Summary on Lecture 5, April 4th, 2016

Equivalence and partial order relations

Let A, B be sets (which live, as usual, in some "universal set"). Recall that a subset $\mathcal{R} \subset A \times B$ is called a binary relation.

Example 1. Let $A=B=\mathbf{Z}$, and $n \in \mathbf{Z}$. Then $(k, \ell) \in \mathcal{R}$ if and only if $k-\ell \equiv 0 \bmod n$.
Example 2. Let $A=B=\mathbf{Z}$. Then $(k, \ell) \in \mathcal{R}$ if and only if $k \leq \ell$.
Now we let $\mathcal{R} \subset A \times A$ be a binary relation on A, i.e., when $A=B$.
Definition. We say that a binary relation \mathcal{R} on A is an equivalence relation if it satisfies the following properties:
(R) $(x, x) \in \mathcal{R}$ for each $a \in A$ (Reflexivity);
(S) if $(x, y) \in \mathcal{R}$, then $(y, x) \in \mathcal{R}$ (Symmetry);
(T) if $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(y, z) \in \mathcal{R}$ (Transitivity).

Exercise. Check that the relation \mathcal{R} from Example 1 is an equivalence relation, and that is not true for the relation from Example 2.

Definition. We say that a binary relation \mathcal{R} on A is an partial order on A if it satisfies the following properties:
(R) $(x, x) \in \mathcal{R}$ for each $a \in A$ (Reflexivity);
(A) if $(x, y) \in \mathcal{R}$, and $(y, x) \in \mathcal{R}$, then $x=y$ (Antisymmetry);
(T) if $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(y, z) \in \mathcal{R}$. (Transitivity).

Remark. The usual relation partial order " \leq " on real numbers satisfies all the properties (R), (A), (T).
In order to understand well the above realtions, we will do some counting. Let A be a finite set, $|A|=n$.
(R) Let \mathcal{R} be a reflexive relation on A. Then $(a, a) \in \mathcal{R}$ for all $a \in A$. Thus \mathcal{R} contains at least the diagonal $\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$, and \mathcal{R} may contain any subset from $A \times A \backslash\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$. Thus we have $2^{n^{2}-n}$ reflexive relations on A.
(S) Let \mathcal{R} be a symmetric relation on A. To count how many such relation we have, we notice that the difference $A \times A \backslash\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$ consists of pairs $\left(a_{i}, a_{j}\right)$ with $i \neq j$. Then if $\left(a_{i}, a_{j}\right) \in \mathcal{R}$, then $\left(a_{j}, a_{i}\right) \in \mathcal{R}$, so it is enough to count pairs $\left(a_{i}, a_{j}\right)$ with $i \leq j$. We obtain $2^{n} \cdot 2^{\frac{n^{2}-n}{2}}=2^{\frac{n^{2}+n}{2}}$ symmetric relations.

Example 3. Here is an interesting example of partial order. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ be a decomposition of n through primes. We assume that $p_{1}<p_{2}<\cdots<p_{k}$. Then every divisor d of n has a form $d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where $0 \leq a_{i} \leq e_{i}$ for each $i=1,2, \ldots, k$. Thus n has $\prod_{i=1}^{k}\left(e_{i}+1\right)$ divisors. Then for two divisors d, d^{\prime} we write $d \leq d^{\prime}\left(\right.$ or $\left.\left(d, d^{\prime}\right) \in \mathcal{R}\right)$ iff d divides d^{\prime}. Let

$$
d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}, \quad d^{\prime}=p_{1}^{a_{1}^{\prime}} p_{2}^{a_{2}^{\prime}} \cdots p_{k}^{a_{k}^{\prime}}
$$

be two divisors of n. Then d divides d^{\prime} iff $0 \leq a_{i} \leq a_{i}^{\prime} \leq e_{i}$ for each $i=1,2, \ldots, k$. Consider just one index i : we can use the problem of counting number of ways to place 2 objects to $e_{i}+1$ boxes. We obtain $\binom{e_{i}+1+2-1}{2}=\binom{e_{i}+2}{2}$ pairs $\left(a_{i}, a_{i}^{\prime}\right)$ satisfying $0 \leq a_{i} \leq a_{i}^{\prime} \leq e_{i}$. We obtain:

$$
|\mathcal{R}|=\prod_{i=1}^{k}\binom{e_{i}+2}{2}
$$

More on relations: matrices and graphs.

Definition. Let A, B, C be sets, and $\mathcal{R}_{1} \subset A \times B, \mathcal{R}_{2} \subset B \times C$ be two binary relations. A composite relation $\mathcal{R}=\mathcal{R}_{1} \circ \mathcal{R}_{2}$ is defined as the set

$$
\mathcal{R}:=\left\{(a, c) \mid \text { there exists } b \in B \text { such that }(a, b) \in \mathcal{R}_{1} \text { and }(b, c) \in \mathcal{R}_{2}\right\}
$$

Example. Let $A=\{1,2,3,4,5\}, B=\{w, x, y, z\}, C=\{a, b, c\}$. The relations $\mathcal{R}_{1} \subset A \times B, \mathcal{R}_{2} \subset B \times C$ are given as follows:

$$
\mathcal{R}_{1}=\begin{array}{|c|cccc}
\hline & w & x & y & z \\
\hline 1 & 1 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1 \\
5 & 1 & 0 & 1 & 0
\end{array} \quad \quad \mathcal{R}_{2}=\begin{array}{|l|ccc|}
\hline & a & b & c \\
\hline w & 1 & 0 & 0 \\
x & 0 & 1 & 0 \\
y & 0 & 0 & 0 \\
z & 0 & 1 & 1 \\
\hline
\end{array}
$$

