersect if $i \neq i^{\prime}$. The set of equivalent classes $\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n}-1\}$ is denoted by \mathbf{Z} / n. There are well-defined sum and product operations on \mathbf{Z} / n :

$$
\mathbf{i}+\mathbf{i}^{\prime} \quad \text { and } \quad \mathbf{i} \cdot \mathbf{i}^{\prime}
$$

Here are the addition and multiplication tables in $\mathbf{Z} / 5$:

+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$

Next, we have the following addition and multiplication tables in $\mathbf{Z} / 6$:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$						
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $\mathbf{2} \cdot \mathbf{3}=\mathbf{0}, \mathbf{4} \cdot \mathbf{3}=\mathbf{0}$, and $\mathbf{3} \cdot \mathbf{3}=\mathbf{3}$.
Let $\mathcal{R} \subset A \times A$ be an equivalence relation. For each element $x \in A$ we define a subset

$$
[x]=\{y \in A \mid(x, y) \in \mathcal{R}\}
$$

We notice that either $[x]=\left[x^{\prime}\right]$ or $[x] \cap\left[x^{\prime}\right]=\emptyset$. Indeed, assume that $[x] \cap\left[x^{\prime}\right] \neq \emptyset$, and $z \in[x] \cap\left[x^{\prime}\right]$. Then $(x, z) \in \mathcal{R}$ and $\left(x^{\prime}, z\right) \in \mathcal{R}$, and this implies that $\left(x, x^{\prime}\right) \in \mathcal{R}$, and thus $[x]=\left[x^{\prime}\right]$. We obtain that the family of sets $\{[x]\}$ is a partition of A.

Now let $\left\{A_{i}\right\}_{i \in I}$ be a partition of A. Then we define a relation $\mathcal{R} \subset A \times A$ as follows:

$$
\left(x, x^{\prime}\right) \in \mathcal{R} \text { iff there exists } \quad i \in I \text { such that } \quad x, x^{\prime} \in A_{i}
$$

It is easy to check that $\mathcal{R} \subset A \times A$ is an equivalence relation.
Theorem 1. Let A be a set. Then there is one-to-one correspondence between equivalence relations on A and partitions of A.
Now we would like to count all possible partitions of a finite set $A=\left\{a_{1}, \ldots, a_{m}\right\}$. We'll say that a partition $A=\bigcup_{i=1}^{k} A_{i}$ has a size k. Clearly, $1 \leq k \leq m$. We fix such k and count how many partitions of size k are there.

To get started, we can count how many onto functions are there $f: A \rightarrow B$, where $B=\left\{b_{1}, \ldots, b_{k}\right\}$. Then we can think of b_{i} as a box to collect elements for A_{i}, thus we should forget the order of those boxes. By using the inclusion-exclusion principle, we obtain

$$
\sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}
$$

onto functions are there $f: A \rightarrow B$. We divide by k ! to obtain the Stirling number

$$
S(m, k)=\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}
$$

Now we sum up partitions of A of all sizes. We obtain that there are

$$
\sum_{k=1}^{m} S(m, k)=\sum_{k=1}^{m}\left(\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}\right)
$$

partitions of $A=\left\{a_{1}, \ldots, a_{m}\right\}$.

