
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 5, April 4th, 2016

Equivalence and partial order relations

Let A,B be sets (which live, as usual, in some “universal set”). Recall that a subset R ⊂ A × B is called a
binary relation.

Example 1. Let A = B = Z , and n ∈ Z . Then (k, `) ∈ R if and only if k − ` ≡ 0 mod n .

Example 2. Let A = B = Z . Then (k, `) ∈ R if and only if k ≤ ` .

Now we let R ⊂ A×A be a binary relation on A , i.e., when A = B .

Definition. We say that a binary relation R on A is an equivalence relation if it satisfies the following properties:

(R) (x, x) ∈ R for each a ∈ A (Reflexivity);
(S) if (x, y) ∈ R , then (y, x) ∈ R (Symmetry);
(T) if (x, y) ∈ R and (y, z) ∈ R , then (y, z) ∈ R (Transitivity).

Exercise. Check that the relation R from Example 1 is an equivalence relation, and that is not true for the
relation from Example 2.

Definition. We say that a binary relation R on A is an partial order on A if it satisfies the following properties:

(R) (x, x) ∈ R for each a ∈ A (Reflexivity);
(A) if (x, y) ∈ R , and (y, x) ∈ R , then x = y (Antisymmetry);
(T) if (x, y) ∈ R and (y, z) ∈ R , then (y, z) ∈ R . (Transitivity).

Remark. The usual relation partial order “≤” on real numbers satisfies all the properties (R), (A), (T).

In order to understand well the above realtions, we will do some counting. Let A be a finite set, |A| = n .

(R) Let R be a reflexive relation on A . Then (a, a) ∈ R for all a ∈ A . Thus R contains at least the diagonal
{(a1, a1), . . . , (an, an)} , and R may contain any subset from A × A \ {(a1, a1), . . . , (an, an)} . Thus we

have 2n
2−n reflexive relations on A .

(S) Let R be a symmetric relation on A . To count how many such relation we have, we notice that the
difference A×A \ {(a1, a1), . . . , (an, an)} consists of pairs (ai, aj) with i 6= j . Then if (ai, aj) ∈ R , then

(aj , ai) ∈ R , so it is enough to count pairs (ai, aj) with i ≤ j . We obtain 2n · 2n2−n
2 = 2

n2+n
2 symmetric

relations.

Example 3. Here is an interesting example of partial order. Let n = pe11 pe22 · · · p
ek
k be a decomposition of n

through primes. We assume that p1 < p2 < · · · < pk . Then every divisor d of n has a form d = pa1
1 pa2

2 · · · p
ak

k ,

where 0 ≤ ai ≤ ei for each i = 1, 2, . . . , k . Thus n has

k∏
i=1

(ei + 1) divisors. Then for two divisors d , d′ we write

d ≤ d′ (or (d, d′) ∈ R) iff d divides d′ . Let

d = pa1
1 pa2

2 · · · p
ak

k , d′ = p
a′1
1 p

a′2
2 · · · p

a′k
k

be two divisors of n . Then d divides d′ iff 0 ≤ ai ≤ a′i ≤ ei for each i = 1, 2, . . . , k . Consider just one index i : we

can use the problem of counting number of ways to place 2 objects to ei+1 boxes. We obtain
(
ei+1+2−1

2

)
=
(
ei+2
2

)
pairs (ai, a

′
i) satisfying 0 ≤ ai ≤ a′i ≤ ei . We obtain:

|R| =
k∏

i=1

(
ei + 2

2

)
.

1



2

More on relations: matrices and graphs.

Definition. Let A,B,C be sets, and R1 ⊂ A×B , R2 ⊂ B × C be two binary relations. A composite relation
R = R1 ◦ R2 is defined as the set

R := { (a, c) | there exists b ∈ B such that (a, b) ∈ R1 and (b, c) ∈ R2 }.

Example. Let A = {1, 2, 3, 4, 5} , B = {w, x, y, z} , C = {a, b, c} . The relations R1 ⊂ A× B , R2 ⊂ B × C are
given as follows:

R1 =

w x y z
1 1 1 0 0
2 0 0 1 0
3 1 0 1 0
4 0 1 0 1
5 1 0 1 0

R2 =

a b c
w 1 0 0
x 0 1 0
y 0 0 0
z 0 1 1

Here we put 1’s for all pairs (a, b) and (b, c) such that (a, b) ∈ R1 and (b, c) ∈ R2 ; otherwise we put zeros. We
obtain the matrices

M(R1) =


1 1 0 0
0 0 1 0
1 0 1 0
0 1 0 1
1 0 1 0

 M(R2) =


1 0 0
0 1 0
0 0 0
0 1 1


which are called zero-one matrices corresponding to the realtions R1 and R2 . We notice that the relation
R = R1 ◦ R2 has the following matrix:

M(R1 ◦ R2) =


1 1 0 0
0 0 1 0
1 0 1 0
0 1 0 1
1 0 1 0




1 0 0
0 1 0
0 0 0
0 1 1

 =


1 1 0
0 0 0
1 0 0
0 1 1
1 0 0


Here we use a standard multiplication of matrices, plus we used the following rules: 0 · 0 = 0, 0 · 1 = 1 · 0 = 0,
1 · 1 = 1, and 1 + 1 = 1. The last rule is designed specifically for zero-one matrices.

Theorem 1. Let Let A,B,C,D be sets, and R1 ⊂ A×B , R2 ⊂ B×C , R3 ⊂ C×D be binary relations. Then

(R1 ◦ R1) ◦ R3 = R1 ◦ (R1 ◦ R3).

Exercise. Prove Theorem 1.

Let R ⊂ A×A be a binary relation. Then a power R` is defined recursively: R1 := R , R`+1 := R ◦R` .

Examples. (1) Let A = {1, 2, 3, 4, 5} , and

M(R) =


0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1

 M(R2) =


0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1




0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 1



M(R3) =


0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 =


0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1


We can notice that M(R2k+1) = M(R) and M(R2k) = M(R2). Thus R2k+1 = R and R2k = R2 .
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(2) Let A = {1, 2, 3, 4} , and

M(R) =


0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0

 M(R2) =


0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0




0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0

 =


0 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0



M(R3) =


0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0




0 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0

 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



M(R4) =


0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


We obtain that R` = ∅ for ` ≥ 4.

Exercise. Let A be a finite set with |A| = n , and R ⊂ A × A be a relation. Prove the following properties of
the zero-one matrix M(R):

(a) M(R) = 0 (the matrix of all 0’s) if and only if R = ∅ .
(b) M(R) = 1 (the matrix of all 1’s) if and only if R = A×A .
(c) M(R`) = M `(R) for all ` ≥ 1.

Let M = {mij} , M ′ = {m′ij} be two zero-one matrices of the same size. We say that M ≤ M ′ if and only
if mij ≤ m′ij for all indices i, j . We denote by In the identity matrix of the size n . Also if M is a matrix, we

denote by MT its transpose. Finally, if M = {mij} , M ′ = {m′ij} are two zero-one matrices of the same size, we
define the matrix M ∩M ′ = {m′′ij} as

m′′ij =

{
1 if mij = m′ij = 1
0 else

Theorem 2. Let A be a finite set with |A| = n , and R ⊂ A×A be a relation. Then

(a) R is reflexive if and only if In ≤M(R);

(b) R is symmetric if and only if M(R)T = M(R);

(c) R is transitive if and only if M(R)2 ≤M(R);

(d) R is symmetric if and only if M(R) ∩M(R)T ≤ In .

Exercise. Prove any three of the statements (a), (b), (c) or (d).