Here we put 1 's for all pairs (a, b) and (b, c) such that $(a, b) \in \mathcal{R}_{1}$ and $(b, c) \in \mathcal{R}_{2}$; otherwise we put zeros. We obtain the matrices

$$
M\left(\mathcal{R}_{1}\right)=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad M\left(\mathcal{R}_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

which are called zero-one matrices corresponding to the realtions \mathcal{R}_{1} and \mathcal{R}_{2}. We notice that the relation $\mathcal{R}=\mathcal{R}_{1} \circ \mathcal{R}_{2}$ has the following matrix:

$$
M\left(\mathcal{R}_{1} \circ \mathcal{R}_{2}\right)=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Here we use a standard multiplication of matrices, plus we used the following rules: $0 \cdot 0=0,0 \cdot 1=1 \cdot 0=0$, $1 \cdot 1=1$, and $1+1=1$. The last rule is designed specifically for zero-one matrices.
Theorem 1. Let Let A, B, C, D be sets, and $\mathcal{R}_{1} \subset A \times B, \mathcal{R}_{2} \subset B \times C, \mathcal{R}_{3} \subset C \times D$ be binary relations. Then

$$
\left(\mathcal{R}_{1} \circ \mathcal{R}_{1}\right) \circ \mathcal{R}_{3}=\mathcal{R}_{1} \circ\left(\mathcal{R}_{1} \circ \mathcal{R}_{3}\right) .
$$

Exercise. Prove Theorem 1.
Let $\mathcal{R} \subset A \times A$ be a binary relation. Then a power \mathcal{R}^{ℓ} is defined recursively: $\mathcal{R}^{1}:=\mathcal{R}, \mathcal{R}^{\ell+1}:=\mathcal{R} \circ \mathcal{R}^{\ell}$.
Examples. (1) Let $A=\{1,2,3,4,5\}$, and

$$
\begin{aligned}
& M(\mathcal{R})=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad M\left(\mathcal{R}^{2}\right)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& M\left(\mathcal{R}^{3}\right)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

We can notice that $M\left(\mathcal{R}^{2 k+1}\right)=M(\mathcal{R})$ and $M\left(\mathcal{R}^{2 k}\right)=M\left(\mathcal{R}^{2}\right)$. Thus $\mathcal{R}^{2 k+1}=\mathcal{R}$ and $\mathcal{R}^{2 k}=\mathcal{R}^{2}$.
(2) Let $A=\{1,2,3,4\}$, and

$$
\left.\begin{array}{l}
M(\mathcal{R})=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad M\left(\mathcal{R}^{2}\right)=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0
\end{array}\right] \\
M\left(\mathcal{R}^{3}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad .
$$

We obtain that $\mathcal{R}^{\ell}=\emptyset$ for $\ell \geq 4$.
Exercise. Let A be a finite set with $|A|=n$, and $\mathcal{R} \subset A \times A$ be a relation. Prove the following properties of the zero-one matrix $M(\mathcal{R})$:
(a) $M(\mathcal{R})=0$ (the matrix of all 0 's) if and only if $\mathcal{R}=\emptyset$.
(b) $M(\mathcal{R})=1$ (the matrix of all 1 's) if and only if $\mathcal{R}=A \times A$.
(c) $M\left(\mathcal{R}^{\ell}\right)=M^{\ell}(\mathcal{R})$ for all $\ell \geq 1$.

Let $M=\left\{m_{i j}\right\}, M^{\prime}=\left\{m_{i j}^{\prime}\right\}$ be two zero-one matrices of the same size. We say that $M \leq M^{\prime}$ if and only if $m_{i j} \leq m_{i j}^{\prime}$ for all indices i, j. We denote by I_{n} the identity matrix of the size n. Also if M is a matrix, we denote by M^{T} its transpose. Finally, if $M=\left\{m_{i j}\right\}, M^{\prime}=\left\{m_{i j}^{\prime}\right\}$ are two zero-one matrices of the same size, we define the matrix $M \cap M^{\prime}=\left\{m_{i j}^{\prime \prime}\right\}$ as

$$
m_{i j}^{\prime \prime}=\left\{\begin{array}{ll}
1 & \text { if } \\
0 & \text { else }
\end{array} \quad m_{i j}=m_{i j}^{\prime}=1\right.
$$

Theorem 2. Let A be a finite set with $|A|=n$, and $\mathcal{R} \subset A \times A$ be a relation. Then
(a) \mathcal{R} is reflexive if and only if $I_{n} \leq M(\mathcal{R})$;
(b) \mathcal{R} is symmetric if and only if $M(\mathcal{R})^{T}=M(\mathcal{R})$;
(c) \mathcal{R} is transitive if and only if $M(\mathcal{R})^{2} \leq M(\mathcal{R})$;
(d) \mathcal{R} is symmetric if and only if $M(\mathcal{R}) \cap M(\mathcal{R})^{T} \leq I_{n}$.

Exercise. Prove any three of the statements (a), (b), (c) or (d).

