
Math 233, Spring 2016 Boris Botvinnik

Summary on Lecture 24, May 25th, 2016

The Symmetric Group.

Recall that a set G is a group if there is a binary operation (g1, g2) 7→ g1 ◦ g2 called a product satisfying the
folllowing properties:

(1) For all elements g1, g2 ∈ G , g1 ◦ g2 ∈ G (Closure of G under the operation).

(2) For all elements g1, g2, g3 ∈ G , (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) (The Associative property).

(3) There exists e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G (Existence of the identity).

(4) For each g ∈ G there exists ḡ ∈ G such that g ◦ ḡ = ḡ ◦ g = e (Existence of Inverses).

We already know few examples of groups:

• (G, ◦) = (Z,+), where e = 0 ∈ Z , and the inverse of n is −n .

• (G, ◦) = (Zn,+), where again e = 0 ∈ Zn .

• Let p be a prime, and Z∗
p = {1, 2, . . . , p − 1} . Then (G, ◦) = (Z∗

p, ∗), the multiplicative group of Zp
(where we exclude 0). Here e = 1 ∈ Z∗

p , and a ∗ b ≡ ab mod p . Clearly there the inverses exist since p
is a prime.

The above examples are such that g1 ◦ g2 = g2 ◦ g1 for any elements g1, g2 ∈ G . Such groups are called abelian.

Theorem 1. Let (G, ◦) be a group. Then

(a) The identity e ∈ G is unique.
(b) The inverse of each element is unique.
(c) If g1, g2, h ∈ G and g1 ◦ h = g2 ◦ h , then g1 = g2 .
(d) If g1, g2, h ∈ G and h ◦ g1 = h ◦ g2 , then g1 = g2 .

Exercise. Prove Theorem 1.

Symmetric group. Let S = {1, . . . , n} be the set of first n natural numbers. A bijection map σ : S → S is
called a permutation. We denote σ(i) the image of the integer i . It is convenient to describe a permutation as
follows:

σ =

(
1 · · · i · · · n

σ(1) · · · σ(i) · · · σ(n)

)
We define the symmetric group Sn as the set of all bijections {σ : S → S} , where the operation σ ◦ τ is given
by the composition

τ ◦ σ : S
σ−→S τ−→S

Consider the case n = 4. Let

σ =

(
1 2 3 4
2 3 4 1

)
, τ =

(
1 2 3 4
1 3 4 2

)
,

We see that

τ : 2 7→ 3, τ : 3 7→ 4, τ : 4 7→ 2, τ : 1 7→ 1.

We obtain:

τ ◦ σ =

(
1 2 3 4
3 4 2 1

)
We can easily write the inverse of σ :

σ =

(
1 2 3 4
2 3 4 1

)
, σ−1 =

(
2 3 4 1
1 2 3 4

)
, or σ−1 =

(
1 2 3 4
4 1 2 3

)
It is easy to compute the product σ ◦ τ :

σ ◦ τ =

(
1 2 3 4
2 4 1 3

)
Clearly, σ ◦ τ 6= τ ◦ σ . Thus the groups Sn are non-commutative for n ≥ 3. We also note that there are n!
elements in the group Sn .
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The groups Sn are rather complicated; futhermore, every finite group G could be realized as a subgroup of Sn for
an appropriate n . We will analyze only basic structural properties of the symmetric groups. Firts, we would like
to introduce a geometric way to present elements of Sn . Here we display the above elements σ, τ, σ−1, τ−1 ∈ S4

and the products σ ◦ τ and τ ◦ σ :

1 2 3 4 1 2 3 4

σ

σ−1

τ

τ−1

σ ◦ τ

τ ◦ σ

Definition. Let {n1, . . . , ns} ⊂ {1, . . . n} be a subset. A map

σ : {1, . . . n} → {1, . . . n}

is a cycle (denoted by (n1, . . . , ns)) if

σ : n1 7→ n2 7→ · · ·ns 7→ n1, and σ(i) = i, if i 6∈ {n1, . . . , ns}.

Here are the examples of the cycles (3, 4, 5) ∈ S5 , (1, 4, 2, 6, 3) ∈ S6 :

(3, 4, 5) ∈ S5

(1, 4, 2, 6, 3) ∈ S6

Example. We identify S3 with the group of symmetries of the unilateral triangle. Here are all elements of S3 :
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1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

(
1 2 3
1 2 3

)
= e

(
1 2 3
1 3 2

)
= (2, 3)

(
1 2 3
3 2 1

)
= (1, 3)

(
1 2 3
2 1 3

)
= (1, 2)

(
1 2 3
2 3 1

)
= (1, 2, 3)

(
1 2 3
3 1 2

)
= (1, 3, 2)

Let {n1, . . . , ns} ⊂ {1, . . . , n} be a subset. Then a cycle (n1, . . . , ns) is a permutation given as

σ : n1 7→ n2 7→ · · ·ns 7→ n1, and σ(i) = i, if i 6∈ {n1, . . . , ns}.
Here are more examples of cycles:

Let S = {1, . . . , n} be the set of first n natural numbers. A bijection map σ : S → S is called a permutation.
We denote σ(i) the image of the integer i .


