Summary on Lecture 23, May 25th, 2016

Turing Machines: Busy Beaver Problem.

Let us consider all possible binary Turing Machines which have n states $\{0, 1, \dots, n-1\}$, and n is a halting state. Here we assume that the language is $\Sigma = \{0, 1\}$ and that a Turing Machine always halts when it starts at the blank tape

$$0000000$$
.

We denote by \mathbf{Turing}_n the set of binary Turing Machines with n states halts when it starts at the blank tape. Then such a machine has 2n instructions of the type aDs, where $a \in \{0,1\}$, $D \in \{R,L\}$, and $s \in \{0,1,\ldots,n-1,n\}$ (here we include the halting state n). The number of choices for any particular instructions is 4(n+1). Since there are 2n possible instructions, we obtain:

$$|\mathbf{Turing}_n| = (4(n+1))^{2n}.$$

Not all of them halt, but clearly there are many binary Turing Machines which which will halt. 1

We denote by \mathbf{Turing}_n^h the set of all binary Turing Machines from \mathbf{Turing}_n which halt. Clearly²

$$|\mathbf{Turing}_n^h| < |\mathbf{Turing}_n|.$$

Now, for each machine $M \in \mathbf{Turing}_n^h$, we denote by b(M) the number of steps before it will halt. Then we take a maximum:

$$\beta(n) = \max_{M \in \mathbf{Turing}_n^h} b(M).$$

We obtain a function $\beta: \mathbf{Z}_+ \to \mathbf{Z}_+$, where $n \mapsto \beta(n)$.

Lemma 1. The function $\beta: \mathbf{Z}_+ \to \mathbf{Z}_+$ is increasing.

Proof. We should show that $\beta(n+1) > \beta(n)$. Indeed, let $M \in \mathbf{Turing}_n^h$ be a Turing Machine such that $\beta(n) = b(M)$, i.e., M halts in $\beta(n)$ steps. We use M to construct a Turing Machine $M' \in \mathbf{Turing}_{n+1}^h$ by adding one more line of new instructions:

		0	1
ſ	n	1L(n+1)	1L(n+1)

Here (n+1) means the halting state. Clearly $b(M') > \beta(n)$. It means that $\beta(n+1) > \beta(n)$.

Busy Beaver Problem: Is it possible to compile a computing program which will give the value of $\beta(n)$ for every positive integer n?

Theorem. There is no algorithm which will compute the value of $\beta(n)$ for every positive integer n.

What do we mean here? We do not mean that we cannot compute $\beta(n)$ for any particular n. What we really mean that there is no one computational procedure which will produce $\beta(n)$ for every positive integer n.

Proof. We assume that there exists an algorithm which computes $\beta(n)$ for every positive integer n. Then there exists a Turing Machine M_{β} which computes the the value of $\beta(n)$ for every positive integer n, i.e. M_{β} performs the operation:

$$0\underbrace{\stackrel{\downarrow}{1}1\ \dots\ 11}_{n}0\ \mapsto\ 0\underbrace{\stackrel{\downarrow}{1}1\ \dots\ 11}_{\beta(n)}0$$

We assume that M_{β} has k states, i.e. $M_{\beta} \in \mathbf{Turing}_k^h$. We would like to use the Turing Machines M_2 from Example 2 which computes the function $f_2(n) = n + 1$ and the Turing Machine M_5 from Example 5 which computes the function $f_5(n) = 2n$. By construction, $M_2 \in \mathbf{Turing}_2^h$ and $M_5 \in \mathbf{Turing}_9^h$.

 $^{^{1}}$ Prove that for any n there are binary Turing Machines which halt.

²Prove that for any *n* there are binary Turing Machines which do not halt.

Now we construct the Turing Machine $S_i = M_2 M_5^i M_\beta$ for each positive integer $i \ge 1$. The Turing Machine S_i performs the following operations:

$$0\underbrace{\overset{\downarrow}{11}\ \dots\ 11}_{n}0\ \overset{M_{2}}{\mapsto}\ 0\underbrace{\overset{\downarrow}{11}\ \dots\ 11}_{n+1}0\ \overset{M_{5}}{\mapsto}\ 0\underbrace{\overset{\downarrow}{11}\ \dots\ 11}_{2^{i}(n+1)}0\ \overset{M_{\beta}}{\mapsto}\ 0\underbrace{\overset{\downarrow}{11}\ \dots\ 11}_{\beta(2^{i}(n+1))}0$$

The Turing Machine S_i will halt after at least $\beta(2^i)$ steps. Indeed, if starts with a blank tape, it need to put $\beta(2^i)$ 1's, and it will take at least $\beta(2^i)$ steps.

On the other hand, S_i has 2 + 9i + k states, and we obtain that

$$\beta(2^i) \le \beta(2+9i+k)$$

for every i. However, for given k, there exists i such that $2^i > 2 + 9i + k$. Let i_0 be such that $2^{i_0} > 2 + 9i_0 + k$, then $\beta(2^{i_0}) > \beta(2 + 9i_0 + k)$ by Lemma 1. We obtain a contradiction. Thus the Turing Machine M_{β} does not exist.

 $^{^3}$ Use calculus to prove this.