Summary on Lecture 4, April 1st 2016

Finite State Machines: More examples.

(7) Delay machine. Now we describe a finite state machine which delays the sequence by putting first k zeros. For example, if $k=1$, the input sequence $11110111110111010110 \ldots$ gives the following output

$$
\begin{aligned}
& 11110111110111010110 \ldots \\
& 011110111110111010110 \ldots
\end{aligned}
$$

Here is the diagram describing the functions ν and ω :

The case $k=2$ is essentially more complicated since the machine has to remember two previous digits. Here the input sequence $11110111110111010110 \ldots$ gives the output $0011110111110111010110 \ldots$ Here is the diagram describing the functions ν and ω :

We notice that the states s_{0}, s_{1}, s_{2} have only 0 as an output, and the states $s_{3}, s_{4}, s_{5}, s_{6}$ "remember" the prior inputs $00,10,10,11$ respectively.
Exercise. Construct a delay machine with $k=3$.

